Pull altix into release branch
[deliverable/linux.git] / net / core / skbuff.c
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
8 *
9 * Fixes:
10 * Alan Cox : Fixed the worst of the load
11 * balancer bugs.
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
24 *
25 * NOTE:
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
35 */
36
37 /*
38 * The functions in this file will not compile correctly with gcc 2.4.x
39 */
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
52 #endif
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67
68 #include "kmap_skb.h"
69
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72
73 /*
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
76 * reliable.
77 */
78
79 /**
80 * skb_over_panic - private function
81 * @skb: buffer
82 * @sz: size
83 * @here: address
84 *
85 * Out of line support code for skb_put(). Not user callable.
86 */
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
88 {
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
93 BUG();
94 }
95
96 /**
97 * skb_under_panic - private function
98 * @skb: buffer
99 * @sz: size
100 * @here: address
101 *
102 * Out of line support code for skb_push(). Not user callable.
103 */
104
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
106 {
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
111 BUG();
112 }
113
114 void skb_truesize_bug(struct sk_buff *skb)
115 {
116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb->truesize, skb->len, sizeof(struct sk_buff));
119 }
120 EXPORT_SYMBOL(skb_truesize_bug);
121
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
124 * [BEEP] leaks.
125 *
126 */
127
128 /**
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
134 * @node: numa node to allocate memory on
135 *
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
139 *
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
141 * %GFP_ATOMIC.
142 */
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 int fclone, int node)
145 {
146 struct kmem_cache *cache;
147 struct skb_shared_info *shinfo;
148 struct sk_buff *skb;
149 u8 *data;
150
151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
152
153 /* Get the HEAD */
154 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
155 if (!skb)
156 goto out;
157
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size = SKB_DATA_ALIGN(size);
160 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
161 gfp_mask, node);
162 if (!data)
163 goto nodata;
164
165 memset(skb, 0, offsetof(struct sk_buff, truesize));
166 skb->truesize = size + sizeof(struct sk_buff);
167 atomic_set(&skb->users, 1);
168 skb->head = data;
169 skb->data = data;
170 skb->tail = data;
171 skb->end = data + size;
172 /* make sure we initialize shinfo sequentially */
173 shinfo = skb_shinfo(skb);
174 atomic_set(&shinfo->dataref, 1);
175 shinfo->nr_frags = 0;
176 shinfo->gso_size = 0;
177 shinfo->gso_segs = 0;
178 shinfo->gso_type = 0;
179 shinfo->ip6_frag_id = 0;
180 shinfo->frag_list = NULL;
181
182 if (fclone) {
183 struct sk_buff *child = skb + 1;
184 atomic_t *fclone_ref = (atomic_t *) (child + 1);
185
186 skb->fclone = SKB_FCLONE_ORIG;
187 atomic_set(fclone_ref, 1);
188
189 child->fclone = SKB_FCLONE_UNAVAILABLE;
190 }
191 out:
192 return skb;
193 nodata:
194 kmem_cache_free(cache, skb);
195 skb = NULL;
196 goto out;
197 }
198
199 /**
200 * alloc_skb_from_cache - allocate a network buffer
201 * @cp: kmem_cache from which to allocate the data area
202 * (object size must be big enough for @size bytes + skb overheads)
203 * @size: size to allocate
204 * @gfp_mask: allocation mask
205 *
206 * Allocate a new &sk_buff. The returned buffer has no headroom and
207 * tail room of size bytes. The object has a reference count of one.
208 * The return is the buffer. On a failure the return is %NULL.
209 *
210 * Buffers may only be allocated from interrupts using a @gfp_mask of
211 * %GFP_ATOMIC.
212 */
213 struct sk_buff *alloc_skb_from_cache(struct kmem_cache *cp,
214 unsigned int size,
215 gfp_t gfp_mask)
216 {
217 struct sk_buff *skb;
218 u8 *data;
219
220 /* Get the HEAD */
221 skb = kmem_cache_alloc(skbuff_head_cache,
222 gfp_mask & ~__GFP_DMA);
223 if (!skb)
224 goto out;
225
226 /* Get the DATA. */
227 size = SKB_DATA_ALIGN(size);
228 data = kmem_cache_alloc(cp, gfp_mask);
229 if (!data)
230 goto nodata;
231
232 memset(skb, 0, offsetof(struct sk_buff, truesize));
233 skb->truesize = size + sizeof(struct sk_buff);
234 atomic_set(&skb->users, 1);
235 skb->head = data;
236 skb->data = data;
237 skb->tail = data;
238 skb->end = data + size;
239
240 atomic_set(&(skb_shinfo(skb)->dataref), 1);
241 skb_shinfo(skb)->nr_frags = 0;
242 skb_shinfo(skb)->gso_size = 0;
243 skb_shinfo(skb)->gso_segs = 0;
244 skb_shinfo(skb)->gso_type = 0;
245 skb_shinfo(skb)->frag_list = NULL;
246 out:
247 return skb;
248 nodata:
249 kmem_cache_free(skbuff_head_cache, skb);
250 skb = NULL;
251 goto out;
252 }
253
254 /**
255 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
256 * @dev: network device to receive on
257 * @length: length to allocate
258 * @gfp_mask: get_free_pages mask, passed to alloc_skb
259 *
260 * Allocate a new &sk_buff and assign it a usage count of one. The
261 * buffer has unspecified headroom built in. Users should allocate
262 * the headroom they think they need without accounting for the
263 * built in space. The built in space is used for optimisations.
264 *
265 * %NULL is returned if there is no free memory.
266 */
267 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
268 unsigned int length, gfp_t gfp_mask)
269 {
270 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
271 struct sk_buff *skb;
272
273 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
274 if (likely(skb)) {
275 skb_reserve(skb, NET_SKB_PAD);
276 skb->dev = dev;
277 }
278 return skb;
279 }
280
281 static void skb_drop_list(struct sk_buff **listp)
282 {
283 struct sk_buff *list = *listp;
284
285 *listp = NULL;
286
287 do {
288 struct sk_buff *this = list;
289 list = list->next;
290 kfree_skb(this);
291 } while (list);
292 }
293
294 static inline void skb_drop_fraglist(struct sk_buff *skb)
295 {
296 skb_drop_list(&skb_shinfo(skb)->frag_list);
297 }
298
299 static void skb_clone_fraglist(struct sk_buff *skb)
300 {
301 struct sk_buff *list;
302
303 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
304 skb_get(list);
305 }
306
307 static void skb_release_data(struct sk_buff *skb)
308 {
309 if (!skb->cloned ||
310 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
311 &skb_shinfo(skb)->dataref)) {
312 if (skb_shinfo(skb)->nr_frags) {
313 int i;
314 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
315 put_page(skb_shinfo(skb)->frags[i].page);
316 }
317
318 if (skb_shinfo(skb)->frag_list)
319 skb_drop_fraglist(skb);
320
321 kfree(skb->head);
322 }
323 }
324
325 /*
326 * Free an skbuff by memory without cleaning the state.
327 */
328 void kfree_skbmem(struct sk_buff *skb)
329 {
330 struct sk_buff *other;
331 atomic_t *fclone_ref;
332
333 skb_release_data(skb);
334 switch (skb->fclone) {
335 case SKB_FCLONE_UNAVAILABLE:
336 kmem_cache_free(skbuff_head_cache, skb);
337 break;
338
339 case SKB_FCLONE_ORIG:
340 fclone_ref = (atomic_t *) (skb + 2);
341 if (atomic_dec_and_test(fclone_ref))
342 kmem_cache_free(skbuff_fclone_cache, skb);
343 break;
344
345 case SKB_FCLONE_CLONE:
346 fclone_ref = (atomic_t *) (skb + 1);
347 other = skb - 1;
348
349 /* The clone portion is available for
350 * fast-cloning again.
