Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 #include <linux/errqueue.h>
59
60 #include <net/protocol.h>
61 #include <net/dst.h>
62 #include <net/sock.h>
63 #include <net/checksum.h>
64 #include <net/xfrm.h>
65
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <trace/skb.h>
69
70 #include "kmap_skb.h"
71
72 static struct kmem_cache *skbuff_head_cache __read_mostly;
73 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74
75 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
76 struct pipe_buffer *buf)
77 {
78 put_page(buf->page);
79 }
80
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
83 {
84 get_page(buf->page);
85 }
86
87 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
88 struct pipe_buffer *buf)
89 {
90 return 1;
91 }
92
93
94 /* Pipe buffer operations for a socket. */
95 static struct pipe_buf_operations sock_pipe_buf_ops = {
96 .can_merge = 0,
97 .map = generic_pipe_buf_map,
98 .unmap = generic_pipe_buf_unmap,
99 .confirm = generic_pipe_buf_confirm,
100 .release = sock_pipe_buf_release,
101 .steal = sock_pipe_buf_steal,
102 .get = sock_pipe_buf_get,
103 };
104
105 /*
106 * Keep out-of-line to prevent kernel bloat.
107 * __builtin_return_address is not used because it is not always
108 * reliable.
109 */
110
111 /**
112 * skb_over_panic - private function
113 * @skb: buffer
114 * @sz: size
115 * @here: address
116 *
117 * Out of line support code for skb_put(). Not user callable.
118 */
119 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
120 {
121 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
122 "data:%p tail:%#lx end:%#lx dev:%s\n",
123 here, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
127 }
128 EXPORT_SYMBOL(skb_over_panic);
129
130 /**
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
135 *
136 * Out of line support code for skb_push(). Not user callable.
137 */
138
139 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
142 "data:%p tail:%#lx end:%#lx dev:%s\n",
143 here, skb->len, sz, skb->head, skb->data,
144 (unsigned long)skb->tail, (unsigned long)skb->end,
145 skb->dev ? skb->dev->name : "<NULL>");
146 BUG();
147 }
148 EXPORT_SYMBOL(skb_under_panic);
149
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
152 * [BEEP] leaks.
153 *
154 */
155
156 /**
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
163 *
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
167 *
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
169 * %GFP_ATOMIC.
170 */
171 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
172 int fclone, int node)
173 {
174 struct kmem_cache *cache;
175 struct skb_shared_info *shinfo;
176 struct sk_buff *skb;
177 u8 *data;
178
179 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
180
181 /* Get the HEAD */
182 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
183 if (!skb)
184 goto out;
185
186 size = SKB_DATA_ALIGN(size);
187 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
188 gfp_mask, node);
189 if (!data)
190 goto nodata;
191
192 /*
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
196 */
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->truesize = size + sizeof(struct sk_buff);
199 atomic_set(&skb->users, 1);
200 skb->head = data;
201 skb->data = data;
202 skb_reset_tail_pointer(skb);
203 skb->end = skb->tail + size;
204 /* make sure we initialize shinfo sequentially */
205 shinfo = skb_shinfo(skb);
206 atomic_set(&shinfo->dataref, 1);
207 shinfo->nr_frags = 0;
208 shinfo->gso_size = 0;
209 shinfo->gso_segs = 0;
210 shinfo->gso_type = 0;
211 shinfo->ip6_frag_id = 0;
212 shinfo->tx_flags.flags = 0;
213 shinfo->frag_list = NULL;
214 memset(&shinfo->hwtstamps, 0, sizeof(shinfo->hwtstamps));
215
216 if (fclone) {
217 struct sk_buff *child = skb + 1;
218 atomic_t *fclone_ref = (atomic_t *) (child + 1);
219
220 skb->fclone = SKB_FCLONE_ORIG;
221 atomic_set(fclone_ref, 1);
222
223 child->fclone = SKB_FCLONE_UNAVAILABLE;
224 }
225 out:
226 return skb;
227 nodata:
228 kmem_cache_free(cache, skb);
229 skb = NULL;
230 goto out;
231 }
232 EXPORT_SYMBOL(__alloc_skb);
233
234 /**
235 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
236 * @dev: network device to receive on
237 * @length: length to allocate
238 * @gfp_mask: get_free_pages mask, passed to alloc_skb
239 *
240 * Allocate a new &sk_buff and assign it a usage count of one. The
241 * buffer has unspecified headroom built in. Users should allocate
242 * the headroom they think they need without accounting for the
243 * built in space. The built in space is used for optimisations.
244 *
245 * %NULL is returned if there is no free memory.
246 */
247 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
248 unsigned int length, gfp_t gfp_mask)
249 {
250 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
251 struct sk_buff *skb;
252
253 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
254 if (likely(skb)) {
255 skb_reserve(skb, NET_SKB_PAD);
256 skb->dev = dev;
257 }
258 return skb;
259 }
260 EXPORT_SYMBOL(__netdev_alloc_skb);
261
262 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
263 {
264 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
265 struct page *page;
266
267 page = alloc_pages_node(node, gfp_mask, 0);
268 return page;
269 }
270 EXPORT_SYMBOL(__netdev_alloc_page);
271
272 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
273 int size)
274 {
275 skb_fill_page_desc(skb, i, page, off, size);
276 skb->len += size;
277 skb->data_len += size;
278 skb->truesize += size;
279 }
280 EXPORT_SYMBOL(skb_add_rx_frag);
281
282 /**
283 * dev_alloc_skb - allocate an skbuff for receiving
284 * @length: length to allocate
285 *
286 * Allocate a new &sk_buff and assign it a usage count of one. The
287 * buffer has unspecified headroom built in. Users should allocate
288 * the headroom they think they need without accounting for the
289 * built in space. The built in space is used for optimisations.
290 *
291 * %NULL is returned if there is no free memory. Although this function
292 * allocates memory it can be called from an interrupt.
293 */
294 struct sk_buff *dev_alloc_skb(unsigned int length)
295 {
296 /*
297 * There is more code here than it seems:
298 * __dev_alloc_skb is an inline
299 */
300 return __dev_alloc_skb(length, GFP_ATOMIC);
301 }
302 EXPORT_SYMBOL(dev_alloc_skb);
303
304 static void skb_drop_list(struct sk_buff **listp)
305 {
306 struct sk_buff *list = *listp;
307
308 *listp = NULL;
309
310 do {
311 struct sk_buff *this = list;
312 list = list->next;
313 kfree_skb(this);
314 } while (list);
315 }
316
317 static inline void skb_drop_fraglist(struct sk_buff *skb)
318 {
319 skb_drop_list(&skb_shinfo(skb)->frag_list);
320 }
321
322 static void skb_clone_fraglist(struct sk_buff *skb)
323 {
324 struct sk_buff *list;
325
326 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
327 skb_get(list);
328 }
329
330 static void skb_release_data(struct sk_buff *skb)
331 {
332 if (!skb->cloned ||
333 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
334 &skb_shinfo(skb)->dataref)) {
335 if (skb_shinfo(skb)->nr_frags) {
336 int i;
337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
338 put_page(skb_shinfo(skb)->frags[i].page);
339 }
340
341 if (skb_shinfo(skb)->frag_list)
342 skb_drop_fraglist(skb);
343
344 kfree(skb->head);
345 }
346 }
347
348 /*
349 * Free an skbuff by memory without cleaning the state.
350 */
351 static void kfree_skbmem(struct sk_buff *skb)
352 {
353 struct sk_buff *other;
354 atomic_t *fclone_ref;
355
356 switch (skb->fclone) {
357 case SKB_FCLONE_UNAVAILABLE:
358 kmem_cache_free(skbuff_head_cache, skb);
359 break;
360
361 case SKB_FCLONE_ORIG:
362 fclone_ref = (atomic_t *) (skb + 2);
363 if (atomic_dec_and_test(fclone_ref))
364 kmem_cache_free(skbuff_fclone_cache, skb);
365 break;
366
367 case SKB_FCLONE_CLONE:
368 fclone_ref = (atomic_t *) (skb + 1);
369 other = skb - 1;
370
371 /* The clone portion is available for
372 * fast-cloning again.
373 */
374 skb->fclone = SKB_FCLONE_UNAVAILABLE;
375
376 if (atomic_dec_and_test(fclone_ref))
377 kmem_cache_free(skbuff_fclone_cache, other);
378 break;
379 }
380 }
381
382 static void skb_release_head_state(struct sk_buff *skb)
383 {
384 dst_release(skb->dst);
385 #ifdef CONFIG_XFRM
386 secpath_put(skb->sp);
387 #endif
388 if (skb->destructor) {
389 WARN_ON(in_irq());
390 skb->destructor(skb);
391 }
392 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
393 nf_conntrack_put(skb->nfct);
394 nf_conntrack_put_reasm(skb->nfct_reasm);
395 #endif
396 #ifdef CONFIG_BRIDGE_NETFILTER
397 nf_bridge_put(skb->nf_bridge);
398 #endif
399 /* XXX: IS this still necessary? - JHS */
400 #ifdef CONFIG_NET_SCHED
401 skb->tc_index = 0;
402 #ifdef CONFIG_NET_CLS_ACT
403 skb->tc_verd = 0;
404 #endif
405 #endif
406 }
407
408 /* Free everything but the sk_buff shell. */
409 static void skb_release_all(struct sk_buff *skb)
410 {
411 skb_release_head_state(skb);
412 skb_release_data(skb);
413 }
414
415 /**
416 * __kfree_skb - private function
417 * @skb: buffer
418 *
419 * Free an sk_buff. Release anything attached to the buffer.
420 * Clean the state. This is an internal helper function. Users should
421 * always call kfree_skb
422 */
423
424 void __kfree_skb(struct sk_buff *skb)
425 {
426 skb_release_all(skb);
427 kfree_skbmem(skb);
428 }
429 EXPORT_SYMBOL(__kfree_skb);
430
431 /**
432 * kfree_skb - free an sk_buff
433 * @skb: buffer to free
434 *
435 * Drop a reference to the buffer and free it if the usage count has
436 * hit zero.
437 */
438 void kfree_skb(struct sk_buff *skb)
439 {
440 if (unlikely(!skb))
441 return;
442 if (likely(atomic_read(&skb->users) == 1))
443 smp_rmb();
444 else if (likely(!atomic_dec_and_test(&skb->users)))
445 return;
446 trace_kfree_skb(skb, __builtin_return_address(0));
447 __kfree_skb(skb);
448 }
449 EXPORT_SYMBOL(kfree_skb);
450
451 /**
452 * consume_skb - free an skbuff
453 * @skb: buffer to free
454 *
455 * Drop a ref to the buffer and free it if the usage count has hit zero
456 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
457 * is being dropped after a failure and notes that
458 */
459 void consume_skb(struct sk_buff *skb)
460 {
461 if (unlikely(!skb))
462 return;
463 if (likely(atomic_read(&skb->users) == 1))
464 smp_rmb();
465 else if (likely(!atomic_dec_and_test(&skb->users)))
466 return;
467 __kfree_skb(skb);
468 }
469 EXPORT_SYMBOL(consume_skb);
470
471 /**
472 * skb_recycle_check - check if skb can be reused for receive
473 * @skb: buffer
474 * @skb_size: minimum receive buffer size
475 *
476 * Checks that the skb passed in is not shared or cloned, and
477 * that it is linear and its head portion at least as large as
478 * skb_size so that it can be recycled as a receive buffer.
