Add constants for the ieee 802.15.4 stack
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 /*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
176 };
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
192 };
193
194 /*
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
197 */
198 static struct lock_class_key af_callback_keys[AF_MAX];
199
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
204 */
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
215
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
219
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
221 {
222 struct timeval tv;
223
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
230
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
233
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
240 }
241 return 0;
242 }
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
249 }
250
251 static void sock_warn_obsolete_bsdism(const char *name)
252 {
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
260 }
261 }
262
263 static void sock_disable_timestamp(struct sock *sk, int flag)
264 {
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
270 }
271 }
272 }
273
274
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
276 {
277 int err = 0;
278 int skb_len;
279
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
282 */
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
287 }
288
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
292
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
296 }
297
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
300
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
305 */
306 skb_len = skb->len;
307
308 skb_queue_tail(&sk->sk_receive_queue, skb);
309
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
314 }
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
316
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
318 {
319 int rc = NET_RX_SUCCESS;
320
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
323
324 skb->dev = NULL;
325
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
331 /*
332 * trylock + unlock semantics:
333 */
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
335
336 rc = sk_backlog_rcv(sk, skb);
337
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
348 }
349 EXPORT_SYMBOL(sk_receive_skb);
350
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
352 {
353 struct dst_entry *dst = sk->sk_dst_cache;
354
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
359 }
360
361 return dst;
362 }
363 EXPORT_SYMBOL(__sk_dst_check);
364
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
366 {
367 struct dst_entry *dst = sk_dst_get(sk);
368
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
373 }
374
375 return dst;
376 }
377 EXPORT_SYMBOL(sk_dst_check);
378
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
380 {
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
386
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
391
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
395
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
400 */
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
404
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
408
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
413
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
417
418 index = dev->ifindex;
419 dev_put(dev);
420 }
421
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
426
427 ret = 0;
428
429 out:
430 #endif
431
432 return ret;
433 }
434
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
436 {
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
441 }
442
443 /*
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
446 */
447
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
450 {
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
456
457 /*
458 * Options without arguments
459 */
460
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
463
464 if (optlen < sizeof(int))
465 return -EINVAL;
466
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
469
470 valbool = val ? 1 : 0;
471
472 lock_sock(sk);
473
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
499
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
508
509 /*
510 * Wake up sending tasks if we
511 * upped the value.
512 */
513 sk->sk_write_space(sk);
514 break;
515
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
520 }
521 goto set_sndbuf;
522
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
528
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
533 /*
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
539 *
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
543 *
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
547 */
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
553
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
558 }
559 goto set_rcvbuf;
560
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
568
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
572
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
576
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
583
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
588 }
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
592 }
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
603 }
604 break;
605
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
609
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
616
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
629 }
630 break;
631
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = EINVAL;
635 break;
636 }
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
656
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
662
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
666
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
670
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
675
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
679
680 ret = sk_attach_filter(&fprog, sk);
681 }
682 break;
683
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
687
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
700
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
706 }
707 release_sock(sk);
708 return ret;
709 }
710 EXPORT_SYMBOL(sock_setsockopt);
711
712
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
715 {
716 struct sock *sk = sock->sk;
717
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
723
724 unsigned int lv = sizeof(int);
725 int len;
726
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
731
732 memset(&v, 0, sizeof(v));
733
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
738
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
742
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
746
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
750
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
754
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
758
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
762
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
766
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
772
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
776
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
780
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
784
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
790
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
794
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
799
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
803
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
821
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
830 }
831 break;
832
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
841 }
842 break;
843
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
847
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
851
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
855
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
862
863 case SO_PEERNAME:
864 {
865 char address[128];
866
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
874 }
875
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
878 */
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
882
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
886
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
889
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
893
894 default:
895 return -ENOPROTOOPT;
896 }
897
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
906 }
907
908 /*
909 * Initialize an sk_lock.
910 *
911 * (We also register the sk_lock with the lock validator.)
912 */
913 static inline void sock_lock_init(struct sock *sk)
914 {
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
920 }
921
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
923 {
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
926 #endif
927
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
932 #endif
933 }
934
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
936 int family)
937 {
938 struct sock *sk;
939 struct kmem_cache *slab;
940
941 slab = prot->slab;
942 if (slab != NULL)
943 sk = kmem_cache_alloc(slab, priority);
944 else
945 sk = kmalloc(prot->obj_size, priority);
946
947 if (sk != NULL) {
948 if (security_sk_alloc(sk, family, priority))
949 goto out_free;
950
951 if (!try_module_get(prot->owner))
952 goto out_free_sec;
953 }
954
955 return sk;
956
957 out_free_sec:
958 security_sk_free(sk);
959 out_free:
960 if (slab != NULL)
961 kmem_cache_free(slab, sk);
962 else
963 kfree(sk);
964 return NULL;
965 }
966
967 static void sk_prot_free(struct proto *prot, struct sock *sk)
968 {
969 struct kmem_cache *slab;
970 struct module *owner;
971
972 owner = prot->owner;
973 slab = prot->slab;
974
975 security_sk_free(sk);
976 if (slab != NULL)
977 kmem_cache_free(slab, sk);
978 else
979 kfree(sk);
980 module_put(owner);
981 }
982
983 /**
984 * sk_alloc - All socket objects are allocated here
985 * @net: the applicable net namespace
986 * @family: protocol family
987 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
988 * @prot: struct proto associated with this new sock instance
989 */
990 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
991 struct proto *prot)
992 {
993 struct sock *sk;
994
995 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
996 if (sk) {
997 sk->sk_family = family;
998 /*
999 * See comment in struct sock definition to understand
1000 * why we need sk_prot_creator -acme
1001 */
1002 sk->sk_prot = sk->sk_prot_creator = prot;
1003 sock_lock_init(sk);
1004 sock_net_set(sk, get_net(net));
1005 }
1006
1007 return sk;
1008 }
1009 EXPORT_SYMBOL(sk_alloc);
1010
1011 void sk_free(struct sock *sk)
1012 {
1013 struct sk_filter *filter;
1014
1015 if (sk->sk_destruct)
1016 sk->sk_destruct(sk);
1017
1018 filter = rcu_dereference(sk->sk_filter);
1019 if (filter) {
1020 sk_filter_uncharge(sk, filter);
1021 rcu_assign_pointer(sk->sk_filter, NULL);
1022 }
1023
1024 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1025 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1026
1027 if (atomic_read(&sk->sk_omem_alloc))
1028 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1029 __func__, atomic_read(&sk->sk_omem_alloc));
1030
1031 put_net(sock_net(sk));
1032 sk_prot_free(sk->sk_prot_creator, sk);
1033 }
1034 EXPORT_SYMBOL(sk_free);
1035
1036 /*
1037 * Last sock_put should drop referrence to sk->sk_net. It has already
1038 * been dropped in sk_change_net. Taking referrence to stopping namespace
1039 * is not an option.