351 */
352 skb->fclone = SKB_FCLONE_UNAVAILABLE;
353
354 if (atomic_dec_and_test(fclone_ref))
355 kmem_cache_free(skbuff_fclone_cache, other);
356 break;
357 };
358 }
359
360 /**
361 * __kfree_skb - private function
362 * @skb: buffer
363 *
364 * Free an sk_buff. Release anything attached to the buffer.
365 * Clean the state. This is an internal helper function. Users should
366 * always call kfree_skb
367 */
368
369 void __kfree_skb(struct sk_buff *skb)
370 {
371 dst_release(skb->dst);
372 #ifdef CONFIG_XFRM
373 secpath_put(skb->sp);
374 #endif
375 if (skb->destructor) {
376 WARN_ON(in_irq());
377 skb->destructor(skb);
378 }
379 #ifdef CONFIG_NETFILTER
380 nf_conntrack_put(skb->nfct);
381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
382 nf_conntrack_put_reasm(skb->nfct_reasm);
383 #endif
384 #ifdef CONFIG_BRIDGE_NETFILTER
385 nf_bridge_put(skb->nf_bridge);
386 #endif
387 #endif
388 /* XXX: IS this still necessary? - JHS */
389 #ifdef CONFIG_NET_SCHED
390 skb->tc_index = 0;
391 #ifdef CONFIG_NET_CLS_ACT
392 skb->tc_verd = 0;
393 #endif
394 #endif
395
396 kfree_skbmem(skb);
397 }
398
399 /**
400 * kfree_skb - free an sk_buff
401 * @skb: buffer to free
402 *
403 * Drop a reference to the buffer and free it if the usage count has
404 * hit zero.
405 */
406 void kfree_skb(struct sk_buff *skb)
407 {
408 if (unlikely(!skb))
409 return;
410 if (likely(atomic_read(&skb->users) == 1))
411 smp_rmb();
412 else if (likely(!atomic_dec_and_test(&skb->users)))
413 return;
414 __kfree_skb(skb);
415 }
416
417 /**
418 * skb_clone - duplicate an sk_buff
419 * @skb: buffer to clone
420 * @gfp_mask: allocation priority
421 *
422 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
423 * copies share the same packet data but not structure. The new
424 * buffer has a reference count of 1. If the allocation fails the
425 * function returns %NULL otherwise the new buffer is returned.
426 *
427 * If this function is called from an interrupt gfp_mask() must be
428 * %GFP_ATOMIC.
429 */
430
431 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
432 {
433 struct sk_buff *n;
434
435 n = skb + 1;
436 if (skb->fclone == SKB_FCLONE_ORIG &&
437 n->fclone == SKB_FCLONE_UNAVAILABLE) {
438 atomic_t *fclone_ref = (atomic_t *) (n + 1);
439 n->fclone = SKB_FCLONE_CLONE;
440 atomic_inc(fclone_ref);
441 } else {
442 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
443 if (!n)
444 return NULL;
445 n->fclone = SKB_FCLONE_UNAVAILABLE;
446 }
447
448 #define C(x) n->x = skb->x
449
450 n->next = n->prev = NULL;
451 n->sk = NULL;
452 C(tstamp);
453 C(dev);
454 C(h);
455 C(nh);
456 C(mac);
457 C(dst);
458 dst_clone(skb->dst);
459 C(sp);
460 #ifdef CONFIG_INET
461 secpath_get(skb->sp);
462 #endif
463 memcpy(n->cb, skb->cb, sizeof(skb->cb));
464 C(len);
465 C(data_len);
466 C(csum);
467 C(local_df);
468 n->cloned = 1;
469 n->nohdr = 0;
470 C(pkt_type);
471 C(ip_summed);
472 C(priority);
473 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
474 C(ipvs_property);
475 #endif
476 C(protocol);
477 n->destructor = NULL;
478 C(mark);
479 #ifdef CONFIG_NETFILTER
480 C(nfct);
481 nf_conntrack_get(skb->nfct);
482 C(nfctinfo);
483 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
484 C(nfct_reasm);
485 nf_conntrack_get_reasm(skb->nfct_reasm);
486 #endif
487 #ifdef CONFIG_BRIDGE_NETFILTER
488 C(nf_bridge);
489 nf_bridge_get(skb->nf_bridge);
490 #endif
491 #endif /*CONFIG_NETFILTER*/
492 #ifdef CONFIG_NET_SCHED
493 C(tc_index);
494 #ifdef CONFIG_NET_CLS_ACT
495 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
496 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
497 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
498 C(input_dev);
499 #endif
500 skb_copy_secmark(n, skb);
501 #endif
502 C(truesize);
503 atomic_set(&n->users, 1);
504 C(head);
505 C(data);
506 C(tail);
507 C(end);
508
509 atomic_inc(&(skb_shinfo(skb)->dataref));
510 skb->cloned = 1;
511
512 return n;
513 }
514
515 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
516 {
517 /*
518 * Shift between the two data areas in bytes
519 */
520 unsigned long offset = new->data - old->data;
521
522 new->sk = NULL;
523 new->dev = old->dev;
524 new->priority = old->priority;
525 new->protocol = old->protocol;
526 new->dst = dst_clone(old->dst);
527 #ifdef CONFIG_INET
528 new->sp = secpath_get(old->sp);
529 #endif
530 new->h.raw = old->h.raw + offset;
531 new->nh.raw = old->nh.raw + offset;
532 new->mac.raw = old->mac.raw + offset;
533 memcpy(new->cb, old->cb, sizeof(old->cb));
534 new->local_df = old->local_df;
535 new->fclone = SKB_FCLONE_UNAVAILABLE;
536 new->pkt_type = old->pkt_type;
537 new->tstamp = old->tstamp;
538 new->destructor = NULL;
539 new->mark = old->mark;
540 #ifdef CONFIG_NETFILTER
541 new->nfct = old->nfct;
542 nf_conntrack_get(old->nfct);
543 new->nfctinfo = old->nfctinfo;
544 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
545 new->nfct_reasm = old->nfct_reasm;
546 nf_conntrack_get_reasm(old->nfct_reasm);
547 #endif
548 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
549 new->ipvs_property = old->ipvs_property;
550 #endif
551 #ifdef CONFIG_BRIDGE_NETFILTER
552 new->nf_bridge = old->nf_bridge;
553 nf_bridge_get(old->nf_bridge);
554 #endif
555 #endif
556 #ifdef CONFIG_NET_SCHED
557 #ifdef CONFIG_NET_CLS_ACT
558 new->tc_verd = old->tc_verd;
559 #endif
560 new->tc_index = old->tc_index;
561 #endif
562 skb_copy_secmark(new, old);
563 atomic_set(&new->users, 1);
564 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
565 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
566 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
567 }
568
569 /**
570 * skb_copy - create private copy of an sk_buff
571 * @skb: buffer to copy
572 * @gfp_mask: allocation priority
573 *
574 * Make a copy of both an &sk_buff and its data. This is used when the
575 * caller wishes to modify the data and needs a private copy of the
576 * data to alter. Returns %NULL on failure or the pointer to the buffer
577 * on success. The returned buffer has a reference count of 1.
