net: attempt high order allocations in sock_alloc_send_pskb()
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134
135 #include <linux/filter.h>
136
137 #include <trace/events/sock.h>
138
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 #ifdef CONFIG_MEMCG_KMEM
149 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
150 {
151 struct proto *proto;
152 int ret = 0;
153
154 mutex_lock(&proto_list_mutex);
155 list_for_each_entry(proto, &proto_list, node) {
156 if (proto->init_cgroup) {
157 ret = proto->init_cgroup(memcg, ss);
158 if (ret)
159 goto out;
160 }
161 }
162
163 mutex_unlock(&proto_list_mutex);
164 return ret;
165 out:
166 list_for_each_entry_continue_reverse(proto, &proto_list, node)
167 if (proto->destroy_cgroup)
168 proto->destroy_cgroup(memcg);
169 mutex_unlock(&proto_list_mutex);
170 return ret;
171 }
172
173 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
174 {
175 struct proto *proto;
176
177 mutex_lock(&proto_list_mutex);
178 list_for_each_entry_reverse(proto, &proto_list, node)
179 if (proto->destroy_cgroup)
180 proto->destroy_cgroup(memcg);
181 mutex_unlock(&proto_list_mutex);
182 }
183 #endif
184
185 /*
186 * Each address family might have different locking rules, so we have
187 * one slock key per address family:
188 */
189 static struct lock_class_key af_family_keys[AF_MAX];
190 static struct lock_class_key af_family_slock_keys[AF_MAX];
191
192 #if defined(CONFIG_MEMCG_KMEM)
193 struct static_key memcg_socket_limit_enabled;
194 EXPORT_SYMBOL(memcg_socket_limit_enabled);
195 #endif
196
197 /*
198 * Make lock validator output more readable. (we pre-construct these
199 * strings build-time, so that runtime initialization of socket
200 * locks is fast):
201 */
202 static const char *const af_family_key_strings[AF_MAX+1] = {
203 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
204 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
205 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
206 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
207 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
208 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
209 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
210 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
211 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
212 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
213 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
214 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
215 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
216 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
217 };
218 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
219 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
220 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
221 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
222 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
223 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
224 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
225 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
226 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
227 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
228 "slock-27" , "slock-28" , "slock-AF_CAN" ,
229 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
230 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
231 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
232 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
233 };
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
236 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
237 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
238 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
239 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
240 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
241 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
242 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
243 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
244 "clock-27" , "clock-28" , "clock-AF_CAN" ,
245 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
246 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
247 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
248 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
249 };
250
251 /*
252 * sk_callback_lock locking rules are per-address-family,
253 * so split the lock classes by using a per-AF key:
254 */
255 static struct lock_class_key af_callback_keys[AF_MAX];
256
257 /* Take into consideration the size of the struct sk_buff overhead in the
258 * determination of these values, since that is non-constant across
259 * platforms. This makes socket queueing behavior and performance
260 * not depend upon such differences.
261 */
262 #define _SK_MEM_PACKETS 256
263 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
264 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
265 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
266
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
274
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
278
279 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
280 EXPORT_SYMBOL_GPL(memalloc_socks);
281
282 /**
283 * sk_set_memalloc - sets %SOCK_MEMALLOC
284 * @sk: socket to set it on
285 *
286 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
287 * It's the responsibility of the admin to adjust min_free_kbytes
288 * to meet the requirements
289 */
290 void sk_set_memalloc(struct sock *sk)
291 {
292 sock_set_flag(sk, SOCK_MEMALLOC);
293 sk->sk_allocation |= __GFP_MEMALLOC;
294 static_key_slow_inc(&memalloc_socks);
295 }
296 EXPORT_SYMBOL_GPL(sk_set_memalloc);
297
298 void sk_clear_memalloc(struct sock *sk)
299 {
300 sock_reset_flag(sk, SOCK_MEMALLOC);
301 sk->sk_allocation &= ~__GFP_MEMALLOC;
302 static_key_slow_dec(&memalloc_socks);
303
304 /*
305 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
306 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
307 * it has rmem allocations there is a risk that the user of the
308 * socket cannot make forward progress due to exceeding the rmem
309 * limits. By rights, sk_clear_memalloc() should only be called
310 * on sockets being torn down but warn and reset the accounting if
311 * that assumption breaks.
312 */
313 if (WARN_ON(sk->sk_forward_alloc))
314 sk_mem_reclaim(sk);
315 }
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317
318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
319 {
320 int ret;
321 unsigned long pflags = current->flags;
322
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325
326 current->flags |= PF_MEMALLOC;
327 ret = sk->sk_backlog_rcv(sk, skb);
328 tsk_restore_flags(current, pflags, PF_MEMALLOC);
329
330 return ret;
331 }
332 EXPORT_SYMBOL(__sk_backlog_rcv);
333
334 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
335 {
336 struct timeval tv;
337
338 if (optlen < sizeof(tv))
339 return -EINVAL;
340 if (copy_from_user(&tv, optval, sizeof(tv)))
341 return -EFAULT;
342 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
343 return -EDOM;
344
345 if (tv.tv_sec < 0) {
346 static int warned __read_mostly;
347
348 *timeo_p = 0;
349 if (warned < 10 && net_ratelimit()) {
350 warned++;
351 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
352 __func__, current->comm, task_pid_nr(current));
353 }
354 return 0;
355 }
356 *timeo_p = MAX_SCHEDULE_TIMEOUT;
357 if (tv.tv_sec == 0 && tv.tv_usec == 0)
358 return 0;
359 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
360 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
361 return 0;
362 }
363
364 static void sock_warn_obsolete_bsdism(const char *name)
365 {
366 static int warned;
367 static char warncomm[TASK_COMM_LEN];
368 if (strcmp(warncomm, current->comm) && warned < 5) {
369 strcpy(warncomm, current->comm);
370 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
371 warncomm, name);
372 warned++;
373 }
374 }
375
376 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
377
378 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
379 {
380 if (sk->sk_flags & flags) {
381 sk->sk_flags &= ~flags;
382 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
383 net_disable_timestamp();
384 }
385 }
386
387
388 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
389 {
390 int err;
391 int skb_len;
392 unsigned long flags;
393 struct sk_buff_head *list = &sk->sk_receive_queue;
394
395 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
396 atomic_inc(&sk->sk_drops);
397 trace_sock_rcvqueue_full(sk, skb);
398 return -ENOMEM;
399 }
400
401 err = sk_filter(sk, skb);
402 if (err)
403 return err;
404
405 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
406 atomic_inc(&sk->sk_drops);
407 return -ENOBUFS;
408 }
409
410 skb->dev = NULL;
411 skb_set_owner_r(skb, sk);
412
413 /* Cache the SKB length before we tack it onto the receive
414 * queue. Once it is added it no longer belongs to us and
415 * may be freed by other threads of control pulling packets
416 * from the queue.
417 */
418 skb_len = skb->len;
419
420 /* we escape from rcu protected region, make sure we dont leak
421 * a norefcounted dst
422 */
423 skb_dst_force(skb);
424
425 spin_lock_irqsave(&list->lock, flags);
426 skb->dropcount = atomic_read(&sk->sk_drops);
427 __skb_queue_tail(list, skb);
428 spin_unlock_irqrestore(&list->lock, flags);
429
430 if (!sock_flag(sk, SOCK_DEAD))
431 sk->sk_data_ready(sk, skb_len);
432 return 0;
433 }
434 EXPORT_SYMBOL(sock_queue_rcv_skb);
435
436 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
437 {
438 int rc = NET_RX_SUCCESS;
439
440 if (sk_filter(sk, skb))
441 goto discard_and_relse;
442
443 skb->dev = NULL;
444
445 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
446 atomic_inc(&sk->sk_drops);
447 goto discard_and_relse;
448 }
449 if (nested)
450 bh_lock_sock_nested(sk);
451 else
452 bh_lock_sock(sk);
453 if (!sock_owned_by_user(sk)) {
454 /*
455 * trylock + unlock semantics:
456 */
457 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
458
459 rc = sk_backlog_rcv(sk, skb);
460
461 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
462 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
463 bh_unlock_sock(sk);
464 atomic_inc(&sk->sk_drops);
465 goto discard_and_relse;
466 }
467
468 bh_unlock_sock(sk);
469 out:
470 sock_put(sk);
471 return rc;
472 discard_and_relse:
473 kfree_skb(skb);
474 goto out;
475 }
476 EXPORT_SYMBOL(sk_receive_skb);
477
478 void sk_reset_txq(struct sock *sk)
479 {
480 sk_tx_queue_clear(sk);
481 }
482 EXPORT_SYMBOL(sk_reset_txq);
483
484 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
485 {
486 struct dst_entry *dst = __sk_dst_get(sk);
487
488 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
489 sk_tx_queue_clear(sk);
490 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
491 dst_release(dst);
492 return NULL;
493 }
494
495 return dst;
496 }
497 EXPORT_SYMBOL(__sk_dst_check);
498
499 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
500 {
501 struct dst_entry *dst = sk_dst_get(sk);
502
503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 sk_dst_reset(sk);
505 dst_release(dst);
506 return NULL;
507 }
508
509 return dst;
510 }
511 EXPORT_SYMBOL(sk_dst_check);
512
513 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
514 int optlen)
515 {
516 int ret = -ENOPROTOOPT;
517 #ifdef CONFIG_NETDEVICES
518 struct net *net = sock_net(sk);
519 char devname[IFNAMSIZ];
520 int index;
521
522 /* Sorry... */
523 ret = -EPERM;
524 if (!ns_capable(net->user_ns, CAP_NET_RAW))
525 goto out;
526
527 ret = -EINVAL;
528 if (optlen < 0)
529 goto out;
530
531 /* Bind this socket to a particular device like "eth0",
532 * as specified in the passed interface name. If the
533 * name is "" or the option length is zero the socket
534 * is not bound.