1040 * Take referrence to a socket to remove it from hash _alive_ and after that
1041 * destroy it in the context of init_net.
1042 */
1043 void sk_release_kernel(struct sock *sk)
1044 {
1045 if (sk == NULL || sk->sk_socket == NULL)
1046 return;
1047
1048 sock_hold(sk);
1049 sock_release(sk->sk_socket);
1050 release_net(sock_net(sk));
1051 sock_net_set(sk, get_net(&init_net));
1052 sock_put(sk);
1053 }
1054 EXPORT_SYMBOL(sk_release_kernel);
1055
1056 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1057 {
1058 struct sock *newsk;
1059
1060 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1061 if (newsk != NULL) {
1062 struct sk_filter *filter;
1063
1064 sock_copy(newsk, sk);
1065
1066 /* SANITY */
1067 get_net(sock_net(newsk));
1068 sk_node_init(&newsk->sk_node);
1069 sock_lock_init(newsk);
1070 bh_lock_sock(newsk);
1071 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1072
1073 atomic_set(&newsk->sk_rmem_alloc, 0);
1074 atomic_set(&newsk->sk_wmem_alloc, 0);
1075 atomic_set(&newsk->sk_omem_alloc, 0);
1076 skb_queue_head_init(&newsk->sk_receive_queue);
1077 skb_queue_head_init(&newsk->sk_write_queue);
1078 #ifdef CONFIG_NET_DMA
1079 skb_queue_head_init(&newsk->sk_async_wait_queue);
1080 #endif
1081
1082 rwlock_init(&newsk->sk_dst_lock);
1083 rwlock_init(&newsk->sk_callback_lock);
1084 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1085 af_callback_keys + newsk->sk_family,
1086 af_family_clock_key_strings[newsk->sk_family]);
1087
1088 newsk->sk_dst_cache = NULL;
1089 newsk->sk_wmem_queued = 0;
1090 newsk->sk_forward_alloc = 0;
1091 newsk->sk_send_head = NULL;
1092 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1093
1094 sock_reset_flag(newsk, SOCK_DONE);
1095 skb_queue_head_init(&newsk->sk_error_queue);
1096
1097 filter = newsk->sk_filter;
1098 if (filter != NULL)
1099 sk_filter_charge(newsk, filter);
1100
1101 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1102 /* It is still raw copy of parent, so invalidate
1103 * destructor and make plain sk_free() */
1104 newsk->sk_destruct = NULL;
1105 sk_free(newsk);
1106 newsk = NULL;
1107 goto out;
1108 }
1109
1110 newsk->sk_err = 0;
1111 newsk->sk_priority = 0;
1112 atomic_set(&newsk->sk_refcnt, 2);
1113
1114 /*
1115 * Increment the counter in the same struct proto as the master
1116 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1117 * is the same as sk->sk_prot->socks, as this field was copied
1118 * with memcpy).
1119 *
1120 * This _changes_ the previous behaviour, where
1121 * tcp_create_openreq_child always was incrementing the
1122 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1123 * to be taken into account in all callers. -acme
1124 */
1125 sk_refcnt_debug_inc(newsk);
1126 sk_set_socket(newsk, NULL);
1127 newsk->sk_sleep = NULL;
1128
1129 if (newsk->sk_prot->sockets_allocated)
1130 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1131 }
1132 out:
1133 return newsk;
1134 }
1135 EXPORT_SYMBOL_GPL(sk_clone);
1136
1137 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1138 {
1139 __sk_dst_set(sk, dst);
1140 sk->sk_route_caps = dst->dev->features;
1141 if (sk->sk_route_caps & NETIF_F_GSO)
1142 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1143 if (sk_can_gso(sk)) {
1144 if (dst->header_len) {
1145 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1146 } else {
1147 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1148 sk->sk_gso_max_size = dst->dev->gso_max_size;
1149 }
1150 }
1151 }
1152 EXPORT_SYMBOL_GPL(sk_setup_caps);
1153
1154 void __init sk_init(void)
1155 {
1156 if (num_physpages <= 4096) {
1157 sysctl_wmem_max = 32767;
1158 sysctl_rmem_max = 32767;
1159 sysctl_wmem_default = 32767;
1160 sysctl_rmem_default = 32767;
1161 } else if (num_physpages >= 131072) {
1162 sysctl_wmem_max = 131071;
1163 sysctl_rmem_max = 131071;
1164 }
1165 }
1166
1167 /*
1168 * Simple resource managers for sockets.
1169 */
1170
1171
1172 /*
1173 * Write buffer destructor automatically called from kfree_skb.