578 *
579 * As by-product this function converts non-linear &sk_buff to linear
580 * one, so that &sk_buff becomes completely private and caller is allowed
581 * to modify all the data of returned buffer. This means that this
582 * function is not recommended for use in circumstances when only
583 * header is going to be modified. Use pskb_copy() instead.
584 */
585
586 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
587 {
588 int headerlen = skb->data - skb->head;
589 /*
590 * Allocate the copy buffer
591 */
592 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
593 gfp_mask);
594 if (!n)
595 return NULL;
596
597 /* Set the data pointer */
598 skb_reserve(n, headerlen);
599 /* Set the tail pointer and length */
600 skb_put(n, skb->len);
601 n->csum = skb->csum;
602 n->ip_summed = skb->ip_summed;
603
604 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
605 BUG();
606
607 copy_skb_header(n, skb);
608 return n;
609 }
610
611
612 /**
613 * pskb_copy - create copy of an sk_buff with private head.
614 * @skb: buffer to copy
615 * @gfp_mask: allocation priority
616 *
617 * Make a copy of both an &sk_buff and part of its data, located
618 * in header. Fragmented data remain shared. This is used when
619 * the caller wishes to modify only header of &sk_buff and needs
620 * private copy of the header to alter. Returns %NULL on failure
621 * or the pointer to the buffer on success.
622 * The returned buffer has a reference count of 1.
623 */
624
625 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
626 {
627 /*
628 * Allocate the copy buffer
629 */
630 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
631
632 if (!n)
633 goto out;
634
635 /* Set the data pointer */
636 skb_reserve(n, skb->data - skb->head);
637 /* Set the tail pointer and length */
638 skb_put(n, skb_headlen(skb));
639 /* Copy the bytes */
640 memcpy(n->data, skb->data, n->len);
641 n->csum = skb->csum;
642 n->ip_summed = skb->ip_summed;
643
644 n->truesize += skb->data_len;
645 n->data_len = skb->data_len;
646 n->len = skb->len;
647
648 if (skb_shinfo(skb)->nr_frags) {
649 int i;
650
651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
653 get_page(skb_shinfo(n)->frags[i].page);
654 }
655 skb_shinfo(n)->nr_frags = i;
656 }
657
658 if (skb_shinfo(skb)->frag_list) {
659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
660 skb_clone_fraglist(n);
661 }
662
663 copy_skb_header(n, skb);
664 out:
665 return n;
666 }
667
668 /**
669 * pskb_expand_head - reallocate header of &sk_buff
670 * @skb: buffer to reallocate
671 * @nhead: room to add at head
672 * @ntail: room to add at tail
673 * @gfp_mask: allocation priority
674 *
675 * Expands (or creates identical copy, if &nhead and &ntail are zero)
676 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
677 * reference count of 1. Returns zero in the case of success or error,
678 * if expansion failed. In the last case, &sk_buff is not changed.
679 *
680 * All the pointers pointing into skb header may change and must be
681 * reloaded after call to this function.
682 */
683
684 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
685 gfp_t gfp_mask)
686 {
687 int i;
688 u8 *data;
689 int size = nhead + (skb->end - skb->head) + ntail;
690 long off;
691
692 if (skb_shared(skb))
693 BUG();
694
695 size = SKB_DATA_ALIGN(size);
696
697 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
698 if (!data)
699 goto nodata;
700
701 /* Copy only real data... and, alas, header. This should be
702 * optimized for the cases when header is void. */
703 memcpy(data + nhead, skb->head, skb->tail - skb->head);
704 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
705
706 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
707 get_page(skb_shinfo(skb)->frags[i].page);
708
709 if (skb_shinfo(skb)->frag_list)
710 skb_clone_fraglist(skb);
711
712 skb_release_data(skb);
713
714 off = (data + nhead) - skb->head;
715
716 skb->head = data;
717 skb->end = data + size;
718 skb->data += off;
719 skb->tail += off;
720 skb->mac.raw += off;
721 skb->h.raw += off;
722 skb->nh.raw += off;
723 skb->cloned = 0;
724 skb->nohdr = 0;
725 atomic_set(&skb_shinfo(skb)->dataref, 1);
726 return 0;
727
728 nodata:
729 return -ENOMEM;
730 }
731
732 /* Make private copy of skb with writable head and some headroom */
733
734 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
735 {
736 struct sk_buff *skb2;
737 int delta = headroom - skb_headroom(skb);
738
739 if (delta <= 0)
740 skb2 = pskb_copy(skb, GFP_ATOMIC);
741 else {
742 skb2 = skb_clone(skb, GFP_ATOMIC);
743 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
744 GFP_ATOMIC)) {
745 kfree_skb(skb2);
746 skb2 = NULL;
747 }
748 }
749 return skb2;
750 }
751
752
753 /**
754 * skb_copy_expand - copy and expand sk_buff
755 * @skb: buffer to copy
756 * @newheadroom: new free bytes at head
757 * @newtailroom: new free bytes at tail
758 * @gfp_mask: allocation priority
759 *
760 * Make a copy of both an &sk_buff and its data and while doing so
761 * allocate additional space.
762 *
763 * This is used when the caller wishes to modify the data and needs a
764 * private copy of the data to alter as well as more space for new fields.
765 * Returns %NULL on failure or the pointer to the buffer
766 * on success. The returned buffer has a reference count of 1.
767 *
768 * You must pass %GFP_ATOMIC as the allocation priority if this function
769 * is called from an interrupt.
770 *
771 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
772 * only by netfilter in the cases when checksum is recalculated? --ANK
773 */
774 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
775 int newheadroom, int newtailroom,
776 gfp_t gfp_mask)
777 {
778 /*
779 * Allocate the copy buffer
780 */
781 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
782 gfp_mask);
783 int head_copy_len, head_copy_off;
784
785 if (!n)
786 return NULL;
787
788 skb_reserve(n, newheadroom);
789
790 /* Set the tail pointer and length */
791 skb_put(n, skb->len);
792
793 head_copy_len = skb_headroom(skb);
794 head_copy_off = 0;
795 if (newheadroom <= head_copy_len)
796 head_copy_len = newheadroom;
797 else
798 head_copy_off = newheadroom - head_copy_len;
799
800 /* Copy the linear header and data. */
801 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
802 skb->len + head_copy_len))
803 BUG();
804
805 copy_skb_header(n, skb);
806
807 return n;
808 }
809
810 /**
811 * skb_pad - zero pad the tail of an skb
812 * @skb: buffer to pad
813 * @pad: space to pad
814 *
815 * Ensure that a buffer is followed by a padding area that is zero
816 * filled. Used by network drivers which may DMA or transfer data
817 * beyond the buffer end onto the wire.
818 *
819 * May return error in out of memory cases. The skb is freed on error.
820 */
821
822 int skb_pad(struct sk_buff *skb, int pad)
823 {
824 int err;
825 int ntail;
826
827 /* If the skbuff is non linear tailroom is always zero.. */
828 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
829 memset(skb->data+skb->len, 0, pad);
830 return 0;
831 }
832
833 ntail = skb->data_len + pad - (skb->end - skb->tail);
834 if (likely(skb_cloned(skb) || ntail > 0)) {
835 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
836 if (unlikely(err))
837 goto free_skb;
838 }
839
840 /* FIXME: The use of this function with non-linear skb's really needs
841 * to be audited.
