Merge tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family:
201 */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_KCM" ,
225 "sk_lock-AF_MAX"
226 };
227 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
228 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
229 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
230 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
231 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
232 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
233 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
234 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
235 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
236 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
237 "slock-27" , "slock-28" , "slock-AF_CAN" ,
238 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
239 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
240 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
241 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_KCM" ,
242 "slock-AF_MAX"
243 };
244 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
245 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
246 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
247 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
248 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
249 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
250 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
251 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
252 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
253 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
254 "clock-27" , "clock-28" , "clock-AF_CAN" ,
255 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
256 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
257 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
258 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_KCM" ,
259 "clock-AF_MAX"
260 };
261
262 /*
263 * sk_callback_lock locking rules are per-address-family,
264 * so split the lock classes by using a per-AF key:
265 */
266 static struct lock_class_key af_callback_keys[AF_MAX];
267
268 /* Take into consideration the size of the struct sk_buff overhead in the
269 * determination of these values, since that is non-constant across
270 * platforms. This makes socket queueing behavior and performance
271 * not depend upon such differences.
272 */
273 #define _SK_MEM_PACKETS 256
274 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
275 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
276 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
277
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291
292 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
293 EXPORT_SYMBOL_GPL(memalloc_socks);
294
295 /**
296 * sk_set_memalloc - sets %SOCK_MEMALLOC
297 * @sk: socket to set it on
298 *
299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300 * It's the responsibility of the admin to adjust min_free_kbytes
301 * to meet the requirements
302 */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 sock_set_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation |= __GFP_MEMALLOC;
307 static_key_slow_inc(&memalloc_socks);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 sock_reset_flag(sk, SOCK_MEMALLOC);
314 sk->sk_allocation &= ~__GFP_MEMALLOC;
315 static_key_slow_dec(&memalloc_socks);
316
317 /*
318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 * it has rmem allocations due to the last swapfile being deactivated
321 * but there is a risk that the socket is unusable due to exceeding
322 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 */
324 sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 int ret;
331 unsigned long pflags = current->flags;
332
333 /* these should have been dropped before queueing */
334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336 current->flags |= PF_MEMALLOC;
337 ret = sk->sk_backlog_rcv(sk, skb);
338 tsk_restore_flags(current, pflags, PF_MEMALLOC);
339
340 return ret;
341 }
342 EXPORT_SYMBOL(__sk_backlog_rcv);
343
344 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
345 {
346 struct timeval tv;
347
348 if (optlen < sizeof(tv))
349 return -EINVAL;
350 if (copy_from_user(&tv, optval, sizeof(tv)))
351 return -EFAULT;
352 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
353 return -EDOM;
354
355 if (tv.tv_sec < 0) {
356 static int warned __read_mostly;
357
358 *timeo_p = 0;
359 if (warned < 10 && net_ratelimit()) {
360 warned++;
361 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
362 __func__, current->comm, task_pid_nr(current));
363 }
364 return 0;
365 }
366 *timeo_p = MAX_SCHEDULE_TIMEOUT;
367 if (tv.tv_sec == 0 && tv.tv_usec == 0)
368 return 0;
369 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
370 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
371 return 0;
372 }
373
374 static void sock_warn_obsolete_bsdism(const char *name)
375 {
376 static int warned;
377 static char warncomm[TASK_COMM_LEN];
378 if (strcmp(warncomm, current->comm) && warned < 5) {
379 strcpy(warncomm, current->comm);
380 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
381 warncomm, name);
382 warned++;
383 }
384 }
385
386 static bool sock_needs_netstamp(const struct sock *sk)
387 {
388 switch (sk->sk_family) {
389 case AF_UNSPEC:
390 case AF_UNIX:
391 return false;
392 default:
393 return true;
394 }
395 }
396
397 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
398 {
399 if (sk->sk_flags & flags) {
400 sk->sk_flags &= ~flags;
401 if (sock_needs_netstamp(sk) &&
402 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
403 net_disable_timestamp();
404 }
405 }
406
407
408 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
409 {
410 unsigned long flags;
411 struct sk_buff_head *list = &sk->sk_receive_queue;
412
413 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
414 atomic_inc(&sk->sk_drops);
415 trace_sock_rcvqueue_full(sk, skb);
416 return -ENOMEM;
417 }
418
419 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
420 atomic_inc(&sk->sk_drops);
421 return -ENOBUFS;
422 }
423
424 skb->dev = NULL;
425 skb_set_owner_r(skb, sk);
426
427 /* we escape from rcu protected region, make sure we dont leak
428 * a norefcounted dst
429 */
430 skb_dst_force(skb);
431
432 spin_lock_irqsave(&list->lock, flags);
433 sock_skb_set_dropcount(sk, skb);
434 __skb_queue_tail(list, skb);
435 spin_unlock_irqrestore(&list->lock, flags);
436
437 if (!sock_flag(sk, SOCK_DEAD))
438 sk->sk_data_ready(sk);
439 return 0;
440 }
441 EXPORT_SYMBOL(__sock_queue_rcv_skb);
442
443 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
444 {
445 int err;
446
447 err = sk_filter(sk, skb);
448 if (err)
449 return err;
450
451 return __sock_queue_rcv_skb(sk, skb);
452 }
453 EXPORT_SYMBOL(sock_queue_rcv_skb);
454
455 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
456 {
457 int rc = NET_RX_SUCCESS;
458
459 if (sk_filter(sk, skb))
460 goto discard_and_relse;
461
462 skb->dev = NULL;
463
464 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
465 atomic_inc(&sk->sk_drops);
466 goto discard_and_relse;
467 }
468 if (nested)
469 bh_lock_sock_nested(sk);
470 else
471 bh_lock_sock(sk);
472 if (!sock_owned_by_user(sk)) {
473 /*
474 * trylock + unlock semantics:
475 */
476 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
477
478 rc = sk_backlog_rcv(sk, skb);
479
480 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
481 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
482 bh_unlock_sock(sk);
483 atomic_inc(&sk->sk_drops);
484 goto discard_and_relse;
485 }
486
487 bh_unlock_sock(sk);
488 out:
489 sock_put(sk);
490 return rc;
491 discard_and_relse:
492 kfree_skb(skb);
493 goto out;
494 }
495 EXPORT_SYMBOL(sk_receive_skb);
496
497 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
498 {
499 struct dst_entry *dst = __sk_dst_get(sk);
500
501 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
502 sk_tx_queue_clear(sk);
503 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
504 dst_release(dst);
505 return NULL;
506 }
507
508 return dst;
509 }
510 EXPORT_SYMBOL(__sk_dst_check);
511
512 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
513 {
514 struct dst_entry *dst = sk_dst_get(sk);
515
516 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
517 sk_dst_reset(sk);
518 dst_release(dst);
519 return NULL;
520 }
521
522 return dst;
523 }
524 EXPORT_SYMBOL(sk_dst_check);
525
526 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
527 int optlen)
528 {
529 int ret = -ENOPROTOOPT;
530 #ifdef CONFIG_NETDEVICES
531 struct net *net = sock_net(sk);
532 char devname[IFNAMSIZ];
533 int index;
534
535 /* Sorry... */
536 ret = -EPERM;
537 if (!ns_capable(net->user_ns, CAP_NET_RAW))
538 goto out;
539
540 ret = -EINVAL;
541 if (optlen < 0)
542 goto out;
543
544 /* Bind this socket to a particular device like "eth0",
545 * as specified in the passed interface name. If the
546 * name is "" or the option length is zero the socket
547 * is not bound.
548 */
549 if (optlen > IFNAMSIZ - 1)
550 optlen = IFNAMSIZ - 1;
551 memset(devname, 0, sizeof(devname));
552
553 ret = -EFAULT;
554 if (copy_from_user(devname, optval, optlen))
555 goto out;
556
557 index = 0;
558 if (devname[0] != '\0') {
559 struct net_device *dev;
560
561 rcu_read_lock();
562 dev = dev_get_by_name_rcu(net, devname);
563 if (dev)
564 index = dev->ifindex;
565 rcu_read_unlock();
566 ret = -ENODEV;
567 if (!dev)
568 goto out;
569 }
570
571 lock_sock(sk);
572 sk->sk_bound_dev_if = index;
573 sk_dst_reset(sk);
574 release_sock(sk);
575
576 ret = 0;
577
578 out:
579 #endif
580
581 return ret;
582 }
583
584 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
585 int __user *optlen, int len)
586 {
587 int ret = -ENOPROTOOPT;
588 #ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
590 char devname[IFNAMSIZ];
591
592 if (sk->sk_bound_dev_if == 0) {
593 len = 0;
594 goto zero;
595 }
596
597 ret = -EINVAL;
598 if (len < IFNAMSIZ)
599 goto out;
600
601 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
602 if (ret)
603 goto out;
604
605 len = strlen(devname) + 1;
606
607 ret = -EFAULT;
608 if (copy_to_user(optval, devname, len))
609 goto out;
610
611 zero:
612 ret = -EFAULT;
613 if (put_user(len, optlen))
614 goto out;
615
616 ret = 0;
617
618 out:
619 #endif
620
621 return ret;
622 }
623
624 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
625 {
626 if (valbool)
627 sock_set_flag(sk, bit);
628 else
629 sock_reset_flag(sk, bit);
630 }
631
632 bool sk_mc_loop(struct sock *sk)
633 {
634 if (dev_recursion_level())
635 return false;
636 if (!sk)
637 return true;
638 switch (sk->sk_family) {
639 case AF_INET:
640 return inet_sk(sk)->mc_loop;
641 #if IS_ENABLED(CONFIG_IPV6)
642 case AF_INET6:
643 return inet6_sk(sk)->mc_loop;
644 #endif
645 }
646 WARN_ON(1);
647 return true;
648 }
649 EXPORT_SYMBOL(sk_mc_loop);
650
651 /*
652 * This is meant for all protocols to use and covers goings on
653 * at the socket level. Everything here is generic.