1174 */
1175 void sock_wfree(struct sk_buff *skb)
1176 {
1177 struct sock *sk = skb->sk;
1178
1179 /* In case it might be waiting for more memory. */
1180 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1181 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1182 sk->sk_write_space(sk);
1183 sock_put(sk);
1184 }
1185 EXPORT_SYMBOL(sock_wfree);
1186
1187 /*
1188 * Read buffer destructor automatically called from kfree_skb.
1189 */
1190 void sock_rfree(struct sk_buff *skb)
1191 {
1192 struct sock *sk = skb->sk;
1193
1194 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1195 sk_mem_uncharge(skb->sk, skb->truesize);
1196 }
1197 EXPORT_SYMBOL(sock_rfree);
1198
1199
1200 int sock_i_uid(struct sock *sk)
1201 {
1202 int uid;
1203
1204 read_lock(&sk->sk_callback_lock);
1205 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1206 read_unlock(&sk->sk_callback_lock);
1207 return uid;
1208 }
1209 EXPORT_SYMBOL(sock_i_uid);
1210
1211 unsigned long sock_i_ino(struct sock *sk)
1212 {
1213 unsigned long ino;
1214
1215 read_lock(&sk->sk_callback_lock);
1216 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1217 read_unlock(&sk->sk_callback_lock);
1218 return ino;
1219 }
1220 EXPORT_SYMBOL(sock_i_ino);
1221
1222 /*
1223 * Allocate a skb from the socket's send buffer.
1224 */
1225 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1226 gfp_t priority)
1227 {
1228 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1229 struct sk_buff *skb = alloc_skb(size, priority);
1230 if (skb) {
1231 skb_set_owner_w(skb, sk);
1232 return skb;
1233 }
1234 }
1235 return NULL;
1236 }
1237 EXPORT_SYMBOL(sock_wmalloc);
1238
1239 /*
1240 * Allocate a skb from the socket's receive buffer.
1241 */
1242 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1243 gfp_t priority)
1244 {
1245 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1246 struct sk_buff *skb = alloc_skb(size, priority);
1247 if (skb) {
1248 skb_set_owner_r(skb, sk);
1249 return skb;
1250 }
1251 }
1252 return NULL;
1253 }
1254
1255 /*
1256 * Allocate a memory block from the socket's option memory buffer.
1257 */
1258 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1259 {
1260 if ((unsigned)size <= sysctl_optmem_max &&
1261 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1262 void *mem;
1263 /* First do the add, to avoid the race if kmalloc
1264 * might sleep.
1265 */
1266 atomic_add(size, &sk->sk_omem_alloc);
1267 mem = kmalloc(size, priority);
1268 if (mem)
1269 return mem;
1270 atomic_sub(size, &sk->sk_omem_alloc);
1271 }
1272 return NULL;
1273 }
1274 EXPORT_SYMBOL(sock_kmalloc);
1275
1276 /*
1277 * Free an option memory block.
1278 */
1279 void sock_kfree_s(struct sock *sk, void *mem, int size)
1280 {
1281 kfree(mem);
1282 atomic_sub(size, &sk->sk_omem_alloc);
1283 }
1284 EXPORT_SYMBOL(sock_kfree_s);
1285
1286 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1287 I think, these locks should be removed for datagram sockets.
1288 */
1289 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1290 {
1291 DEFINE_WAIT(wait);
1292
1293 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1294 for (;;) {
1295 if (!timeo)
1296 break;
1297 if (signal_pending(current))
1298 break;
1299 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1300 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1301 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1302 break;
1303 if (sk->sk_shutdown & SEND_SHUTDOWN)
1304 break;
1305 if (sk->sk_err)
1306 break;
1307 timeo = schedule_timeout(timeo);
1308 }
1309 finish_wait(sk->sk_sleep, &wait);
1310 return timeo;
1311 }
1312
1313
1314 /*
1315 * Generic send/receive buffer handlers
1316 */
1317
1318 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1319 unsigned long data_len, int noblock,
1320 int *errcode)
1321 {
1322 struct sk_buff *skb;
1323 gfp_t gfp_mask;
1324 long timeo;
1325 int err;
1326
1327 gfp_mask = sk->sk_allocation;
1328 if (gfp_mask & __GFP_WAIT)
1329 gfp_mask |= __GFP_REPEAT;
1330
1331 timeo = sock_sndtimeo(sk, noblock);
1332 while (1) {
1333 err = sock_error(sk);
1334 if (err != 0)
1335 goto failure;
1336
1337 err = -EPIPE;
1338 if (sk->sk_shutdown & SEND_SHUTDOWN)
1339 goto failure;
1340
1341 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1342 skb = alloc_skb(header_len, gfp_mask);
1343 if (skb) {
1344 int npages;
1345 int i;
1346
1347 /* No pages, we're done... */
1348 if (!data_len)
1349 break;
1350
1351 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1352 skb->truesize += data_len;
1353 skb_shinfo(skb)->nr_frags = npages;
1354 for (i = 0; i < npages; i++) {
1355 struct page *page;
1356 skb_frag_t *frag;
1357
1358 page = alloc_pages(sk->sk_allocation, 0);
1359 if (!page) {
1360 err = -ENOBUFS;
1361 skb_shinfo(skb)->nr_frags = i;
1362 kfree_skb(skb);
1363 goto failure;
1364 }
1365
1366 frag = &skb_shinfo(skb)->frags[i];
1367 frag->page = page;
1368 frag->page_offset = 0;
1369 frag->size = (data_len >= PAGE_SIZE ?