479 * If these conditions are met, this function does any necessary
480 * reference count dropping and cleans up the skbuff as if it
481 * just came from __alloc_skb().
482 */
483 int skb_recycle_check(struct sk_buff *skb, int skb_size)
484 {
485 struct skb_shared_info *shinfo;
486
487 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
488 return 0;
489
490 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
491 if (skb_end_pointer(skb) - skb->head < skb_size)
492 return 0;
493
494 if (skb_shared(skb) || skb_cloned(skb))
495 return 0;
496
497 skb_release_head_state(skb);
498 shinfo = skb_shinfo(skb);
499 atomic_set(&shinfo->dataref, 1);
500 shinfo->nr_frags = 0;
501 shinfo->gso_size = 0;
502 shinfo->gso_segs = 0;
503 shinfo->gso_type = 0;
504 shinfo->ip6_frag_id = 0;
505 shinfo->frag_list = NULL;
506
507 memset(skb, 0, offsetof(struct sk_buff, tail));
508 skb->data = skb->head + NET_SKB_PAD;
509 skb_reset_tail_pointer(skb);
510
511 return 1;
512 }
513 EXPORT_SYMBOL(skb_recycle_check);
514
515 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
516 {
517 new->tstamp = old->tstamp;
518 new->dev = old->dev;
519 new->transport_header = old->transport_header;
520 new->network_header = old->network_header;
521 new->mac_header = old->mac_header;
522 new->dst = dst_clone(old->dst);
523 #ifdef CONFIG_XFRM
524 new->sp = secpath_get(old->sp);
525 #endif
526 memcpy(new->cb, old->cb, sizeof(old->cb));
527 new->csum_start = old->csum_start;
528 new->csum_offset = old->csum_offset;
529 new->local_df = old->local_df;
530 new->pkt_type = old->pkt_type;
531 new->ip_summed = old->ip_summed;
532 skb_copy_queue_mapping(new, old);
533 new->priority = old->priority;
534 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
535 new->ipvs_property = old->ipvs_property;
536 #endif
537 new->protocol = old->protocol;
538 new->mark = old->mark;
539 __nf_copy(new, old);
540 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
541 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
542 new->nf_trace = old->nf_trace;
543 #endif
544 #ifdef CONFIG_NET_SCHED
545 new->tc_index = old->tc_index;
546 #ifdef CONFIG_NET_CLS_ACT
547 new->tc_verd = old->tc_verd;
548 #endif
549 #endif
550 new->vlan_tci = old->vlan_tci;
551
552 skb_copy_secmark(new, old);
553 }
554
555 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
556 {
557 #define C(x) n->x = skb->x
558
559 n->next = n->prev = NULL;
560 n->sk = NULL;
561 __copy_skb_header(n, skb);
562
563 C(len);
564 C(data_len);
565 C(mac_len);
566 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
567 n->cloned = 1;
568 n->nohdr = 0;
569 n->destructor = NULL;
570 C(iif);
571 C(tail);
572 C(end);
573 C(head);
574 C(data);
575 C(truesize);
576 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
577 C(do_not_encrypt);
578 C(requeue);
579 #endif
580 atomic_set(&n->users, 1);
581
582 atomic_inc(&(skb_shinfo(skb)->dataref));
583 skb->cloned = 1;
584
585 return n;
586 #undef C
587 }
588
589 /**
590 * skb_morph - morph one skb into another
591 * @dst: the skb to receive the contents
592 * @src: the skb to supply the contents
593 *
594 * This is identical to skb_clone except that the target skb is
595 * supplied by the user.
596 *
597 * The target skb is returned upon exit.
598 */
599 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
600 {
601 skb_release_all(dst);
602 return __skb_clone(dst, src);
603 }
604 EXPORT_SYMBOL_GPL(skb_morph);
605
606 /**
607 * skb_clone - duplicate an sk_buff
608 * @skb: buffer to clone
609 * @gfp_mask: allocation priority
610 *
611 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
612 * copies share the same packet data but not structure. The new
613 * buffer has a reference count of 1. If the allocation fails the
614 * function returns %NULL otherwise the new buffer is returned.
615 *
616 * If this function is called from an interrupt gfp_mask() must be
617 * %GFP_ATOMIC.
618 */
619
620 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
621 {
622 struct sk_buff *n;
623
624 n = skb + 1;
625 if (skb->fclone == SKB_FCLONE_ORIG &&
626 n->fclone == SKB_FCLONE_UNAVAILABLE) {
627 atomic_t *fclone_ref = (atomic_t *) (n + 1);
628 n->fclone = SKB_FCLONE_CLONE;
629 atomic_inc(fclone_ref);
630 } else {
631 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
632 if (!n)
633 return NULL;
634 n->fclone = SKB_FCLONE_UNAVAILABLE;
635 }
636
637 return __skb_clone(n, skb);
638 }
639 EXPORT_SYMBOL(skb_clone);
640
641 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
642 {
643 #ifndef NET_SKBUFF_DATA_USES_OFFSET
644 /*
645 * Shift between the two data areas in bytes
646 */
647 unsigned long offset = new->data - old->data;
648 #endif
649
650 __copy_skb_header(new, old);
651
652 #ifndef NET_SKBUFF_DATA_USES_OFFSET
653 /* {transport,network,mac}_header are relative to skb->head */
654 new->transport_header += offset;
655 new->network_header += offset;
656 new->mac_header += offset;
657 #endif
658 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
659 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
660 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
661 }
662
663 /**
664 * skb_copy - create private copy of an sk_buff
665 * @skb: buffer to copy
666 * @gfp_mask: allocation priority
667 *
668 * Make a copy of both an &sk_buff and its data. This is used when the
669 * caller wishes to modify the data and needs a private copy of the
670 * data to alter. Returns %NULL on failure or the pointer to the buffer
671 * on success. The returned buffer has a reference count of 1.
672 *
673 * As by-product this function converts non-linear &sk_buff to linear
674 * one, so that &sk_buff becomes completely private and caller is allowed
675 * to modify all the data of returned buffer. This means that this
676 * function is not recommended for use in circumstances when only
677 * header is going to be modified. Use pskb_copy() instead.
678 */
679
680 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
681 {
682 int headerlen = skb->data - skb->head;
683 /*
684 * Allocate the copy buffer
685 */
686 struct sk_buff *n;
687 #ifdef NET_SKBUFF_DATA_USES_OFFSET
688 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
689 #else
690 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
691 #endif
692 if (!n)
693 return NULL;
694
695 /* Set the data pointer */
696 skb_reserve(n, headerlen);
697 /* Set the tail pointer and length */
698 skb_put(n, skb->len);
699
700 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
701 BUG();
702
703 copy_skb_header(n, skb);
704 return n;
705 }
706 EXPORT_SYMBOL(skb_copy);
707
708 /**
709 * pskb_copy - create copy of an sk_buff with private head.
710 * @skb: buffer to copy
711 * @gfp_mask: allocation priority
712 *
713 * Make a copy of both an &sk_buff and part of its data, located
714 * in header. Fragmented data remain shared. This is used when
715 * the caller wishes to modify only header of &sk_buff and needs
716 * private copy of the header to alter. Returns %NULL on failure
717 * or the pointer to the buffer on success.
718 * The returned buffer has a reference count of 1.
719 */
720
721 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
722 {
723 /*
724 * Allocate the copy buffer
725 */
726 struct sk_buff *n;
727 #ifdef NET_SKBUFF_DATA_USES_OFFSET
728 n = alloc_skb(skb->end, gfp_mask);
729 #else
730 n = alloc_skb(skb->end - skb->head, gfp_mask);
731 #endif
732 if (!n)
733 goto out;
734
735 /* Set the data pointer */
736 skb_reserve(n, skb->data - skb->head);
737 /* Set the tail pointer and length */
738 skb_put(n, skb_headlen(skb));
739 /* Copy the bytes */
740 skb_copy_from_linear_data(skb, n->data, n->len);
741
742 n->truesize += skb->data_len;
743 n->data_len = skb->data_len;
744 n->len = skb->len;
745
746 if (skb_shinfo(skb)->nr_frags) {
747 int i;
748
749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
750 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
751 get_page(skb_shinfo(n)->frags[i].page);
752 }
753 skb_shinfo(n)->nr_frags = i;
754 }
755
756 if (skb_shinfo(skb)->frag_list) {
757 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
758 skb_clone_fraglist(n);
759 }
760
761 copy_skb_header(n, skb);
762 out:
763 return n;
764 }
765 EXPORT_SYMBOL(pskb_copy);
766
767 /**
768 * pskb_expand_head - reallocate header of &sk_buff
769 * @skb: buffer to reallocate
770 * @nhead: room to add at head
771 * @ntail: room to add at tail
772 * @gfp_mask: allocation priority
773 *
774 * Expands (or creates identical copy, if &nhead and &ntail are zero)
775 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
776 * reference count of 1. Returns zero in the case of success or error,
777 * if expansion failed. In the last case, &sk_buff is not changed.
778 *
779 * All the pointers pointing into skb header may change and must be
780 * reloaded after call to this function.
781 */
782
783 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
784 gfp_t gfp_mask)
785 {
786 int i;
787 u8 *data;
788 #ifdef NET_SKBUFF_DATA_USES_OFFSET
789 int size = nhead + skb->end + ntail;
790 #else
791 int size = nhead + (skb->end - skb->head) + ntail;
792 #endif
793 long off;
794
795 BUG_ON(nhead < 0);
796
797 if (skb_shared(skb))
798 BUG();
799
800 size = SKB_DATA_ALIGN(size);
801
802 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
803 if (!data)
804 goto nodata;
805
806 /* Copy only real data... and, alas, header. This should be
807 * optimized for the cases when header is void. */
808 #ifdef NET_SKBUFF_DATA_USES_OFFSET
809 memcpy(data + nhead, skb->head, skb->tail);
810 #else
811 memcpy(data + nhead, skb->head, skb->tail - skb->head);
812 #endif
813 memcpy(data + size, skb_end_pointer(skb),
814 sizeof(struct skb_shared_info));
815
816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
817 get_page(skb_shinfo(skb)->frags[i].page);
818
819 if (skb_shinfo(skb)->frag_list)
820 skb_clone_fraglist(skb);
821
822 skb_release_data(skb);
823
824 off = (data + nhead) - skb->head;
825
826 skb->head = data;
827 skb->data += off;
828 #ifdef NET_SKBUFF_DATA_USES_OFFSET
829 skb->end = size;
830 off = nhead;
831 #else
832 skb->end = skb->head + size;
833 #endif
834 /* {transport,network,mac}_header and tail are relative to skb->head */
835 skb->tail += off;
836 skb->transport_header += off;
837 skb->network_header += off;
838 skb->mac_header += off;
839 skb->csum_start += nhead;
840 skb->cloned = 0;
841 skb->hdr_len = 0;
842 skb->nohdr = 0;
843 atomic_set(&skb_shinfo(skb)->dataref, 1);
844 return 0;
845
846 nodata:
847 return -ENOMEM;
848 }
849 EXPORT_SYMBOL(pskb_expand_head);
850
851 /* Make private copy of skb with writable head and some headroom */
852
853 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
854 {
855 struct sk_buff *skb2;
856 int delta = headroom - skb_headroom(skb);
857
858 if (delta <= 0)
859 skb2 = pskb_copy(skb, GFP_ATOMIC);
860 else {
861 skb2 = skb_clone(skb, GFP_ATOMIC);
862 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
863 GFP_ATOMIC)) {
864 kfree_skb(skb2);
865 skb2 = NULL;
866 }
867 }
868 return skb2;
869 }
870 EXPORT_SYMBOL(skb_realloc_headroom);
871
872 /**
873 * skb_copy_expand - copy and expand sk_buff
874 * @skb: buffer to copy
875 * @newheadroom: new free bytes at head
876 * @newtailroom: new free bytes at tail
877 * @gfp_mask: allocation priority
878 *
879 * Make a copy of both an &sk_buff and its data and while doing so
880 * allocate additional space.