654 */
655
656 int sock_setsockopt(struct socket *sock, int level, int optname,
657 char __user *optval, unsigned int optlen)
658 {
659 struct sock *sk = sock->sk;
660 int val;
661 int valbool;
662 struct linger ling;
663 int ret = 0;
664
665 /*
666 * Options without arguments
667 */
668
669 if (optname == SO_BINDTODEVICE)
670 return sock_setbindtodevice(sk, optval, optlen);
671
672 if (optlen < sizeof(int))
673 return -EINVAL;
674
675 if (get_user(val, (int __user *)optval))
676 return -EFAULT;
677
678 valbool = val ? 1 : 0;
679
680 lock_sock(sk);
681
682 switch (optname) {
683 case SO_DEBUG:
684 if (val && !capable(CAP_NET_ADMIN))
685 ret = -EACCES;
686 else
687 sock_valbool_flag(sk, SOCK_DBG, valbool);
688 break;
689 case SO_REUSEADDR:
690 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
691 break;
692 case SO_REUSEPORT:
693 sk->sk_reuseport = valbool;
694 break;
695 case SO_TYPE:
696 case SO_PROTOCOL:
697 case SO_DOMAIN:
698 case SO_ERROR:
699 ret = -ENOPROTOOPT;
700 break;
701 case SO_DONTROUTE:
702 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
703 break;
704 case SO_BROADCAST:
705 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
706 break;
707 case SO_SNDBUF:
708 /* Don't error on this BSD doesn't and if you think
709 * about it this is right. Otherwise apps have to
710 * play 'guess the biggest size' games. RCVBUF/SNDBUF
711 * are treated in BSD as hints
712 */
713 val = min_t(u32, val, sysctl_wmem_max);
714 set_sndbuf:
715 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
716 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
717 /* Wake up sending tasks if we upped the value. */
718 sk->sk_write_space(sk);
719 break;
720
721 case SO_SNDBUFFORCE:
722 if (!capable(CAP_NET_ADMIN)) {
723 ret = -EPERM;
724 break;
725 }
726 goto set_sndbuf;
727
728 case SO_RCVBUF:
729 /* Don't error on this BSD doesn't and if you think
730 * about it this is right. Otherwise apps have to
731 * play 'guess the biggest size' games. RCVBUF/SNDBUF
732 * are treated in BSD as hints
733 */
734 val = min_t(u32, val, sysctl_rmem_max);
735 set_rcvbuf:
736 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
737 /*
738 * We double it on the way in to account for
739 * "struct sk_buff" etc. overhead. Applications
740 * assume that the SO_RCVBUF setting they make will
741 * allow that much actual data to be received on that
742 * socket.
743 *
744 * Applications are unaware that "struct sk_buff" and
745 * other overheads allocate from the receive buffer
746 * during socket buffer allocation.
747 *
748 * And after considering the possible alternatives,
749 * returning the value we actually used in getsockopt
750 * is the most desirable behavior.
751 */
752 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
753 break;
754
755 case SO_RCVBUFFORCE:
756 if (!capable(CAP_NET_ADMIN)) {
757 ret = -EPERM;
758 break;
759 }
760 goto set_rcvbuf;
761
762 case SO_KEEPALIVE:
763 #ifdef CONFIG_INET
764 if (sk->sk_protocol == IPPROTO_TCP &&
765 sk->sk_type == SOCK_STREAM)
766 tcp_set_keepalive(sk, valbool);
767 #endif
768 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
769 break;
770
771 case SO_OOBINLINE:
772 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
773 break;
774
775 case SO_NO_CHECK:
776 sk->sk_no_check_tx = valbool;
777 break;
778
779 case SO_PRIORITY:
780 if ((val >= 0 && val <= 6) ||
781 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
782 sk->sk_priority = val;
783 else
784 ret = -EPERM;
785 break;
786
787 case SO_LINGER:
788 if (optlen < sizeof(ling)) {
789 ret = -EINVAL; /* 1003.1g */
790 break;
791 }
792 if (copy_from_user(&ling, optval, sizeof(ling))) {
793 ret = -EFAULT;
794 break;
795 }
796 if (!ling.l_onoff)
797 sock_reset_flag(sk, SOCK_LINGER);
798 else {
799 #if (BITS_PER_LONG == 32)
800 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
801 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
802 else
803 #endif
804 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
805 sock_set_flag(sk, SOCK_LINGER);
806 }
807 break;
808
809 case SO_BSDCOMPAT:
810 sock_warn_obsolete_bsdism("setsockopt");
811 break;
812
813 case SO_PASSCRED:
814 if (valbool)
815 set_bit(SOCK_PASSCRED, &sock->flags);
816 else
817 clear_bit(SOCK_PASSCRED, &sock->flags);
818 break;
819
820 case SO_TIMESTAMP:
821 case SO_TIMESTAMPNS:
822 if (valbool) {
823 if (optname == SO_TIMESTAMP)
824 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
825 else
826 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
827 sock_set_flag(sk, SOCK_RCVTSTAMP);
828 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
829 } else {
830 sock_reset_flag(sk, SOCK_RCVTSTAMP);
831 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
832 }
833 break;
834
835 case SO_TIMESTAMPING:
836 if (val & ~SOF_TIMESTAMPING_MASK) {
837 ret = -EINVAL;
838 break;
839 }
840
841 if (val & SOF_TIMESTAMPING_OPT_ID &&
842 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
843 if (sk->sk_protocol == IPPROTO_TCP &&
844 sk->sk_type == SOCK_STREAM) {
845 if ((1 << sk->sk_state) &
846 (TCPF_CLOSE | TCPF_LISTEN)) {
847 ret = -EINVAL;
848 break;
849 }
850 sk->sk_tskey = tcp_sk(sk)->snd_una;
851 } else {
852 sk->sk_tskey = 0;
853 }
854 }
855 sk->sk_tsflags = val;
856 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
857 sock_enable_timestamp(sk,
858 SOCK_TIMESTAMPING_RX_SOFTWARE);
859 else
860 sock_disable_timestamp(sk,
861 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
862 break;
863
864 case SO_RCVLOWAT:
865 if (val < 0)
866 val = INT_MAX;
867 sk->sk_rcvlowat = val ? : 1;
868 break;
869
870 case SO_RCVTIMEO:
871 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
872 break;
873
874 case SO_SNDTIMEO:
875 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
876 break;
877
878 case SO_ATTACH_FILTER:
879 ret = -EINVAL;
880 if (optlen == sizeof(struct sock_fprog)) {
881 struct sock_fprog fprog;
882
883 ret = -EFAULT;
884 if (copy_from_user(&fprog, optval, sizeof(fprog)))
885 break;
886
887 ret = sk_attach_filter(&fprog, sk);
888 }
889 break;
890
891 case SO_ATTACH_BPF:
892 ret = -EINVAL;
893 if (optlen == sizeof(u32)) {
894 u32 ufd;
895
896 ret = -EFAULT;
897 if (copy_from_user(&ufd, optval, sizeof(ufd)))
898 break;
899
900 ret = sk_attach_bpf(ufd, sk);
901 }
902 break;
903
904 case SO_ATTACH_REUSEPORT_CBPF:
905 ret = -EINVAL;
906 if (optlen == sizeof(struct sock_fprog)) {
907 struct sock_fprog fprog;
908
909 ret = -EFAULT;
910 if (copy_from_user(&fprog, optval, sizeof(fprog)))
911 break;
912
913 ret = sk_reuseport_attach_filter(&fprog, sk);
914 }
915 break;
916
917 case SO_ATTACH_REUSEPORT_EBPF:
918 ret = -EINVAL;
919 if (optlen == sizeof(u32)) {
920 u32 ufd;
921
922 ret = -EFAULT;
923 if (copy_from_user(&ufd, optval, sizeof(ufd)))
924 break;
925
926 ret = sk_reuseport_attach_bpf(ufd, sk);
927 }
928 break;
929
930 case SO_DETACH_FILTER:
931 ret = sk_detach_filter(sk);
932 break;
933
934 case SO_LOCK_FILTER:
935 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
936 ret = -EPERM;
937 else
938 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
939 break;
940
941 case SO_PASSSEC:
942 if (valbool)
943 set_bit(SOCK_PASSSEC, &sock->flags);
944 else
945 clear_bit(SOCK_PASSSEC, &sock->flags);
946 break;
947 case SO_MARK:
948 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
949 ret = -EPERM;
950 else
951 sk->sk_mark = val;
952 break;
953
954 case SO_RXQ_OVFL:
955 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
956 break;
957
958 case SO_WIFI_STATUS:
959 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
960 break;
961
962 case SO_PEEK_OFF:
963 if (sock->ops->set_peek_off)
964 ret = sock->ops->set_peek_off(sk, val);
965 else
966 ret = -EOPNOTSUPP;
967 break;
968
969 case SO_NOFCS:
970 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
971 break;
972
973 case SO_SELECT_ERR_QUEUE:
974 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
975 break;
976
977 #ifdef CONFIG_NET_RX_BUSY_POLL
978 case SO_BUSY_POLL:
979 /* allow unprivileged users to decrease the value */
980 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
981 ret = -EPERM;
982 else {
983 if (val < 0)
984 ret = -EINVAL;
985 else
986 sk->sk_ll_usec = val;
987 }
988 break;
989 #endif
990
991 case SO_MAX_PACING_RATE:
992 sk->sk_max_pacing_rate = val;
993 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
994 sk->sk_max_pacing_rate);
995 break;
996
997 case SO_INCOMING_CPU:
998 sk->sk_incoming_cpu = val;
999 break;
1000
1001 case SO_CNX_ADVICE:
1002 if (val == 1)
1003 dst_negative_advice(sk);
1004 break;
1005 default:
1006 ret = -ENOPROTOOPT;
1007 break;
1008 }
1009 release_sock(sk);
1010 return ret;
1011 }
1012 EXPORT_SYMBOL(sock_setsockopt);
1013
1014
1015 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1016 struct ucred *ucred)
1017 {
1018 ucred->pid = pid_vnr(pid);
1019 ucred->uid = ucred->gid = -1;
1020 if (cred) {
1021 struct user_namespace *current_ns = current_user_ns();
1022
1023 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1024 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1025 }