842 */
843 err = skb_linearize(skb);
844 if (unlikely(err))
845 goto free_skb;
846
847 memset(skb->data + skb->len, 0, pad);
848 return 0;
849
850 free_skb:
851 kfree_skb(skb);
852 return err;
853 }
854
855 /* Trims skb to length len. It can change skb pointers.
856 */
857
858 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
859 {
860 struct sk_buff **fragp;
861 struct sk_buff *frag;
862 int offset = skb_headlen(skb);
863 int nfrags = skb_shinfo(skb)->nr_frags;
864 int i;
865 int err;
866
867 if (skb_cloned(skb) &&
868 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
869 return err;
870
871 i = 0;
872 if (offset >= len)
873 goto drop_pages;
874
875 for (; i < nfrags; i++) {
876 int end = offset + skb_shinfo(skb)->frags[i].size;
877
878 if (end < len) {
879 offset = end;
880 continue;
881 }
882
883 skb_shinfo(skb)->frags[i++].size = len - offset;
884
885 drop_pages:
886 skb_shinfo(skb)->nr_frags = i;
887
888 for (; i < nfrags; i++)
889 put_page(skb_shinfo(skb)->frags[i].page);
890
891 if (skb_shinfo(skb)->frag_list)
892 skb_drop_fraglist(skb);
893 goto done;
894 }
895
896 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
897 fragp = &frag->next) {
898 int end = offset + frag->len;
899
900 if (skb_shared(frag)) {
901 struct sk_buff *nfrag;
902
903 nfrag = skb_clone(frag, GFP_ATOMIC);
904 if (unlikely(!nfrag))
905 return -ENOMEM;
906
907 nfrag->next = frag->next;
908 kfree_skb(frag);
909 frag = nfrag;
910 *fragp = frag;
911 }
912
913 if (end < len) {
914 offset = end;
915 continue;
916 }
917
918 if (end > len &&
919 unlikely((err = pskb_trim(frag, len - offset))))
920 return err;
921
922 if (frag->next)
923 skb_drop_list(&frag->next);
924 break;
925 }
926
927 done:
928 if (len > skb_headlen(skb)) {
929 skb->data_len -= skb->len - len;
930 skb->len = len;
931 } else {
932 skb->len = len;
933 skb->data_len = 0;
934 skb->tail = skb->data + len;
935 }
936
937 return 0;
938 }
939
940 /**
941 * __pskb_pull_tail - advance tail of skb header
942 * @skb: buffer to reallocate
943 * @delta: number of bytes to advance tail
944 *
945 * The function makes a sense only on a fragmented &sk_buff,
946 * it expands header moving its tail forward and copying necessary
947 * data from fragmented part.
948 *
949 * &sk_buff MUST have reference count of 1.
950 *
951 * Returns %NULL (and &sk_buff does not change) if pull failed
952 * or value of new tail of skb in the case of success.
953 *
954 * All the pointers pointing into skb header may change and must be
955 * reloaded after call to this function.
956 */
957
958 /* Moves tail of skb head forward, copying data from fragmented part,
959 * when it is necessary.
960 * 1. It may fail due to malloc failure.
961 * 2. It may change skb pointers.
962 *
963 * It is pretty complicated. Luckily, it is called only in exceptional cases.
964 */
965 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
966 {
967 /* If skb has not enough free space at tail, get new one
968 * plus 128 bytes for future expansions. If we have enough
969 * room at tail, reallocate without expansion only if skb is cloned.
970 */
971 int i, k, eat = (skb->tail + delta) - skb->end;
972
973 if (eat > 0 || skb_cloned(skb)) {
974 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
975 GFP_ATOMIC))
976 return NULL;
977 }
978
979 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
980 BUG();
981
982 /* Optimization: no fragments, no reasons to preestimate
983 * size of pulled pages. Superb.
984 */
985 if (!skb_shinfo(skb)->frag_list)
986 goto pull_pages;
987
988 /* Estimate size of pulled pages. */
989 eat = delta;
990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
991 if (skb_shinfo(skb)->frags[i].size >= eat)
992 goto pull_pages;
993 eat -= skb_shinfo(skb)->frags[i].size;
994 }
995
996 /* If we need update frag list, we are in troubles.
997 * Certainly, it possible to add an offset to skb data,
998 * but taking into account that pulling is expected to
999 * be very rare operation, it is worth to fight against
1000 * further bloating skb head and crucify ourselves here instead.
1001 * Pure masohism, indeed. 8)8)
1002 */
1003 if (eat) {
1004 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1005 struct sk_buff *clone = NULL;
1006 struct sk_buff *insp = NULL;
1007
1008 do {
1009 BUG_ON(!list);
1010
1011 if (list->len <= eat) {
1012 /* Eaten as whole. */
1013 eat -= list->len;
1014 list = list->next;
1015 insp = list;
1016 } else {
1017 /* Eaten partially. */
1018
1019 if (skb_shared(list)) {
1020 /* Sucks! We need to fork list. :-( */
1021 clone = skb_clone(list, GFP_ATOMIC);
1022 if (!clone)
1023 return NULL;
1024 insp = list->next;
1025 list = clone;
1026 } else {
1027 /* This may be pulled without
1028 * problems. */
1029 insp = list;
1030 }
1031 if (!pskb_pull(list, eat)) {
1032 if (clone)
1033 kfree_skb(clone);
1034 return NULL;
1035 }
1036 break;
1037 }
1038 } while (eat);
1039
1040 /* Free pulled out fragments. */
1041 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1042 skb_shinfo(skb)->frag_list = list->next;
1043 kfree_skb(list);
1044 }
1045 /* And insert new clone at head. */
1046 if (clone) {
1047 clone->next = list;
1048 skb_shinfo(skb)->frag_list = clone;
1049 }
1050 }
1051 /* Success! Now we may commit changes to skb data. */
1052
1053 pull_pages:
1054 eat = delta;
1055 k = 0;
1056 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057 if (skb_shinfo(skb)->frags[i].size <= eat) {
1058 put_page(skb_shinfo(skb)->frags[i].page);
1059 eat -= skb_shinfo(skb)->frags[i].size;
1060 } else {
1061 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1062 if (eat) {
1063 skb_shinfo(skb)->frags[k].page_offset += eat;
1064 skb_shinfo(skb)->frags[k].size -= eat;
1065 eat = 0;
1066 }
1067 k++;
1068 }
1069 }
1070 skb_shinfo(skb)->nr_frags = k;
1071
1072 skb->tail += delta;
1073 skb->data_len -= delta;
1074
1075 return skb->tail;
1076 }
1077
1078 /* Copy some data bits from skb to kernel buffer. */
1079
1080 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1081 {
1082 int i, copy;
1083 int start = skb_headlen(skb);
1084
1085 if (offset > (int)skb->len - len)
1086 goto fault;
1087
1088 /* Copy header. */
1089 if ((copy = start - offset) > 0) {
1090 if (copy > len)
1091 copy = len;
1092 memcpy(to, skb->data + offset, copy);
1093 if ((len -= copy) == 0)
1094 return 0;
1095 offset += copy;
1096 to += copy;
1097 }
1098
1099 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1100 int end;
1101
1102 BUG_TRAP(start <= offset + len);
1103
1104 end = start + skb_shinfo(skb)->frags[i].size;
1105 if ((copy = end - offset) > 0) {
1106 u8 *vaddr;
1107
1108 if (copy > len)
1109 copy = len;
1110
1111 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1112 memcpy(to,
1113 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1114 offset - start, copy);
1115 kunmap_skb_frag(vaddr);
1116
1117 if ((len -= copy) == 0)
1118 return 0;
1119 offset += copy;
1120 to += copy;
1121 }
1122 start = end;
1123 }
1124
1125 if (skb_shinfo(skb)->frag_list) {
1126 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1127
1128 for (; list; list = list->next) {
1129 int end;
1130
1131 BUG_TRAP(start <= offset + len);
1132
1133 end = start + list->len;
1134 if ((copy = end - offset) > 0) {
1135 if (copy > len)
1136 copy = len;
1137 if (skb_copy_bits(list, offset - start,
1138 to, copy))
1139 goto fault;
1140 if ((len -= copy) == 0)
1141 return 0;
1142 offset += copy;
1143 to += copy;
1144 }
1145 start = end;
1146 }
1147 }
1148 if (!len)
1149 return 0;
1150
1151 fault:
1152 return -EFAULT;
1153 }
1154
1155 /**
1156 * skb_store_bits - store bits from kernel buffer to skb
1157 * @skb: destination buffer
1158 * @offset: offset in destination
1159 * @from: source buffer
1160 * @len: number of bytes to copy
1161 *
1162 * Copy the specified number of bytes from the source buffer to the
1163 * destination skb. This function handles all the messy bits of
1164 * traversing fragment lists and such.