535 */
536 if (optlen > IFNAMSIZ - 1)
537 optlen = IFNAMSIZ - 1;
538 memset(devname, 0, sizeof(devname));
539
540 ret = -EFAULT;
541 if (copy_from_user(devname, optval, optlen))
542 goto out;
543
544 index = 0;
545 if (devname[0] != '\0') {
546 struct net_device *dev;
547
548 rcu_read_lock();
549 dev = dev_get_by_name_rcu(net, devname);
550 if (dev)
551 index = dev->ifindex;
552 rcu_read_unlock();
553 ret = -ENODEV;
554 if (!dev)
555 goto out;
556 }
557
558 lock_sock(sk);
559 sk->sk_bound_dev_if = index;
560 sk_dst_reset(sk);
561 release_sock(sk);
562
563 ret = 0;
564
565 out:
566 #endif
567
568 return ret;
569 }
570
571 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
572 int __user *optlen, int len)
573 {
574 int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577 char devname[IFNAMSIZ];
578
579 if (sk->sk_bound_dev_if == 0) {
580 len = 0;
581 goto zero;
582 }
583
584 ret = -EINVAL;
585 if (len < IFNAMSIZ)
586 goto out;
587
588 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
589 if (ret)
590 goto out;
591
592 len = strlen(devname) + 1;
593
594 ret = -EFAULT;
595 if (copy_to_user(optval, devname, len))
596 goto out;
597
598 zero:
599 ret = -EFAULT;
600 if (put_user(len, optlen))
601 goto out;
602
603 ret = 0;
604
605 out:
606 #endif
607
608 return ret;
609 }
610
611 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
612 {
613 if (valbool)
614 sock_set_flag(sk, bit);
615 else
616 sock_reset_flag(sk, bit);
617 }
618
619 /*
620 * This is meant for all protocols to use and covers goings on
621 * at the socket level. Everything here is generic.
622 */
623
624 int sock_setsockopt(struct socket *sock, int level, int optname,
625 char __user *optval, unsigned int optlen)
626 {
627 struct sock *sk = sock->sk;
628 int val;
629 int valbool;
630 struct linger ling;
631 int ret = 0;
632
633 /*
634 * Options without arguments
635 */
636
637 if (optname == SO_BINDTODEVICE)
638 return sock_setbindtodevice(sk, optval, optlen);
639
640 if (optlen < sizeof(int))
641 return -EINVAL;
642
643 if (get_user(val, (int __user *)optval))
644 return -EFAULT;
645
646 valbool = val ? 1 : 0;
647
648 lock_sock(sk);
649
650 switch (optname) {
651 case SO_DEBUG:
652 if (val && !capable(CAP_NET_ADMIN))
653 ret = -EACCES;
654 else
655 sock_valbool_flag(sk, SOCK_DBG, valbool);
656 break;
657 case SO_REUSEADDR:
658 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
659 break;
660 case SO_REUSEPORT:
661 sk->sk_reuseport = valbool;
662 break;
663 case SO_TYPE:
664 case SO_PROTOCOL:
665 case SO_DOMAIN:
666 case SO_ERROR:
667 ret = -ENOPROTOOPT;
668 break;
669 case SO_DONTROUTE:
670 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
671 break;
672 case SO_BROADCAST:
673 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
674 break;
675 case SO_SNDBUF:
676 /* Don't error on this BSD doesn't and if you think
677 * about it this is right. Otherwise apps have to
678 * play 'guess the biggest size' games. RCVBUF/SNDBUF
679 * are treated in BSD as hints
680 */
681 val = min_t(u32, val, sysctl_wmem_max);
682 set_sndbuf:
683 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
684 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
685 /* Wake up sending tasks if we upped the value. */
686 sk->sk_write_space(sk);
687 break;
688
689 case SO_SNDBUFFORCE:
690 if (!capable(CAP_NET_ADMIN)) {
691 ret = -EPERM;
692 break;
693 }
694 goto set_sndbuf;
695
696 case SO_RCVBUF:
697 /* Don't error on this BSD doesn't and if you think
698 * about it this is right. Otherwise apps have to
699 * play 'guess the biggest size' games. RCVBUF/SNDBUF
700 * are treated in BSD as hints
701 */
702 val = min_t(u32, val, sysctl_rmem_max);
703 set_rcvbuf:
704 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
705 /*
706 * We double it on the way in to account for
707 * "struct sk_buff" etc. overhead. Applications
708 * assume that the SO_RCVBUF setting they make will
709 * allow that much actual data to be received on that
710 * socket.
711 *
712 * Applications are unaware that "struct sk_buff" and
713 * other overheads allocate from the receive buffer
714 * during socket buffer allocation.
715 *
716 * And after considering the possible alternatives,
717 * returning the value we actually used in getsockopt
718 * is the most desirable behavior.
719 */
720 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
721 break;
722
723 case SO_RCVBUFFORCE:
724 if (!capable(CAP_NET_ADMIN)) {
725 ret = -EPERM;
726 break;
727 }
728 goto set_rcvbuf;
729
730 case SO_KEEPALIVE:
731 #ifdef CONFIG_INET
732 if (sk->sk_protocol == IPPROTO_TCP &&
733 sk->sk_type == SOCK_STREAM)
734 tcp_set_keepalive(sk, valbool);
735 #endif
736 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
737 break;
738
739 case SO_OOBINLINE:
740 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
741 break;
742
743 case SO_NO_CHECK:
744 sk->sk_no_check = valbool;
745 break;
746
747 case SO_PRIORITY:
748 if ((val >= 0 && val <= 6) ||
749 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
750 sk->sk_priority = val;
751 else
752 ret = -EPERM;
753 break;
754
755 case SO_LINGER:
756 if (optlen < sizeof(ling)) {
757 ret = -EINVAL; /* 1003.1g */
758 break;
759 }
760 if (copy_from_user(&ling, optval, sizeof(ling))) {
761 ret = -EFAULT;
762 break;
763 }
764 if (!ling.l_onoff)
765 sock_reset_flag(sk, SOCK_LINGER);
766 else {
767 #if (BITS_PER_LONG == 32)
768 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
769 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
770 else
771 #endif
772 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
773 sock_set_flag(sk, SOCK_LINGER);
774 }
775 break;
776
777 case SO_BSDCOMPAT:
778 sock_warn_obsolete_bsdism("setsockopt");
779 break;
780
781 case SO_PASSCRED:
782 if (valbool)
783 set_bit(SOCK_PASSCRED, &sock->flags);
784 else
785 clear_bit(SOCK_PASSCRED, &sock->flags);
786 break;
787
788 case SO_TIMESTAMP:
789 case SO_TIMESTAMPNS:
790 if (valbool) {
791 if (optname == SO_TIMESTAMP)
792 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
793 else
794 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
795 sock_set_flag(sk, SOCK_RCVTSTAMP);
796 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
797 } else {
798 sock_reset_flag(sk, SOCK_RCVTSTAMP);
799 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
800 }
801 break;
802
803 case SO_TIMESTAMPING:
804 if (val & ~SOF_TIMESTAMPING_MASK) {
805 ret = -EINVAL;
806 break;
807 }
808 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
809 val & SOF_TIMESTAMPING_TX_HARDWARE);
810 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
811 val & SOF_TIMESTAMPING_TX_SOFTWARE);
812 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
813 val & SOF_TIMESTAMPING_RX_HARDWARE);
814 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
815 sock_enable_timestamp(sk,
816 SOCK_TIMESTAMPING_RX_SOFTWARE);
817 else
818 sock_disable_timestamp(sk,
819 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
821 val & SOF_TIMESTAMPING_SOFTWARE);
822 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
823 val & SOF_TIMESTAMPING_SYS_HARDWARE);
824 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
825 val & SOF_TIMESTAMPING_RAW_HARDWARE);
826 break;
827
828 case SO_RCVLOWAT:
829 if (val < 0)
830 val = INT_MAX;
831 sk->sk_rcvlowat = val ? : 1;
832 break;
833
834 case SO_RCVTIMEO:
835 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
836 break;
837
838 case SO_SNDTIMEO:
839 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
840 break;
841
842 case SO_ATTACH_FILTER:
843 ret = -EINVAL;
844 if (optlen == sizeof(struct sock_fprog)) {
845 struct sock_fprog fprog;
846
847 ret = -EFAULT;
848 if (copy_from_user(&fprog, optval, sizeof(fprog)))
849 break;
850
851 ret = sk_attach_filter(&fprog, sk);
852 }
853 break;
854
855 case SO_DETACH_FILTER:
856 ret = sk_detach_filter(sk);
857 break;
858
859 case SO_LOCK_FILTER:
860 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
861 ret = -EPERM;
862 else
863 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
864 break;
865
866 case SO_PASSSEC:
867 if (valbool)
868 set_bit(SOCK_PASSSEC, &sock->flags);
869 else
870 clear_bit(SOCK_PASSSEC, &sock->flags);
871 break;
872 case SO_MARK:
873 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
874 ret = -EPERM;
875 else
876 sk->sk_mark = val;
877 break;
878
879 /* We implement the SO_SNDLOWAT etc to
880 not be settable (1003.1g 5.3) */
881 case SO_RXQ_OVFL:
882 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
883 break;
884
885 case SO_WIFI_STATUS:
886 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
887 break;
888
889 case SO_PEEK_OFF:
890 if (sock->ops->set_peek_off)
891 sock->ops->set_peek_off(sk, val);
892 else
893 ret = -EOPNOTSUPP;
894 break;
895
896 case SO_NOFCS:
897 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
898 break;
899
900 case SO_SELECT_ERR_QUEUE:
901 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
902 break;
903
904 #ifdef CONFIG_NET_RX_BUSY_POLL
905 case SO_BUSY_POLL:
906 /* allow unprivileged users to decrease the value */
907 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
908 ret = -EPERM;
909 else {
910 if (val < 0)
911 ret = -EINVAL;
912 else
913 sk->sk_ll_usec = val;
914 }
915 break;
916 #endif
917 default:
918 ret = -ENOPROTOOPT;
919 break;
920 }
921 release_sock(sk);
922 return ret;
923 }
924 EXPORT_SYMBOL(sock_setsockopt);
925
926
927 void cred_to_ucred(struct pid *pid, const struct cred *cred,
928 struct ucred *ucred)
929 {
930 ucred->pid = pid_vnr(pid);
931 ucred->uid = ucred->gid = -1;
932 if (cred) {
933 struct user_namespace *current_ns = current_user_ns();
934
935 ucred->uid = from_kuid_munged(current_ns, cred->euid);
936 ucred->gid = from_kgid_munged(current_ns, cred->egid);
937 }
938 }
939 EXPORT_SYMBOL_GPL(cred_to_ucred);
940
941 int sock_getsockopt(struct socket *sock, int level, int optname,
942 char __user *optval, int __user *optlen)
943 {
944 struct sock *sk = sock->sk;
945
946 union {
947 int val;
948 struct linger ling;
949 struct timeval tm;
950 } v;
951
952 int lv = sizeof(int);
953 int len;
954
955 if (get_user(len, optlen))
956 return -EFAULT;
957 if (len < 0)
958 return -EINVAL;
959
960 memset(&v, 0, sizeof(v));
961
962 switch (optname) {
963 case SO_DEBUG:
964 v.val = sock_flag(sk, SOCK_DBG);
965 break;
966
967 case SO_DONTROUTE:
968 v.val = sock_flag(sk, SOCK_LOCALROUTE);
969 break;
970
971 case SO_BROADCAST:
972 v.val = sock_flag(sk, SOCK_BROADCAST);
973 break;
974
975 case SO_SNDBUF:
976 v.val = sk->sk_sndbuf;
977 break;
978
979 case SO_RCVBUF:
980 v.val = sk->sk_rcvbuf;
981 break;
982