1026 }
1027
1028 int sock_getsockopt(struct socket *sock, int level, int optname,
1029 char __user *optval, int __user *optlen)
1030 {
1031 struct sock *sk = sock->sk;
1032
1033 union {
1034 int val;
1035 struct linger ling;
1036 struct timeval tm;
1037 } v;
1038
1039 int lv = sizeof(int);
1040 int len;
1041
1042 if (get_user(len, optlen))
1043 return -EFAULT;
1044 if (len < 0)
1045 return -EINVAL;
1046
1047 memset(&v, 0, sizeof(v));
1048
1049 switch (optname) {
1050 case SO_DEBUG:
1051 v.val = sock_flag(sk, SOCK_DBG);
1052 break;
1053
1054 case SO_DONTROUTE:
1055 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1056 break;
1057
1058 case SO_BROADCAST:
1059 v.val = sock_flag(sk, SOCK_BROADCAST);
1060 break;
1061
1062 case SO_SNDBUF:
1063 v.val = sk->sk_sndbuf;
1064 break;
1065
1066 case SO_RCVBUF:
1067 v.val = sk->sk_rcvbuf;
1068 break;
1069
1070 case SO_REUSEADDR:
1071 v.val = sk->sk_reuse;
1072 break;
1073
1074 case SO_REUSEPORT:
1075 v.val = sk->sk_reuseport;
1076 break;
1077
1078 case SO_KEEPALIVE:
1079 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1080 break;
1081
1082 case SO_TYPE:
1083 v.val = sk->sk_type;
1084 break;
1085
1086 case SO_PROTOCOL:
1087 v.val = sk->sk_protocol;
1088 break;
1089
1090 case SO_DOMAIN:
1091 v.val = sk->sk_family;
1092 break;
1093
1094 case SO_ERROR:
1095 v.val = -sock_error(sk);
1096 if (v.val == 0)
1097 v.val = xchg(&sk->sk_err_soft, 0);
1098 break;
1099
1100 case SO_OOBINLINE:
1101 v.val = sock_flag(sk, SOCK_URGINLINE);
1102 break;
1103
1104 case SO_NO_CHECK:
1105 v.val = sk->sk_no_check_tx;
1106 break;
1107
1108 case SO_PRIORITY:
1109 v.val = sk->sk_priority;
1110 break;
1111
1112 case SO_LINGER:
1113 lv = sizeof(v.ling);
1114 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1115 v.ling.l_linger = sk->sk_lingertime / HZ;
1116 break;
1117
1118 case SO_BSDCOMPAT:
1119 sock_warn_obsolete_bsdism("getsockopt");
1120 break;
1121
1122 case SO_TIMESTAMP:
1123 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1124 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1125 break;
1126
1127 case SO_TIMESTAMPNS:
1128 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1129 break;
1130
1131 case SO_TIMESTAMPING:
1132 v.val = sk->sk_tsflags;
1133 break;
1134
1135 case SO_RCVTIMEO:
1136 lv = sizeof(struct timeval);
1137 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1138 v.tm.tv_sec = 0;
1139 v.tm.tv_usec = 0;
1140 } else {
1141 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1142 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1143 }
1144 break;
1145
1146 case SO_SNDTIMEO:
1147 lv = sizeof(struct timeval);
1148 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1149 v.tm.tv_sec = 0;
1150 v.tm.tv_usec = 0;
1151 } else {
1152 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1153 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1154 }
1155 break;
1156
1157 case SO_RCVLOWAT:
1158 v.val = sk->sk_rcvlowat;
1159 break;
1160
1161 case SO_SNDLOWAT:
1162 v.val = 1;
1163 break;
1164
1165 case SO_PASSCRED:
1166 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1167 break;
1168
1169 case SO_PEERCRED:
1170 {
1171 struct ucred peercred;
1172 if (len > sizeof(peercred))
1173 len = sizeof(peercred);
1174 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1175 if (copy_to_user(optval, &peercred, len))
1176 return -EFAULT;
1177 goto lenout;
1178 }
1179
1180 case SO_PEERNAME:
1181 {
1182 char address[128];
1183
1184 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1185 return -ENOTCONN;
1186 if (lv < len)
1187 return -EINVAL;
1188 if (copy_to_user(optval, address, len))
1189 return -EFAULT;
1190 goto lenout;
1191 }
1192
1193 /* Dubious BSD thing... Probably nobody even uses it, but
1194 * the UNIX standard wants it for whatever reason... -DaveM
1195 */
1196 case SO_ACCEPTCONN:
1197 v.val = sk->sk_state == TCP_LISTEN;
1198 break;
1199
1200 case SO_PASSSEC:
1201 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1202 break;
1203
1204 case SO_PEERSEC:
1205 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1206
1207 case SO_MARK:
1208 v.val = sk->sk_mark;
1209 break;
1210
1211 case SO_RXQ_OVFL:
1212 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1213 break;
1214
1215 case SO_WIFI_STATUS:
1216 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1217 break;
1218
1219 case SO_PEEK_OFF:
1220 if (!sock->ops->set_peek_off)
1221 return -EOPNOTSUPP;
1222
1223 v.val = sk->sk_peek_off;
1224 break;
1225 case SO_NOFCS:
1226 v.val = sock_flag(sk, SOCK_NOFCS);
1227 break;
1228
1229 case SO_BINDTODEVICE:
1230 return sock_getbindtodevice(sk, optval, optlen, len);
1231
1232 case SO_GET_FILTER:
1233 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1234 if (len < 0)
1235 return len;
1236
1237 goto lenout;
1238
1239 case SO_LOCK_FILTER:
1240 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1241 break;
1242
1243 case SO_BPF_EXTENSIONS:
1244 v.val = bpf_tell_extensions();
1245 break;
1246
1247 case SO_SELECT_ERR_QUEUE:
1248 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1249 break;
1250
1251 #ifdef CONFIG_NET_RX_BUSY_POLL
1252 case SO_BUSY_POLL:
1253 v.val = sk->sk_ll_usec;
1254 break;
1255 #endif
1256
1257 case SO_MAX_PACING_RATE:
1258 v.val = sk->sk_max_pacing_rate;
1259 break;
1260
1261 case SO_INCOMING_CPU:
1262 v.val = sk->sk_incoming_cpu;
1263 break;
1264
1265 default:
1266 /* We implement the SO_SNDLOWAT etc to not be settable
1267 * (1003.1g 7).
1268 */
1269 return -ENOPROTOOPT;
1270 }
1271
1272 if (len > lv)
1273 len = lv;
1274 if (copy_to_user(optval, &v, len))
1275 return -EFAULT;
1276 lenout:
1277 if (put_user(len, optlen))
1278 return -EFAULT;
1279 return 0;
1280 }
1281
1282 /*
1283 * Initialize an sk_lock.
1284 *
1285 * (We also register the sk_lock with the lock validator.)
1286 */
1287 static inline void sock_lock_init(struct sock *sk)
1288 {
1289 sock_lock_init_class_and_name(sk,
1290 af_family_slock_key_strings[sk->sk_family],
1291 af_family_slock_keys + sk->sk_family,
1292 af_family_key_strings[sk->sk_family],
1293 af_family_keys + sk->sk_family);
1294 }
1295
1296 /*
1297 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1298 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1299 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1300 */
1301 static void sock_copy(struct sock *nsk, const struct sock *osk)
1302 {
1303 #ifdef CONFIG_SECURITY_NETWORK
1304 void *sptr = nsk->sk_security;
1305 #endif
1306 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1307
1308 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1309 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1310
1311 #ifdef CONFIG_SECURITY_NETWORK
1312 nsk->sk_security = sptr;
1313 security_sk_clone(osk, nsk);
1314 #endif
1315 }
1316
1317 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1318 {
1319 unsigned long nulls1, nulls2;
1320
1321 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1322 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1323 if (nulls1 > nulls2)
1324 swap(nulls1, nulls2);
1325
1326 if (nulls1 != 0)
1327 memset((char *)sk, 0, nulls1);
1328 memset((char *)sk + nulls1 + sizeof(void *), 0,
1329 nulls2 - nulls1 - sizeof(void *));
1330 memset((char *)sk + nulls2 + sizeof(void *), 0,
1331 size - nulls2 - sizeof(void *));
1332 }
1333 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1334
1335 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1336 int family)
1337 {
1338 struct sock *sk;
1339 struct kmem_cache *slab;
1340
1341 slab = prot->slab;
1342 if (slab != NULL) {
1343 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1344 if (!sk)
1345 return sk;
1346 if (priority & __GFP_ZERO) {
1347 if (prot->clear_sk)
1348 prot->clear_sk(sk, prot->obj_size);
1349 else
1350 sk_prot_clear_nulls(sk, prot->obj_size);
1351 }
1352 } else
1353 sk = kmalloc(prot->obj_size, priority);
1354
1355 if (sk != NULL) {
1356 kmemcheck_annotate_bitfield(sk, flags);
1357
1358 if (security_sk_alloc(sk, family, priority))
1359 goto out_free;
1360
1361 if (!try_module_get(prot->owner))
1362 goto out_free_sec;
1363 sk_tx_queue_clear(sk);
1364 cgroup_sk_alloc(&sk->sk_cgrp_data);
1365 }
1366
1367 return sk;
1368
1369 out_free_sec:
1370 security_sk_free(sk);
1371 out_free:
1372 if (slab != NULL)
1373 kmem_cache_free(slab, sk);
1374 else
1375 kfree(sk);
1376 return NULL;
1377 }
1378
1379 static void sk_prot_free(struct proto *prot, struct sock *sk)
1380 {
1381 struct kmem_cache *slab;
1382 struct module *owner;
1383
1384 owner = prot->owner;
1385 slab = prot->slab;
1386
1387 cgroup_sk_free(&sk->sk_cgrp_data);
1388 security_sk_free(sk);
1389 if (slab != NULL)
1390 kmem_cache_free(slab, sk);
1391 else
1392 kfree(sk);
1393 module_put(owner);
1394 }
1395
1396 /**
1397 * sk_alloc - All socket objects are allocated here
1398 * @net: the applicable net namespace
1399 * @family: protocol family
1400 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1401 * @prot: struct proto associated with this new sock instance
1402 * @kern: is this to be a kernel socket?