881 *
882 * This is used when the caller wishes to modify the data and needs a
883 * private copy of the data to alter as well as more space for new fields.
884 * Returns %NULL on failure or the pointer to the buffer
885 * on success. The returned buffer has a reference count of 1.
886 *
887 * You must pass %GFP_ATOMIC as the allocation priority if this function
888 * is called from an interrupt.
889 */
890 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
891 int newheadroom, int newtailroom,
892 gfp_t gfp_mask)
893 {
894 /*
895 * Allocate the copy buffer
896 */
897 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
898 gfp_mask);
899 int oldheadroom = skb_headroom(skb);
900 int head_copy_len, head_copy_off;
901 int off;
902
903 if (!n)
904 return NULL;
905
906 skb_reserve(n, newheadroom);
907
908 /* Set the tail pointer and length */
909 skb_put(n, skb->len);
910
911 head_copy_len = oldheadroom;
912 head_copy_off = 0;
913 if (newheadroom <= head_copy_len)
914 head_copy_len = newheadroom;
915 else
916 head_copy_off = newheadroom - head_copy_len;
917
918 /* Copy the linear header and data. */
919 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
920 skb->len + head_copy_len))
921 BUG();
922
923 copy_skb_header(n, skb);
924
925 off = newheadroom - oldheadroom;
926 n->csum_start += off;
927 #ifdef NET_SKBUFF_DATA_USES_OFFSET
928 n->transport_header += off;
929 n->network_header += off;
930 n->mac_header += off;
931 #endif
932
933 return n;
934 }
935 EXPORT_SYMBOL(skb_copy_expand);
936
937 /**
938 * skb_pad - zero pad the tail of an skb
939 * @skb: buffer to pad
940 * @pad: space to pad
941 *
942 * Ensure that a buffer is followed by a padding area that is zero
943 * filled. Used by network drivers which may DMA or transfer data
944 * beyond the buffer end onto the wire.
945 *
946 * May return error in out of memory cases. The skb is freed on error.
947 */
948
949 int skb_pad(struct sk_buff *skb, int pad)
950 {
951 int err;
952 int ntail;
953
954 /* If the skbuff is non linear tailroom is always zero.. */
955 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
956 memset(skb->data+skb->len, 0, pad);
957 return 0;
958 }
959
960 ntail = skb->data_len + pad - (skb->end - skb->tail);
961 if (likely(skb_cloned(skb) || ntail > 0)) {
962 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
963 if (unlikely(err))
964 goto free_skb;
965 }
966
967 /* FIXME: The use of this function with non-linear skb's really needs
968 * to be audited.
969 */
970 err = skb_linearize(skb);
971 if (unlikely(err))
972 goto free_skb;
973
974 memset(skb->data + skb->len, 0, pad);
975 return 0;
976
977 free_skb:
978 kfree_skb(skb);
979 return err;
980 }
981 EXPORT_SYMBOL(skb_pad);
982
983 /**
984 * skb_put - add data to a buffer
985 * @skb: buffer to use
986 * @len: amount of data to add
987 *
988 * This function extends the used data area of the buffer. If this would
989 * exceed the total buffer size the kernel will panic. A pointer to the
990 * first byte of the extra data is returned.
991 */
992 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
993 {
994 unsigned char *tmp = skb_tail_pointer(skb);
995 SKB_LINEAR_ASSERT(skb);
996 skb->tail += len;
997 skb->len += len;
998 if (unlikely(skb->tail > skb->end))
999 skb_over_panic(skb, len, __builtin_return_address(0));
1000 return tmp;
1001 }
1002 EXPORT_SYMBOL(skb_put);
1003
1004 /**
1005 * skb_push - add data to the start of a buffer
1006 * @skb: buffer to use
1007 * @len: amount of data to add
1008 *
1009 * This function extends the used data area of the buffer at the buffer
1010 * start. If this would exceed the total buffer headroom the kernel will
1011 * panic. A pointer to the first byte of the extra data is returned.
1012 */
1013 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1014 {
1015 skb->data -= len;
1016 skb->len += len;
1017 if (unlikely(skb->data<skb->head))
1018 skb_under_panic(skb, len, __builtin_return_address(0));
1019 return skb->data;
1020 }
1021 EXPORT_SYMBOL(skb_push);
1022
1023 /**
1024 * skb_pull - remove data from the start of a buffer
1025 * @skb: buffer to use
1026 * @len: amount of data to remove
1027 *
1028 * This function removes data from the start of a buffer, returning
1029 * the memory to the headroom. A pointer to the next data in the buffer
1030 * is returned. Once the data has been pulled future pushes will overwrite
1031 * the old data.
1032 */
1033 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1034 {
1035 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1036 }
1037 EXPORT_SYMBOL(skb_pull);
1038
1039 /**
1040 * skb_trim - remove end from a buffer
1041 * @skb: buffer to alter
1042 * @len: new length
1043 *
1044 * Cut the length of a buffer down by removing data from the tail. If
1045 * the buffer is already under the length specified it is not modified.
1046 * The skb must be linear.
1047 */
1048 void skb_trim(struct sk_buff *skb, unsigned int len)
1049 {
1050 if (skb->len > len)
1051 __skb_trim(skb, len);
1052 }
1053 EXPORT_SYMBOL(skb_trim);
1054
1055 /* Trims skb to length len. It can change skb pointers.
1056 */
1057
1058 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1059 {
1060 struct sk_buff **fragp;
1061 struct sk_buff *frag;
1062 int offset = skb_headlen(skb);
1063 int nfrags = skb_shinfo(skb)->nr_frags;
1064 int i;
1065 int err;
1066
1067 if (skb_cloned(skb) &&
1068 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1069 return err;
1070
1071 i = 0;
1072 if (offset >= len)
1073 goto drop_pages;
1074
1075 for (; i < nfrags; i++) {
1076 int end = offset + skb_shinfo(skb)->frags[i].size;
1077
1078 if (end < len) {
1079 offset = end;
1080 continue;
1081 }
1082
1083 skb_shinfo(skb)->frags[i++].size = len - offset;
1084
1085 drop_pages:
1086 skb_shinfo(skb)->nr_frags = i;
1087
1088 for (; i < nfrags; i++)
1089 put_page(skb_shinfo(skb)->frags[i].page);
1090
1091 if (skb_shinfo(skb)->frag_list)
1092 skb_drop_fraglist(skb);
1093 goto done;
1094 }
1095
1096 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1097 fragp = &frag->next) {
1098 int end = offset + frag->len;
1099
1100 if (skb_shared(frag)) {
1101 struct sk_buff *nfrag;
1102
1103 nfrag = skb_clone(frag, GFP_ATOMIC);
1104 if (unlikely(!nfrag))
1105 return -ENOMEM;
1106
1107 nfrag->next = frag->next;
1108 kfree_skb(frag);
1109 frag = nfrag;
1110 *fragp = frag;
1111 }
1112
1113 if (end < len) {
1114 offset = end;
1115 continue;
1116 }
1117
1118 if (end > len &&
1119 unlikely((err = pskb_trim(frag, len - offset))))
1120 return err;
1121
1122 if (frag->next)
1123 skb_drop_list(&frag->next);
1124 break;
1125 }
1126
1127 done:
1128 if (len > skb_headlen(skb)) {
1129 skb->data_len -= skb->len - len;
1130 skb->len = len;
1131 } else {
1132 skb->len = len;
1133 skb->data_len = 0;
1134 skb_set_tail_pointer(skb, len);
1135 }
1136
1137 return 0;
1138 }
1139 EXPORT_SYMBOL(___pskb_trim);
1140
1141 /**
1142 * __pskb_pull_tail - advance tail of skb header
1143 * @skb: buffer to reallocate
1144 * @delta: number of bytes to advance tail
1145 *
1146 * The function makes a sense only on a fragmented &sk_buff,
1147 * it expands header moving its tail forward and copying necessary
1148 * data from fragmented part.
1149 *
1150 * &sk_buff MUST have reference count of 1.
1151 *
1152 * Returns %NULL (and &sk_buff does not change) if pull failed
1153 * or value of new tail of skb in the case of success.
1154 *
1155 * All the pointers pointing into skb header may change and must be
1156 * reloaded after call to this function.
1157 */
1158
1159 /* Moves tail of skb head forward, copying data from fragmented part,
1160 * when it is necessary.
1161 * 1. It may fail due to malloc failure.
1162 * 2. It may change skb pointers.
1163 *
1164 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1165 */
1166 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1167 {
1168 /* If skb has not enough free space at tail, get new one
1169 * plus 128 bytes for future expansions. If we have enough
1170 * room at tail, reallocate without expansion only if skb is cloned.
1171 */
1172 int i, k, eat = (skb->tail + delta) - skb->end;
1173
1174 if (eat > 0 || skb_cloned(skb)) {
1175 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1176 GFP_ATOMIC))
1177 return NULL;
1178 }
1179
1180 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1181 BUG();
1182
1183 /* Optimization: no fragments, no reasons to preestimate
1184 * size of pulled pages. Superb.
1185 */
1186 if (!skb_shinfo(skb)->frag_list)
1187 goto pull_pages;
1188
1189 /* Estimate size of pulled pages. */
1190 eat = delta;
1191 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1192 if (skb_shinfo(skb)->frags[i].size >= eat)
1193 goto pull_pages;
1194 eat -= skb_shinfo(skb)->frags[i].size;
1195 }
1196
1197 /* If we need update frag list, we are in troubles.
1198 * Certainly, it possible to add an offset to skb data,
1199 * but taking into account that pulling is expected to
1200 * be very rare operation, it is worth to fight against
1201 * further bloating skb head and crucify ourselves here instead.