983 case SO_REUSEADDR:
984 v.val = sk->sk_reuse;
985 break;
986
987 case SO_REUSEPORT:
988 v.val = sk->sk_reuseport;
989 break;
990
991 case SO_KEEPALIVE:
992 v.val = sock_flag(sk, SOCK_KEEPOPEN);
993 break;
994
995 case SO_TYPE:
996 v.val = sk->sk_type;
997 break;
998
999 case SO_PROTOCOL:
1000 v.val = sk->sk_protocol;
1001 break;
1002
1003 case SO_DOMAIN:
1004 v.val = sk->sk_family;
1005 break;
1006
1007 case SO_ERROR:
1008 v.val = -sock_error(sk);
1009 if (v.val == 0)
1010 v.val = xchg(&sk->sk_err_soft, 0);
1011 break;
1012
1013 case SO_OOBINLINE:
1014 v.val = sock_flag(sk, SOCK_URGINLINE);
1015 break;
1016
1017 case SO_NO_CHECK:
1018 v.val = sk->sk_no_check;
1019 break;
1020
1021 case SO_PRIORITY:
1022 v.val = sk->sk_priority;
1023 break;
1024
1025 case SO_LINGER:
1026 lv = sizeof(v.ling);
1027 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1028 v.ling.l_linger = sk->sk_lingertime / HZ;
1029 break;
1030
1031 case SO_BSDCOMPAT:
1032 sock_warn_obsolete_bsdism("getsockopt");
1033 break;
1034
1035 case SO_TIMESTAMP:
1036 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1037 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1038 break;
1039
1040 case SO_TIMESTAMPNS:
1041 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1042 break;
1043
1044 case SO_TIMESTAMPING:
1045 v.val = 0;
1046 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1047 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1048 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1049 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1050 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1051 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1052 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1053 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1054 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1055 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1056 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1057 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1058 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1059 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1060 break;
1061
1062 case SO_RCVTIMEO:
1063 lv = sizeof(struct timeval);
1064 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1065 v.tm.tv_sec = 0;
1066 v.tm.tv_usec = 0;
1067 } else {
1068 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1069 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1070 }
1071 break;
1072
1073 case SO_SNDTIMEO:
1074 lv = sizeof(struct timeval);
1075 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1076 v.tm.tv_sec = 0;
1077 v.tm.tv_usec = 0;
1078 } else {
1079 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1080 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1081 }
1082 break;
1083
1084 case SO_RCVLOWAT:
1085 v.val = sk->sk_rcvlowat;
1086 break;
1087
1088 case SO_SNDLOWAT:
1089 v.val = 1;
1090 break;
1091
1092 case SO_PASSCRED:
1093 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1094 break;
1095
1096 case SO_PEERCRED:
1097 {
1098 struct ucred peercred;
1099 if (len > sizeof(peercred))
1100 len = sizeof(peercred);
1101 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1102 if (copy_to_user(optval, &peercred, len))
1103 return -EFAULT;
1104 goto lenout;
1105 }
1106
1107 case SO_PEERNAME:
1108 {
1109 char address[128];
1110
1111 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1112 return -ENOTCONN;
1113 if (lv < len)
1114 return -EINVAL;
1115 if (copy_to_user(optval, address, len))
1116 return -EFAULT;
1117 goto lenout;
1118 }
1119
1120 /* Dubious BSD thing... Probably nobody even uses it, but
1121 * the UNIX standard wants it for whatever reason... -DaveM
1122 */
1123 case SO_ACCEPTCONN:
1124 v.val = sk->sk_state == TCP_LISTEN;
1125 break;
1126
1127 case SO_PASSSEC:
1128 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1129 break;
1130
1131 case SO_PEERSEC:
1132 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1133
1134 case SO_MARK:
1135 v.val = sk->sk_mark;
1136 break;
1137
1138 case SO_RXQ_OVFL:
1139 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1140 break;
1141
1142 case SO_WIFI_STATUS:
1143 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1144 break;
1145
1146 case SO_PEEK_OFF:
1147 if (!sock->ops->set_peek_off)
1148 return -EOPNOTSUPP;
1149
1150 v.val = sk->sk_peek_off;
1151 break;
1152 case SO_NOFCS:
1153 v.val = sock_flag(sk, SOCK_NOFCS);
1154 break;
1155
1156 case SO_BINDTODEVICE:
1157 return sock_getbindtodevice(sk, optval, optlen, len);
1158
1159 case SO_GET_FILTER:
1160 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1161 if (len < 0)
1162 return len;
1163
1164 goto lenout;
1165
1166 case SO_LOCK_FILTER:
1167 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1168 break;
1169
1170 case SO_SELECT_ERR_QUEUE:
1171 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1172 break;
1173
1174 #ifdef CONFIG_NET_RX_BUSY_POLL
1175 case SO_BUSY_POLL:
1176 v.val = sk->sk_ll_usec;
1177 break;
1178 #endif
1179
1180 default:
1181 return -ENOPROTOOPT;
1182 }
1183
1184 if (len > lv)
1185 len = lv;
1186 if (copy_to_user(optval, &v, len))
1187 return -EFAULT;
1188 lenout:
1189 if (put_user(len, optlen))
1190 return -EFAULT;
1191 return 0;
1192 }
1193
1194 /*
1195 * Initialize an sk_lock.
1196 *
1197 * (We also register the sk_lock with the lock validator.)
1198 */
1199 static inline void sock_lock_init(struct sock *sk)
1200 {
1201 sock_lock_init_class_and_name(sk,
1202 af_family_slock_key_strings[sk->sk_family],
1203 af_family_slock_keys + sk->sk_family,
1204 af_family_key_strings[sk->sk_family],
1205 af_family_keys + sk->sk_family);
1206 }
1207
1208 /*
1209 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1210 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1211 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1212 */
1213 static void sock_copy(struct sock *nsk, const struct sock *osk)
1214 {
1215 #ifdef CONFIG_SECURITY_NETWORK
1216 void *sptr = nsk->sk_security;
1217 #endif
1218 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1219
1220 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1221 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1222
1223 #ifdef CONFIG_SECURITY_NETWORK
1224 nsk->sk_security = sptr;
1225 security_sk_clone(osk, nsk);
1226 #endif
1227 }
1228
1229 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1230 {
1231 unsigned long nulls1, nulls2;
1232
1233 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1234 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1235 if (nulls1 > nulls2)
1236 swap(nulls1, nulls2);
1237
1238 if (nulls1 != 0)
1239 memset((char *)sk, 0, nulls1);
1240 memset((char *)sk + nulls1 + sizeof(void *), 0,
1241 nulls2 - nulls1 - sizeof(void *));
1242 memset((char *)sk + nulls2 + sizeof(void *), 0,
1243 size - nulls2 - sizeof(void *));
1244 }
1245 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1246
1247 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1248 int family)
1249 {
1250 struct sock *sk;
1251 struct kmem_cache *slab;
1252
1253 slab = prot->slab;
1254 if (slab != NULL) {
1255 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1256 if (!sk)
1257 return sk;
1258 if (priority & __GFP_ZERO) {
1259 if (prot->clear_sk)
1260 prot->clear_sk(sk, prot->obj_size);
1261 else
1262 sk_prot_clear_nulls(sk, prot->obj_size);
1263 }
1264 } else
1265 sk = kmalloc(prot->obj_size, priority);
1266
1267 if (sk != NULL) {
1268 kmemcheck_annotate_bitfield(sk, flags);
1269
1270 if (security_sk_alloc(sk, family, priority))
1271 goto out_free;
1272
1273 if (!try_module_get(prot->owner))
1274 goto out_free_sec;
1275 sk_tx_queue_clear(sk);
1276 }
1277
1278 return sk;
1279
1280 out_free_sec:
1281 security_sk_free(sk);
1282 out_free:
1283 if (slab != NULL)
1284 kmem_cache_free(slab, sk);
1285 else
1286 kfree(sk);
1287 return NULL;
1288 }
1289
1290 static void sk_prot_free(struct proto *prot, struct sock *sk)
1291 {
1292 struct kmem_cache *slab;
1293 struct module *owner;
1294
1295 owner = prot->owner;
1296 slab = prot->slab;
1297
1298 security_sk_free(sk);
1299 if (slab != NULL)
1300 kmem_cache_free(slab, sk);
1301 else
1302 kfree(sk);
1303 module_put(owner);
1304 }
1305
1306 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1307 void sock_update_classid(struct sock *sk)
1308 {
1309 u32 classid;
1310
1311 classid = task_cls_classid(current);
1312 if (classid != sk->sk_classid)
1313 sk->sk_classid = classid;
1314 }
1315 EXPORT_SYMBOL(sock_update_classid);
1316 #endif
1317
1318 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1319 void sock_update_netprioidx(struct sock *sk)
1320 {
1321 if (in_interrupt())
1322 return;
1323
1324 sk->sk_cgrp_prioidx = task_netprioidx(current);
1325 }
1326 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1327 #endif
1328
1329 /**
1330 * sk_alloc - All socket objects are allocated here
1331 * @net: the applicable net namespace
1332 * @family: protocol family
1333 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1334 * @prot: struct proto associated with this new sock instance
1335 */
1336 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1337 struct proto *prot)
1338 {
1339 struct sock *sk;
1340
1341 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1342 if (sk) {
1343 sk->sk_family = family;
1344 /*
1345 * See comment in struct sock definition to understand
1346 * why we need sk_prot_creator -acme
1347 */
1348 sk->sk_prot = sk->sk_prot_creator = prot;
1349 sock_lock_init(sk);
1350 sock_net_set(sk, get_net(net));
1351 atomic_set(&sk->sk_wmem_alloc, 1);
1352
1353 sock_update_classid(sk);
1354 sock_update_netprioidx(sk);
1355 }
1356
1357 return sk;
1358 }
1359 EXPORT_SYMBOL(sk_alloc);
1360
1361 static void __sk_free(struct sock *sk)
1362 {
1363 struct sk_filter *filter;
1364
1365 if (sk->sk_destruct)
1366 sk->sk_destruct(sk);
1367
1368 filter = rcu_dereference_check(sk->sk_filter,
1369 atomic_read(&sk->sk_wmem_alloc) == 0);
1370 if (filter) {
1371 sk_filter_uncharge(sk, filter);
1372 RCU_INIT_POINTER(sk->sk_filter, NULL);
1373 }
1374
1375 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1376
1377 if (atomic_read(&sk->sk_omem_alloc))
1378 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1379 __func__, atomic_read(&sk->sk_omem_alloc));
1380
1381 if (sk->sk_peer_cred)
1382 put_cred(sk->sk_peer_cred);
1383 put_pid(sk->sk_peer_pid);
1384 put_net(sock_net(sk));
1385 sk_prot_free(sk->sk_prot_creator, sk);
1386 }
1387
1388 void sk_free(struct sock *sk)
1389 {
1390 /*
1391 * We subtract one from sk_wmem_alloc and can know if
1392 * some packets are still in some tx queue.