1403 */
1404 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1405 struct proto *prot, int kern)
1406 {
1407 struct sock *sk;
1408
1409 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1410 if (sk) {
1411 sk->sk_family = family;
1412 /*
1413 * See comment in struct sock definition to understand
1414 * why we need sk_prot_creator -acme
1415 */
1416 sk->sk_prot = sk->sk_prot_creator = prot;
1417 sock_lock_init(sk);
1418 sk->sk_net_refcnt = kern ? 0 : 1;
1419 if (likely(sk->sk_net_refcnt))
1420 get_net(net);
1421 sock_net_set(sk, net);
1422 atomic_set(&sk->sk_wmem_alloc, 1);
1423
1424 sock_update_classid(&sk->sk_cgrp_data);
1425 sock_update_netprioidx(&sk->sk_cgrp_data);
1426 }
1427
1428 return sk;
1429 }
1430 EXPORT_SYMBOL(sk_alloc);
1431
1432 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1433 * grace period. This is the case for UDP sockets and TCP listeners.
1434 */
1435 static void __sk_destruct(struct rcu_head *head)
1436 {
1437 struct sock *sk = container_of(head, struct sock, sk_rcu);
1438 struct sk_filter *filter;
1439
1440 if (sk->sk_destruct)
1441 sk->sk_destruct(sk);
1442
1443 filter = rcu_dereference_check(sk->sk_filter,
1444 atomic_read(&sk->sk_wmem_alloc) == 0);
1445 if (filter) {
1446 sk_filter_uncharge(sk, filter);
1447 RCU_INIT_POINTER(sk->sk_filter, NULL);
1448 }
1449 if (rcu_access_pointer(sk->sk_reuseport_cb))
1450 reuseport_detach_sock(sk);
1451
1452 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1453
1454 if (atomic_read(&sk->sk_omem_alloc))
1455 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1456 __func__, atomic_read(&sk->sk_omem_alloc));
1457
1458 if (sk->sk_peer_cred)
1459 put_cred(sk->sk_peer_cred);
1460 put_pid(sk->sk_peer_pid);
1461 if (likely(sk->sk_net_refcnt))
1462 put_net(sock_net(sk));
1463 sk_prot_free(sk->sk_prot_creator, sk);
1464 }
1465
1466 void sk_destruct(struct sock *sk)
1467 {
1468 if (sock_flag(sk, SOCK_RCU_FREE))
1469 call_rcu(&sk->sk_rcu, __sk_destruct);
1470 else
1471 __sk_destruct(&sk->sk_rcu);
1472 }
1473
1474 static void __sk_free(struct sock *sk)
1475 {
1476 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1477 sock_diag_broadcast_destroy(sk);
1478 else
1479 sk_destruct(sk);
1480 }
1481
1482 void sk_free(struct sock *sk)
1483 {
1484 /*
1485 * We subtract one from sk_wmem_alloc and can know if
1486 * some packets are still in some tx queue.
1487 * If not null, sock_wfree() will call __sk_free(sk) later
1488 */
1489 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1490 __sk_free(sk);
1491 }
1492 EXPORT_SYMBOL(sk_free);
1493
1494 /**
1495 * sk_clone_lock - clone a socket, and lock its clone
1496 * @sk: the socket to clone
1497 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1498 *
1499 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1500 */
1501 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1502 {
1503 struct sock *newsk;
1504 bool is_charged = true;
1505
1506 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1507 if (newsk != NULL) {
1508 struct sk_filter *filter;
1509
1510 sock_copy(newsk, sk);
1511
1512 /* SANITY */
1513 if (likely(newsk->sk_net_refcnt))
1514 get_net(sock_net(newsk));
1515 sk_node_init(&newsk->sk_node);
1516 sock_lock_init(newsk);
1517 bh_lock_sock(newsk);
1518 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1519 newsk->sk_backlog.len = 0;
1520
1521 atomic_set(&newsk->sk_rmem_alloc, 0);
1522 /*
1523 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1524 */
1525 atomic_set(&newsk->sk_wmem_alloc, 1);
1526 atomic_set(&newsk->sk_omem_alloc, 0);
1527 skb_queue_head_init(&newsk->sk_receive_queue);
1528 skb_queue_head_init(&newsk->sk_write_queue);
1529
1530 rwlock_init(&newsk->sk_callback_lock);
1531 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1532 af_callback_keys + newsk->sk_family,
1533 af_family_clock_key_strings[newsk->sk_family]);
1534
1535 newsk->sk_dst_cache = NULL;
1536 newsk->sk_wmem_queued = 0;
1537 newsk->sk_forward_alloc = 0;
1538 atomic_set(&newsk->sk_drops, 0);
1539 newsk->sk_send_head = NULL;
1540 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1541
1542 sock_reset_flag(newsk, SOCK_DONE);
1543 skb_queue_head_init(&newsk->sk_error_queue);
1544
1545 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1546 if (filter != NULL)
1547 /* though it's an empty new sock, the charging may fail
1548 * if sysctl_optmem_max was changed between creation of
1549 * original socket and cloning
1550 */
1551 is_charged = sk_filter_charge(newsk, filter);
1552
1553 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1554 /* It is still raw copy of parent, so invalidate
1555 * destructor and make plain sk_free() */
1556 newsk->sk_destruct = NULL;
1557 bh_unlock_sock(newsk);
1558 sk_free(newsk);
1559 newsk = NULL;
1560 goto out;
1561 }
1562 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1563
1564 newsk->sk_err = 0;
1565 newsk->sk_priority = 0;
1566 newsk->sk_incoming_cpu = raw_smp_processor_id();
1567 atomic64_set(&newsk->sk_cookie, 0);
1568 /*
1569 * Before updating sk_refcnt, we must commit prior changes to memory
1570 * (Documentation/RCU/rculist_nulls.txt for details)
1571 */
1572 smp_wmb();
1573 atomic_set(&newsk->sk_refcnt, 2);
1574
1575 /*
1576 * Increment the counter in the same struct proto as the master
1577 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1578 * is the same as sk->sk_prot->socks, as this field was copied
1579 * with memcpy).
1580 *
1581 * This _changes_ the previous behaviour, where
1582 * tcp_create_openreq_child always was incrementing the
1583 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1584 * to be taken into account in all callers. -acme
1585 */
1586 sk_refcnt_debug_inc(newsk);
1587 sk_set_socket(newsk, NULL);
1588 newsk->sk_wq = NULL;
1589
1590 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1591 sock_update_memcg(newsk);
1592
1593 if (newsk->sk_prot->sockets_allocated)
1594 sk_sockets_allocated_inc(newsk);
1595
1596 if (sock_needs_netstamp(sk) &&
1597 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1598 net_enable_timestamp();
1599 }
1600 out:
1601 return newsk;
1602 }
1603 EXPORT_SYMBOL_GPL(sk_clone_lock);
1604
1605 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1606 {
1607 u32 max_segs = 1;
1608
1609 sk_dst_set(sk, dst);
1610 sk->sk_route_caps = dst->dev->features;
1611 if (sk->sk_route_caps & NETIF_F_GSO)
1612 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1613 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1614 if (sk_can_gso(sk)) {
1615 if (dst->header_len) {
1616 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1617 } else {
1618 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1619 sk->sk_gso_max_size = dst->dev->gso_max_size;
1620 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1621 }
1622 }
1623 sk->sk_gso_max_segs = max_segs;
1624 }
1625 EXPORT_SYMBOL_GPL(sk_setup_caps);
1626
1627 /*
1628 * Simple resource managers for sockets.
1629 */
1630
1631
1632 /*
1633 * Write buffer destructor automatically called from kfree_skb.
1634 */
1635 void sock_wfree(struct sk_buff *skb)
1636 {
1637 struct sock *sk = skb->sk;
1638 unsigned int len = skb->truesize;
1639
1640 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1641 /*
1642 * Keep a reference on sk_wmem_alloc, this will be released
1643 * after sk_write_space() call
1644 */
1645 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1646 sk->sk_write_space(sk);
1647 len = 1;
1648 }
1649 /*
1650 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1651 * could not do because of in-flight packets
1652 */
1653 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1654 __sk_free(sk);
1655 }
1656 EXPORT_SYMBOL(sock_wfree);
1657
1658 /* This variant of sock_wfree() is used by TCP,
1659 * since it sets SOCK_USE_WRITE_QUEUE.
1660 */
1661 void __sock_wfree(struct sk_buff *skb)
1662 {
1663 struct sock *sk = skb->sk;
1664
1665 if (atomic_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1666 __sk_free(sk);
1667 }
1668
1669 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1670 {
1671 skb_orphan(skb);
1672 skb->sk = sk;
1673 #ifdef CONFIG_INET
1674 if (unlikely(!sk_fullsock(sk))) {
1675 skb->destructor = sock_edemux;
1676 sock_hold(sk);
1677 return;
1678 }
1679 #endif
1680 skb->destructor = sock_wfree;
1681 skb_set_hash_from_sk(skb, sk);
1682 /*
1683 * We used to take a refcount on sk, but following operation
1684 * is enough to guarantee sk_free() wont free this sock until
1685 * all in-flight packets are completed
1686 */
1687 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1688 }
1689 EXPORT_SYMBOL(skb_set_owner_w);
1690
1691 /* This helper is used by netem, as it can hold packets in its
1692 * delay queue. We want to allow the owner socket to send more
1693 * packets, as if they were already TX completed by a typical driver.
1694 * But we also want to keep skb->sk set because some packet schedulers
1695 * rely on it (sch_fq for example). So we set skb->truesize to a small
1696 * amount (1) and decrease sk_wmem_alloc accordingly.
1697 */
1698 void skb_orphan_partial(struct sk_buff *skb)
1699 {
1700 /* If this skb is a TCP pure ACK or already went here,
1701 * we have nothing to do. 2 is already a very small truesize.
1702 */
1703 if (skb->truesize <= 2)
1704 return;
1705
1706 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1707 * so we do not completely orphan skb, but transfert all
1708 * accounted bytes but one, to avoid unexpected reorders.
1709 */
1710 if (skb->destructor == sock_wfree
1711 #ifdef CONFIG_INET
1712 || skb->destructor == tcp_wfree
1713 #endif
1714 ) {
1715 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1716 skb->truesize = 1;
1717 } else {
1718 skb_orphan(skb);
1719 }
1720 }
1721 EXPORT_SYMBOL(skb_orphan_partial);
1722
1723 /*
1724 * Read buffer destructor automatically called from kfree_skb.