1165 */
1166
1167 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1168 {
1169 int i, copy;
1170 int start = skb_headlen(skb);
1171
1172 if (offset > (int)skb->len - len)
1173 goto fault;
1174
1175 if ((copy = start - offset) > 0) {
1176 if (copy > len)
1177 copy = len;
1178 memcpy(skb->data + offset, from, copy);
1179 if ((len -= copy) == 0)
1180 return 0;
1181 offset += copy;
1182 from += copy;
1183 }
1184
1185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1186 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1187 int end;
1188
1189 BUG_TRAP(start <= offset + len);
1190
1191 end = start + frag->size;
1192 if ((copy = end - offset) > 0) {
1193 u8 *vaddr;
1194
1195 if (copy > len)
1196 copy = len;
1197
1198 vaddr = kmap_skb_frag(frag);
1199 memcpy(vaddr + frag->page_offset + offset - start,
1200 from, copy);
1201 kunmap_skb_frag(vaddr);
1202
1203 if ((len -= copy) == 0)
1204 return 0;
1205 offset += copy;
1206 from += copy;
1207 }
1208 start = end;
1209 }
1210
1211 if (skb_shinfo(skb)->frag_list) {
1212 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1213
1214 for (; list; list = list->next) {
1215 int end;
1216
1217 BUG_TRAP(start <= offset + len);
1218
1219 end = start + list->len;
1220 if ((copy = end - offset) > 0) {
1221 if (copy > len)
1222 copy = len;
1223 if (skb_store_bits(list, offset - start,
1224 from, copy))
1225 goto fault;
1226 if ((len -= copy) == 0)
1227 return 0;
1228 offset += copy;
1229 from += copy;
1230 }
1231 start = end;
1232 }
1233 }
1234 if (!len)
1235 return 0;
1236
1237 fault:
1238 return -EFAULT;
1239 }
1240
1241 EXPORT_SYMBOL(skb_store_bits);
1242
1243 /* Checksum skb data. */
1244
1245 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1246 int len, __wsum csum)
1247 {
1248 int start = skb_headlen(skb);
1249 int i, copy = start - offset;
1250 int pos = 0;
1251
1252 /* Checksum header. */
1253 if (copy > 0) {
1254 if (copy > len)
1255 copy = len;
1256 csum = csum_partial(skb->data + offset, copy, csum);
1257 if ((len -= copy) == 0)
1258 return csum;
1259 offset += copy;
1260 pos = copy;
1261 }
1262
1263 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1264 int end;
1265
1266 BUG_TRAP(start <= offset + len);
1267
1268 end = start + skb_shinfo(skb)->frags[i].size;
1269 if ((copy = end - offset) > 0) {
1270 __wsum csum2;
1271 u8 *vaddr;
1272 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1273
1274 if (copy > len)
1275 copy = len;
1276 vaddr = kmap_skb_frag(frag);
1277 csum2 = csum_partial(vaddr + frag->page_offset +
1278 offset - start, copy, 0);
1279 kunmap_skb_frag(vaddr);
1280 csum = csum_block_add(csum, csum2, pos);
1281 if (!(len -= copy))
1282 return csum;
1283 offset += copy;
1284 pos += copy;
1285 }
1286 start = end;
1287 }
1288
1289 if (skb_shinfo(skb)->frag_list) {
1290 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1291
1292 for (; list; list = list->next) {
1293 int end;
1294
1295 BUG_TRAP(start <= offset + len);
1296
1297 end = start + list->len;
1298 if ((copy = end - offset) > 0) {
1299 __wsum csum2;
1300 if (copy > len)
1301 copy = len;
1302 csum2 = skb_checksum(list, offset - start,
1303 copy, 0);
1304 csum = csum_block_add(csum, csum2, pos);
1305 if ((len -= copy) == 0)
1306 return csum;
1307 offset += copy;
1308 pos += copy;
1309 }
1310 start = end;
1311 }
1312 }
1313 BUG_ON(len);
1314
1315 return csum;
1316 }
1317
1318 /* Both of above in one bottle. */
1319
1320 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1321 u8 *to, int len, __wsum csum)
1322 {
1323 int start = skb_headlen(skb);
1324 int i, copy = start - offset;
1325 int pos = 0;
1326
1327 /* Copy header. */
1328 if (copy > 0) {
1329 if (copy > len)
1330 copy = len;
1331 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1332 copy, csum);
1333 if ((len -= copy) == 0)
1334 return csum;
1335 offset += copy;
1336 to += copy;
1337 pos = copy;
1338 }
1339
1340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1341 int end;
1342
1343 BUG_TRAP(start <= offset + len);
1344
1345 end = start + skb_shinfo(skb)->frags[i].size;
1346 if ((copy = end - offset) > 0) {
1347 __wsum csum2;
1348 u8 *vaddr;
1349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1350
1351 if (copy > len)
1352 copy = len;
1353 vaddr = kmap_skb_frag(frag);
1354 csum2 = csum_partial_copy_nocheck(vaddr +
1355 frag->page_offset +
1356 offset - start, to,
1357 copy, 0);
1358 kunmap_skb_frag(vaddr);
1359 csum = csum_block_add(csum, csum2, pos);
1360 if (!(len -= copy))
1361 return csum;
1362 offset += copy;
1363 to += copy;
1364 pos += copy;
1365 }
1366 start = end;
1367 }
1368
1369 if (skb_shinfo(skb)->frag_list) {
1370 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1371
1372 for (; list; list = list->next) {
1373 __wsum csum2;
1374 int end;
1375
1376 BUG_TRAP(start <= offset + len);
1377
1378 end = start + list->len;
1379 if ((copy = end - offset) > 0) {
1380 if (copy > len)
1381 copy = len;
1382 csum2 = skb_copy_and_csum_bits(list,
1383 offset - start,
1384 to, copy, 0);
1385 csum = csum_block_add(csum, csum2, pos);
1386 if ((len -= copy) == 0)
1387 return csum;
1388 offset += copy;
1389 to += copy;
1390 pos += copy;
1391 }
1392 start = end;
1393 }
1394 }
1395 BUG_ON(len);
1396 return csum;
1397 }
1398
1399 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1400 {
1401 __wsum csum;
1402 long csstart;
1403
1404 if (skb->ip_summed == CHECKSUM_PARTIAL)
1405 csstart = skb->h.raw - skb->data;
1406 else
1407 csstart = skb_headlen(skb);
1408
1409 BUG_ON(csstart > skb_headlen(skb));
1410
1411 memcpy(to, skb->data, csstart);
1412
1413 csum = 0;
1414 if (csstart != skb->len)
1415 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1416 skb->len - csstart, 0);
1417
1418 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1419 long csstuff = csstart + skb->csum_offset;
1420
1421 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1422 }
1423 }
1424
1425 /**
1426 * skb_dequeue - remove from the head of the queue
1427 * @list: list to dequeue from
1428 *
1429 * Remove the head of the list. The list lock is taken so the function
1430 * may be used safely with other locking list functions. The head item is
1431 * returned or %NULL if the list is empty.