1202 * Pure masohism, indeed. 8)8)
1203 */
1204 if (eat) {
1205 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1206 struct sk_buff *clone = NULL;
1207 struct sk_buff *insp = NULL;
1208
1209 do {
1210 BUG_ON(!list);
1211
1212 if (list->len <= eat) {
1213 /* Eaten as whole. */
1214 eat -= list->len;
1215 list = list->next;
1216 insp = list;
1217 } else {
1218 /* Eaten partially. */
1219
1220 if (skb_shared(list)) {
1221 /* Sucks! We need to fork list. :-( */
1222 clone = skb_clone(list, GFP_ATOMIC);
1223 if (!clone)
1224 return NULL;
1225 insp = list->next;
1226 list = clone;
1227 } else {
1228 /* This may be pulled without
1229 * problems. */
1230 insp = list;
1231 }
1232 if (!pskb_pull(list, eat)) {
1233 kfree_skb(clone);
1234 return NULL;
1235 }
1236 break;
1237 }
1238 } while (eat);
1239
1240 /* Free pulled out fragments. */
1241 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1242 skb_shinfo(skb)->frag_list = list->next;
1243 kfree_skb(list);
1244 }
1245 /* And insert new clone at head. */
1246 if (clone) {
1247 clone->next = list;
1248 skb_shinfo(skb)->frag_list = clone;
1249 }
1250 }
1251 /* Success! Now we may commit changes to skb data. */
1252
1253 pull_pages:
1254 eat = delta;
1255 k = 0;
1256 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1257 if (skb_shinfo(skb)->frags[i].size <= eat) {
1258 put_page(skb_shinfo(skb)->frags[i].page);
1259 eat -= skb_shinfo(skb)->frags[i].size;
1260 } else {
1261 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1262 if (eat) {
1263 skb_shinfo(skb)->frags[k].page_offset += eat;
1264 skb_shinfo(skb)->frags[k].size -= eat;
1265 eat = 0;
1266 }
1267 k++;
1268 }
1269 }
1270 skb_shinfo(skb)->nr_frags = k;
1271
1272 skb->tail += delta;
1273 skb->data_len -= delta;
1274
1275 return skb_tail_pointer(skb);
1276 }
1277 EXPORT_SYMBOL(__pskb_pull_tail);
1278
1279 /* Copy some data bits from skb to kernel buffer. */
1280
1281 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1282 {
1283 int i, copy;
1284 int start = skb_headlen(skb);
1285
1286 if (offset > (int)skb->len - len)
1287 goto fault;
1288
1289 /* Copy header. */
1290 if ((copy = start - offset) > 0) {
1291 if (copy > len)
1292 copy = len;
1293 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1294 if ((len -= copy) == 0)
1295 return 0;
1296 offset += copy;
1297 to += copy;
1298 }
1299
1300 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1301 int end;
1302
1303 WARN_ON(start > offset + len);
1304
1305 end = start + skb_shinfo(skb)->frags[i].size;
1306 if ((copy = end - offset) > 0) {
1307 u8 *vaddr;
1308
1309 if (copy > len)
1310 copy = len;
1311
1312 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1313 memcpy(to,
1314 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1315 offset - start, copy);
1316 kunmap_skb_frag(vaddr);
1317
1318 if ((len -= copy) == 0)
1319 return 0;
1320 offset += copy;
1321 to += copy;
1322 }
1323 start = end;
1324 }
1325
1326 if (skb_shinfo(skb)->frag_list) {
1327 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1328
1329 for (; list; list = list->next) {
1330 int end;
1331
1332 WARN_ON(start > offset + len);
1333
1334 end = start + list->len;
1335 if ((copy = end - offset) > 0) {
1336 if (copy > len)
1337 copy = len;
1338 if (skb_copy_bits(list, offset - start,
1339 to, copy))
1340 goto fault;
1341 if ((len -= copy) == 0)
1342 return 0;
1343 offset += copy;
1344 to += copy;
1345 }
1346 start = end;
1347 }
1348 }
1349 if (!len)
1350 return 0;
1351
1352 fault:
1353 return -EFAULT;
1354 }
1355 EXPORT_SYMBOL(skb_copy_bits);
1356
1357 /*
1358 * Callback from splice_to_pipe(), if we need to release some pages
1359 * at the end of the spd in case we error'ed out in filling the pipe.
1360 */
1361 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1362 {
1363 put_page(spd->pages[i]);
1364 }
1365
1366 static inline struct page *linear_to_page(struct page *page, unsigned int *len,
1367 unsigned int *offset,
1368 struct sk_buff *skb, struct sock *sk)
1369 {
1370 struct page *p = sk->sk_sndmsg_page;
1371 unsigned int off;
1372
1373 if (!p) {
1374 new_page:
1375 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1376 if (!p)
1377 return NULL;
1378
1379 off = sk->sk_sndmsg_off = 0;
1380 /* hold one ref to this page until it's full */
1381 } else {
1382 unsigned int mlen;
1383
1384 off = sk->sk_sndmsg_off;
1385 mlen = PAGE_SIZE - off;
1386 if (mlen < 64 && mlen < *len) {
1387 put_page(p);
1388 goto new_page;
1389 }
1390
1391 *len = min_t(unsigned int, *len, mlen);
1392 }
1393
1394 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1395 sk->sk_sndmsg_off += *len;
1396 *offset = off;
1397 get_page(p);
1398
1399 return p;
1400 }
1401
1402 /*
1403 * Fill page/offset/length into spd, if it can hold more pages.
1404 */
1405 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1406 unsigned int *len, unsigned int offset,
1407 struct sk_buff *skb, int linear,
1408 struct sock *sk)
1409 {
1410 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1411 return 1;
1412
1413 if (linear) {
1414 page = linear_to_page(page, len, &offset, skb, sk);
1415 if (!page)
1416 return 1;
1417 } else
1418 get_page(page);
1419
1420 spd->pages[spd->nr_pages] = page;
1421 spd->partial[spd->nr_pages].len = *len;
1422 spd->partial[spd->nr_pages].offset = offset;
1423 spd->nr_pages++;
1424
1425 return 0;
1426 }
1427
1428 static inline void __segment_seek(struct page **page, unsigned int *poff,
1429 unsigned int *plen, unsigned int off)
1430 {
1431 unsigned long n;
1432
1433 *poff += off;
1434 n = *poff / PAGE_SIZE;
1435 if (n)
1436 *page = nth_page(*page, n);
1437
1438 *poff = *poff % PAGE_SIZE;
1439 *plen -= off;
1440 }
1441
1442 static inline int __splice_segment(struct page *page, unsigned int poff,
1443 unsigned int plen, unsigned int *off,
1444 unsigned int *len, struct sk_buff *skb,
1445 struct splice_pipe_desc *spd, int linear,
1446 struct sock *sk)
1447 {
1448 if (!*len)
1449 return 1;
1450
1451 /* skip this segment if already processed */
1452 if (*off >= plen) {
1453 *off -= plen;
1454 return 0;
1455 }
1456
1457 /* ignore any bits we already processed */
1458 if (*off) {
1459 __segment_seek(&page, &poff, &plen, *off);
1460 *off = 0;
1461 }
1462
1463 do {
1464 unsigned int flen = min(*len, plen);
1465
1466 /* the linear region may spread across several pages */
1467 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1468
1469 if (spd_fill_page(spd, page, &flen, poff, skb, linear, sk))
1470 return 1;
1471
1472 __segment_seek(&page, &poff, &plen, flen);
1473 *len -= flen;
1474
1475 } while (*len && plen);
1476
1477 return 0;
1478 }
1479
1480 /*
1481 * Map linear and fragment data from the skb to spd. It reports failure if the
1482 * pipe is full or if we already spliced the requested length.
1483 */
1484 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1485 unsigned int *len, struct splice_pipe_desc *spd,
1486 struct sock *sk)
1487 {
1488 int seg;
1489
1490 /*
1491 * map the linear part
1492 */
1493 if (__splice_segment(virt_to_page(skb->data),
1494 (unsigned long) skb->data & (PAGE_SIZE - 1),
1495 skb_headlen(skb),
1496 offset, len, skb, spd, 1, sk))
1497 return 1;
1498
1499 /*
1500 * then map the fragments
1501 */
1502 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1503 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1504
1505 if (__splice_segment(f->page, f->page_offset, f->size,
1506 offset, len, skb, spd, 0, sk))
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 /*
1514 * Map data from the skb to a pipe. Should handle both the linear part,
1515 * the fragments, and the frag list. It does NOT handle frag lists within
1516 * the frag list, if such a thing exists. We'd probably need to recurse to
1517 * handle that cleanly.
1518 */
1519 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1520 struct pipe_inode_info *pipe, unsigned int tlen,
1521 unsigned int flags)
1522 {
1523 struct partial_page partial[PIPE_BUFFERS];
1524 struct page *pages[PIPE_BUFFERS];
1525 struct splice_pipe_desc spd = {
1526 .pages = pages,
1527 .partial = partial,
1528 .flags = flags,
1529 .ops = &sock_pipe_buf_ops,
1530 .spd_release = sock_spd_release,
1531 };
1532 struct sock *sk = skb->sk;
1533
1534 /*
1535 * __skb_splice_bits() only fails if the output has no room left,
1536 * so no point in going over the frag_list for the error case.
1537 */
1538 if (__skb_splice_bits(skb, &offset, &tlen, &spd, sk))
1539 goto done;
1540 else if (!tlen)
1541 goto done;
1542
1543 /*
1544 * now see if we have a frag_list to map
1545 */
1546 if (skb_shinfo(skb)->frag_list) {
1547 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1548
1549 for (; list && tlen; list = list->next) {
1550 if (__skb_splice_bits(list, &offset, &tlen, &spd, sk))
1551 break;
1552 }
1553 }
1554
1555 done:
1556 if (spd.nr_pages) {
1557 int ret;
1558
1559 /*
1560 * Drop the socket lock, otherwise we have reverse
1561 * locking dependencies between sk_lock and i_mutex
1562 * here as compared to sendfile(). We enter here
1563 * with the socket lock held, and splice_to_pipe() will
1564 * grab the pipe inode lock. For sendfile() emulation,
1565 * we call into ->sendpage() with the i_mutex lock held
1566 * and networking will grab the socket lock.
1567 */
1568 release_sock(sk);
1569 ret = splice_to_pipe(pipe, &spd);
1570 lock_sock(sk);
1571 return ret;
1572 }
1573
1574 return 0;
1575 }
1576
1577 /**
1578 * skb_store_bits - store bits from kernel buffer to skb
1579 * @skb: destination buffer
1580 * @offset: offset in destination
1581 * @from: source buffer
1582 * @len: number of bytes to copy
1583 *
1584 * Copy the specified number of bytes from the source buffer to the
1585 * destination skb. This function handles all the messy bits of
1586 * traversing fragment lists and such.