1725 */
1726 void sock_rfree(struct sk_buff *skb)
1727 {
1728 struct sock *sk = skb->sk;
1729 unsigned int len = skb->truesize;
1730
1731 atomic_sub(len, &sk->sk_rmem_alloc);
1732 sk_mem_uncharge(sk, len);
1733 }
1734 EXPORT_SYMBOL(sock_rfree);
1735
1736 /*
1737 * Buffer destructor for skbs that are not used directly in read or write
1738 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1739 */
1740 void sock_efree(struct sk_buff *skb)
1741 {
1742 sock_put(skb->sk);
1743 }
1744 EXPORT_SYMBOL(sock_efree);
1745
1746 kuid_t sock_i_uid(struct sock *sk)
1747 {
1748 kuid_t uid;
1749
1750 read_lock_bh(&sk->sk_callback_lock);
1751 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1752 read_unlock_bh(&sk->sk_callback_lock);
1753 return uid;
1754 }
1755 EXPORT_SYMBOL(sock_i_uid);
1756
1757 unsigned long sock_i_ino(struct sock *sk)
1758 {
1759 unsigned long ino;
1760
1761 read_lock_bh(&sk->sk_callback_lock);
1762 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1763 read_unlock_bh(&sk->sk_callback_lock);
1764 return ino;
1765 }
1766 EXPORT_SYMBOL(sock_i_ino);
1767
1768 /*
1769 * Allocate a skb from the socket's send buffer.
1770 */
1771 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1772 gfp_t priority)
1773 {
1774 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1775 struct sk_buff *skb = alloc_skb(size, priority);
1776 if (skb) {
1777 skb_set_owner_w(skb, sk);
1778 return skb;
1779 }
1780 }
1781 return NULL;
1782 }
1783 EXPORT_SYMBOL(sock_wmalloc);
1784
1785 /*
1786 * Allocate a memory block from the socket's option memory buffer.
1787 */
1788 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1789 {
1790 if ((unsigned int)size <= sysctl_optmem_max &&
1791 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1792 void *mem;
1793 /* First do the add, to avoid the race if kmalloc
1794 * might sleep.
1795 */
1796 atomic_add(size, &sk->sk_omem_alloc);
1797 mem = kmalloc(size, priority);
1798 if (mem)
1799 return mem;
1800 atomic_sub(size, &sk->sk_omem_alloc);
1801 }
1802 return NULL;
1803 }
1804 EXPORT_SYMBOL(sock_kmalloc);
1805
1806 /* Free an option memory block. Note, we actually want the inline
1807 * here as this allows gcc to detect the nullify and fold away the
1808 * condition entirely.
1809 */
1810 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1811 const bool nullify)
1812 {
1813 if (WARN_ON_ONCE(!mem))
1814 return;
1815 if (nullify)
1816 kzfree(mem);
1817 else
1818 kfree(mem);
1819 atomic_sub(size, &sk->sk_omem_alloc);
1820 }
1821
1822 void sock_kfree_s(struct sock *sk, void *mem, int size)
1823 {
1824 __sock_kfree_s(sk, mem, size, false);
1825 }
1826 EXPORT_SYMBOL(sock_kfree_s);
1827
1828 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1829 {
1830 __sock_kfree_s(sk, mem, size, true);
1831 }
1832 EXPORT_SYMBOL(sock_kzfree_s);
1833
1834 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1835 I think, these locks should be removed for datagram sockets.
1836 */
1837 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1838 {
1839 DEFINE_WAIT(wait);
1840
1841 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1842 for (;;) {
1843 if (!timeo)
1844 break;
1845 if (signal_pending(current))
1846 break;
1847 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1848 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1849 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1850 break;
1851 if (sk->sk_shutdown & SEND_SHUTDOWN)
1852 break;
1853 if (sk->sk_err)
1854 break;
1855 timeo = schedule_timeout(timeo);
1856 }
1857 finish_wait(sk_sleep(sk), &wait);
1858 return timeo;
1859 }
1860
1861
1862 /*
1863 * Generic send/receive buffer handlers
1864 */
1865
1866 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1867 unsigned long data_len, int noblock,
1868 int *errcode, int max_page_order)
1869 {
1870 struct sk_buff *skb;
1871 long timeo;
1872 int err;
1873
1874 timeo = sock_sndtimeo(sk, noblock);
1875 for (;;) {
1876 err = sock_error(sk);
1877 if (err != 0)
1878 goto failure;
1879
1880 err = -EPIPE;
1881 if (sk->sk_shutdown & SEND_SHUTDOWN)
1882 goto failure;
1883
1884 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1885 break;
1886
1887 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1888 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1889 err = -EAGAIN;
1890 if (!timeo)
1891 goto failure;
1892 if (signal_pending(current))
1893 goto interrupted;
1894 timeo = sock_wait_for_wmem(sk, timeo);
1895 }
1896 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1897 errcode, sk->sk_allocation);
1898 if (skb)
1899 skb_set_owner_w(skb, sk);
1900 return skb;
1901
1902 interrupted:
1903 err = sock_intr_errno(timeo);
1904 failure:
1905 *errcode = err;
1906 return NULL;
1907 }
1908 EXPORT_SYMBOL(sock_alloc_send_pskb);
1909
1910 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1911 int noblock, int *errcode)
1912 {
1913 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1914 }
1915 EXPORT_SYMBOL(sock_alloc_send_skb);
1916
1917 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1918 struct sockcm_cookie *sockc)
1919 {
1920 u32 tsflags;
1921
1922 switch (cmsg->cmsg_type) {
1923 case SO_MARK:
1924 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1925 return -EPERM;
1926 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1927 return -EINVAL;
1928 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1929 break;
1930 case SO_TIMESTAMPING:
1931 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1932 return -EINVAL;
1933
1934 tsflags = *(u32 *)CMSG_DATA(cmsg);
1935 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1936 return -EINVAL;
1937
1938 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1939 sockc->tsflags |= tsflags;
1940 break;
1941 default:
1942 return -EINVAL;
1943 }
1944 return 0;
1945 }
1946 EXPORT_SYMBOL(__sock_cmsg_send);
1947
1948 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1949 struct sockcm_cookie *sockc)
1950 {
1951 struct cmsghdr *cmsg;
1952 int ret;
1953
1954 for_each_cmsghdr(cmsg, msg) {
1955 if (!CMSG_OK(msg, cmsg))
1956 return -EINVAL;
1957 if (cmsg->cmsg_level != SOL_SOCKET)
1958 continue;
1959 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1960 if (ret)
1961 return ret;
1962 }
1963 return 0;
1964 }
1965 EXPORT_SYMBOL(sock_cmsg_send);
1966
1967 /* On 32bit arches, an skb frag is limited to 2^15 */
1968 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1969
1970 /**
1971 * skb_page_frag_refill - check that a page_frag contains enough room
1972 * @sz: minimum size of the fragment we want to get
1973 * @pfrag: pointer to page_frag
1974 * @gfp: priority for memory allocation
1975 *
1976 * Note: While this allocator tries to use high order pages, there is
1977 * no guarantee that allocations succeed. Therefore, @sz MUST be
1978 * less or equal than PAGE_SIZE.
1979 */
1980 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1981 {
1982 if (pfrag->page) {
1983 if (page_ref_count(pfrag->page) == 1) {
1984 pfrag->offset = 0;
1985 return true;
1986 }
1987 if (pfrag->offset + sz <= pfrag->size)
1988 return true;
1989 put_page(pfrag->page);
1990 }
1991
1992 pfrag->offset = 0;
1993 if (SKB_FRAG_PAGE_ORDER) {
1994 /* Avoid direct reclaim but allow kswapd to wake */
1995 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1996 __GFP_COMP | __GFP_NOWARN |
1997 __GFP_NORETRY,
1998 SKB_FRAG_PAGE_ORDER);
1999 if (likely(pfrag->page)) {
2000 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2001 return true;
2002 }
2003 }
2004 pfrag->page = alloc_page(gfp);
2005 if (likely(pfrag->page)) {
2006 pfrag->size = PAGE_SIZE;
2007 return true;
2008 }
2009 return false;
2010 }
2011 EXPORT_SYMBOL(skb_page_frag_refill);
2012
2013 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2014 {
2015 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2016 return true;
2017
2018 sk_enter_memory_pressure(sk);
2019 sk_stream_moderate_sndbuf(sk);
2020 return false;
2021 }
2022 EXPORT_SYMBOL(sk_page_frag_refill);
2023
2024 static void __lock_sock(struct sock *sk)
2025 __releases(&sk->sk_lock.slock)
2026 __acquires(&sk->sk_lock.slock)
2027 {
2028 DEFINE_WAIT(wait);
2029
2030 for (;;) {
2031 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2032 TASK_UNINTERRUPTIBLE);
2033 spin_unlock_bh(&sk->sk_lock.slock);
2034 schedule();
2035 spin_lock_bh(&sk->sk_lock.slock);
2036 if (!sock_owned_by_user(sk))
2037 break;
2038 }
2039 finish_wait(&sk->sk_lock.wq, &wait);
2040 }
2041
2042 static void __release_sock(struct sock *sk)
2043 __releases(&sk->sk_lock.slock)
2044 __acquires(&sk->sk_lock.slock)
2045 {
2046 struct sk_buff *skb, *next;
2047
2048 while ((skb = sk->sk_backlog.head) != NULL) {
2049 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2050
2051 spin_unlock_bh(&sk->sk_lock.slock);
2052
2053 do {
2054 next = skb->next;
2055 prefetch(next);
2056 WARN_ON_ONCE(skb_dst_is_noref(skb));
2057 skb->next = NULL;
2058 sk_backlog_rcv(sk, skb);
2059
2060 cond_resched();
2061
2062 skb = next;
2063 } while (skb != NULL);
2064
2065 spin_lock_bh(&sk->sk_lock.slock);
2066 }
2067
2068 /*
2069 * Doing the zeroing here guarantee we can not loop forever
2070 * while a wild producer attempts to flood us.