1370 PAGE_SIZE :
1371 data_len);
1372 data_len -= PAGE_SIZE;
1373 }
1374
1375 /* Full success... */
1376 break;
1377 }
1378 err = -ENOBUFS;
1379 goto failure;
1380 }
1381 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1382 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1383 err = -EAGAIN;
1384 if (!timeo)
1385 goto failure;
1386 if (signal_pending(current))
1387 goto interrupted;
1388 timeo = sock_wait_for_wmem(sk, timeo);
1389 }
1390
1391 skb_set_owner_w(skb, sk);
1392 return skb;
1393
1394 interrupted:
1395 err = sock_intr_errno(timeo);
1396 failure:
1397 *errcode = err;
1398 return NULL;
1399 }
1400 EXPORT_SYMBOL(sock_alloc_send_pskb);
1401
1402 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1403 int noblock, int *errcode)
1404 {
1405 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1406 }
1407 EXPORT_SYMBOL(sock_alloc_send_skb);
1408
1409 static void __lock_sock(struct sock *sk)
1410 {
1411 DEFINE_WAIT(wait);
1412
1413 for (;;) {
1414 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1415 TASK_UNINTERRUPTIBLE);
1416 spin_unlock_bh(&sk->sk_lock.slock);
1417 schedule();
1418 spin_lock_bh(&sk->sk_lock.slock);
1419 if (!sock_owned_by_user(sk))
1420 break;
1421 }
1422 finish_wait(&sk->sk_lock.wq, &wait);
1423 }
1424
1425 static void __release_sock(struct sock *sk)
1426 {
1427 struct sk_buff *skb = sk->sk_backlog.head;
1428
1429 do {
1430 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1431 bh_unlock_sock(sk);
1432
1433 do {
1434 struct sk_buff *next = skb->next;
1435
1436 skb->next = NULL;
1437 sk_backlog_rcv(sk, skb);
1438
1439 /*
1440 * We are in process context here with softirqs
1441 * disabled, use cond_resched_softirq() to preempt.
1442 * This is safe to do because we've taken the backlog
1443 * queue private:
1444 */
1445 cond_resched_softirq();
1446
1447 skb = next;
1448 } while (skb != NULL);
1449
1450 bh_lock_sock(sk);
1451 } while ((skb = sk->sk_backlog.head) != NULL);
1452 }
1453
1454 /**
1455 * sk_wait_data - wait for data to arrive at sk_receive_queue
1456 * @sk: sock to wait on
1457 * @timeo: for how long
1458 *
1459 * Now socket state including sk->sk_err is changed only under lock,
1460 * hence we may omit checks after joining wait queue.
1461 * We check receive queue before schedule() only as optimization;
1462 * it is very likely that release_sock() added new data.
1463 */
1464 int sk_wait_data(struct sock *sk, long *timeo)
1465 {
1466 int rc;
1467 DEFINE_WAIT(wait);
1468
1469 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1470 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1471 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1472 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1473 finish_wait(sk->sk_sleep, &wait);
1474 return rc;
1475 }
1476 EXPORT_SYMBOL(sk_wait_data);
1477
1478 /**
1479 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1480 * @sk: socket
1481 * @size: memory size to allocate
1482 * @kind: allocation type
1483 *
1484 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1485 * rmem allocation. This function assumes that protocols which have
1486 * memory_pressure use sk_wmem_queued as write buffer accounting.
1487 */
1488 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1489 {
1490 struct proto *prot = sk->sk_prot;
1491 int amt = sk_mem_pages(size);
1492 int allocated;
1493
1494 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1495 allocated = atomic_add_return(amt, prot->memory_allocated);
1496
1497 /* Under limit. */
1498 if (allocated <= prot->sysctl_mem[0]) {
1499 if (prot->memory_pressure && *prot->memory_pressure)
1500 *prot->memory_pressure = 0;
1501 return 1;
1502 }
1503
1504 /* Under pressure. */
1505 if (allocated > prot->sysctl_mem[1])
1506 if (prot->enter_memory_pressure)
1507 prot->enter_memory_pressure(sk);
1508
1509 /* Over hard limit. */
1510 if (allocated > prot->sysctl_mem[2])
1511 goto suppress_allocation;
1512
1513 /* guarantee minimum buffer size under pressure */
1514 if (kind == SK_MEM_RECV) {
1515 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1516 return 1;
1517 } else { /* SK_MEM_SEND */
1518 if (sk->sk_type == SOCK_STREAM) {
1519 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1520 return 1;
1521 } else if (atomic_read(&sk->sk_wmem_alloc) <
1522 prot->sysctl_wmem[0])
1523 return 1;
1524 }
1525
1526 if (prot->memory_pressure) {
1527 int alloc;
1528
1529 if (!*prot->memory_pressure)
1530 return 1;
1531 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1532 if (prot->sysctl_mem[2] > alloc *
1533 sk_mem_pages(sk->sk_wmem_queued +
1534 atomic_read(&sk->sk_rmem_alloc) +
1535 sk->sk_forward_alloc))
1536 return 1;
1537 }
1538
1539 suppress_allocation:
1540
1541 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1542 sk_stream_moderate_sndbuf(sk);
1543
1544 /* Fail only if socket is _under_ its sndbuf.
1545 * In this case we cannot block, so that we have to fail.
1546 */
1547 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1548 return 1;
1549 }
1550
1551 /* Alas. Undo changes. */
1552 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1553 atomic_sub(amt, prot->memory_allocated);
1554 return 0;
1555 }
1556 EXPORT_SYMBOL(__sk_mem_schedule);
1557
1558 /**
1559 * __sk_reclaim - reclaim memory_allocated
1560 * @sk: socket
1561 */
1562 void __sk_mem_reclaim(struct sock *sk)
1563 {
1564 struct proto *prot = sk->sk_prot;
1565
1566 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1567 prot->memory_allocated);
1568 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1569
1570 if (prot->memory_pressure && *prot->memory_pressure &&
1571 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1572 *prot->memory_pressure = 0;
1573 }
1574 EXPORT_SYMBOL(__sk_mem_reclaim);
1575
1576
1577 /*
1578 * Set of default routines for initialising struct proto_ops when
1579 * the protocol does not support a particular function. In certain
1580 * cases where it makes no sense for a protocol to have a "do nothing"
1581 * function, some default processing is provided.