1587 */
1588
1589 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1590 {
1591 int i, copy;
1592 int start = skb_headlen(skb);
1593
1594 if (offset > (int)skb->len - len)
1595 goto fault;
1596
1597 if ((copy = start - offset) > 0) {
1598 if (copy > len)
1599 copy = len;
1600 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1601 if ((len -= copy) == 0)
1602 return 0;
1603 offset += copy;
1604 from += copy;
1605 }
1606
1607 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1608 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1609 int end;
1610
1611 WARN_ON(start > offset + len);
1612
1613 end = start + frag->size;
1614 if ((copy = end - offset) > 0) {
1615 u8 *vaddr;
1616
1617 if (copy > len)
1618 copy = len;
1619
1620 vaddr = kmap_skb_frag(frag);
1621 memcpy(vaddr + frag->page_offset + offset - start,
1622 from, copy);
1623 kunmap_skb_frag(vaddr);
1624
1625 if ((len -= copy) == 0)
1626 return 0;
1627 offset += copy;
1628 from += copy;
1629 }
1630 start = end;
1631 }
1632
1633 if (skb_shinfo(skb)->frag_list) {
1634 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1635
1636 for (; list; list = list->next) {
1637 int end;
1638
1639 WARN_ON(start > offset + len);
1640
1641 end = start + list->len;
1642 if ((copy = end - offset) > 0) {
1643 if (copy > len)
1644 copy = len;
1645 if (skb_store_bits(list, offset - start,
1646 from, copy))
1647 goto fault;
1648 if ((len -= copy) == 0)
1649 return 0;
1650 offset += copy;
1651 from += copy;
1652 }
1653 start = end;
1654 }
1655 }
1656 if (!len)
1657 return 0;
1658
1659 fault:
1660 return -EFAULT;
1661 }
1662 EXPORT_SYMBOL(skb_store_bits);
1663
1664 /* Checksum skb data. */
1665
1666 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1667 int len, __wsum csum)
1668 {
1669 int start = skb_headlen(skb);
1670 int i, copy = start - offset;
1671 int pos = 0;
1672
1673 /* Checksum header. */
1674 if (copy > 0) {
1675 if (copy > len)
1676 copy = len;
1677 csum = csum_partial(skb->data + offset, copy, csum);
1678 if ((len -= copy) == 0)
1679 return csum;
1680 offset += copy;
1681 pos = copy;
1682 }
1683
1684 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1685 int end;
1686
1687 WARN_ON(start > offset + len);
1688
1689 end = start + skb_shinfo(skb)->frags[i].size;
1690 if ((copy = end - offset) > 0) {
1691 __wsum csum2;
1692 u8 *vaddr;
1693 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1694
1695 if (copy > len)
1696 copy = len;
1697 vaddr = kmap_skb_frag(frag);
1698 csum2 = csum_partial(vaddr + frag->page_offset +
1699 offset - start, copy, 0);
1700 kunmap_skb_frag(vaddr);
1701 csum = csum_block_add(csum, csum2, pos);
1702 if (!(len -= copy))
1703 return csum;
1704 offset += copy;
1705 pos += copy;
1706 }
1707 start = end;
1708 }
1709
1710 if (skb_shinfo(skb)->frag_list) {
1711 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1712
1713 for (; list; list = list->next) {
1714 int end;
1715
1716 WARN_ON(start > offset + len);
1717
1718 end = start + list->len;
1719 if ((copy = end - offset) > 0) {
1720 __wsum csum2;
1721 if (copy > len)
1722 copy = len;
1723 csum2 = skb_checksum(list, offset - start,
1724 copy, 0);
1725 csum = csum_block_add(csum, csum2, pos);
1726 if ((len -= copy) == 0)
1727 return csum;
1728 offset += copy;
1729 pos += copy;
1730 }
1731 start = end;
1732 }
1733 }
1734 BUG_ON(len);
1735
1736 return csum;
1737 }
1738 EXPORT_SYMBOL(skb_checksum);
1739
1740 /* Both of above in one bottle. */
1741
1742 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1743 u8 *to, int len, __wsum csum)
1744 {
1745 int start = skb_headlen(skb);
1746 int i, copy = start - offset;
1747 int pos = 0;
1748
1749 /* Copy header. */
1750 if (copy > 0) {
1751 if (copy > len)
1752 copy = len;
1753 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1754 copy, csum);
1755 if ((len -= copy) == 0)
1756 return csum;
1757 offset += copy;
1758 to += copy;
1759 pos = copy;
1760 }
1761
1762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1763 int end;
1764
1765 WARN_ON(start > offset + len);
1766
1767 end = start + skb_shinfo(skb)->frags[i].size;
1768 if ((copy = end - offset) > 0) {
1769 __wsum csum2;
1770 u8 *vaddr;
1771 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1772
1773 if (copy > len)
1774 copy = len;
1775 vaddr = kmap_skb_frag(frag);
1776 csum2 = csum_partial_copy_nocheck(vaddr +
1777 frag->page_offset +
1778 offset - start, to,
1779 copy, 0);
1780 kunmap_skb_frag(vaddr);
1781 csum = csum_block_add(csum, csum2, pos);
1782 if (!(len -= copy))
1783 return csum;
1784 offset += copy;
1785 to += copy;
1786 pos += copy;
1787 }
1788 start = end;
1789 }
1790
1791 if (skb_shinfo(skb)->frag_list) {
1792 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1793
1794 for (; list; list = list->next) {
1795 __wsum csum2;
1796 int end;
1797
1798 WARN_ON(start > offset + len);
1799
1800 end = start + list->len;
1801 if ((copy = end - offset) > 0) {
1802 if (copy > len)
1803 copy = len;
1804 csum2 = skb_copy_and_csum_bits(list,
1805 offset - start,
1806 to, copy, 0);
1807 csum = csum_block_add(csum, csum2, pos);
1808 if ((len -= copy) == 0)
1809 return csum;
1810 offset += copy;
1811 to += copy;
1812 pos += copy;
1813 }
1814 start = end;
1815 }
1816 }
1817 BUG_ON(len);
1818 return csum;
1819 }
1820 EXPORT_SYMBOL(skb_copy_and_csum_bits);
1821
1822 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1823 {
1824 __wsum csum;
1825 long csstart;
1826
1827 if (skb->ip_summed == CHECKSUM_PARTIAL)
1828 csstart = skb->csum_start - skb_headroom(skb);
1829 else
1830 csstart = skb_headlen(skb);
1831
1832 BUG_ON(csstart > skb_headlen(skb));
1833
1834 skb_copy_from_linear_data(skb, to, csstart);
1835
1836 csum = 0;
1837 if (csstart != skb->len)
1838 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1839 skb->len - csstart, 0);
1840
1841 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1842 long csstuff = csstart + skb->csum_offset;
1843
1844 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1845 }
1846 }
1847 EXPORT_SYMBOL(skb_copy_and_csum_dev);
1848
1849 /**
1850 * skb_dequeue - remove from the head of the queue
1851 * @list: list to dequeue from
1852 *
1853 * Remove the head of the list. The list lock is taken so the function
1854 * may be used safely with other locking list functions. The head item is
1855 * returned or %NULL if the list is empty.
1856 */
1857
1858 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1859 {
1860 unsigned long flags;
1861 struct sk_buff *result;
1862
1863 spin_lock_irqsave(&list->lock, flags);
1864 result = __skb_dequeue(list);
1865 spin_unlock_irqrestore(&list->lock, flags);
1866 return result;
1867 }
1868 EXPORT_SYMBOL(skb_dequeue);
1869
1870 /**
1871 * skb_dequeue_tail - remove from the tail of the queue
1872 * @list: list to dequeue from
1873 *
1874 * Remove the tail of the list. The list lock is taken so the function
1875 * may be used safely with other locking list functions. The tail item is
1876 * returned or %NULL if the list is empty.
1877 */
1878 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1879 {
1880 unsigned long flags;
1881 struct sk_buff *result;
1882
1883 spin_lock_irqsave(&list->lock, flags);
1884 result = __skb_dequeue_tail(list);
1885 spin_unlock_irqrestore(&list->lock, flags);
1886 return result;
1887 }
1888 EXPORT_SYMBOL(skb_dequeue_tail);
1889
1890 /**
1891 * skb_queue_purge - empty a list
1892 * @list: list to empty
1893 *
1894 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1895 * the list and one reference dropped. This function takes the list
1896 * lock and is atomic with respect to other list locking functions.
1897 */
1898 void skb_queue_purge(struct sk_buff_head *list)
1899 {
1900 struct sk_buff *skb;
1901 while ((skb = skb_dequeue(list)) != NULL)
1902 kfree_skb(skb);
1903 }
1904 EXPORT_SYMBOL(skb_queue_purge);
1905
1906 /**
1907 * skb_queue_head - queue a buffer at the list head
1908 * @list: list to use
1909 * @newsk: buffer to queue
1910 *
1911 * Queue a buffer at the start of the list. This function takes the
1912 * list lock and can be used safely with other locking &sk_buff functions
1913 * safely.
1914 *
1915 * A buffer cannot be placed on two lists at the same time.
1916 */
1917 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1918 {
1919 unsigned long flags;
1920
1921 spin_lock_irqsave(&list->lock, flags);
1922 __skb_queue_head(list, newsk);
1923 spin_unlock_irqrestore(&list->lock, flags);
1924 }
1925 EXPORT_SYMBOL(skb_queue_head);
1926
1927 /**
1928 * skb_queue_tail - queue a buffer at the list tail
1929 * @list: list to use
1930 * @newsk: buffer to queue
1931 *
1932 * Queue a buffer at the tail of the list. This function takes the
1933 * list lock and can be used safely with other locking &sk_buff functions
1934 * safely.
1935 *
1936 * A buffer cannot be placed on two lists at the same time.
1937 */
1938 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1939 {
1940 unsigned long flags;
1941
1942 spin_lock_irqsave(&list->lock, flags);
1943 __skb_queue_tail(list, newsk);
1944 spin_unlock_irqrestore(&list->lock, flags);
1945 }
1946 EXPORT_SYMBOL(skb_queue_tail);
1947
1948 /**
1949 * skb_unlink - remove a buffer from a list
1950 * @skb: buffer to remove
1951 * @list: list to use
1952 *
1953 * Remove a packet from a list. The list locks are taken and this
1954 * function is atomic with respect to other list locked calls
1955 *
1956 * You must know what list the SKB is on.
1957 */
1958 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1959 {
1960 unsigned long flags;
1961
1962 spin_lock_irqsave(&list->lock, flags);
1963 __skb_unlink(skb, list);
1964 spin_unlock_irqrestore(&list->lock, flags);
1965 }
1966 EXPORT_SYMBOL(skb_unlink);
1967
1968 /**
1969 * skb_append - append a buffer
1970 * @old: buffer to insert after
1971 * @newsk: buffer to insert
1972 * @list: list to use
1973 *
1974 * Place a packet after a given packet in a list. The list locks are taken
1975 * and this function is atomic with respect to other list locked calls.
1976 * A buffer cannot be placed on two lists at the same time.
1977 */
1978 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1979 {
1980 unsigned long flags;
1981
1982 spin_lock_irqsave(&list->lock, flags);
1983 __skb_queue_after(list, old, newsk);
1984 spin_unlock_irqrestore(&list->lock, flags);
1985 }
1986 EXPORT_SYMBOL(skb_append);
1987
1988 /**
1989 * skb_insert - insert a buffer
1990 * @old: buffer to insert before
1991 * @newsk: buffer to insert
1992 * @list: list to use
1993 *
1994 * Place a packet before a given packet in a list. The list locks are
1995 * taken and this function is atomic with respect to other list locked
1996 * calls.
1997 *
1998 * A buffer cannot be placed on two lists at the same time.