2071 */
2072 sk->sk_backlog.len = 0;
2073 }
2074
2075 void __sk_flush_backlog(struct sock *sk)
2076 {
2077 spin_lock_bh(&sk->sk_lock.slock);
2078 __release_sock(sk);
2079 spin_unlock_bh(&sk->sk_lock.slock);
2080 }
2081
2082 /**
2083 * sk_wait_data - wait for data to arrive at sk_receive_queue
2084 * @sk: sock to wait on
2085 * @timeo: for how long
2086 * @skb: last skb seen on sk_receive_queue
2087 *
2088 * Now socket state including sk->sk_err is changed only under lock,
2089 * hence we may omit checks after joining wait queue.
2090 * We check receive queue before schedule() only as optimization;
2091 * it is very likely that release_sock() added new data.
2092 */
2093 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2094 {
2095 int rc;
2096 DEFINE_WAIT(wait);
2097
2098 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2099 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2100 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2101 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2102 finish_wait(sk_sleep(sk), &wait);
2103 return rc;
2104 }
2105 EXPORT_SYMBOL(sk_wait_data);
2106
2107 /**
2108 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2109 * @sk: socket
2110 * @size: memory size to allocate
2111 * @kind: allocation type
2112 *
2113 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2114 * rmem allocation. This function assumes that protocols which have
2115 * memory_pressure use sk_wmem_queued as write buffer accounting.
2116 */
2117 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2118 {
2119 struct proto *prot = sk->sk_prot;
2120 int amt = sk_mem_pages(size);
2121 long allocated;
2122
2123 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2124
2125 allocated = sk_memory_allocated_add(sk, amt);
2126
2127 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2128 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2129 goto suppress_allocation;
2130
2131 /* Under limit. */
2132 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2133 sk_leave_memory_pressure(sk);
2134 return 1;
2135 }
2136
2137 /* Under pressure. */
2138 if (allocated > sk_prot_mem_limits(sk, 1))
2139 sk_enter_memory_pressure(sk);
2140
2141 /* Over hard limit. */
2142 if (allocated > sk_prot_mem_limits(sk, 2))
2143 goto suppress_allocation;
2144
2145 /* guarantee minimum buffer size under pressure */
2146 if (kind == SK_MEM_RECV) {
2147 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2148 return 1;
2149
2150 } else { /* SK_MEM_SEND */
2151 if (sk->sk_type == SOCK_STREAM) {
2152 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2153 return 1;
2154 } else if (atomic_read(&sk->sk_wmem_alloc) <
2155 prot->sysctl_wmem[0])
2156 return 1;
2157 }
2158
2159 if (sk_has_memory_pressure(sk)) {
2160 int alloc;
2161
2162 if (!sk_under_memory_pressure(sk))
2163 return 1;
2164 alloc = sk_sockets_allocated_read_positive(sk);
2165 if (sk_prot_mem_limits(sk, 2) > alloc *
2166 sk_mem_pages(sk->sk_wmem_queued +
2167 atomic_read(&sk->sk_rmem_alloc) +
2168 sk->sk_forward_alloc))
2169 return 1;
2170 }
2171
2172 suppress_allocation:
2173
2174 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2175 sk_stream_moderate_sndbuf(sk);
2176
2177 /* Fail only if socket is _under_ its sndbuf.
2178 * In this case we cannot block, so that we have to fail.
2179 */
2180 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2181 return 1;
2182 }
2183
2184 trace_sock_exceed_buf_limit(sk, prot, allocated);
2185
2186 /* Alas. Undo changes. */
2187 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2188
2189 sk_memory_allocated_sub(sk, amt);
2190
2191 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2192 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2193
2194 return 0;
2195 }
2196 EXPORT_SYMBOL(__sk_mem_schedule);
2197
2198 /**
2199 * __sk_mem_reclaim - reclaim memory_allocated
2200 * @sk: socket
2201 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2202 */
2203 void __sk_mem_reclaim(struct sock *sk, int amount)
2204 {
2205 amount >>= SK_MEM_QUANTUM_SHIFT;
2206 sk_memory_allocated_sub(sk, amount);
2207 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2208
2209 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2210 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2211
2212 if (sk_under_memory_pressure(sk) &&
2213 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2214 sk_leave_memory_pressure(sk);
2215 }
2216 EXPORT_SYMBOL(__sk_mem_reclaim);
2217
2218 int sk_set_peek_off(struct sock *sk, int val)
2219 {
2220 if (val < 0)
2221 return -EINVAL;
2222
2223 sk->sk_peek_off = val;
2224 return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2227
2228 /*
2229 * Set of default routines for initialising struct proto_ops when
2230 * the protocol does not support a particular function. In certain
2231 * cases where it makes no sense for a protocol to have a "do nothing"
2232 * function, some default processing is provided.
2233 */
2234
2235 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2236 {
2237 return -EOPNOTSUPP;
2238 }
2239 EXPORT_SYMBOL(sock_no_bind);
2240
2241 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2242 int len, int flags)
2243 {
2244 return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_connect);
2247
2248 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2249 {
2250 return -EOPNOTSUPP;
2251 }
2252 EXPORT_SYMBOL(sock_no_socketpair);
2253
2254 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2255 {
2256 return -EOPNOTSUPP;
2257 }
2258 EXPORT_SYMBOL(sock_no_accept);
2259
2260 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2261 int *len, int peer)
2262 {
2263 return -EOPNOTSUPP;
2264 }
2265 EXPORT_SYMBOL(sock_no_getname);
2266
2267 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2268 {
2269 return 0;
2270 }
2271 EXPORT_SYMBOL(sock_no_poll);
2272
2273 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2274 {
2275 return -EOPNOTSUPP;
2276 }
2277 EXPORT_SYMBOL(sock_no_ioctl);
2278
2279 int sock_no_listen(struct socket *sock, int backlog)
2280 {
2281 return -EOPNOTSUPP;
2282 }
2283 EXPORT_SYMBOL(sock_no_listen);
2284
2285 int sock_no_shutdown(struct socket *sock, int how)
2286 {
2287 return -EOPNOTSUPP;
2288 }
2289 EXPORT_SYMBOL(sock_no_shutdown);
2290
2291 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2292 char __user *optval, unsigned int optlen)
2293 {
2294 return -EOPNOTSUPP;
2295 }
2296 EXPORT_SYMBOL(sock_no_setsockopt);
2297
2298 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2299 char __user *optval, int __user *optlen)
2300 {
2301 return -EOPNOTSUPP;
2302 }
2303 EXPORT_SYMBOL(sock_no_getsockopt);
2304
2305 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2306 {
2307 return -EOPNOTSUPP;
2308 }
2309 EXPORT_SYMBOL(sock_no_sendmsg);
2310
2311 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2312 int flags)
2313 {
2314 return -EOPNOTSUPP;
2315 }
2316 EXPORT_SYMBOL(sock_no_recvmsg);
2317
2318 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2319 {
2320 /* Mirror missing mmap method error code */
2321 return -ENODEV;
2322 }
2323 EXPORT_SYMBOL(sock_no_mmap);
2324
2325 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2326 {
2327 ssize_t res;
2328 struct msghdr msg = {.msg_flags = flags};
2329 struct kvec iov;
2330 char *kaddr = kmap(page);
2331 iov.iov_base = kaddr + offset;
2332 iov.iov_len = size;
2333 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2334 kunmap(page);
2335 return res;
2336 }
2337 EXPORT_SYMBOL(sock_no_sendpage);
2338
2339 /*
2340 * Default Socket Callbacks
2341 */
2342
2343 static void sock_def_wakeup(struct sock *sk)
2344 {
2345 struct socket_wq *wq;
2346
2347 rcu_read_lock();
2348 wq = rcu_dereference(sk->sk_wq);
2349 if (skwq_has_sleeper(wq))
2350 wake_up_interruptible_all(&wq->wait);
2351 rcu_read_unlock();
2352 }
2353
2354 static void sock_def_error_report(struct sock *sk)
2355 {
2356 struct socket_wq *wq;
2357
2358 rcu_read_lock();
2359 wq = rcu_dereference(sk->sk_wq);
2360 if (skwq_has_sleeper(wq))
2361 wake_up_interruptible_poll(&wq->wait, POLLERR);
2362 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2363 rcu_read_unlock();
2364 }
2365
2366 static void sock_def_readable(struct sock *sk)
2367 {
2368 struct socket_wq *wq;
2369
2370 rcu_read_lock();
2371 wq = rcu_dereference(sk->sk_wq);
2372 if (skwq_has_sleeper(wq))
2373 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2374 POLLRDNORM | POLLRDBAND);
2375 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2376 rcu_read_unlock();
2377 }
2378
2379 static void sock_def_write_space(struct sock *sk)
2380 {
2381 struct socket_wq *wq;
2382
2383 rcu_read_lock();
2384
2385 /* Do not wake up a writer until he can make "significant"
2386 * progress. --DaveM
2387 */
2388 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2389 wq = rcu_dereference(sk->sk_wq);
2390 if (skwq_has_sleeper(wq))
2391 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2392 POLLWRNORM | POLLWRBAND);
2393
2394 /* Should agree with poll, otherwise some programs break */
2395 if (sock_writeable(sk))
2396 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2397 }
2398
2399 rcu_read_unlock();
2400 }
2401
2402 static void sock_def_destruct(struct sock *sk)
2403 {
2404 }
2405
2406 void sk_send_sigurg(struct sock *sk)
2407 {
2408 if (sk->sk_socket && sk->sk_socket->file)
2409 if (send_sigurg(&sk->sk_socket->file->f_owner))
2410 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2411 }
2412 EXPORT_SYMBOL(sk_send_sigurg);
2413
2414 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2415 unsigned long expires)