1432 */
1433
1434 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1435 {
1436 unsigned long flags;
1437 struct sk_buff *result;
1438
1439 spin_lock_irqsave(&list->lock, flags);
1440 result = __skb_dequeue(list);
1441 spin_unlock_irqrestore(&list->lock, flags);
1442 return result;
1443 }
1444
1445 /**
1446 * skb_dequeue_tail - remove from the tail of the queue
1447 * @list: list to dequeue from
1448 *
1449 * Remove the tail of the list. The list lock is taken so the function
1450 * may be used safely with other locking list functions. The tail item is
1451 * returned or %NULL if the list is empty.
1452 */
1453 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1454 {
1455 unsigned long flags;
1456 struct sk_buff *result;
1457
1458 spin_lock_irqsave(&list->lock, flags);
1459 result = __skb_dequeue_tail(list);
1460 spin_unlock_irqrestore(&list->lock, flags);
1461 return result;
1462 }
1463
1464 /**
1465 * skb_queue_purge - empty a list
1466 * @list: list to empty
1467 *
1468 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1469 * the list and one reference dropped. This function takes the list
1470 * lock and is atomic with respect to other list locking functions.
1471 */
1472 void skb_queue_purge(struct sk_buff_head *list)
1473 {
1474 struct sk_buff *skb;
1475 while ((skb = skb_dequeue(list)) != NULL)
1476 kfree_skb(skb);
1477 }
1478
1479 /**
1480 * skb_queue_head - queue a buffer at the list head
1481 * @list: list to use
1482 * @newsk: buffer to queue
1483 *
1484 * Queue a buffer at the start of the list. This function takes the
1485 * list lock and can be used safely with other locking &sk_buff functions
1486 * safely.
1487 *
1488 * A buffer cannot be placed on two lists at the same time.
1489 */
1490 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1491 {
1492 unsigned long flags;
1493
1494 spin_lock_irqsave(&list->lock, flags);
1495 __skb_queue_head(list, newsk);
1496 spin_unlock_irqrestore(&list->lock, flags);
1497 }
1498
1499 /**
1500 * skb_queue_tail - queue a buffer at the list tail
1501 * @list: list to use
1502 * @newsk: buffer to queue
1503 *
1504 * Queue a buffer at the tail of the list. This function takes the
1505 * list lock and can be used safely with other locking &sk_buff functions
1506 * safely.
1507 *
1508 * A buffer cannot be placed on two lists at the same time.
1509 */
1510 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1511 {
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&list->lock, flags);
1515 __skb_queue_tail(list, newsk);
1516 spin_unlock_irqrestore(&list->lock, flags);
1517 }
1518
1519 /**
1520 * skb_unlink - remove a buffer from a list
1521 * @skb: buffer to remove
1522 * @list: list to use
1523 *
1524 * Remove a packet from a list. The list locks are taken and this
1525 * function is atomic with respect to other list locked calls
1526 *
1527 * You must know what list the SKB is on.
1528 */
1529 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1530 {
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&list->lock, flags);
1534 __skb_unlink(skb, list);
1535 spin_unlock_irqrestore(&list->lock, flags);
1536 }
1537
1538 /**
1539 * skb_append - append a buffer
1540 * @old: buffer to insert after
1541 * @newsk: buffer to insert
1542 * @list: list to use
1543 *
1544 * Place a packet after a given packet in a list. The list locks are taken
1545 * and this function is atomic with respect to other list locked calls.
1546 * A buffer cannot be placed on two lists at the same time.
1547 */
1548 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1549 {
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&list->lock, flags);
1553 __skb_append(old, newsk, list);
1554 spin_unlock_irqrestore(&list->lock, flags);
1555 }
1556
1557
1558 /**
1559 * skb_insert - insert a buffer
1560 * @old: buffer to insert before
1561 * @newsk: buffer to insert
1562 * @list: list to use
1563 *
1564 * Place a packet before a given packet in a list. The list locks are
1565 * taken and this function is atomic with respect to other list locked
1566 * calls.
1567 *
1568 * A buffer cannot be placed on two lists at the same time.
1569 */
1570 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1571 {
1572 unsigned long flags;
1573
1574 spin_lock_irqsave(&list->lock, flags);
1575 __skb_insert(newsk, old->prev, old, list);
1576 spin_unlock_irqrestore(&list->lock, flags);
1577 }
1578
1579 #if 0
1580 /*
1581 * Tune the memory allocator for a new MTU size.
1582 */
1583 void skb_add_mtu(int mtu)
1584 {
1585 /* Must match allocation in alloc_skb */
1586 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1587
1588 kmem_add_cache_size(mtu);
1589 }
1590 #endif
1591
1592 static inline void skb_split_inside_header(struct sk_buff *skb,
1593 struct sk_buff* skb1,
1594 const u32 len, const int pos)
1595 {
1596 int i;
1597
1598 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1599
1600 /* And move data appendix as is. */
1601 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1602 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1603
1604 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1605 skb_shinfo(skb)->nr_frags = 0;
1606 skb1->data_len = skb->data_len;
1607 skb1->len += skb1->data_len;
1608 skb->data_len = 0;
1609 skb->len = len;
1610 skb->tail = skb->data + len;
1611 }
1612
1613 static inline void skb_split_no_header(struct sk_buff *skb,
1614 struct sk_buff* skb1,
1615 const u32 len, int pos)
1616 {
1617 int i, k = 0;
1618 const int nfrags = skb_shinfo(skb)->nr_frags;
1619
1620 skb_shinfo(skb)->nr_frags = 0;
1621 skb1->len = skb1->data_len = skb->len - len;
1622 skb->len = len;
1623 skb->data_len = len - pos;
1624
1625 for (i = 0; i < nfrags; i++) {
1626 int size = skb_shinfo(skb)->frags[i].size;
1627
1628 if (pos + size > len) {
1629 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1630
1631 if (pos < len) {
1632 /* Split frag.
1633 * We have two variants in this case:
1634 * 1. Move all the frag to the second
1635 * part, if it is possible. F.e.
1636 * this approach is mandatory for TUX,
1637 * where splitting is expensive.
1638 * 2. Split is accurately. We make this.
1639 */
1640 get_page(skb_shinfo(skb)->frags[i].page);
1641 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1642 skb_shinfo(skb1)->frags[0].size -= len - pos;
1643 skb_shinfo(skb)->frags[i].size = len - pos;
1644 skb_shinfo(skb)->nr_frags++;
1645 }
1646 k++;
1647 } else
1648 skb_shinfo(skb)->nr_frags++;
1649 pos += size;
1650 }
1651 skb_shinfo(skb1)->nr_frags = k;
1652 }
1653
1654 /**
1655 * skb_split - Split fragmented skb to two parts at length len.