1393 * If not null, sock_wfree() will call __sk_free(sk) later
1394 */
1395 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1396 __sk_free(sk);
1397 }
1398 EXPORT_SYMBOL(sk_free);
1399
1400 /*
1401 * Last sock_put should drop reference to sk->sk_net. It has already
1402 * been dropped in sk_change_net. Taking reference to stopping namespace
1403 * is not an option.
1404 * Take reference to a socket to remove it from hash _alive_ and after that
1405 * destroy it in the context of init_net.
1406 */
1407 void sk_release_kernel(struct sock *sk)
1408 {
1409 if (sk == NULL || sk->sk_socket == NULL)
1410 return;
1411
1412 sock_hold(sk);
1413 sock_release(sk->sk_socket);
1414 release_net(sock_net(sk));
1415 sock_net_set(sk, get_net(&init_net));
1416 sock_put(sk);
1417 }
1418 EXPORT_SYMBOL(sk_release_kernel);
1419
1420 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1421 {
1422 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1423 sock_update_memcg(newsk);
1424 }
1425
1426 /**
1427 * sk_clone_lock - clone a socket, and lock its clone
1428 * @sk: the socket to clone
1429 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1430 *
1431 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1432 */
1433 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1434 {
1435 struct sock *newsk;
1436
1437 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1438 if (newsk != NULL) {
1439 struct sk_filter *filter;
1440
1441 sock_copy(newsk, sk);
1442
1443 /* SANITY */
1444 get_net(sock_net(newsk));
1445 sk_node_init(&newsk->sk_node);
1446 sock_lock_init(newsk);
1447 bh_lock_sock(newsk);
1448 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1449 newsk->sk_backlog.len = 0;
1450
1451 atomic_set(&newsk->sk_rmem_alloc, 0);
1452 /*
1453 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1454 */
1455 atomic_set(&newsk->sk_wmem_alloc, 1);
1456 atomic_set(&newsk->sk_omem_alloc, 0);
1457 skb_queue_head_init(&newsk->sk_receive_queue);
1458 skb_queue_head_init(&newsk->sk_write_queue);
1459 #ifdef CONFIG_NET_DMA
1460 skb_queue_head_init(&newsk->sk_async_wait_queue);
1461 #endif
1462
1463 spin_lock_init(&newsk->sk_dst_lock);
1464 rwlock_init(&newsk->sk_callback_lock);
1465 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1466 af_callback_keys + newsk->sk_family,
1467 af_family_clock_key_strings[newsk->sk_family]);
1468
1469 newsk->sk_dst_cache = NULL;
1470 newsk->sk_wmem_queued = 0;
1471 newsk->sk_forward_alloc = 0;
1472 newsk->sk_send_head = NULL;
1473 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1474
1475 sock_reset_flag(newsk, SOCK_DONE);
1476 skb_queue_head_init(&newsk->sk_error_queue);
1477
1478 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1479 if (filter != NULL)
1480 sk_filter_charge(newsk, filter);
1481
1482 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1483 /* It is still raw copy of parent, so invalidate
1484 * destructor and make plain sk_free() */
1485 newsk->sk_destruct = NULL;
1486 bh_unlock_sock(newsk);
1487 sk_free(newsk);
1488 newsk = NULL;
1489 goto out;
1490 }
1491
1492 newsk->sk_err = 0;
1493 newsk->sk_priority = 0;
1494 /*
1495 * Before updating sk_refcnt, we must commit prior changes to memory
1496 * (Documentation/RCU/rculist_nulls.txt for details)
1497 */
1498 smp_wmb();
1499 atomic_set(&newsk->sk_refcnt, 2);
1500
1501 /*
1502 * Increment the counter in the same struct proto as the master
1503 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1504 * is the same as sk->sk_prot->socks, as this field was copied
1505 * with memcpy).
1506 *
1507 * This _changes_ the previous behaviour, where
1508 * tcp_create_openreq_child always was incrementing the
1509 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1510 * to be taken into account in all callers. -acme
1511 */
1512 sk_refcnt_debug_inc(newsk);
1513 sk_set_socket(newsk, NULL);
1514 newsk->sk_wq = NULL;
1515
1516 sk_update_clone(sk, newsk);
1517
1518 if (newsk->sk_prot->sockets_allocated)
1519 sk_sockets_allocated_inc(newsk);
1520
1521 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1522 net_enable_timestamp();
1523 }
1524 out:
1525 return newsk;
1526 }
1527 EXPORT_SYMBOL_GPL(sk_clone_lock);
1528
1529 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1530 {
1531 __sk_dst_set(sk, dst);
1532 sk->sk_route_caps = dst->dev->features;
1533 if (sk->sk_route_caps & NETIF_F_GSO)
1534 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1535 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1536 if (sk_can_gso(sk)) {
1537 if (dst->header_len) {
1538 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1539 } else {
1540 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1541 sk->sk_gso_max_size = dst->dev->gso_max_size;
1542 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1543 }
1544 }
1545 }
1546 EXPORT_SYMBOL_GPL(sk_setup_caps);
1547
1548 /*
1549 * Simple resource managers for sockets.
1550 */
1551
1552
1553 /*
1554 * Write buffer destructor automatically called from kfree_skb.
1555 */
1556 void sock_wfree(struct sk_buff *skb)
1557 {
1558 struct sock *sk = skb->sk;
1559 unsigned int len = skb->truesize;
1560
1561 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1562 /*
1563 * Keep a reference on sk_wmem_alloc, this will be released
1564 * after sk_write_space() call
1565 */
1566 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1567 sk->sk_write_space(sk);
1568 len = 1;
1569 }
1570 /*
1571 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1572 * could not do because of in-flight packets
1573 */
1574 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1575 __sk_free(sk);
1576 }
1577 EXPORT_SYMBOL(sock_wfree);
1578
1579 void skb_orphan_partial(struct sk_buff *skb)
1580 {
1581 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1582 * so we do not completely orphan skb, but transfert all
1583 * accounted bytes but one, to avoid unexpected reorders.
1584 */
1585 if (skb->destructor == sock_wfree
1586 #ifdef CONFIG_INET
1587 || skb->destructor == tcp_wfree
1588 #endif
1589 ) {
1590 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1591 skb->truesize = 1;
1592 } else {
1593 skb_orphan(skb);
1594 }
1595 }
1596 EXPORT_SYMBOL(skb_orphan_partial);
1597
1598 /*
1599 * Read buffer destructor automatically called from kfree_skb.