1999 */
2000 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2001 {
2002 unsigned long flags;
2003
2004 spin_lock_irqsave(&list->lock, flags);
2005 __skb_insert(newsk, old->prev, old, list);
2006 spin_unlock_irqrestore(&list->lock, flags);
2007 }
2008 EXPORT_SYMBOL(skb_insert);
2009
2010 static inline void skb_split_inside_header(struct sk_buff *skb,
2011 struct sk_buff* skb1,
2012 const u32 len, const int pos)
2013 {
2014 int i;
2015
2016 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2017 pos - len);
2018 /* And move data appendix as is. */
2019 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2020 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2021
2022 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2023 skb_shinfo(skb)->nr_frags = 0;
2024 skb1->data_len = skb->data_len;
2025 skb1->len += skb1->data_len;
2026 skb->data_len = 0;
2027 skb->len = len;
2028 skb_set_tail_pointer(skb, len);
2029 }
2030
2031 static inline void skb_split_no_header(struct sk_buff *skb,
2032 struct sk_buff* skb1,
2033 const u32 len, int pos)
2034 {
2035 int i, k = 0;
2036 const int nfrags = skb_shinfo(skb)->nr_frags;
2037
2038 skb_shinfo(skb)->nr_frags = 0;
2039 skb1->len = skb1->data_len = skb->len - len;
2040 skb->len = len;
2041 skb->data_len = len - pos;
2042
2043 for (i = 0; i < nfrags; i++) {
2044 int size = skb_shinfo(skb)->frags[i].size;
2045
2046 if (pos + size > len) {
2047 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2048
2049 if (pos < len) {
2050 /* Split frag.
2051 * We have two variants in this case:
2052 * 1. Move all the frag to the second
2053 * part, if it is possible. F.e.
2054 * this approach is mandatory for TUX,
2055 * where splitting is expensive.
2056 * 2. Split is accurately. We make this.
2057 */
2058 get_page(skb_shinfo(skb)->frags[i].page);
2059 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2060 skb_shinfo(skb1)->frags[0].size -= len - pos;
2061 skb_shinfo(skb)->frags[i].size = len - pos;
2062 skb_shinfo(skb)->nr_frags++;
2063 }
2064 k++;
2065 } else
2066 skb_shinfo(skb)->nr_frags++;
2067 pos += size;
2068 }
2069 skb_shinfo(skb1)->nr_frags = k;
2070 }
2071
2072 /**
2073 * skb_split - Split fragmented skb to two parts at length len.
2074 * @skb: the buffer to split
2075 * @skb1: the buffer to receive the second part
2076 * @len: new length for skb
2077 */
2078 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2079 {
2080 int pos = skb_headlen(skb);
2081
2082 if (len < pos) /* Split line is inside header. */
2083 skb_split_inside_header(skb, skb1, len, pos);
2084 else /* Second chunk has no header, nothing to copy. */
2085 skb_split_no_header(skb, skb1, len, pos);
2086 }
2087 EXPORT_SYMBOL(skb_split);
2088
2089 /* Shifting from/to a cloned skb is a no-go.
2090 *
2091 * Caller cannot keep skb_shinfo related pointers past calling here!
2092 */
2093 static int skb_prepare_for_shift(struct sk_buff *skb)
2094 {
2095 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2096 }
2097
2098 /**
2099 * skb_shift - Shifts paged data partially from skb to another
2100 * @tgt: buffer into which tail data gets added
2101 * @skb: buffer from which the paged data comes from
2102 * @shiftlen: shift up to this many bytes
2103 *
2104 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2105 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2106 * It's up to caller to free skb if everything was shifted.
2107 *
2108 * If @tgt runs out of frags, the whole operation is aborted.
2109 *
2110 * Skb cannot include anything else but paged data while tgt is allowed
2111 * to have non-paged data as well.
2112 *
2113 * TODO: full sized shift could be optimized but that would need
2114 * specialized skb free'er to handle frags without up-to-date nr_frags.
2115 */
2116 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2117 {
2118 int from, to, merge, todo;
2119 struct skb_frag_struct *fragfrom, *fragto;
2120
2121 BUG_ON(shiftlen > skb->len);
2122 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2123
2124 todo = shiftlen;
2125 from = 0;
2126 to = skb_shinfo(tgt)->nr_frags;
2127 fragfrom = &skb_shinfo(skb)->frags[from];
2128
2129 /* Actual merge is delayed until the point when we know we can
2130 * commit all, so that we don't have to undo partial changes
2131 */
2132 if (!to ||
2133 !skb_can_coalesce(tgt, to, fragfrom->page, fragfrom->page_offset)) {
2134 merge = -1;
2135 } else {
2136 merge = to - 1;
2137
2138 todo -= fragfrom->size;
2139 if (todo < 0) {
2140 if (skb_prepare_for_shift(skb) ||
2141 skb_prepare_for_shift(tgt))
2142 return 0;
2143
2144 /* All previous frag pointers might be stale! */
2145 fragfrom = &skb_shinfo(skb)->frags[from];
2146 fragto = &skb_shinfo(tgt)->frags[merge];
2147
2148 fragto->size += shiftlen;
2149 fragfrom->size -= shiftlen;
2150 fragfrom->page_offset += shiftlen;
2151
2152 goto onlymerged;
2153 }
2154
2155 from++;
2156 }
2157
2158 /* Skip full, not-fitting skb to avoid expensive operations */
2159 if ((shiftlen == skb->len) &&
2160 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2161 return 0;
2162
2163 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2164 return 0;
2165
2166 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2167 if (to == MAX_SKB_FRAGS)
2168 return 0;
2169
2170 fragfrom = &skb_shinfo(skb)->frags[from];
2171 fragto = &skb_shinfo(tgt)->frags[to];
2172
2173 if (todo >= fragfrom->size) {
2174 *fragto = *fragfrom;
2175 todo -= fragfrom->size;
2176 from++;
2177 to++;
2178
2179 } else {
2180 get_page(fragfrom->page);
2181 fragto->page = fragfrom->page;
2182 fragto->page_offset = fragfrom->page_offset;
2183 fragto->size = todo;
2184
2185 fragfrom->page_offset += todo;
2186 fragfrom->size -= todo;
2187 todo = 0;
2188
2189 to++;
2190 break;
2191 }
2192 }
2193
2194 /* Ready to "commit" this state change to tgt */
2195 skb_shinfo(tgt)->nr_frags = to;
2196
2197 if (merge >= 0) {
2198 fragfrom = &skb_shinfo(skb)->frags[0];
2199 fragto = &skb_shinfo(tgt)->frags[merge];
2200
2201 fragto->size += fragfrom->size;
2202 put_page(fragfrom->page);
2203 }
2204
2205 /* Reposition in the original skb */
2206 to = 0;
2207 while (from < skb_shinfo(skb)->nr_frags)
2208 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2209 skb_shinfo(skb)->nr_frags = to;
2210
2211 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2212
2213 onlymerged:
2214 /* Most likely the tgt won't ever need its checksum anymore, skb on
2215 * the other hand might need it if it needs to be resent
2216 */
2217 tgt->ip_summed = CHECKSUM_PARTIAL;
2218 skb->ip_summed = CHECKSUM_PARTIAL;
2219
2220 /* Yak, is it really working this way? Some helper please? */
2221 skb->len -= shiftlen;
2222 skb->data_len -= shiftlen;
2223 skb->truesize -= shiftlen;
2224 tgt->len += shiftlen;
2225 tgt->data_len += shiftlen;
2226 tgt->truesize += shiftlen;
2227
2228 return shiftlen;
2229 }
2230
2231 /**
2232 * skb_prepare_seq_read - Prepare a sequential read of skb data
2233 * @skb: the buffer to read
2234 * @from: lower offset of data to be read
2235 * @to: upper offset of data to be read
2236 * @st: state variable
2237 *
2238 * Initializes the specified state variable. Must be called before
2239 * invoking skb_seq_read() for the first time.
2240 */
2241 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2242 unsigned int to, struct skb_seq_state *st)
2243 {
2244 st->lower_offset = from;
2245 st->upper_offset = to;
2246 st->root_skb = st->cur_skb = skb;
2247 st->frag_idx = st->stepped_offset = 0;
2248 st->frag_data = NULL;
2249 }
2250 EXPORT_SYMBOL(skb_prepare_seq_read);
2251
2252 /**
2253 * skb_seq_read - Sequentially read skb data
2254 * @consumed: number of bytes consumed by the caller so far
2255 * @data: destination pointer for data to be returned
2256 * @st: state variable
2257 *
2258 * Reads a block of skb data at &consumed relative to the
2259 * lower offset specified to skb_prepare_seq_read(). Assigns
2260 * the head of the data block to &data and returns the length
2261 * of the block or 0 if the end of the skb data or the upper
2262 * offset has been reached.
2263 *
2264 * The caller is not required to consume all of the data
2265 * returned, i.e. &consumed is typically set to the number
2266 * of bytes already consumed and the next call to
2267 * skb_seq_read() will return the remaining part of the block.
2268 *
2269 * Note 1: The size of each block of data returned can be arbitary,
2270 * this limitation is the cost for zerocopy seqeuental
2271 * reads of potentially non linear data.
2272 *
2273 * Note 2: Fragment lists within fragments are not implemented
2274 * at the moment, state->root_skb could be replaced with
2275 * a stack for this purpose.
2276 */
2277 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2278 struct skb_seq_state *st)
2279 {
2280 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2281 skb_frag_t *frag;
2282
2283 if (unlikely(abs_offset >= st->upper_offset))
2284 return 0;
2285
2286 next_skb:
2287 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2288
2289 if (abs_offset < block_limit) {
2290 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2291 return block_limit - abs_offset;
2292 }
2293
2294 if (st->frag_idx == 0 && !st->frag_data)
2295 st->stepped_offset += skb_headlen(st->cur_skb);
2296
2297 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2298 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2299 block_limit = frag->size + st->stepped_offset;
2300
2301 if (abs_offset < block_limit) {
2302 if (!st->frag_data)
2303 st->frag_data = kmap_skb_frag(frag);
2304
2305 *data = (u8 *) st->frag_data + frag->page_offset +
2306 (abs_offset - st->stepped_offset);
2307
2308 return block_limit - abs_offset;
2309 }
2310
2311 if (st->frag_data) {
2312 kunmap_skb_frag(st->frag_data);
2313 st->frag_data = NULL;
2314 }
2315
2316 st->frag_idx++;
2317 st->stepped_offset += frag->size;
2318 }
2319
2320 if (st->frag_data) {
2321 kunmap_skb_frag(st->frag_data);
2322 st->frag_data = NULL;
2323 }
2324
2325 if (st->root_skb == st->cur_skb &&
2326 skb_shinfo(st->root_skb)->frag_list) {
2327 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2328 st->frag_idx = 0;
2329 goto next_skb;
2330 } else if (st->cur_skb->next) {
2331 st->cur_skb = st->cur_skb->next;
2332 st->frag_idx = 0;
2333 goto next_skb;
2334 }
2335
2336 return 0;
2337 }
2338 EXPORT_SYMBOL(skb_seq_read);
2339
2340 /**
2341 * skb_abort_seq_read - Abort a sequential read of skb data
2342 * @st: state variable
2343 *
2344 * Must be called if skb_seq_read() was not called until it
2345 * returned 0.