1656 * @skb: the buffer to split
1657 * @skb1: the buffer to receive the second part
1658 * @len: new length for skb
1659 */
1660 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1661 {
1662 int pos = skb_headlen(skb);
1663
1664 if (len < pos) /* Split line is inside header. */
1665 skb_split_inside_header(skb, skb1, len, pos);
1666 else /* Second chunk has no header, nothing to copy. */
1667 skb_split_no_header(skb, skb1, len, pos);
1668 }
1669
1670 /**
1671 * skb_prepare_seq_read - Prepare a sequential read of skb data
1672 * @skb: the buffer to read
1673 * @from: lower offset of data to be read
1674 * @to: upper offset of data to be read
1675 * @st: state variable
1676 *
1677 * Initializes the specified state variable. Must be called before
1678 * invoking skb_seq_read() for the first time.
1679 */
1680 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1681 unsigned int to, struct skb_seq_state *st)
1682 {
1683 st->lower_offset = from;
1684 st->upper_offset = to;
1685 st->root_skb = st->cur_skb = skb;
1686 st->frag_idx = st->stepped_offset = 0;
1687 st->frag_data = NULL;
1688 }
1689
1690 /**
1691 * skb_seq_read - Sequentially read skb data
1692 * @consumed: number of bytes consumed by the caller so far
1693 * @data: destination pointer for data to be returned
1694 * @st: state variable
1695 *
1696 * Reads a block of skb data at &consumed relative to the
1697 * lower offset specified to skb_prepare_seq_read(). Assigns
1698 * the head of the data block to &data and returns the length
1699 * of the block or 0 if the end of the skb data or the upper
1700 * offset has been reached.
1701 *
1702 * The caller is not required to consume all of the data
1703 * returned, i.e. &consumed is typically set to the number
1704 * of bytes already consumed and the next call to
1705 * skb_seq_read() will return the remaining part of the block.
1706 *
1707 * Note: The size of each block of data returned can be arbitary,
1708 * this limitation is the cost for zerocopy seqeuental
1709 * reads of potentially non linear data.
1710 *
1711 * Note: Fragment lists within fragments are not implemented
1712 * at the moment, state->root_skb could be replaced with
1713 * a stack for this purpose.
1714 */
1715 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1716 struct skb_seq_state *st)
1717 {
1718 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1719 skb_frag_t *frag;
1720
1721 if (unlikely(abs_offset >= st->upper_offset))
1722 return 0;
1723
1724 next_skb:
1725 block_limit = skb_headlen(st->cur_skb);
1726
1727 if (abs_offset < block_limit) {
1728 *data = st->cur_skb->data + abs_offset;
1729 return block_limit - abs_offset;
1730 }
1731
1732 if (st->frag_idx == 0 && !st->frag_data)
1733 st->stepped_offset += skb_headlen(st->cur_skb);
1734
1735 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1736 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1737 block_limit = frag->size + st->stepped_offset;
1738
1739 if (abs_offset < block_limit) {
1740 if (!st->frag_data)
1741 st->frag_data = kmap_skb_frag(frag);
1742
1743 *data = (u8 *) st->frag_data + frag->page_offset +
1744 (abs_offset - st->stepped_offset);
1745
1746 return block_limit - abs_offset;
1747 }
1748
1749 if (st->frag_data) {
1750 kunmap_skb_frag(st->frag_data);
1751 st->frag_data = NULL;
1752 }
1753
1754 st->frag_idx++;
1755 st->stepped_offset += frag->size;
1756 }
1757
1758 if (st->cur_skb->next) {
1759 st->cur_skb = st->cur_skb->next;
1760 st->frag_idx = 0;
1761 goto next_skb;
1762 } else if (st->root_skb == st->cur_skb &&
1763 skb_shinfo(st->root_skb)->frag_list) {
1764 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1765 goto next_skb;
1766 }
1767
1768 return 0;
1769 }
1770
1771 /**
1772 * skb_abort_seq_read - Abort a sequential read of skb data
1773 * @st: state variable
1774 *
1775 * Must be called if skb_seq_read() was not called until it
1776 * returned 0.
1777 */
1778 void skb_abort_seq_read(struct skb_seq_state *st)
1779 {
1780 if (st->frag_data)
1781 kunmap_skb_frag(st->frag_data);
1782 }
1783
1784 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1785
1786 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1787 struct ts_config *conf,
1788 struct ts_state *state)
1789 {
1790 return skb_seq_read(offset, text, TS_SKB_CB(state));
1791 }
1792
1793 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1794 {
1795 skb_abort_seq_read(TS_SKB_CB(state));
1796 }
1797
1798 /**
1799 * skb_find_text - Find a text pattern in skb data
1800 * @skb: the buffer to look in
1801 * @from: search offset
1802 * @to: search limit
1803 * @config: textsearch configuration
1804 * @state: uninitialized textsearch state variable
1805 *
1806 * Finds a pattern in the skb data according to the specified
1807 * textsearch configuration. Use textsearch_next() to retrieve
1808 * subsequent occurrences of the pattern. Returns the offset
1809 * to the first occurrence or UINT_MAX if no match was found.
1810 */
1811 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1812 unsigned int to, struct ts_config *config,
1813 struct ts_state *state)
1814 {
1815 unsigned int ret;
1816
1817 config->get_next_block = skb_ts_get_next_block;
1818 config->finish = skb_ts_finish;
1819
1820 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1821
1822 ret = textsearch_find(config, state);
1823 return (ret <= to - from ? ret : UINT_MAX);
1824 }
1825
1826 /**
1827 * skb_append_datato_frags: - append the user data to a skb
1828 * @sk: sock structure
1829 * @skb: skb structure to be appened with user data.
1830 * @getfrag: call back function to be used for getting the user data
1831 * @from: pointer to user message iov
1832 * @length: length of the iov message
1833 *
1834 * Description: This procedure append the user data in the fragment part
1835 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1836 */
1837 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1838 int (*getfrag)(void *from, char *to, int offset,
1839 int len, int odd, struct sk_buff *skb),
1840 void *from, int length)
1841 {
1842 int frg_cnt = 0;
1843 skb_frag_t *frag = NULL;
1844 struct page *page = NULL;
1845 int copy, left;
1846 int offset = 0;
1847 int ret;
1848
1849 do {
1850 /* Return error if we don't have space for new frag */
1851 frg_cnt = skb_shinfo(skb)->nr_frags;
1852 if (frg_cnt >= MAX_SKB_FRAGS)
1853 return -EFAULT;
1854
1855 /* allocate a new page for next frag */
1856 page = alloc_pages(sk->sk_allocation, 0);
1857
1858 /* If alloc_page fails just return failure and caller will
1859 * free previous allocated pages by doing kfree_skb()
1860 */
1861 if (page == NULL)
1862 return -ENOMEM;
1863
1864 /* initialize the next frag */
1865 sk->sk_sndmsg_page = page;
1866 sk->sk_sndmsg_off = 0;
1867 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1868 skb->truesize += PAGE_SIZE;
1869 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1870
1871 /* get the new initialized frag */
1872 frg_cnt = skb_shinfo(skb)->nr_frags;
1873 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1874
1875 /* copy the user data to page */
1876 left = PAGE_SIZE - frag->page_offset;
1877 copy = (length > left)? left : length;
1878
1879 ret = getfrag(from, (page_address(frag->page) +
1880 frag->page_offset + frag->size),
1881 offset, copy, 0, skb);
1882 if (ret < 0)
1883 return -EFAULT;
1884
1885 /* copy was successful so update the size parameters */
1886 sk->sk_sndmsg_off += copy;
1887 frag->size += copy;
1888 skb->len += copy;
1889 skb->data_len += copy;
1890 offset += copy;
1891 length -= copy;
1892
1893 } while (length > 0);
1894
1895 return 0;
1896 }
1897
1898 /**
1899 * skb_pull_rcsum - pull skb and update receive checksum
1900 * @skb: buffer to update
1901 * @start: start of data before pull
1902 * @len: length of data pulled
1903 *
1904 * This function performs an skb_pull on the packet and updates
1905 * update the CHECKSUM_COMPLETE checksum. It should be used on
1906 * receive path processing instead of skb_pull unless you know
1907 * that the checksum difference is zero (e.g., a valid IP header)
1908 * or you are setting ip_summed to CHECKSUM_NONE.