1600 */
1601 void sock_rfree(struct sk_buff *skb)
1602 {
1603 struct sock *sk = skb->sk;
1604 unsigned int len = skb->truesize;
1605
1606 atomic_sub(len, &sk->sk_rmem_alloc);
1607 sk_mem_uncharge(sk, len);
1608 }
1609 EXPORT_SYMBOL(sock_rfree);
1610
1611 void sock_edemux(struct sk_buff *skb)
1612 {
1613 struct sock *sk = skb->sk;
1614
1615 #ifdef CONFIG_INET
1616 if (sk->sk_state == TCP_TIME_WAIT)
1617 inet_twsk_put(inet_twsk(sk));
1618 else
1619 #endif
1620 sock_put(sk);
1621 }
1622 EXPORT_SYMBOL(sock_edemux);
1623
1624 kuid_t sock_i_uid(struct sock *sk)
1625 {
1626 kuid_t uid;
1627
1628 read_lock_bh(&sk->sk_callback_lock);
1629 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1630 read_unlock_bh(&sk->sk_callback_lock);
1631 return uid;
1632 }
1633 EXPORT_SYMBOL(sock_i_uid);
1634
1635 unsigned long sock_i_ino(struct sock *sk)
1636 {
1637 unsigned long ino;
1638
1639 read_lock_bh(&sk->sk_callback_lock);
1640 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1641 read_unlock_bh(&sk->sk_callback_lock);
1642 return ino;
1643 }
1644 EXPORT_SYMBOL(sock_i_ino);
1645
1646 /*
1647 * Allocate a skb from the socket's send buffer.
1648 */
1649 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1650 gfp_t priority)
1651 {
1652 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1653 struct sk_buff *skb = alloc_skb(size, priority);
1654 if (skb) {
1655 skb_set_owner_w(skb, sk);
1656 return skb;
1657 }
1658 }
1659 return NULL;
1660 }
1661 EXPORT_SYMBOL(sock_wmalloc);
1662
1663 /*
1664 * Allocate a skb from the socket's receive buffer.
1665 */
1666 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1667 gfp_t priority)
1668 {
1669 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1670 struct sk_buff *skb = alloc_skb(size, priority);
1671 if (skb) {
1672 skb_set_owner_r(skb, sk);
1673 return skb;
1674 }
1675 }
1676 return NULL;
1677 }
1678
1679 /*
1680 * Allocate a memory block from the socket's option memory buffer.
1681 */
1682 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1683 {
1684 if ((unsigned int)size <= sysctl_optmem_max &&
1685 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1686 void *mem;
1687 /* First do the add, to avoid the race if kmalloc
1688 * might sleep.
1689 */
1690 atomic_add(size, &sk->sk_omem_alloc);
1691 mem = kmalloc(size, priority);
1692 if (mem)
1693 return mem;
1694 atomic_sub(size, &sk->sk_omem_alloc);
1695 }
1696 return NULL;
1697 }
1698 EXPORT_SYMBOL(sock_kmalloc);
1699
1700 /*
1701 * Free an option memory block.
1702 */
1703 void sock_kfree_s(struct sock *sk, void *mem, int size)
1704 {
1705 kfree(mem);
1706 atomic_sub(size, &sk->sk_omem_alloc);
1707 }
1708 EXPORT_SYMBOL(sock_kfree_s);
1709
1710 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1711 I think, these locks should be removed for datagram sockets.
1712 */
1713 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1714 {
1715 DEFINE_WAIT(wait);
1716
1717 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1718 for (;;) {
1719 if (!timeo)
1720 break;
1721 if (signal_pending(current))
1722 break;
1723 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1724 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1725 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1726 break;
1727 if (sk->sk_shutdown & SEND_SHUTDOWN)
1728 break;
1729 if (sk->sk_err)
1730 break;
1731 timeo = schedule_timeout(timeo);
1732 }
1733 finish_wait(sk_sleep(sk), &wait);
1734 return timeo;
1735 }
1736
1737
1738 /*
1739 * Generic send/receive buffer handlers
1740 */
1741
1742 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1743 unsigned long data_len, int noblock,
1744 int *errcode, int max_page_order)
1745 {
1746 struct sk_buff *skb = NULL;
1747 unsigned long chunk;
1748 gfp_t gfp_mask;
1749 long timeo;
1750 int err;
1751 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1752 struct page *page;
1753 int i;
1754
1755 err = -EMSGSIZE;
1756 if (npages > MAX_SKB_FRAGS)
1757 goto failure;
1758
1759 timeo = sock_sndtimeo(sk, noblock);
1760 while (!skb) {
1761 err = sock_error(sk);
1762 if (err != 0)
1763 goto failure;
1764
1765 err = -EPIPE;
1766 if (sk->sk_shutdown & SEND_SHUTDOWN)
1767 goto failure;
1768
1769 if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1770 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1771 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1772 err = -EAGAIN;
1773 if (!timeo)
1774 goto failure;
1775 if (signal_pending(current))
1776 goto interrupted;
1777 timeo = sock_wait_for_wmem(sk, timeo);
1778 continue;
1779 }
1780
1781 err = -ENOBUFS;
1782 gfp_mask = sk->sk_allocation;
1783 if (gfp_mask & __GFP_WAIT)
1784 gfp_mask |= __GFP_REPEAT;
1785
1786 skb = alloc_skb(header_len, gfp_mask);
1787 if (!skb)
1788 goto failure;
1789
1790 skb->truesize += data_len;
1791
1792 for (i = 0; npages > 0; i++) {
1793 int order = max_page_order;
1794
1795 while (order) {
1796 if (npages >= 1 << order) {
1797 page = alloc_pages(sk->sk_allocation |
1798 __GFP_COMP | __GFP_NOWARN,
1799 order);
1800 if (page)
1801 goto fill_page;
1802 }
1803 order--;
1804 }
1805 page = alloc_page(sk->sk_allocation);
1806 if (!page)
1807 goto failure;
1808 fill_page:
1809 chunk = min_t(unsigned long, data_len,
1810 PAGE_SIZE << order);
1811 skb_fill_page_desc(skb, i, page, 0, chunk);
1812 data_len -= chunk;
1813 npages -= 1 << order;
1814 }
1815 }
1816
1817 skb_set_owner_w(skb, sk);
1818 return skb;
1819
1820 interrupted:
1821 err = sock_intr_errno(timeo);
1822 failure:
1823 kfree_skb(skb);
1824 *errcode = err;
1825 return NULL;
1826 }
1827 EXPORT_SYMBOL(sock_alloc_send_pskb);
1828
1829 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1830 int noblock, int *errcode)
1831 {
1832 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1833 }
1834 EXPORT_SYMBOL(sock_alloc_send_skb);
1835
1836 /* On 32bit arches, an skb frag is limited to 2^15 */
1837 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1838
1839 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1840 {
1841 int order;
1842
1843 if (pfrag->page) {
1844 if (atomic_read(&pfrag->page->_count) == 1) {
1845 pfrag->offset = 0;
1846 return true;
1847 }
1848 if (pfrag->offset < pfrag->size)
1849 return true;
1850 put_page(pfrag->page);
1851 }
1852
1853 /* We restrict high order allocations to users that can afford to wait */
1854 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1855
1856 do {
1857 gfp_t gfp = sk->sk_allocation;
1858
1859 if (order)
1860 gfp |= __GFP_COMP | __GFP_NOWARN;
1861 pfrag->page = alloc_pages(gfp, order);
1862 if (likely(pfrag->page)) {
1863 pfrag->offset = 0;
1864 pfrag->size = PAGE_SIZE << order;
1865 return true;
1866 }
1867 } while (--order >= 0);
1868
1869 sk_enter_memory_pressure(sk);
1870 sk_stream_moderate_sndbuf(sk);
1871 return false;
1872 }
1873 EXPORT_SYMBOL(sk_page_frag_refill);
1874
1875 static void __lock_sock(struct sock *sk)
1876 __releases(&sk->sk_lock.slock)
1877 __acquires(&sk->sk_lock.slock)
1878 {
1879 DEFINE_WAIT(wait);
1880
1881 for (;;) {
1882 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1883 TASK_UNINTERRUPTIBLE);
1884 spin_unlock_bh(&sk->sk_lock.slock);
1885 schedule();
1886 spin_lock_bh(&sk->sk_lock.slock);
1887 if (!sock_owned_by_user(sk))
1888 break;
1889 }
1890 finish_wait(&sk->sk_lock.wq, &wait);
1891 }
1892
1893 static void __release_sock(struct sock *sk)
1894 __releases(&sk->sk_lock.slock)
1895 __acquires(&sk->sk_lock.slock)
1896 {
1897 struct sk_buff *skb = sk->sk_backlog.head;
1898
1899 do {
1900 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1901 bh_unlock_sock(sk);
1902
1903 do {
1904 struct sk_buff *next = skb->next;
1905
1906 prefetch(next);
1907 WARN_ON_ONCE(skb_dst_is_noref(skb));
1908 skb->next = NULL;
1909 sk_backlog_rcv(sk, skb);
1910
1911 /*
1912 * We are in process context here with softirqs
1913 * disabled, use cond_resched_softirq() to preempt.
1914 * This is safe to do because we've taken the backlog
1915 * queue private:
1916 */
1917 cond_resched_softirq();
1918
1919 skb = next;
1920 } while (skb != NULL);
1921
1922 bh_lock_sock(sk);
1923 } while ((skb = sk->sk_backlog.head) != NULL);
1924
1925 /*
1926 * Doing the zeroing here guarantee we can not loop forever
1927 * while a wild producer attempts to flood us.
1928 */
1929 sk->sk_backlog.len = 0;
1930 }
1931
1932 /**
1933 * sk_wait_data - wait for data to arrive at sk_receive_queue
1934 * @sk: sock to wait on
1935 * @timeo: for how long
1936 *
1937 * Now socket state including sk->sk_err is changed only under lock,
1938 * hence we may omit checks after joining wait queue.
1939 * We check receive queue before schedule() only as optimization;
1940 * it is very likely that release_sock() added new data.
1941 */
1942 int sk_wait_data(struct sock *sk, long *timeo)
1943 {
1944 int rc;
1945 DEFINE_WAIT(wait);
1946
1947 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1948 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1949 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1950 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1951 finish_wait(sk_sleep(sk), &wait);
1952 return rc;
1953 }
1954 EXPORT_SYMBOL(sk_wait_data);
1955
1956 /**
1957 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1958 * @sk: socket
1959 * @size: memory size to allocate
1960 * @kind: allocation type
1961 *
1962 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1963 * rmem allocation. This function assumes that protocols which have
1964 * memory_pressure use sk_wmem_queued as write buffer accounting.