2346 */
2347 void skb_abort_seq_read(struct skb_seq_state *st)
2348 {
2349 if (st->frag_data)
2350 kunmap_skb_frag(st->frag_data);
2351 }
2352 EXPORT_SYMBOL(skb_abort_seq_read);
2353
2354 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2355
2356 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2357 struct ts_config *conf,
2358 struct ts_state *state)
2359 {
2360 return skb_seq_read(offset, text, TS_SKB_CB(state));
2361 }
2362
2363 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2364 {
2365 skb_abort_seq_read(TS_SKB_CB(state));
2366 }
2367
2368 /**
2369 * skb_find_text - Find a text pattern in skb data
2370 * @skb: the buffer to look in
2371 * @from: search offset
2372 * @to: search limit
2373 * @config: textsearch configuration
2374 * @state: uninitialized textsearch state variable
2375 *
2376 * Finds a pattern in the skb data according to the specified
2377 * textsearch configuration. Use textsearch_next() to retrieve
2378 * subsequent occurrences of the pattern. Returns the offset
2379 * to the first occurrence or UINT_MAX if no match was found.
2380 */
2381 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2382 unsigned int to, struct ts_config *config,
2383 struct ts_state *state)
2384 {
2385 unsigned int ret;
2386
2387 config->get_next_block = skb_ts_get_next_block;
2388 config->finish = skb_ts_finish;
2389
2390 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2391
2392 ret = textsearch_find(config, state);
2393 return (ret <= to - from ? ret : UINT_MAX);
2394 }
2395 EXPORT_SYMBOL(skb_find_text);
2396
2397 /**
2398 * skb_append_datato_frags: - append the user data to a skb
2399 * @sk: sock structure
2400 * @skb: skb structure to be appened with user data.
2401 * @getfrag: call back function to be used for getting the user data
2402 * @from: pointer to user message iov
2403 * @length: length of the iov message
2404 *
2405 * Description: This procedure append the user data in the fragment part
2406 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2407 */
2408 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2409 int (*getfrag)(void *from, char *to, int offset,
2410 int len, int odd, struct sk_buff *skb),
2411 void *from, int length)
2412 {
2413 int frg_cnt = 0;
2414 skb_frag_t *frag = NULL;
2415 struct page *page = NULL;
2416 int copy, left;
2417 int offset = 0;
2418 int ret;
2419
2420 do {
2421 /* Return error if we don't have space for new frag */
2422 frg_cnt = skb_shinfo(skb)->nr_frags;
2423 if (frg_cnt >= MAX_SKB_FRAGS)
2424 return -EFAULT;
2425
2426 /* allocate a new page for next frag */
2427 page = alloc_pages(sk->sk_allocation, 0);
2428
2429 /* If alloc_page fails just return failure and caller will
2430 * free previous allocated pages by doing kfree_skb()
2431 */
2432 if (page == NULL)
2433 return -ENOMEM;
2434
2435 /* initialize the next frag */
2436 sk->sk_sndmsg_page = page;
2437 sk->sk_sndmsg_off = 0;
2438 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2439 skb->truesize += PAGE_SIZE;
2440 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2441
2442 /* get the new initialized frag */
2443 frg_cnt = skb_shinfo(skb)->nr_frags;
2444 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2445
2446 /* copy the user data to page */
2447 left = PAGE_SIZE - frag->page_offset;
2448 copy = (length > left)? left : length;
2449
2450 ret = getfrag(from, (page_address(frag->page) +
2451 frag->page_offset + frag->size),
2452 offset, copy, 0, skb);
2453 if (ret < 0)
2454 return -EFAULT;
2455
2456 /* copy was successful so update the size parameters */
2457 sk->sk_sndmsg_off += copy;
2458 frag->size += copy;
2459 skb->len += copy;
2460 skb->data_len += copy;
2461 offset += copy;
2462 length -= copy;
2463
2464 } while (length > 0);
2465
2466 return 0;
2467 }
2468 EXPORT_SYMBOL(skb_append_datato_frags);
2469
2470 /**
2471 * skb_pull_rcsum - pull skb and update receive checksum
2472 * @skb: buffer to update
2473 * @len: length of data pulled
2474 *
2475 * This function performs an skb_pull on the packet and updates
2476 * the CHECKSUM_COMPLETE checksum. It should be used on
2477 * receive path processing instead of skb_pull unless you know
2478 * that the checksum difference is zero (e.g., a valid IP header)
2479 * or you are setting ip_summed to CHECKSUM_NONE.
2480 */
2481 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2482 {
2483 BUG_ON(len > skb->len);
2484 skb->len -= len;
2485 BUG_ON(skb->len < skb->data_len);
2486 skb_postpull_rcsum(skb, skb->data, len);
2487 return skb->data += len;
2488 }
2489
2490 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2491
2492 /**
2493 * skb_segment - Perform protocol segmentation on skb.
2494 * @skb: buffer to segment
2495 * @features: features for the output path (see dev->features)
2496 *
2497 * This function performs segmentation on the given skb. It returns
2498 * a pointer to the first in a list of new skbs for the segments.
2499 * In case of error it returns ERR_PTR(err).
2500 */
2501 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2502 {
2503 struct sk_buff *segs = NULL;
2504 struct sk_buff *tail = NULL;
2505 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2506 unsigned int mss = skb_shinfo(skb)->gso_size;
2507 unsigned int doffset = skb->data - skb_mac_header(skb);
2508 unsigned int offset = doffset;
2509 unsigned int headroom;
2510 unsigned int len;
2511 int sg = features & NETIF_F_SG;
2512 int nfrags = skb_shinfo(skb)->nr_frags;
2513 int err = -ENOMEM;
2514 int i = 0;
2515 int pos;
2516
2517 __skb_push(skb, doffset);
2518 headroom = skb_headroom(skb);
2519 pos = skb_headlen(skb);
2520
2521 do {
2522 struct sk_buff *nskb;
2523 skb_frag_t *frag;
2524 int hsize;
2525 int size;
2526
2527 len = skb->len - offset;
2528 if (len > mss)
2529 len = mss;
2530
2531 hsize = skb_headlen(skb) - offset;
2532 if (hsize < 0)
2533 hsize = 0;
2534 if (hsize > len || !sg)
2535 hsize = len;
2536
2537 if (!hsize && i >= nfrags) {
2538 BUG_ON(fskb->len != len);
2539
2540 pos += len;
2541 nskb = skb_clone(fskb, GFP_ATOMIC);
2542 fskb = fskb->next;
2543
2544 if (unlikely(!nskb))
2545 goto err;
2546
2547 hsize = skb_end_pointer(nskb) - nskb->head;
2548 if (skb_cow_head(nskb, doffset + headroom)) {
2549 kfree_skb(nskb);
2550 goto err;
2551 }
2552
2553 nskb->truesize += skb_end_pointer(nskb) - nskb->head -
2554 hsize;
2555 skb_release_head_state(nskb);
2556 __skb_push(nskb, doffset);
2557 } else {
2558 nskb = alloc_skb(hsize + doffset + headroom,
2559 GFP_ATOMIC);
2560
2561 if (unlikely(!nskb))
2562 goto err;
2563
2564 skb_reserve(nskb, headroom);
2565 __skb_put(nskb, doffset);
2566 }
2567
2568 if (segs)
2569 tail->next = nskb;
2570 else
2571 segs = nskb;
2572 tail = nskb;
2573
2574 __copy_skb_header(nskb, skb);
2575 nskb->mac_len = skb->mac_len;
2576
2577 skb_reset_mac_header(nskb);
2578 skb_set_network_header(nskb, skb->mac_len);
2579 nskb->transport_header = (nskb->network_header +
2580 skb_network_header_len(skb));
2581 skb_copy_from_linear_data(skb, nskb->data, doffset);
2582
2583 if (fskb != skb_shinfo(skb)->frag_list)
2584 continue;
2585
2586 if (!sg) {
2587 nskb->ip_summed = CHECKSUM_NONE;
2588 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2589 skb_put(nskb, len),
2590 len, 0);
2591 continue;
2592 }
2593
2594 frag = skb_shinfo(nskb)->frags;
2595
2596 skb_copy_from_linear_data_offset(skb, offset,
2597 skb_put(nskb, hsize), hsize);
2598
2599 while (pos < offset + len && i < nfrags) {
2600 *frag = skb_shinfo(skb)->frags[i];
2601 get_page(frag->page);
2602 size = frag->size;
2603
2604 if (pos < offset) {
2605 frag->page_offset += offset - pos;
2606 frag->size -= offset - pos;
2607 }
2608
2609 skb_shinfo(nskb)->nr_frags++;
2610
2611 if (pos + size <= offset + len) {
2612 i++;
2613 pos += size;
2614 } else {
2615 frag->size -= pos + size - (offset + len);
2616 goto skip_fraglist;
2617 }
2618
2619 frag++;
2620 }
2621
2622 if (pos < offset + len) {
2623 struct sk_buff *fskb2 = fskb;
2624
2625 BUG_ON(pos + fskb->len != offset + len);
2626
2627 pos += fskb->len;
2628 fskb = fskb->next;
2629
2630 if (fskb2->next) {
2631 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2632 if (!fskb2)
2633 goto err;
2634 } else
2635 skb_get(fskb2);
2636
2637 BUG_ON(skb_shinfo(nskb)->frag_list);
2638 skb_shinfo(nskb)->frag_list = fskb2;
2639 }
2640
2641 skip_fraglist:
2642 nskb->data_len = len - hsize;
2643 nskb->len += nskb->data_len;
2644 nskb->truesize += nskb->data_len;
2645 } while ((offset += len) < skb->len);
2646
2647 return segs;
2648
2649 err:
2650 while ((skb = segs)) {
2651 segs = skb->next;
2652 kfree_skb(skb);
2653 }
2654 return ERR_PTR(err);
2655 }
2656 EXPORT_SYMBOL_GPL(skb_segment);
2657
2658 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2659 {
2660 struct sk_buff *p = *head;
2661 struct sk_buff *nskb;
2662 unsigned int headroom;
2663 unsigned int len = skb_gro_len(skb);
2664
2665 if (p->len + len >= 65536)
2666 return -E2BIG;
2667
2668 if (skb_shinfo(p)->frag_list)
2669 goto merge;
2670 else if (skb_headlen(skb) <= skb_gro_offset(skb)) {
2671 if (skb_shinfo(p)->nr_frags + skb_shinfo(skb)->nr_frags >
2672 MAX_SKB_FRAGS)
2673 return -E2BIG;
2674
2675 skb_shinfo(skb)->frags[0].page_offset +=
2676 skb_gro_offset(skb) - skb_headlen(skb);
2677 skb_shinfo(skb)->frags[0].size -=
2678 skb_gro_offset(skb) - skb_headlen(skb);
2679
2680 memcpy(skb_shinfo(p)->frags + skb_shinfo(p)->nr_frags,
2681 skb_shinfo(skb)->frags,
2682 skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
2683
2684 skb_shinfo(p)->nr_frags += skb_shinfo(skb)->nr_frags;
2685 skb_shinfo(skb)->nr_frags = 0;
2686
2687 skb->truesize -= skb->data_len;
2688 skb->len -= skb->data_len;
2689 skb->data_len = 0;
2690
2691 NAPI_GRO_CB(skb)->free = 1;
2692 goto done;
2693 }
2694
2695 headroom = skb_headroom(p);
2696 nskb = netdev_alloc_skb(p->dev, headroom + skb_gro_offset(p));
2697 if (unlikely(!nskb))
2698 return -ENOMEM;
2699
2700 __copy_skb_header(nskb, p);
2701 nskb->mac_len = p->mac_len;
2702
2703 skb_reserve(nskb, headroom);
2704 __skb_put(nskb, skb_gro_offset(p));
2705
2706 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2707 skb_set_network_header(nskb, skb_network_offset(p));
2708 skb_set_transport_header(nskb, skb_transport_offset(p));
2709
2710 __skb_pull(p, skb_gro_offset(p));
2711 memcpy(skb_mac_header(nskb), skb_mac_header(p),
2712 p->data - skb_mac_header(p));
2713
2714 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2715 skb_shinfo(nskb)->frag_list = p;
2716 skb_shinfo(nskb)->gso_size = skb_shinfo(p)->gso_size;
2717 skb_header_release(p);
2718 nskb->prev = p;
2719
2720 nskb->data_len += p->len;
2721 nskb->truesize += p->len;
2722 nskb->len += p->len;
2723
2724 *head = nskb;
2725 nskb->next = p->next;
2726 p->next = NULL;
2727
2728 p = nskb;
2729
2730 merge:
2731 if (skb_gro_offset(skb) > skb_headlen(skb)) {
2732 skb_shinfo(skb)->frags[0].page_offset +=
2733 skb_gro_offset(skb) - skb_headlen(skb);
2734 skb_shinfo(skb)->frags[0].size -=
2735 skb_gro_offset(skb) - skb_headlen(skb);
2736 skb_gro_reset_offset(skb);
2737 skb_gro_pull(skb, skb_headlen(skb));
2738 }
2739
2740 __skb_pull(skb, skb_gro_offset(skb));
2741
2742 p->prev->next = skb;
2743 p->prev = skb;
2744 skb_header_release(skb);
2745
2746 done:
2747 NAPI_GRO_CB(p)->count++;
2748 p->data_len += len;
2749 p->truesize += len;
2750 p->len += len;
2751
2752 NAPI_GRO_CB(skb)->same_flow = 1;
2753 return 0;
2754 }
2755 EXPORT_SYMBOL_GPL(skb_gro_receive);
2756
2757 void __init skb_init(void)
2758 {
2759 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2760 sizeof(struct sk_buff),
2761 0,
2762 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2763 NULL);
2764 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2765 (2*sizeof(struct sk_buff)) +
2766 sizeof(atomic_t),
2767 0,
2768 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2769 NULL);
2770 }
2771
2772 /**
2773 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2774 * @skb: Socket buffer containing the buffers to be mapped
2775 * @sg: The scatter-gather list to map into
2776 * @offset: The offset into the buffer's contents to start mapping
2777 * @len: Length of buffer space to be mapped
2778 *
2779 * Fill the specified scatter-gather list with mappings/pointers into a
2780 * region of the buffer space attached to a socket buffer.