1582 */
1583
1584 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1585 {
1586 return -EOPNOTSUPP;
1587 }
1588 EXPORT_SYMBOL(sock_no_bind);
1589
1590 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1591 int len, int flags)
1592 {
1593 return -EOPNOTSUPP;
1594 }
1595 EXPORT_SYMBOL(sock_no_connect);
1596
1597 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1598 {
1599 return -EOPNOTSUPP;
1600 }
1601 EXPORT_SYMBOL(sock_no_socketpair);
1602
1603 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1604 {
1605 return -EOPNOTSUPP;
1606 }
1607 EXPORT_SYMBOL(sock_no_accept);
1608
1609 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1610 int *len, int peer)
1611 {
1612 return -EOPNOTSUPP;
1613 }
1614 EXPORT_SYMBOL(sock_no_getname);
1615
1616 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1617 {
1618 return 0;
1619 }
1620 EXPORT_SYMBOL(sock_no_poll);
1621
1622 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1623 {
1624 return -EOPNOTSUPP;
1625 }
1626 EXPORT_SYMBOL(sock_no_ioctl);
1627
1628 int sock_no_listen(struct socket *sock, int backlog)
1629 {
1630 return -EOPNOTSUPP;
1631 }
1632 EXPORT_SYMBOL(sock_no_listen);
1633
1634 int sock_no_shutdown(struct socket *sock, int how)
1635 {
1636 return -EOPNOTSUPP;
1637 }
1638 EXPORT_SYMBOL(sock_no_shutdown);
1639
1640 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1641 char __user *optval, int optlen)
1642 {
1643 return -EOPNOTSUPP;
1644 }
1645 EXPORT_SYMBOL(sock_no_setsockopt);
1646
1647 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1648 char __user *optval, int __user *optlen)
1649 {
1650 return -EOPNOTSUPP;
1651 }
1652 EXPORT_SYMBOL(sock_no_getsockopt);
1653
1654 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1655 size_t len)
1656 {
1657 return -EOPNOTSUPP;
1658 }
1659 EXPORT_SYMBOL(sock_no_sendmsg);
1660
1661 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1662 size_t len, int flags)
1663 {
1664 return -EOPNOTSUPP;
1665 }
1666 EXPORT_SYMBOL(sock_no_recvmsg);
1667
1668 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1669 {
1670 /* Mirror missing mmap method error code */
1671 return -ENODEV;
1672 }
1673 EXPORT_SYMBOL(sock_no_mmap);
1674
1675 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1676 {
1677 ssize_t res;
1678 struct msghdr msg = {.msg_flags = flags};
1679 struct kvec iov;
1680 char *kaddr = kmap(page);
1681 iov.iov_base = kaddr + offset;
1682 iov.iov_len = size;
1683 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1684 kunmap(page);
1685 return res;
1686 }
1687 EXPORT_SYMBOL(sock_no_sendpage);
1688
1689 /*
1690 * Default Socket Callbacks
1691 */
1692
1693 static void sock_def_wakeup(struct sock *sk)
1694 {
1695 read_lock(&sk->sk_callback_lock);
1696 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1697 wake_up_interruptible_all(sk->sk_sleep);
1698 read_unlock(&sk->sk_callback_lock);
1699 }
1700
1701 static void sock_def_error_report(struct sock *sk)
1702 {
1703 read_lock(&sk->sk_callback_lock);
1704 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1705 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1706 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1707 read_unlock(&sk->sk_callback_lock);
1708 }
1709
1710 static void sock_def_readable(struct sock *sk, int len)
1711 {
1712 read_lock(&sk->sk_callback_lock);
1713 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1714 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1715 POLLRDNORM | POLLRDBAND);
1716 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1717 read_unlock(&sk->sk_callback_lock);
1718 }
1719
1720 static void sock_def_write_space(struct sock *sk)
1721 {
1722 read_lock(&sk->sk_callback_lock);
1723
1724 /* Do not wake up a writer until he can make "significant"
1725 * progress. --DaveM
1726 */
1727 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1728 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1729 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1730 POLLWRNORM | POLLWRBAND);
1731
1732 /* Should agree with poll, otherwise some programs break */
1733 if (sock_writeable(sk))
1734 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1735 }
1736
1737 read_unlock(&sk->sk_callback_lock);
1738 }
1739
1740 static void sock_def_destruct(struct sock *sk)
1741 {
1742 kfree(sk->sk_protinfo);
1743 }
1744
1745 void sk_send_sigurg(struct sock *sk)
1746 {
1747 if (sk->sk_socket && sk->sk_socket->file)
1748 if (send_sigurg(&sk->sk_socket->file->f_owner))
1749 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1750 }
1751 EXPORT_SYMBOL(sk_send_sigurg);
1752
1753 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1754 unsigned long expires)
1755 {
1756 if (!mod_timer(timer, expires))
1757 sock_hold(sk);
1758 }
1759 EXPORT_SYMBOL(sk_reset_timer);
1760
1761 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1762 {
1763 if (timer_pending(timer) && del_timer(timer))
1764 __sock_put(sk);
1765 }
1766 EXPORT_SYMBOL(sk_stop_timer);
1767
1768 void sock_init_data(struct socket *sock, struct sock *sk)
1769 {
1770 skb_queue_head_init(&sk->sk_receive_queue);
1771 skb_queue_head_init(&sk->sk_write_queue);
1772 skb_queue_head_init(&sk->sk_error_queue);
1773 #ifdef CONFIG_NET_DMA
1774 skb_queue_head_init(&sk->sk_async_wait_queue);
1775 #endif