1965 */
1966 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1967 {
1968 struct proto *prot = sk->sk_prot;
1969 int amt = sk_mem_pages(size);
1970 long allocated;
1971 int parent_status = UNDER_LIMIT;
1972
1973 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1974
1975 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1976
1977 /* Under limit. */
1978 if (parent_status == UNDER_LIMIT &&
1979 allocated <= sk_prot_mem_limits(sk, 0)) {
1980 sk_leave_memory_pressure(sk);
1981 return 1;
1982 }
1983
1984 /* Under pressure. (we or our parents) */
1985 if ((parent_status > SOFT_LIMIT) ||
1986 allocated > sk_prot_mem_limits(sk, 1))
1987 sk_enter_memory_pressure(sk);
1988
1989 /* Over hard limit (we or our parents) */
1990 if ((parent_status == OVER_LIMIT) ||
1991 (allocated > sk_prot_mem_limits(sk, 2)))
1992 goto suppress_allocation;
1993
1994 /* guarantee minimum buffer size under pressure */
1995 if (kind == SK_MEM_RECV) {
1996 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1997 return 1;
1998
1999 } else { /* SK_MEM_SEND */
2000 if (sk->sk_type == SOCK_STREAM) {
2001 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2002 return 1;
2003 } else if (atomic_read(&sk->sk_wmem_alloc) <
2004 prot->sysctl_wmem[0])
2005 return 1;
2006 }
2007
2008 if (sk_has_memory_pressure(sk)) {
2009 int alloc;
2010
2011 if (!sk_under_memory_pressure(sk))
2012 return 1;
2013 alloc = sk_sockets_allocated_read_positive(sk);
2014 if (sk_prot_mem_limits(sk, 2) > alloc *
2015 sk_mem_pages(sk->sk_wmem_queued +
2016 atomic_read(&sk->sk_rmem_alloc) +
2017 sk->sk_forward_alloc))
2018 return 1;
2019 }
2020
2021 suppress_allocation:
2022
2023 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2024 sk_stream_moderate_sndbuf(sk);
2025
2026 /* Fail only if socket is _under_ its sndbuf.
2027 * In this case we cannot block, so that we have to fail.
2028 */
2029 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2030 return 1;
2031 }
2032
2033 trace_sock_exceed_buf_limit(sk, prot, allocated);
2034
2035 /* Alas. Undo changes. */
2036 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2037
2038 sk_memory_allocated_sub(sk, amt);
2039
2040 return 0;
2041 }
2042 EXPORT_SYMBOL(__sk_mem_schedule);
2043
2044 /**
2045 * __sk_reclaim - reclaim memory_allocated
2046 * @sk: socket
2047 */
2048 void __sk_mem_reclaim(struct sock *sk)
2049 {
2050 sk_memory_allocated_sub(sk,
2051 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2052 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2053
2054 if (sk_under_memory_pressure(sk) &&
2055 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2056 sk_leave_memory_pressure(sk);
2057 }
2058 EXPORT_SYMBOL(__sk_mem_reclaim);
2059
2060
2061 /*
2062 * Set of default routines for initialising struct proto_ops when
2063 * the protocol does not support a particular function. In certain
2064 * cases where it makes no sense for a protocol to have a "do nothing"
2065 * function, some default processing is provided.
2066 */
2067
2068 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2069 {
2070 return -EOPNOTSUPP;
2071 }
2072 EXPORT_SYMBOL(sock_no_bind);
2073
2074 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2075 int len, int flags)
2076 {
2077 return -EOPNOTSUPP;
2078 }
2079 EXPORT_SYMBOL(sock_no_connect);
2080
2081 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2082 {
2083 return -EOPNOTSUPP;
2084 }
2085 EXPORT_SYMBOL(sock_no_socketpair);
2086
2087 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2088 {
2089 return -EOPNOTSUPP;
2090 }
2091 EXPORT_SYMBOL(sock_no_accept);
2092
2093 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2094 int *len, int peer)
2095 {
2096 return -EOPNOTSUPP;
2097 }
2098 EXPORT_SYMBOL(sock_no_getname);
2099
2100 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2101 {
2102 return 0;
2103 }
2104 EXPORT_SYMBOL(sock_no_poll);
2105
2106 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2107 {
2108 return -EOPNOTSUPP;
2109 }
2110 EXPORT_SYMBOL(sock_no_ioctl);
2111
2112 int sock_no_listen(struct socket *sock, int backlog)
2113 {
2114 return -EOPNOTSUPP;
2115 }
2116 EXPORT_SYMBOL(sock_no_listen);
2117
2118 int sock_no_shutdown(struct socket *sock, int how)
2119 {
2120 return -EOPNOTSUPP;
2121 }
2122 EXPORT_SYMBOL(sock_no_shutdown);
2123
2124 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2125 char __user *optval, unsigned int optlen)
2126 {
2127 return -EOPNOTSUPP;
2128 }
2129 EXPORT_SYMBOL(sock_no_setsockopt);
2130
2131 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2132 char __user *optval, int __user *optlen)
2133 {
2134 return -EOPNOTSUPP;
2135 }
2136 EXPORT_SYMBOL(sock_no_getsockopt);
2137
2138 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2139 size_t len)
2140 {
2141 return -EOPNOTSUPP;
2142 }
2143 EXPORT_SYMBOL(sock_no_sendmsg);
2144
2145 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2146 size_t len, int flags)
2147 {
2148 return -EOPNOTSUPP;
2149 }
2150 EXPORT_SYMBOL(sock_no_recvmsg);
2151
2152 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2153 {
2154 /* Mirror missing mmap method error code */
2155 return -ENODEV;
2156 }
2157 EXPORT_SYMBOL(sock_no_mmap);
2158
2159 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2160 {
2161 ssize_t res;
2162 struct msghdr msg = {.msg_flags = flags};
2163 struct kvec iov;
2164 char *kaddr = kmap(page);
2165 iov.iov_base = kaddr + offset;
2166 iov.iov_len = size;
2167 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2168 kunmap(page);
2169 return res;
2170 }
2171 EXPORT_SYMBOL(sock_no_sendpage);
2172
2173 /*
2174 * Default Socket Callbacks
2175 */
2176
2177 static void sock_def_wakeup(struct sock *sk)
2178 {
2179 struct socket_wq *wq;
2180
2181 rcu_read_lock();
2182 wq = rcu_dereference(sk->sk_wq);
2183 if (wq_has_sleeper(wq))
2184 wake_up_interruptible_all(&wq->wait);
2185 rcu_read_unlock();
2186 }
2187
2188 static void sock_def_error_report(struct sock *sk)
2189 {
2190 struct socket_wq *wq;
2191
2192 rcu_read_lock();
2193 wq = rcu_dereference(sk->sk_wq);
2194 if (wq_has_sleeper(wq))
2195 wake_up_interruptible_poll(&wq->wait, POLLERR);
2196 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2197 rcu_read_unlock();
2198 }
2199
2200 static void sock_def_readable(struct sock *sk, int len)
2201 {
2202 struct socket_wq *wq;
2203
2204 rcu_read_lock();
2205 wq = rcu_dereference(sk->sk_wq);
2206 if (wq_has_sleeper(wq))
2207 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2208 POLLRDNORM | POLLRDBAND);
2209 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2210 rcu_read_unlock();
2211 }
2212
2213 static void sock_def_write_space(struct sock *sk)
2214 {
2215 struct socket_wq *wq;
2216
2217 rcu_read_lock();
2218
2219 /* Do not wake up a writer until he can make "significant"
2220 * progress. --DaveM
2221 */
2222 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2223 wq = rcu_dereference(sk->sk_wq);
2224 if (wq_has_sleeper(wq))
2225 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2226 POLLWRNORM | POLLWRBAND);
2227
2228 /* Should agree with poll, otherwise some programs break */
2229 if (sock_writeable(sk))
2230 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2231 }
2232
2233 rcu_read_unlock();
2234 }
2235
2236 static void sock_def_destruct(struct sock *sk)
2237 {
2238 kfree(sk->sk_protinfo);
2239 }
2240
2241 void sk_send_sigurg(struct sock *sk)
2242 {
2243 if (sk->sk_socket && sk->sk_socket->file)
2244 if (send_sigurg(&sk->sk_socket->file->f_owner))
2245 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2246 }
2247 EXPORT_SYMBOL(sk_send_sigurg);
2248
2249 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2250 unsigned long expires)
2251 {
2252 if (!mod_timer(timer, expires))
2253 sock_hold(sk);
2254 }
2255 EXPORT_SYMBOL(sk_reset_timer);
2256
2257 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2258 {
2259 if (del_timer(timer))
2260 __sock_put(sk);
2261 }
2262 EXPORT_SYMBOL(sk_stop_timer);
2263
2264 void sock_init_data(struct socket *sock, struct sock *sk)
2265 {
2266 skb_queue_head_init(&sk->sk_receive_queue);
2267 skb_queue_head_init(&sk->sk_write_queue);
2268 skb_queue_head_init(&sk->sk_error_queue);
2269 #ifdef CONFIG_NET_DMA
2270 skb_queue_head_init(&sk->sk_async_wait_queue);
2271 #endif
2272
2273 sk->sk_send_head = NULL;
2274
2275 init_timer(&sk->sk_timer);
2276
2277 sk->sk_allocation = GFP_KERNEL;
2278 sk->sk_rcvbuf = sysctl_rmem_default;
2279 sk->sk_sndbuf = sysctl_wmem_default;
2280 sk->sk_state = TCP_CLOSE;
2281 sk_set_socket(sk, sock);
2282
2283 sock_set_flag(sk, SOCK_ZAPPED);
2284
2285 if (sock) {
2286 sk->sk_type = sock->type;
2287 sk->sk_wq = sock->wq;
2288 sock->sk = sk;
2289 } else
2290 sk->sk_wq = NULL;
2291
2292 spin_lock_init(&sk->sk_dst_lock);
2293 rwlock_init(&sk->sk_callback_lock);
2294 lockdep_set_class_and_name(&sk->sk_callback_lock,