1909 */
1910 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1911 {
1912 BUG_ON(len > skb->len);
1913 skb->len -= len;
1914 BUG_ON(skb->len < skb->data_len);
1915 skb_postpull_rcsum(skb, skb->data, len);
1916 return skb->data += len;
1917 }
1918
1919 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1920
1921 /**
1922 * skb_segment - Perform protocol segmentation on skb.
1923 * @skb: buffer to segment
1924 * @features: features for the output path (see dev->features)
1925 *
1926 * This function performs segmentation on the given skb. It returns
1927 * the segment at the given position. It returns NULL if there are
1928 * no more segments to generate, or when an error is encountered.
1929 */
1930 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1931 {
1932 struct sk_buff *segs = NULL;
1933 struct sk_buff *tail = NULL;
1934 unsigned int mss = skb_shinfo(skb)->gso_size;
1935 unsigned int doffset = skb->data - skb->mac.raw;
1936 unsigned int offset = doffset;
1937 unsigned int headroom;
1938 unsigned int len;
1939 int sg = features & NETIF_F_SG;
1940 int nfrags = skb_shinfo(skb)->nr_frags;
1941 int err = -ENOMEM;
1942 int i = 0;
1943 int pos;
1944
1945 __skb_push(skb, doffset);
1946 headroom = skb_headroom(skb);
1947 pos = skb_headlen(skb);
1948
1949 do {
1950 struct sk_buff *nskb;
1951 skb_frag_t *frag;
1952 int hsize;
1953 int k;
1954 int size;
1955
1956 len = skb->len - offset;
1957 if (len > mss)
1958 len = mss;
1959
1960 hsize = skb_headlen(skb) - offset;
1961 if (hsize < 0)
1962 hsize = 0;
1963 if (hsize > len || !sg)
1964 hsize = len;
1965
1966 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1967 if (unlikely(!nskb))
1968 goto err;
1969
1970 if (segs)
1971 tail->next = nskb;
1972 else
1973 segs = nskb;
1974 tail = nskb;
1975
1976 nskb->dev = skb->dev;
1977 nskb->priority = skb->priority;
1978 nskb->protocol = skb->protocol;
1979 nskb->dst = dst_clone(skb->dst);
1980 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1981 nskb->pkt_type = skb->pkt_type;
1982 nskb->mac_len = skb->mac_len;
1983
1984 skb_reserve(nskb, headroom);
1985 nskb->mac.raw = nskb->data;
1986 nskb->nh.raw = nskb->data + skb->mac_len;
1987 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1988 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1989
1990 if (!sg) {
1991 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1992 skb_put(nskb, len),
1993 len, 0);
1994 continue;
1995 }
1996
1997 frag = skb_shinfo(nskb)->frags;
1998 k = 0;
1999
2000 nskb->ip_summed = CHECKSUM_PARTIAL;
2001 nskb->csum = skb->csum;
2002 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
2003
2004 while (pos < offset + len) {
2005 BUG_ON(i >= nfrags);
2006
2007 *frag = skb_shinfo(skb)->frags[i];
2008 get_page(frag->page);
2009 size = frag->size;
2010
2011 if (pos < offset) {
2012 frag->page_offset += offset - pos;
2013 frag->size -= offset - pos;
2014 }
2015
2016 k++;
2017
2018 if (pos + size <= offset + len) {
2019 i++;
2020 pos += size;
2021 } else {
2022 frag->size -= pos + size - (offset + len);
2023 break;
2024 }
2025
2026 frag++;
2027 }
2028
2029 skb_shinfo(nskb)->nr_frags = k;
2030 nskb->data_len = len - hsize;
2031 nskb->len += nskb->data_len;
2032 nskb->truesize += nskb->data_len;
2033 } while ((offset += len) < skb->len);
2034
2035 return segs;
2036
2037 err:
2038 while ((skb = segs)) {
2039 segs = skb->next;
2040 kfree_skb(skb);
2041 }
2042 return ERR_PTR(err);
2043 }
2044
2045 EXPORT_SYMBOL_GPL(skb_segment);
2046
2047 void __init skb_init(void)
2048 {
2049 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2050 sizeof(struct sk_buff),
2051 0,
2052 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2053 NULL, NULL);
2054 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2055 (2*sizeof(struct sk_buff)) +
2056 sizeof(atomic_t),
2057 0,
2058 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2059 NULL, NULL);
2060 }
2061
2062 EXPORT_SYMBOL(___pskb_trim);
2063 EXPORT_SYMBOL(__kfree_skb);
2064 EXPORT_SYMBOL(kfree_skb);
2065 EXPORT_SYMBOL(__pskb_pull_tail);
2066 EXPORT_SYMBOL(__alloc_skb);
2067 EXPORT_SYMBOL(__netdev_alloc_skb);
2068 EXPORT_SYMBOL(pskb_copy);
2069 EXPORT_SYMBOL(pskb_expand_head);
2070 EXPORT_SYMBOL(skb_checksum);
2071 EXPORT_SYMBOL(skb_clone);
2072 EXPORT_SYMBOL(skb_clone_fraglist);
2073 EXPORT_SYMBOL(skb_copy);
2074 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2075 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2076 EXPORT_SYMBOL(skb_copy_bits);
2077 EXPORT_SYMBOL(skb_copy_expand);
2078 EXPORT_SYMBOL(skb_over_panic);
2079 EXPORT_SYMBOL(skb_pad);
2080 EXPORT_SYMBOL(skb_realloc_headroom);
2081 EXPORT_SYMBOL(skb_under_panic);
2082 EXPORT_SYMBOL(skb_dequeue);
2083 EXPORT_SYMBOL(skb_dequeue_tail);
2084 EXPORT_SYMBOL(skb_insert);
2085 EXPORT_SYMBOL(skb_queue_purge);
2086 EXPORT_SYMBOL(skb_queue_head);
2087 EXPORT_SYMBOL(skb_queue_tail);
2088 EXPORT_SYMBOL(skb_unlink);
2089 EXPORT_SYMBOL(skb_append);
2090 EXPORT_SYMBOL(skb_split);
2091 EXPORT_SYMBOL(skb_prepare_seq_read);
2092 EXPORT_SYMBOL(skb_seq_read);
2093 EXPORT_SYMBOL(skb_abort_seq_read);
2094 EXPORT_SYMBOL(skb_find_text);
2095 EXPORT_SYMBOL(skb_append_datato_frags);
This page took 0.166899 seconds and 6 git commands to generate.