1776
1777 sk->sk_send_head = NULL;
1778
1779 init_timer(&sk->sk_timer);
1780
1781 sk->sk_allocation = GFP_KERNEL;
1782 sk->sk_rcvbuf = sysctl_rmem_default;
1783 sk->sk_sndbuf = sysctl_wmem_default;
1784 sk->sk_state = TCP_CLOSE;
1785 sk_set_socket(sk, sock);
1786
1787 sock_set_flag(sk, SOCK_ZAPPED);
1788
1789 if (sock) {
1790 sk->sk_type = sock->type;
1791 sk->sk_sleep = &sock->wait;
1792 sock->sk = sk;
1793 } else
1794 sk->sk_sleep = NULL;
1795
1796 rwlock_init(&sk->sk_dst_lock);
1797 rwlock_init(&sk->sk_callback_lock);
1798 lockdep_set_class_and_name(&sk->sk_callback_lock,
1799 af_callback_keys + sk->sk_family,
1800 af_family_clock_key_strings[sk->sk_family]);
1801
1802 sk->sk_state_change = sock_def_wakeup;
1803 sk->sk_data_ready = sock_def_readable;
1804 sk->sk_write_space = sock_def_write_space;
1805 sk->sk_error_report = sock_def_error_report;
1806 sk->sk_destruct = sock_def_destruct;
1807
1808 sk->sk_sndmsg_page = NULL;
1809 sk->sk_sndmsg_off = 0;
1810
1811 sk->sk_peercred.pid = 0;
1812 sk->sk_peercred.uid = -1;
1813 sk->sk_peercred.gid = -1;
1814 sk->sk_write_pending = 0;
1815 sk->sk_rcvlowat = 1;
1816 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1817 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1818
1819 sk->sk_stamp = ktime_set(-1L, 0);
1820
1821 atomic_set(&sk->sk_refcnt, 1);
1822 atomic_set(&sk->sk_drops, 0);
1823 }
1824 EXPORT_SYMBOL(sock_init_data);
1825
1826 void lock_sock_nested(struct sock *sk, int subclass)
1827 {
1828 might_sleep();
1829 spin_lock_bh(&sk->sk_lock.slock);
1830 if (sk->sk_lock.owned)
1831 __lock_sock(sk);
1832 sk->sk_lock.owned = 1;
1833 spin_unlock(&sk->sk_lock.slock);
1834 /*
1835 * The sk_lock has mutex_lock() semantics here:
1836 */
1837 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1838 local_bh_enable();
1839 }
1840 EXPORT_SYMBOL(lock_sock_nested);
1841
1842 void release_sock(struct sock *sk)
1843 {
1844 /*
1845 * The sk_lock has mutex_unlock() semantics:
1846 */
1847 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1848
1849 spin_lock_bh(&sk->sk_lock.slock);
1850 if (sk->sk_backlog.tail)
1851 __release_sock(sk);
1852 sk->sk_lock.owned = 0;
1853 if (waitqueue_active(&sk->sk_lock.wq))
1854 wake_up(&sk->sk_lock.wq);
1855 spin_unlock_bh(&sk->sk_lock.slock);
1856 }
1857 EXPORT_SYMBOL(release_sock);
1858
1859 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1860 {
1861 struct timeval tv;
1862 if (!sock_flag(sk, SOCK_TIMESTAMP))
1863 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1864 tv = ktime_to_timeval(sk->sk_stamp);
1865 if (tv.tv_sec == -1)
1866 return -ENOENT;
1867 if (tv.tv_sec == 0) {
1868 sk->sk_stamp = ktime_get_real();
1869 tv = ktime_to_timeval(sk->sk_stamp);
1870 }
1871 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1872 }
1873 EXPORT_SYMBOL(sock_get_timestamp);
1874
1875 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1876 {
1877 struct timespec ts;
1878 if (!sock_flag(sk, SOCK_TIMESTAMP))
1879 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1880 ts = ktime_to_timespec(sk->sk_stamp);
1881 if (ts.tv_sec == -1)
1882 return -ENOENT;
1883 if (ts.tv_sec == 0) {
1884 sk->sk_stamp = ktime_get_real();
1885 ts = ktime_to_timespec(sk->sk_stamp);
1886 }
1887 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1888 }
1889 EXPORT_SYMBOL(sock_get_timestampns);
1890
1891 void sock_enable_timestamp(struct sock *sk, int flag)
1892 {
1893 if (!sock_flag(sk, flag)) {
1894 sock_set_flag(sk, flag);
1895 /*
1896 * we just set one of the two flags which require net
1897 * time stamping, but time stamping might have been on
1898 * already because of the other one
1899 */
1900 if (!sock_flag(sk,
1901 flag == SOCK_TIMESTAMP ?
1902 SOCK_TIMESTAMPING_RX_SOFTWARE :
1903 SOCK_TIMESTAMP))
1904 net_enable_timestamp();
1905 }
1906 }
1907
1908 /*
1909 * Get a socket option on an socket.
1910 *
1911 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1912 * asynchronous errors should be reported by getsockopt. We assume
1913 * this means if you specify SO_ERROR (otherwise whats the point of it).
1914 */
1915 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1916 char __user *optval, int __user *optlen)
1917 {
1918 struct sock *sk = sock->sk;
1919
1920 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1921 }
1922 EXPORT_SYMBOL(sock_common_getsockopt);
1923
1924 #ifdef CONFIG_COMPAT
1925 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1926 char __user *optval, int __user *optlen)
1927 {
1928 struct sock *sk = sock->sk;
1929
1930 if (sk->sk_prot->compat_getsockopt != NULL)
1931 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1932 optval, optlen);
1933 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1934 }
1935 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1936 #endif
1937
1938 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1939 struct msghdr *msg, size_t size, int flags)
1940 {
1941 struct sock *sk = sock->sk;
1942 int addr_len = 0;
1943 int err;
1944
1945 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1946 flags & ~MSG_DONTWAIT, &addr_len);
1947 if (err >= 0)
1948 msg->msg_namelen = addr_len;
1949 return err;
1950 }
1951 EXPORT_SYMBOL(sock_common_recvmsg);
1952
1953 /*
1954 * Set socket options on an inet socket.