2416 {
2417 if (!mod_timer(timer, expires))
2418 sock_hold(sk);
2419 }
2420 EXPORT_SYMBOL(sk_reset_timer);
2421
2422 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2423 {
2424 if (del_timer(timer))
2425 __sock_put(sk);
2426 }
2427 EXPORT_SYMBOL(sk_stop_timer);
2428
2429 void sock_init_data(struct socket *sock, struct sock *sk)
2430 {
2431 skb_queue_head_init(&sk->sk_receive_queue);
2432 skb_queue_head_init(&sk->sk_write_queue);
2433 skb_queue_head_init(&sk->sk_error_queue);
2434
2435 sk->sk_send_head = NULL;
2436
2437 init_timer(&sk->sk_timer);
2438
2439 sk->sk_allocation = GFP_KERNEL;
2440 sk->sk_rcvbuf = sysctl_rmem_default;
2441 sk->sk_sndbuf = sysctl_wmem_default;
2442 sk->sk_state = TCP_CLOSE;
2443 sk_set_socket(sk, sock);
2444
2445 sock_set_flag(sk, SOCK_ZAPPED);
2446
2447 if (sock) {
2448 sk->sk_type = sock->type;
2449 sk->sk_wq = sock->wq;
2450 sock->sk = sk;
2451 } else
2452 sk->sk_wq = NULL;
2453
2454 rwlock_init(&sk->sk_callback_lock);
2455 lockdep_set_class_and_name(&sk->sk_callback_lock,
2456 af_callback_keys + sk->sk_family,
2457 af_family_clock_key_strings[sk->sk_family]);
2458
2459 sk->sk_state_change = sock_def_wakeup;
2460 sk->sk_data_ready = sock_def_readable;
2461 sk->sk_write_space = sock_def_write_space;
2462 sk->sk_error_report = sock_def_error_report;
2463 sk->sk_destruct = sock_def_destruct;
2464
2465 sk->sk_frag.page = NULL;
2466 sk->sk_frag.offset = 0;
2467 sk->sk_peek_off = -1;
2468
2469 sk->sk_peer_pid = NULL;
2470 sk->sk_peer_cred = NULL;
2471 sk->sk_write_pending = 0;
2472 sk->sk_rcvlowat = 1;
2473 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2474 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2475
2476 sk->sk_stamp = ktime_set(-1L, 0);
2477
2478 #ifdef CONFIG_NET_RX_BUSY_POLL
2479 sk->sk_napi_id = 0;
2480 sk->sk_ll_usec = sysctl_net_busy_read;
2481 #endif
2482
2483 sk->sk_max_pacing_rate = ~0U;
2484 sk->sk_pacing_rate = ~0U;
2485 sk->sk_incoming_cpu = -1;
2486 /*
2487 * Before updating sk_refcnt, we must commit prior changes to memory
2488 * (Documentation/RCU/rculist_nulls.txt for details)
2489 */
2490 smp_wmb();
2491 atomic_set(&sk->sk_refcnt, 1);
2492 atomic_set(&sk->sk_drops, 0);
2493 }
2494 EXPORT_SYMBOL(sock_init_data);
2495
2496 void lock_sock_nested(struct sock *sk, int subclass)
2497 {
2498 might_sleep();
2499 spin_lock_bh(&sk->sk_lock.slock);
2500 if (sk->sk_lock.owned)
2501 __lock_sock(sk);
2502 sk->sk_lock.owned = 1;
2503 spin_unlock(&sk->sk_lock.slock);
2504 /*
2505 * The sk_lock has mutex_lock() semantics here:
2506 */
2507 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2508 local_bh_enable();
2509 }
2510 EXPORT_SYMBOL(lock_sock_nested);
2511
2512 void release_sock(struct sock *sk)
2513 {
2514 spin_lock_bh(&sk->sk_lock.slock);
2515 if (sk->sk_backlog.tail)
2516 __release_sock(sk);
2517
2518 /* Warning : release_cb() might need to release sk ownership,
2519 * ie call sock_release_ownership(sk) before us.
2520 */
2521 if (sk->sk_prot->release_cb)
2522 sk->sk_prot->release_cb(sk);
2523
2524 sock_release_ownership(sk);
2525 if (waitqueue_active(&sk->sk_lock.wq))
2526 wake_up(&sk->sk_lock.wq);
2527 spin_unlock_bh(&sk->sk_lock.slock);
2528 }
2529 EXPORT_SYMBOL(release_sock);
2530
2531 /**
2532 * lock_sock_fast - fast version of lock_sock
2533 * @sk: socket
2534 *
2535 * This version should be used for very small section, where process wont block
2536 * return false if fast path is taken
2537 * sk_lock.slock locked, owned = 0, BH disabled
2538 * return true if slow path is taken
2539 * sk_lock.slock unlocked, owned = 1, BH enabled
2540 */
2541 bool lock_sock_fast(struct sock *sk)
2542 {
2543 might_sleep();
2544 spin_lock_bh(&sk->sk_lock.slock);
2545
2546 if (!sk->sk_lock.owned)
2547 /*
2548 * Note : We must disable BH
2549 */
2550 return false;
2551
2552 __lock_sock(sk);
2553 sk->sk_lock.owned = 1;
2554 spin_unlock(&sk->sk_lock.slock);
2555 /*
2556 * The sk_lock has mutex_lock() semantics here:
2557 */
2558 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2559 local_bh_enable();
2560 return true;
2561 }
2562 EXPORT_SYMBOL(lock_sock_fast);
2563
2564 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2565 {
2566 struct timeval tv;
2567 if (!sock_flag(sk, SOCK_TIMESTAMP))
2568 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2569 tv = ktime_to_timeval(sk->sk_stamp);
2570 if (tv.tv_sec == -1)
2571 return -ENOENT;
2572 if (tv.tv_sec == 0) {
2573 sk->sk_stamp = ktime_get_real();
2574 tv = ktime_to_timeval(sk->sk_stamp);
2575 }
2576 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2577 }
2578 EXPORT_SYMBOL(sock_get_timestamp);
2579
2580 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2581 {
2582 struct timespec ts;
2583 if (!sock_flag(sk, SOCK_TIMESTAMP))
2584 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2585 ts = ktime_to_timespec(sk->sk_stamp);
2586 if (ts.tv_sec == -1)
2587 return -ENOENT;
2588 if (ts.tv_sec == 0) {
2589 sk->sk_stamp = ktime_get_real();
2590 ts = ktime_to_timespec(sk->sk_stamp);
2591 }
2592 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2593 }
2594 EXPORT_SYMBOL(sock_get_timestampns);
2595
2596 void sock_enable_timestamp(struct sock *sk, int flag)
2597 {
2598 if (!sock_flag(sk, flag)) {
2599 unsigned long previous_flags = sk->sk_flags;
2600
2601 sock_set_flag(sk, flag);
2602 /*
2603 * we just set one of the two flags which require net
2604 * time stamping, but time stamping might have been on
2605 * already because of the other one
2606 */
2607 if (sock_needs_netstamp(sk) &&
2608 !(previous_flags & SK_FLAGS_TIMESTAMP))
2609 net_enable_timestamp();
2610 }
2611 }
2612
2613 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2614 int level, int type)
2615 {
2616 struct sock_exterr_skb *serr;
2617 struct sk_buff *skb;
2618 int copied, err;
2619
2620 err = -EAGAIN;
2621 skb = sock_dequeue_err_skb(sk);
2622 if (skb == NULL)
2623 goto out;
2624
2625 copied = skb->len;
2626 if (copied > len) {
2627 msg->msg_flags |= MSG_TRUNC;
2628 copied = len;
2629 }
2630 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2631 if (err)
2632 goto out_free_skb;
2633
2634 sock_recv_timestamp(msg, sk, skb);
2635
2636 serr = SKB_EXT_ERR(skb);
2637 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2638
2639 msg->msg_flags |= MSG_ERRQUEUE;
2640 err = copied;
2641
2642 out_free_skb:
2643 kfree_skb(skb);
2644 out:
2645 return err;
2646 }
2647 EXPORT_SYMBOL(sock_recv_errqueue);
2648
2649 /*
2650 * Get a socket option on an socket.
2651 *
2652 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2653 * asynchronous errors should be reported by getsockopt. We assume
2654 * this means if you specify SO_ERROR (otherwise whats the point of it).
2655 */
2656 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2657 char __user *optval, int __user *optlen)
2658 {
2659 struct sock *sk = sock->sk;
2660
2661 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2662 }
2663 EXPORT_SYMBOL(sock_common_getsockopt);
2664
2665 #ifdef CONFIG_COMPAT
2666 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2667 char __user *optval, int __user *optlen)
2668 {
2669 struct sock *sk = sock->sk;
2670
2671 if (sk->sk_prot->compat_getsockopt != NULL)
2672 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2673 optval, optlen);
2674 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2675 }
2676 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2677 #endif
2678
2679 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2680 int flags)
2681 {
2682 struct sock *sk = sock->sk;
2683 int addr_len = 0;
2684 int err;
2685
2686 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2687 flags & ~MSG_DONTWAIT, &addr_len);
2688 if (err >= 0)
2689 msg->msg_namelen = addr_len;
2690 return err;
2691 }
2692 EXPORT_SYMBOL(sock_common_recvmsg);
2693
2694 /*
2695 * Set socket options on an inet socket.
2696 */
2697 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2698 char __user *optval, unsigned int optlen)
2699 {
2700 struct sock *sk = sock->sk;
2701
2702 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2703 }
2704 EXPORT_SYMBOL(sock_common_setsockopt);
2705
2706 #ifdef CONFIG_COMPAT
2707 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2708 char __user *optval, unsigned int optlen)
2709 {
2710 struct sock *sk = sock->sk;
2711
2712 if (sk->sk_prot->compat_setsockopt != NULL)
2713 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2714 optval, optlen);
2715 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2716 }
2717 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2718 #endif
2719
2720 void sk_common_release(struct sock *sk)
2721 {
2722 if (sk->sk_prot->destroy)
2723 sk->sk_prot->destroy(sk);
2724
2725 /*
2726 * Observation: when sock_common_release is called, processes have
2727 * no access to socket. But net still has.
2728 * Step one, detach it from networking:
2729 *
2730 * A. Remove from hash tables.
2731 */
2732
2733 sk->sk_prot->unhash(sk);
2734
2735 /*
2736 * In this point socket cannot receive new packets, but it is possible
2737 * that some packets are in flight because some CPU runs receiver and
2738 * did hash table lookup before we unhashed socket. They will achieve
2739 * receive queue and will be purged by socket destructor.
2740 *
2741 * Also we still have packets pending on receive queue and probably,
2742 * our own packets waiting in device queues. sock_destroy will drain
2743 * receive queue, but transmitted packets will delay socket destruction
2744 * until the last reference will be released.