2781 */
2782 static int
2783 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2784 {
2785 int start = skb_headlen(skb);
2786 int i, copy = start - offset;
2787 int elt = 0;
2788
2789 if (copy > 0) {
2790 if (copy > len)
2791 copy = len;
2792 sg_set_buf(sg, skb->data + offset, copy);
2793 elt++;
2794 if ((len -= copy) == 0)
2795 return elt;
2796 offset += copy;
2797 }
2798
2799 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2800 int end;
2801
2802 WARN_ON(start > offset + len);
2803
2804 end = start + skb_shinfo(skb)->frags[i].size;
2805 if ((copy = end - offset) > 0) {
2806 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2807
2808 if (copy > len)
2809 copy = len;
2810 sg_set_page(&sg[elt], frag->page, copy,
2811 frag->page_offset+offset-start);
2812 elt++;
2813 if (!(len -= copy))
2814 return elt;
2815 offset += copy;
2816 }
2817 start = end;
2818 }
2819
2820 if (skb_shinfo(skb)->frag_list) {
2821 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2822
2823 for (; list; list = list->next) {
2824 int end;
2825
2826 WARN_ON(start > offset + len);
2827
2828 end = start + list->len;
2829 if ((copy = end - offset) > 0) {
2830 if (copy > len)
2831 copy = len;
2832 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2833 copy);
2834 if ((len -= copy) == 0)
2835 return elt;
2836 offset += copy;
2837 }
2838 start = end;
2839 }
2840 }
2841 BUG_ON(len);
2842 return elt;
2843 }
2844
2845 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2846 {
2847 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2848
2849 sg_mark_end(&sg[nsg - 1]);
2850
2851 return nsg;
2852 }
2853 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2854
2855 /**
2856 * skb_cow_data - Check that a socket buffer's data buffers are writable
2857 * @skb: The socket buffer to check.
2858 * @tailbits: Amount of trailing space to be added
2859 * @trailer: Returned pointer to the skb where the @tailbits space begins
2860 *
2861 * Make sure that the data buffers attached to a socket buffer are
2862 * writable. If they are not, private copies are made of the data buffers
2863 * and the socket buffer is set to use these instead.
2864 *
2865 * If @tailbits is given, make sure that there is space to write @tailbits
2866 * bytes of data beyond current end of socket buffer. @trailer will be
2867 * set to point to the skb in which this space begins.
2868 *
2869 * The number of scatterlist elements required to completely map the
2870 * COW'd and extended socket buffer will be returned.
2871 */
2872 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2873 {
2874 int copyflag;
2875 int elt;
2876 struct sk_buff *skb1, **skb_p;
2877
2878 /* If skb is cloned or its head is paged, reallocate
2879 * head pulling out all the pages (pages are considered not writable
2880 * at the moment even if they are anonymous).
2881 */
2882 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2883 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2884 return -ENOMEM;
2885
2886 /* Easy case. Most of packets will go this way. */
2887 if (!skb_shinfo(skb)->frag_list) {
2888 /* A little of trouble, not enough of space for trailer.
2889 * This should not happen, when stack is tuned to generate
2890 * good frames. OK, on miss we reallocate and reserve even more
2891 * space, 128 bytes is fair. */
2892
2893 if (skb_tailroom(skb) < tailbits &&
2894 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2895 return -ENOMEM;
2896
2897 /* Voila! */
2898 *trailer = skb;
2899 return 1;
2900 }
2901
2902 /* Misery. We are in troubles, going to mincer fragments... */
2903
2904 elt = 1;
2905 skb_p = &skb_shinfo(skb)->frag_list;
2906 copyflag = 0;
2907
2908 while ((skb1 = *skb_p) != NULL) {
2909 int ntail = 0;
2910
2911 /* The fragment is partially pulled by someone,
2912 * this can happen on input. Copy it and everything
2913 * after it. */
2914
2915 if (skb_shared(skb1))
2916 copyflag = 1;
2917
2918 /* If the skb is the last, worry about trailer. */
2919
2920 if (skb1->next == NULL && tailbits) {
2921 if (skb_shinfo(skb1)->nr_frags ||
2922 skb_shinfo(skb1)->frag_list ||
2923 skb_tailroom(skb1) < tailbits)
2924 ntail = tailbits + 128;
2925 }
2926
2927 if (copyflag ||
2928 skb_cloned(skb1) ||
2929 ntail ||
2930 skb_shinfo(skb1)->nr_frags ||
2931 skb_shinfo(skb1)->frag_list) {
2932 struct sk_buff *skb2;
2933
2934 /* Fuck, we are miserable poor guys... */
2935 if (ntail == 0)
2936 skb2 = skb_copy(skb1, GFP_ATOMIC);
2937 else
2938 skb2 = skb_copy_expand(skb1,
2939 skb_headroom(skb1),
2940 ntail,
2941 GFP_ATOMIC);
2942 if (unlikely(skb2 == NULL))
2943 return -ENOMEM;
2944
2945 if (skb1->sk)
2946 skb_set_owner_w(skb2, skb1->sk);
2947
2948 /* Looking around. Are we still alive?
2949 * OK, link new skb, drop old one */
2950
2951 skb2->next = skb1->next;
2952 *skb_p = skb2;
2953 kfree_skb(skb1);
2954 skb1 = skb2;
2955 }
2956 elt++;
2957 *trailer = skb1;
2958 skb_p = &skb1->next;
2959 }
2960
2961 return elt;
2962 }
2963 EXPORT_SYMBOL_GPL(skb_cow_data);
2964
2965 void skb_tstamp_tx(struct sk_buff *orig_skb,
2966 struct skb_shared_hwtstamps *hwtstamps)
2967 {
2968 struct sock *sk = orig_skb->sk;
2969 struct sock_exterr_skb *serr;
2970 struct sk_buff *skb;
2971 int err;
2972
2973 if (!sk)
2974 return;
2975
2976 skb = skb_clone(orig_skb, GFP_ATOMIC);
2977 if (!skb)
2978 return;
2979
2980 if (hwtstamps) {
2981 *skb_hwtstamps(skb) =
2982 *hwtstamps;
2983 } else {
2984 /*
2985 * no hardware time stamps available,
2986 * so keep the skb_shared_tx and only
2987 * store software time stamp
2988 */
2989 skb->tstamp = ktime_get_real();
2990 }
2991
2992 serr = SKB_EXT_ERR(skb);
2993 memset(serr, 0, sizeof(*serr));
2994 serr->ee.ee_errno = ENOMSG;
2995 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
2996 err = sock_queue_err_skb(sk, skb);
2997 if (err)
2998 kfree_skb(skb);
2999 }
3000 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3001
3002
3003 /**
3004 * skb_partial_csum_set - set up and verify partial csum values for packet
3005 * @skb: the skb to set
3006 * @start: the number of bytes after skb->data to start checksumming.
3007 * @off: the offset from start to place the checksum.
3008 *
3009 * For untrusted partially-checksummed packets, we need to make sure the values
3010 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3011 *
3012 * This function checks and sets those values and skb->ip_summed: if this
3013 * returns false you should drop the packet.
3014 */
3015 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3016 {
3017 if (unlikely(start > skb->len - 2) ||
3018 unlikely((int)start + off > skb->len - 2)) {
3019 if (net_ratelimit())
3020 printk(KERN_WARNING
3021 "bad partial csum: csum=%u/%u len=%u\n",
3022 start, off, skb->len);
3023 return false;
3024 }
3025 skb->ip_summed = CHECKSUM_PARTIAL;
3026 skb->csum_start = skb_headroom(skb) + start;
3027 skb->csum_offset = off;
3028 return true;
3029 }
3030 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3031
3032 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3033 {
3034 if (net_ratelimit())
3035 pr_warning("%s: received packets cannot be forwarded"
3036 " while LRO is enabled\n", skb->dev->name);
3037 }
3038 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
This page took 0.112154 seconds and 6 git commands to generate.