1955 */
1956 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1957 char __user *optval, int optlen)
1958 {
1959 struct sock *sk = sock->sk;
1960
1961 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1962 }
1963 EXPORT_SYMBOL(sock_common_setsockopt);
1964
1965 #ifdef CONFIG_COMPAT
1966 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1967 char __user *optval, int optlen)
1968 {
1969 struct sock *sk = sock->sk;
1970
1971 if (sk->sk_prot->compat_setsockopt != NULL)
1972 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1973 optval, optlen);
1974 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1975 }
1976 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1977 #endif
1978
1979 void sk_common_release(struct sock *sk)
1980 {
1981 if (sk->sk_prot->destroy)
1982 sk->sk_prot->destroy(sk);
1983
1984 /*
1985 * Observation: when sock_common_release is called, processes have
1986 * no access to socket. But net still has.
1987 * Step one, detach it from networking:
1988 *
1989 * A. Remove from hash tables.
1990 */
1991
1992 sk->sk_prot->unhash(sk);
1993
1994 /*
1995 * In this point socket cannot receive new packets, but it is possible
1996 * that some packets are in flight because some CPU runs receiver and
1997 * did hash table lookup before we unhashed socket. They will achieve
1998 * receive queue and will be purged by socket destructor.
1999 *
2000 * Also we still have packets pending on receive queue and probably,
2001 * our own packets waiting in device queues. sock_destroy will drain
2002 * receive queue, but transmitted packets will delay socket destruction
2003 * until the last reference will be released.
2004 */
2005
2006 sock_orphan(sk);
2007
2008 xfrm_sk_free_policy(sk);
2009
2010 sk_refcnt_debug_release(sk);
2011 sock_put(sk);
2012 }
2013 EXPORT_SYMBOL(sk_common_release);
2014
2015 static DEFINE_RWLOCK(proto_list_lock);
2016 static LIST_HEAD(proto_list);
2017
2018 #ifdef CONFIG_PROC_FS
2019 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2020 struct prot_inuse {
2021 int val[PROTO_INUSE_NR];
2022 };
2023
2024 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2025
2026 #ifdef CONFIG_NET_NS
2027 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2028 {
2029 int cpu = smp_processor_id();
2030 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2031 }
2032 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2033
2034 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2035 {
2036 int cpu, idx = prot->inuse_idx;
2037 int res = 0;
2038
2039 for_each_possible_cpu(cpu)
2040 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2041
2042 return res >= 0 ? res : 0;
2043 }
2044 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2045
2046 static int sock_inuse_init_net(struct net *net)
2047 {
2048 net->core.inuse = alloc_percpu(struct prot_inuse);
2049 return net->core.inuse ? 0 : -ENOMEM;
2050 }
2051
2052 static void sock_inuse_exit_net(struct net *net)
2053 {
2054 free_percpu(net->core.inuse);
2055 }
2056
2057 static struct pernet_operations net_inuse_ops = {
2058 .init = sock_inuse_init_net,
2059 .exit = sock_inuse_exit_net,
2060 };
2061
2062 static __init int net_inuse_init(void)
2063 {
2064 if (register_pernet_subsys(&net_inuse_ops))
2065 panic("Cannot initialize net inuse counters");
2066
2067 return 0;
2068 }
2069
2070 core_initcall(net_inuse_init);
2071 #else
2072 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2073
2074 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2075 {
2076 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2077 }
2078 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2079
2080 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2081 {
2082 int cpu, idx = prot->inuse_idx;
2083 int res = 0;
2084
2085 for_each_possible_cpu(cpu)
2086 res += per_cpu(prot_inuse, cpu).val[idx];
2087
2088 return res >= 0 ? res : 0;
2089 }
2090 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2091 #endif
2092
2093 static void assign_proto_idx(struct proto *prot)
2094 {
2095 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2096
2097 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2098 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2099 return;
2100 }
2101
2102 set_bit(prot->inuse_idx, proto_inuse_idx);
2103 }
2104
2105 static void release_proto_idx(struct proto *prot)
2106 {
2107 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2108 clear_bit(prot->inuse_idx, proto_inuse_idx);
2109 }
2110 #else
2111 static inline void assign_proto_idx(struct proto *prot)
2112 {
2113 }
2114
2115 static inline void release_proto_idx(struct proto *prot)
2116 {
2117 }
2118 #endif
2119
2120 int proto_register(struct proto *prot, int alloc_slab)
2121 {
2122 if (alloc_slab) {
2123 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2124 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2125 NULL);
2126
2127 if (prot->slab == NULL) {
2128 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2129 prot->name);
2130 goto out;
2131 }
2132
2133 if (prot->rsk_prot != NULL) {
2134 static const char mask[] = "request_sock_%s";
2135
2136 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2137 if (prot->rsk_prot->slab_name == NULL)
2138 goto out_free_sock_slab;
2139
2140 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2141 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2142 prot->rsk_prot->obj_size, 0,
2143 SLAB_HWCACHE_ALIGN, NULL);
2144
2145 if (prot->rsk_prot->slab == NULL) {
2146 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2147 prot->name);
2148 goto out_free_request_sock_slab_name;
2149 }
2150 }
2151
2152 if (prot->twsk_prot != NULL) {
2153 static const char mask[] = "tw_sock_%s";