2745 */
2746
2747 sock_orphan(sk);
2748
2749 xfrm_sk_free_policy(sk);
2750
2751 sk_refcnt_debug_release(sk);
2752
2753 if (sk->sk_frag.page) {
2754 put_page(sk->sk_frag.page);
2755 sk->sk_frag.page = NULL;
2756 }
2757
2758 sock_put(sk);
2759 }
2760 EXPORT_SYMBOL(sk_common_release);
2761
2762 #ifdef CONFIG_PROC_FS
2763 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2764 struct prot_inuse {
2765 int val[PROTO_INUSE_NR];
2766 };
2767
2768 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2769
2770 #ifdef CONFIG_NET_NS
2771 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2772 {
2773 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2774 }
2775 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2776
2777 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2778 {
2779 int cpu, idx = prot->inuse_idx;
2780 int res = 0;
2781
2782 for_each_possible_cpu(cpu)
2783 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2784
2785 return res >= 0 ? res : 0;
2786 }
2787 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2788
2789 static int __net_init sock_inuse_init_net(struct net *net)
2790 {
2791 net->core.inuse = alloc_percpu(struct prot_inuse);
2792 return net->core.inuse ? 0 : -ENOMEM;
2793 }
2794
2795 static void __net_exit sock_inuse_exit_net(struct net *net)
2796 {
2797 free_percpu(net->core.inuse);
2798 }
2799
2800 static struct pernet_operations net_inuse_ops = {
2801 .init = sock_inuse_init_net,
2802 .exit = sock_inuse_exit_net,
2803 };
2804
2805 static __init int net_inuse_init(void)
2806 {
2807 if (register_pernet_subsys(&net_inuse_ops))
2808 panic("Cannot initialize net inuse counters");
2809
2810 return 0;
2811 }
2812
2813 core_initcall(net_inuse_init);
2814 #else
2815 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2816
2817 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2818 {
2819 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2820 }
2821 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2822
2823 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2824 {
2825 int cpu, idx = prot->inuse_idx;
2826 int res = 0;
2827
2828 for_each_possible_cpu(cpu)
2829 res += per_cpu(prot_inuse, cpu).val[idx];
2830
2831 return res >= 0 ? res : 0;
2832 }
2833 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2834 #endif
2835
2836 static void assign_proto_idx(struct proto *prot)
2837 {
2838 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2839
2840 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2841 pr_err("PROTO_INUSE_NR exhausted\n");
2842 return;
2843 }
2844
2845 set_bit(prot->inuse_idx, proto_inuse_idx);
2846 }
2847
2848 static void release_proto_idx(struct proto *prot)
2849 {
2850 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2851 clear_bit(prot->inuse_idx, proto_inuse_idx);
2852 }
2853 #else
2854 static inline void assign_proto_idx(struct proto *prot)
2855 {
2856 }
2857
2858 static inline void release_proto_idx(struct proto *prot)
2859 {
2860 }
2861 #endif
2862
2863 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2864 {
2865 if (!rsk_prot)
2866 return;
2867 kfree(rsk_prot->slab_name);
2868 rsk_prot->slab_name = NULL;
2869 kmem_cache_destroy(rsk_prot->slab);
2870 rsk_prot->slab = NULL;
2871 }
2872
2873 static int req_prot_init(const struct proto *prot)
2874 {
2875 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2876
2877 if (!rsk_prot)
2878 return 0;
2879
2880 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2881 prot->name);
2882 if (!rsk_prot->slab_name)
2883 return -ENOMEM;
2884
2885 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2886 rsk_prot->obj_size, 0,
2887 prot->slab_flags, NULL);
2888
2889 if (!rsk_prot->slab) {
2890 pr_crit("%s: Can't create request sock SLAB cache!\n",
2891 prot->name);
2892 return -ENOMEM;
2893 }
2894 return 0;
2895 }
2896
2897 int proto_register(struct proto *prot, int alloc_slab)
2898 {
2899 if (alloc_slab) {
2900 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2901 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2902 NULL);
2903
2904 if (prot->slab == NULL) {
2905 pr_crit("%s: Can't create sock SLAB cache!\n",
2906 prot->name);
2907 goto out;
2908 }
2909
2910 if (req_prot_init(prot))
2911 goto out_free_request_sock_slab;
2912
2913 if (prot->twsk_prot != NULL) {
2914 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2915
2916 if (prot->twsk_prot->twsk_slab_name == NULL)
2917 goto out_free_request_sock_slab;
2918
2919 prot->twsk_prot->twsk_slab =
2920 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2921 prot->twsk_prot->twsk_obj_size,
2922 0,
2923 prot->slab_flags,
2924 NULL);
2925 if (prot->twsk_prot->twsk_slab == NULL)
2926 goto out_free_timewait_sock_slab_name;
2927 }
2928 }
2929
2930 mutex_lock(&proto_list_mutex);
2931 list_add(&prot->node, &proto_list);
2932 assign_proto_idx(prot);
2933 mutex_unlock(&proto_list_mutex);
2934 return 0;
2935
2936 out_free_timewait_sock_slab_name:
2937 kfree(prot->twsk_prot->twsk_slab_name);
2938 out_free_request_sock_slab:
2939 req_prot_cleanup(prot->rsk_prot);
2940
2941 kmem_cache_destroy(prot->slab);
2942 prot->slab = NULL;
2943 out:
2944 return -ENOBUFS;
2945 }
2946 EXPORT_SYMBOL(proto_register);
2947
2948 void proto_unregister(struct proto *prot)
2949 {
2950 mutex_lock(&proto_list_mutex);
2951 release_proto_idx(prot);
2952 list_del(&prot->node);
2953 mutex_unlock(&proto_list_mutex);
2954
2955 kmem_cache_destroy(prot->slab);
2956 prot->slab = NULL;
2957
2958 req_prot_cleanup(prot->rsk_prot);
2959
2960 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2961 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2962 kfree(prot->twsk_prot->twsk_slab_name);
2963 prot->twsk_prot->twsk_slab = NULL;
2964 }
2965 }
2966 EXPORT_SYMBOL(proto_unregister);
2967
2968 #ifdef CONFIG_PROC_FS
2969 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2970 __acquires(proto_list_mutex)
2971 {
2972 mutex_lock(&proto_list_mutex);
2973 return seq_list_start_head(&proto_list, *pos);
2974 }
2975
2976 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2977 {
2978 return seq_list_next(v, &proto_list, pos);
2979 }
2980
2981 static void proto_seq_stop(struct seq_file *seq, void *v)
2982 __releases(proto_list_mutex)
2983 {
2984 mutex_unlock(&proto_list_mutex);
2985 }
2986
2987 static char proto_method_implemented(const void *method)
2988 {
2989 return method == NULL ? 'n' : 'y';
2990 }
2991 static long sock_prot_memory_allocated(struct proto *proto)
2992 {
2993 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2994 }
2995
2996 static char *sock_prot_memory_pressure(struct proto *proto)
2997 {
2998 return proto->memory_pressure != NULL ?
2999 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3000 }
3001
3002 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3003 {
3004
3005 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3006 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3007 proto->name,
3008 proto->obj_size,
3009 sock_prot_inuse_get(seq_file_net(seq), proto),
3010 sock_prot_memory_allocated(proto),
3011 sock_prot_memory_pressure(proto),
3012 proto->max_header,
3013 proto->slab == NULL ? "no" : "yes",
3014 module_name(proto->owner),
3015 proto_method_implemented(proto->close),
3016 proto_method_implemented(proto->connect),
3017 proto_method_implemented(proto->disconnect),
3018 proto_method_implemented(proto->accept),
3019 proto_method_implemented(proto->ioctl),
3020 proto_method_implemented(proto->init),
3021 proto_method_implemented(proto->destroy),
3022 proto_method_implemented(proto->shutdown),
3023 proto_method_implemented(proto->setsockopt),
3024 proto_method_implemented(proto->getsockopt),
3025 proto_method_implemented(proto->sendmsg),
3026 proto_method_implemented(proto->recvmsg),
3027 proto_method_implemented(proto->sendpage),
3028 proto_method_implemented(proto->bind),
3029 proto_method_implemented(proto->backlog_rcv),
3030 proto_method_implemented(proto->hash),
3031 proto_method_implemented(proto->unhash),
3032 proto_method_implemented(proto->get_port),
3033 proto_method_implemented(proto->enter_memory_pressure));
3034 }
3035
3036 static int proto_seq_show(struct seq_file *seq, void *v)
3037 {
3038 if (v == &proto_list)
3039 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3040 "protocol",
3041 "size",
3042 "sockets",
3043 "memory",
3044 "press",
3045 "maxhdr",
3046 "slab",
3047 "module",
3048 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3049 else
3050 proto_seq_printf(seq, list_entry(v, struct proto, node));
3051 return 0;
3052 }
3053
3054 static const struct seq_operations proto_seq_ops = {
3055 .start = proto_seq_start,
3056 .next = proto_seq_next,
3057 .stop = proto_seq_stop,
3058 .show = proto_seq_show,
3059 };
3060
3061 static int proto_seq_open(struct inode *inode, struct file *file)
3062 {
3063 return seq_open_net(inode, file, &proto_seq_ops,
3064 sizeof(struct seq_net_private));
3065 }
3066
3067 static const struct file_operations proto_seq_fops = {
3068 .owner = THIS_MODULE,
3069 .open = proto_seq_open,
3070 .read = seq_read,
3071 .llseek = seq_lseek,
3072 .release = seq_release_net,
3073 };
3074
3075 static __net_init int proto_init_net(struct net *net)
3076 {
3077 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3078 return -ENOMEM;
3079
3080 return 0;
3081 }
3082
3083 static __net_exit void proto_exit_net(struct net *net)
3084 {
3085 remove_proc_entry("protocols", net->proc_net);
3086 }
3087
3088
3089 static __net_initdata struct pernet_operations proto_net_ops = {
3090 .init = proto_init_net,
3091 .exit = proto_exit_net,
3092 };
3093
3094 static int __init proto_init(void)
3095 {
3096 return register_pernet_subsys(&proto_net_ops);
3097 }
3098
3099 subsys_initcall(proto_init);
3100
3101 #endif /* PROC_FS */
This page took 0.262996 seconds and 5 git commands to generate.