2295 af_callback_keys + sk->sk_family,
2296 af_family_clock_key_strings[sk->sk_family]);
2297
2298 sk->sk_state_change = sock_def_wakeup;
2299 sk->sk_data_ready = sock_def_readable;
2300 sk->sk_write_space = sock_def_write_space;
2301 sk->sk_error_report = sock_def_error_report;
2302 sk->sk_destruct = sock_def_destruct;
2303
2304 sk->sk_frag.page = NULL;
2305 sk->sk_frag.offset = 0;
2306 sk->sk_peek_off = -1;
2307
2308 sk->sk_peer_pid = NULL;
2309 sk->sk_peer_cred = NULL;
2310 sk->sk_write_pending = 0;
2311 sk->sk_rcvlowat = 1;
2312 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2313 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2314
2315 sk->sk_stamp = ktime_set(-1L, 0);
2316
2317 #ifdef CONFIG_NET_RX_BUSY_POLL
2318 sk->sk_napi_id = 0;
2319 sk->sk_ll_usec = sysctl_net_busy_read;
2320 #endif
2321
2322 /*
2323 * Before updating sk_refcnt, we must commit prior changes to memory
2324 * (Documentation/RCU/rculist_nulls.txt for details)
2325 */
2326 smp_wmb();
2327 atomic_set(&sk->sk_refcnt, 1);
2328 atomic_set(&sk->sk_drops, 0);
2329 }
2330 EXPORT_SYMBOL(sock_init_data);
2331
2332 void lock_sock_nested(struct sock *sk, int subclass)
2333 {
2334 might_sleep();
2335 spin_lock_bh(&sk->sk_lock.slock);
2336 if (sk->sk_lock.owned)
2337 __lock_sock(sk);
2338 sk->sk_lock.owned = 1;
2339 spin_unlock(&sk->sk_lock.slock);
2340 /*
2341 * The sk_lock has mutex_lock() semantics here:
2342 */
2343 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2344 local_bh_enable();
2345 }
2346 EXPORT_SYMBOL(lock_sock_nested);
2347
2348 void release_sock(struct sock *sk)
2349 {
2350 /*
2351 * The sk_lock has mutex_unlock() semantics:
2352 */
2353 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2354
2355 spin_lock_bh(&sk->sk_lock.slock);
2356 if (sk->sk_backlog.tail)
2357 __release_sock(sk);
2358
2359 if (sk->sk_prot->release_cb)
2360 sk->sk_prot->release_cb(sk);
2361
2362 sk->sk_lock.owned = 0;
2363 if (waitqueue_active(&sk->sk_lock.wq))
2364 wake_up(&sk->sk_lock.wq);
2365 spin_unlock_bh(&sk->sk_lock.slock);
2366 }
2367 EXPORT_SYMBOL(release_sock);
2368
2369 /**
2370 * lock_sock_fast - fast version of lock_sock
2371 * @sk: socket
2372 *
2373 * This version should be used for very small section, where process wont block
2374 * return false if fast path is taken
2375 * sk_lock.slock locked, owned = 0, BH disabled
2376 * return true if slow path is taken
2377 * sk_lock.slock unlocked, owned = 1, BH enabled
2378 */
2379 bool lock_sock_fast(struct sock *sk)
2380 {
2381 might_sleep();
2382 spin_lock_bh(&sk->sk_lock.slock);
2383
2384 if (!sk->sk_lock.owned)
2385 /*
2386 * Note : We must disable BH
2387 */
2388 return false;
2389
2390 __lock_sock(sk);
2391 sk->sk_lock.owned = 1;
2392 spin_unlock(&sk->sk_lock.slock);
2393 /*
2394 * The sk_lock has mutex_lock() semantics here:
2395 */
2396 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2397 local_bh_enable();
2398 return true;
2399 }
2400 EXPORT_SYMBOL(lock_sock_fast);
2401
2402 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2403 {
2404 struct timeval tv;
2405 if (!sock_flag(sk, SOCK_TIMESTAMP))
2406 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2407 tv = ktime_to_timeval(sk->sk_stamp);
2408 if (tv.tv_sec == -1)
2409 return -ENOENT;
2410 if (tv.tv_sec == 0) {
2411 sk->sk_stamp = ktime_get_real();
2412 tv = ktime_to_timeval(sk->sk_stamp);
2413 }
2414 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2415 }
2416 EXPORT_SYMBOL(sock_get_timestamp);
2417
2418 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2419 {
2420 struct timespec ts;
2421 if (!sock_flag(sk, SOCK_TIMESTAMP))
2422 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2423 ts = ktime_to_timespec(sk->sk_stamp);
2424 if (ts.tv_sec == -1)
2425 return -ENOENT;
2426 if (ts.tv_sec == 0) {
2427 sk->sk_stamp = ktime_get_real();
2428 ts = ktime_to_timespec(sk->sk_stamp);
2429 }
2430 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2431 }
2432 EXPORT_SYMBOL(sock_get_timestampns);
2433
2434 void sock_enable_timestamp(struct sock *sk, int flag)
2435 {
2436 if (!sock_flag(sk, flag)) {
2437 unsigned long previous_flags = sk->sk_flags;
2438
2439 sock_set_flag(sk, flag);
2440 /*
2441 * we just set one of the two flags which require net
2442 * time stamping, but time stamping might have been on
2443 * already because of the other one
2444 */
2445 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2446 net_enable_timestamp();
2447 }
2448 }
2449
2450 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2451 int level, int type)
2452 {
2453 struct sock_exterr_skb *serr;
2454 struct sk_buff *skb, *skb2;
2455 int copied, err;
2456
2457 err = -EAGAIN;
2458 skb = skb_dequeue(&sk->sk_error_queue);
2459 if (skb == NULL)
2460 goto out;
2461
2462 copied = skb->len;
2463 if (copied > len) {
2464 msg->msg_flags |= MSG_TRUNC;
2465 copied = len;
2466 }
2467 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2468 if (err)
2469 goto out_free_skb;
2470
2471 sock_recv_timestamp(msg, sk, skb);
2472
2473 serr = SKB_EXT_ERR(skb);
2474 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2475
2476 msg->msg_flags |= MSG_ERRQUEUE;
2477 err = copied;
2478
2479 /* Reset and regenerate socket error */
2480 spin_lock_bh(&sk->sk_error_queue.lock);
2481 sk->sk_err = 0;
2482 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2483 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2484 spin_unlock_bh(&sk->sk_error_queue.lock);
2485 sk->sk_error_report(sk);
2486 } else
2487 spin_unlock_bh(&sk->sk_error_queue.lock);
2488
2489 out_free_skb:
2490 kfree_skb(skb);
2491 out:
2492 return err;
2493 }
2494 EXPORT_SYMBOL(sock_recv_errqueue);
2495
2496 /*
2497 * Get a socket option on an socket.
2498 *
2499 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2500 * asynchronous errors should be reported by getsockopt. We assume
2501 * this means if you specify SO_ERROR (otherwise whats the point of it).
2502 */
2503 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2504 char __user *optval, int __user *optlen)
2505 {
2506 struct sock *sk = sock->sk;
2507
2508 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2509 }
2510 EXPORT_SYMBOL(sock_common_getsockopt);
2511
2512 #ifdef CONFIG_COMPAT
2513 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2514 char __user *optval, int __user *optlen)
2515 {
2516 struct sock *sk = sock->sk;
2517
2518 if (sk->sk_prot->compat_getsockopt != NULL)
2519 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2520 optval, optlen);
2521 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2522 }
2523 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2524 #endif
2525
2526 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2527 struct msghdr *msg, size_t size, int flags)
2528 {
2529 struct sock *sk = sock->sk;
2530 int addr_len = 0;
2531 int err;
2532
2533 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2534 flags & ~MSG_DONTWAIT, &addr_len);
2535 if (err >= 0)
2536 msg->msg_namelen = addr_len;
2537 return err;
2538 }
2539 EXPORT_SYMBOL(sock_common_recvmsg);
2540
2541 /*
2542 * Set socket options on an inet socket.
2543 */
2544 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2545 char __user *optval, unsigned int optlen)
2546 {
2547 struct sock *sk = sock->sk;
2548
2549 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2550 }
2551 EXPORT_SYMBOL(sock_common_setsockopt);
2552
2553 #ifdef CONFIG_COMPAT
2554 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2555 char __user *optval, unsigned int optlen)
2556 {
2557 struct sock *sk = sock->sk;
2558
2559 if (sk->sk_prot->compat_setsockopt != NULL)
2560 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2561 optval, optlen);
2562 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2563 }
2564 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2565 #endif
2566
2567 void sk_common_release(struct sock *sk)
2568 {
2569 if (sk->sk_prot->destroy)
2570 sk->sk_prot->destroy(sk);
2571
2572 /*
2573 * Observation: when sock_common_release is called, processes have
2574 * no access to socket. But net still has.
2575 * Step one, detach it from networking:
2576 *
2577 * A. Remove from hash tables.
2578 */
2579
2580 sk->sk_prot->unhash(sk);
2581
2582 /*
2583 * In this point socket cannot receive new packets, but it is possible
2584 * that some packets are in flight because some CPU runs receiver and
2585 * did hash table lookup before we unhashed socket. They will achieve
2586 * receive queue and will be purged by socket destructor.
2587 *
2588 * Also we still have packets pending on receive queue and probably,
2589 * our own packets waiting in device queues. sock_destroy will drain
2590 * receive queue, but transmitted packets will delay socket destruction
2591 * until the last reference will be released.