2154
2155 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2156
2157 if (prot->twsk_prot->twsk_slab_name == NULL)
2158 goto out_free_request_sock_slab;
2159
2160 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2161 prot->twsk_prot->twsk_slab =
2162 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2163 prot->twsk_prot->twsk_obj_size,
2164 0,
2165 SLAB_HWCACHE_ALIGN |
2166 prot->slab_flags,
2167 NULL);
2168 if (prot->twsk_prot->twsk_slab == NULL)
2169 goto out_free_timewait_sock_slab_name;
2170 }
2171 }
2172
2173 write_lock(&proto_list_lock);
2174 list_add(&prot->node, &proto_list);
2175 assign_proto_idx(prot);
2176 write_unlock(&proto_list_lock);
2177 return 0;
2178
2179 out_free_timewait_sock_slab_name:
2180 kfree(prot->twsk_prot->twsk_slab_name);
2181 out_free_request_sock_slab:
2182 if (prot->rsk_prot && prot->rsk_prot->slab) {
2183 kmem_cache_destroy(prot->rsk_prot->slab);
2184 prot->rsk_prot->slab = NULL;
2185 }
2186 out_free_request_sock_slab_name:
2187 kfree(prot->rsk_prot->slab_name);
2188 out_free_sock_slab:
2189 kmem_cache_destroy(prot->slab);
2190 prot->slab = NULL;
2191 out:
2192 return -ENOBUFS;
2193 }
2194 EXPORT_SYMBOL(proto_register);
2195
2196 void proto_unregister(struct proto *prot)
2197 {
2198 write_lock(&proto_list_lock);
2199 release_proto_idx(prot);
2200 list_del(&prot->node);
2201 write_unlock(&proto_list_lock);
2202
2203 if (prot->slab != NULL) {
2204 kmem_cache_destroy(prot->slab);
2205 prot->slab = NULL;
2206 }
2207
2208 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2209 kmem_cache_destroy(prot->rsk_prot->slab);
2210 kfree(prot->rsk_prot->slab_name);
2211 prot->rsk_prot->slab = NULL;
2212 }
2213
2214 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2215 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2216 kfree(prot->twsk_prot->twsk_slab_name);
2217 prot->twsk_prot->twsk_slab = NULL;
2218 }
2219 }
2220 EXPORT_SYMBOL(proto_unregister);
2221
2222 #ifdef CONFIG_PROC_FS
2223 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2224 __acquires(proto_list_lock)
2225 {
2226 read_lock(&proto_list_lock);
2227 return seq_list_start_head(&proto_list, *pos);
2228 }
2229
2230 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2231 {
2232 return seq_list_next(v, &proto_list, pos);
2233 }
2234
2235 static void proto_seq_stop(struct seq_file *seq, void *v)
2236 __releases(proto_list_lock)
2237 {
2238 read_unlock(&proto_list_lock);
2239 }
2240
2241 static char proto_method_implemented(const void *method)
2242 {
2243 return method == NULL ? 'n' : 'y';
2244 }
2245
2246 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2247 {
2248 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2249 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2250 proto->name,
2251 proto->obj_size,
2252 sock_prot_inuse_get(seq_file_net(seq), proto),
2253 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2254 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2255 proto->max_header,
2256 proto->slab == NULL ? "no" : "yes",
2257 module_name(proto->owner),
2258 proto_method_implemented(proto->close),
2259 proto_method_implemented(proto->connect),
2260 proto_method_implemented(proto->disconnect),
2261 proto_method_implemented(proto->accept),
2262 proto_method_implemented(proto->ioctl),
2263 proto_method_implemented(proto->init),
2264 proto_method_implemented(proto->destroy),
2265 proto_method_implemented(proto->shutdown),
2266 proto_method_implemented(proto->setsockopt),
2267 proto_method_implemented(proto->getsockopt),
2268 proto_method_implemented(proto->sendmsg),
2269 proto_method_implemented(proto->recvmsg),
2270 proto_method_implemented(proto->sendpage),
2271 proto_method_implemented(proto->bind),
2272 proto_method_implemented(proto->backlog_rcv),
2273 proto_method_implemented(proto->hash),
2274 proto_method_implemented(proto->unhash),
2275 proto_method_implemented(proto->get_port),
2276 proto_method_implemented(proto->enter_memory_pressure));
2277 }
2278
2279 static int proto_seq_show(struct seq_file *seq, void *v)
2280 {
2281 if (v == &proto_list)
2282 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2283 "protocol",
2284 "size",
2285 "sockets",
2286 "memory",
2287 "press",
2288 "maxhdr",
2289 "slab",
2290 "module",
2291 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2292 else
2293 proto_seq_printf(seq, list_entry(v, struct proto, node));
2294 return 0;
2295 }
2296
2297 static const struct seq_operations proto_seq_ops = {
2298 .start = proto_seq_start,
2299 .next = proto_seq_next,
2300 .stop = proto_seq_stop,
2301 .show = proto_seq_show,
2302 };
2303
2304 static int proto_seq_open(struct inode *inode, struct file *file)
2305 {
2306 return seq_open_net(inode, file, &proto_seq_ops,
2307 sizeof(struct seq_net_private));
2308 }
2309
2310 static const struct file_operations proto_seq_fops = {
2311 .owner = THIS_MODULE,
2312 .open = proto_seq_open,
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .release = seq_release_net,
2316 };
2317
2318 static __net_init int proto_init_net(struct net *net)
2319 {
2320 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2321 return -ENOMEM;
2322
2323 return 0;
2324 }
2325
2326 static __net_exit void proto_exit_net(struct net *net)
2327 {
2328 proc_net_remove(net, "protocols");
2329 }
2330
2331
2332 static __net_initdata struct pernet_operations proto_net_ops = {
2333 .init = proto_init_net,
2334 .exit = proto_exit_net,
2335 };
2336
2337 static int __init proto_init(void)
2338 {
2339 return register_pernet_subsys(&proto_net_ops);
2340 }
2341
2342 subsys_initcall(proto_init);
2343
2344 #endif /* PROC_FS */
This page took 0.129767 seconds and 5 git commands to generate.