2592 */
2593
2594 sock_orphan(sk);
2595
2596 xfrm_sk_free_policy(sk);
2597
2598 sk_refcnt_debug_release(sk);
2599
2600 if (sk->sk_frag.page) {
2601 put_page(sk->sk_frag.page);
2602 sk->sk_frag.page = NULL;
2603 }
2604
2605 sock_put(sk);
2606 }
2607 EXPORT_SYMBOL(sk_common_release);
2608
2609 #ifdef CONFIG_PROC_FS
2610 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2611 struct prot_inuse {
2612 int val[PROTO_INUSE_NR];
2613 };
2614
2615 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2616
2617 #ifdef CONFIG_NET_NS
2618 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2619 {
2620 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2621 }
2622 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2623
2624 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2625 {
2626 int cpu, idx = prot->inuse_idx;
2627 int res = 0;
2628
2629 for_each_possible_cpu(cpu)
2630 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2631
2632 return res >= 0 ? res : 0;
2633 }
2634 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2635
2636 static int __net_init sock_inuse_init_net(struct net *net)
2637 {
2638 net->core.inuse = alloc_percpu(struct prot_inuse);
2639 return net->core.inuse ? 0 : -ENOMEM;
2640 }
2641
2642 static void __net_exit sock_inuse_exit_net(struct net *net)
2643 {
2644 free_percpu(net->core.inuse);
2645 }
2646
2647 static struct pernet_operations net_inuse_ops = {
2648 .init = sock_inuse_init_net,
2649 .exit = sock_inuse_exit_net,
2650 };
2651
2652 static __init int net_inuse_init(void)
2653 {
2654 if (register_pernet_subsys(&net_inuse_ops))
2655 panic("Cannot initialize net inuse counters");
2656
2657 return 0;
2658 }
2659
2660 core_initcall(net_inuse_init);
2661 #else
2662 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2663
2664 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2665 {
2666 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2667 }
2668 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2669
2670 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2671 {
2672 int cpu, idx = prot->inuse_idx;
2673 int res = 0;
2674
2675 for_each_possible_cpu(cpu)
2676 res += per_cpu(prot_inuse, cpu).val[idx];
2677
2678 return res >= 0 ? res : 0;
2679 }
2680 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2681 #endif
2682
2683 static void assign_proto_idx(struct proto *prot)
2684 {
2685 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2686
2687 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2688 pr_err("PROTO_INUSE_NR exhausted\n");
2689 return;
2690 }
2691
2692 set_bit(prot->inuse_idx, proto_inuse_idx);
2693 }
2694
2695 static void release_proto_idx(struct proto *prot)
2696 {
2697 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2698 clear_bit(prot->inuse_idx, proto_inuse_idx);
2699 }
2700 #else
2701 static inline void assign_proto_idx(struct proto *prot)
2702 {
2703 }
2704
2705 static inline void release_proto_idx(struct proto *prot)
2706 {
2707 }
2708 #endif
2709
2710 int proto_register(struct proto *prot, int alloc_slab)
2711 {
2712 if (alloc_slab) {
2713 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2714 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2715 NULL);
2716
2717 if (prot->slab == NULL) {
2718 pr_crit("%s: Can't create sock SLAB cache!\n",
2719 prot->name);
2720 goto out;
2721 }
2722
2723 if (prot->rsk_prot != NULL) {
2724 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2725 if (prot->rsk_prot->slab_name == NULL)
2726 goto out_free_sock_slab;
2727
2728 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2729 prot->rsk_prot->obj_size, 0,
2730 SLAB_HWCACHE_ALIGN, NULL);
2731
2732 if (prot->rsk_prot->slab == NULL) {
2733 pr_crit("%s: Can't create request sock SLAB cache!\n",
2734 prot->name);
2735 goto out_free_request_sock_slab_name;
2736 }
2737 }
2738
2739 if (prot->twsk_prot != NULL) {
2740 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2741
2742 if (prot->twsk_prot->twsk_slab_name == NULL)
2743 goto out_free_request_sock_slab;
2744
2745 prot->twsk_prot->twsk_slab =
2746 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2747 prot->twsk_prot->twsk_obj_size,
2748 0,
2749 SLAB_HWCACHE_ALIGN |
2750 prot->slab_flags,
2751 NULL);
2752 if (prot->twsk_prot->twsk_slab == NULL)
2753 goto out_free_timewait_sock_slab_name;
2754 }
2755 }
2756
2757 mutex_lock(&proto_list_mutex);
2758 list_add(&prot->node, &proto_list);
2759 assign_proto_idx(prot);
2760 mutex_unlock(&proto_list_mutex);
2761 return 0;
2762
2763 out_free_timewait_sock_slab_name:
2764 kfree(prot->twsk_prot->twsk_slab_name);
2765 out_free_request_sock_slab:
2766 if (prot->rsk_prot && prot->rsk_prot->slab) {
2767 kmem_cache_destroy(prot->rsk_prot->slab);
2768 prot->rsk_prot->slab = NULL;
2769 }
2770 out_free_request_sock_slab_name:
2771 if (prot->rsk_prot)
2772 kfree(prot->rsk_prot->slab_name);
2773 out_free_sock_slab:
2774 kmem_cache_destroy(prot->slab);
2775 prot->slab = NULL;
2776 out:
2777 return -ENOBUFS;
2778 }
2779 EXPORT_SYMBOL(proto_register);
2780
2781 void proto_unregister(struct proto *prot)
2782 {
2783 mutex_lock(&proto_list_mutex);
2784 release_proto_idx(prot);
2785 list_del(&prot->node);
2786 mutex_unlock(&proto_list_mutex);
2787
2788 if (prot->slab != NULL) {
2789 kmem_cache_destroy(prot->slab);
2790 prot->slab = NULL;
2791 }
2792
2793 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2794 kmem_cache_destroy(prot->rsk_prot->slab);
2795 kfree(prot->rsk_prot->slab_name);
2796 prot->rsk_prot->slab = NULL;
2797 }
2798
2799 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2800 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2801 kfree(prot->twsk_prot->twsk_slab_name);
2802 prot->twsk_prot->twsk_slab = NULL;
2803 }
2804 }
2805 EXPORT_SYMBOL(proto_unregister);
2806
2807 #ifdef CONFIG_PROC_FS
2808 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2809 __acquires(proto_list_mutex)
2810 {
2811 mutex_lock(&proto_list_mutex);
2812 return seq_list_start_head(&proto_list, *pos);
2813 }
2814
2815 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2816 {
2817 return seq_list_next(v, &proto_list, pos);
2818 }
2819
2820 static void proto_seq_stop(struct seq_file *seq, void *v)
2821 __releases(proto_list_mutex)
2822 {
2823 mutex_unlock(&proto_list_mutex);
2824 }
2825
2826 static char proto_method_implemented(const void *method)
2827 {
2828 return method == NULL ? 'n' : 'y';
2829 }
2830 static long sock_prot_memory_allocated(struct proto *proto)
2831 {
2832 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2833 }
2834
2835 static char *sock_prot_memory_pressure(struct proto *proto)
2836 {
2837 return proto->memory_pressure != NULL ?
2838 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2839 }
2840
2841 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2842 {
2843
2844 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2845 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2846 proto->name,
2847 proto->obj_size,
2848 sock_prot_inuse_get(seq_file_net(seq), proto),
2849 sock_prot_memory_allocated(proto),
2850 sock_prot_memory_pressure(proto),
2851 proto->max_header,
2852 proto->slab == NULL ? "no" : "yes",
2853 module_name(proto->owner),
2854 proto_method_implemented(proto->close),
2855 proto_method_implemented(proto->connect),
2856 proto_method_implemented(proto->disconnect),
2857 proto_method_implemented(proto->accept),
2858 proto_method_implemented(proto->ioctl),
2859 proto_method_implemented(proto->init),
2860 proto_method_implemented(proto->destroy),
2861 proto_method_implemented(proto->shutdown),
2862 proto_method_implemented(proto->setsockopt),
2863 proto_method_implemented(proto->getsockopt),
2864 proto_method_implemented(proto->sendmsg),
2865 proto_method_implemented(proto->recvmsg),
2866 proto_method_implemented(proto->sendpage),
2867 proto_method_implemented(proto->bind),
2868 proto_method_implemented(proto->backlog_rcv),
2869 proto_method_implemented(proto->hash),
2870 proto_method_implemented(proto->unhash),
2871 proto_method_implemented(proto->get_port),
2872 proto_method_implemented(proto->enter_memory_pressure));
2873 }
2874
2875 static int proto_seq_show(struct seq_file *seq, void *v)
2876 {
2877 if (v == &proto_list)
2878 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2879 "protocol",
2880 "size",
2881 "sockets",
2882 "memory",
2883 "press",
2884 "maxhdr",
2885 "slab",
2886 "module",
2887 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2888 else
2889 proto_seq_printf(seq, list_entry(v, struct proto, node));
2890 return 0;
2891 }
2892
2893 static const struct seq_operations proto_seq_ops = {
2894 .start = proto_seq_start,
2895 .next = proto_seq_next,
2896 .stop = proto_seq_stop,
2897 .show = proto_seq_show,
2898 };
2899
2900 static int proto_seq_open(struct inode *inode, struct file *file)
2901 {
2902 return seq_open_net(inode, file, &proto_seq_ops,
2903 sizeof(struct seq_net_private));
2904 }
2905
2906 static const struct file_operations proto_seq_fops = {
2907 .owner = THIS_MODULE,
2908 .open = proto_seq_open,
2909 .read = seq_read,
2910 .llseek = seq_lseek,
2911 .release = seq_release_net,
2912 };
2913
2914 static __net_init int proto_init_net(struct net *net)
2915 {
2916 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2917 return -ENOMEM;
2918
2919 return 0;
2920 }
2921
2922 static __net_exit void proto_exit_net(struct net *net)
2923 {
2924 remove_proc_entry("protocols", net->proc_net);
2925 }
2926
2927
2928 static __net_initdata struct pernet_operations proto_net_ops = {
2929 .init = proto_init_net,
2930 .exit = proto_exit_net,
2931 };
2932
2933 static int __init proto_init(void)
2934 {
2935 return register_pernet_subsys(&proto_net_ops);
2936 }
2937
2938 subsys_initcall(proto_init);
2939
2940 #endif /* PROC_FS */
This page took 0.090463 seconds and 5 git commands to generate.