bnx2x: Change to driver version 1.72.10-0
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 #include <linux/user_namespace.h>
114 #include <linux/static_key.h>
115 #include <linux/memcontrol.h>
116
117 #include <asm/uaccess.h>
118 #include <asm/system.h>
119
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131
132 #include <linux/filter.h>
133
134 #include <trace/events/sock.h>
135
136 #ifdef CONFIG_INET
137 #include <net/tcp.h>
138 #endif
139
140 static DEFINE_MUTEX(proto_list_mutex);
141 static LIST_HEAD(proto_list);
142
143 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
144 int mem_cgroup_sockets_init(struct cgroup *cgrp, struct cgroup_subsys *ss)
145 {
146 struct proto *proto;
147 int ret = 0;
148
149 mutex_lock(&proto_list_mutex);
150 list_for_each_entry(proto, &proto_list, node) {
151 if (proto->init_cgroup) {
152 ret = proto->init_cgroup(cgrp, ss);
153 if (ret)
154 goto out;
155 }
156 }
157
158 mutex_unlock(&proto_list_mutex);
159 return ret;
160 out:
161 list_for_each_entry_continue_reverse(proto, &proto_list, node)
162 if (proto->destroy_cgroup)
163 proto->destroy_cgroup(cgrp);
164 mutex_unlock(&proto_list_mutex);
165 return ret;
166 }
167
168 void mem_cgroup_sockets_destroy(struct cgroup *cgrp)
169 {
170 struct proto *proto;
171
172 mutex_lock(&proto_list_mutex);
173 list_for_each_entry_reverse(proto, &proto_list, node)
174 if (proto->destroy_cgroup)
175 proto->destroy_cgroup(cgrp);
176 mutex_unlock(&proto_list_mutex);
177 }
178 #endif
179
180 /*
181 * Each address family might have different locking rules, so we have
182 * one slock key per address family:
183 */
184 static struct lock_class_key af_family_keys[AF_MAX];
185 static struct lock_class_key af_family_slock_keys[AF_MAX];
186
187 struct static_key memcg_socket_limit_enabled;
188 EXPORT_SYMBOL(memcg_socket_limit_enabled);
189
190 /*
191 * Make lock validator output more readable. (we pre-construct these
192 * strings build-time, so that runtime initialization of socket
193 * locks is fast):
194 */
195 static const char *const af_family_key_strings[AF_MAX+1] = {
196 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
197 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
198 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
199 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
200 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
201 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
202 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
203 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
204 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
205 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
206 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
207 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
208 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
209 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
210 };
211 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
212 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
213 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
214 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
215 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
216 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
217 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
218 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
219 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
220 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
221 "slock-27" , "slock-28" , "slock-AF_CAN" ,
222 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
223 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
224 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
225 "slock-AF_NFC" , "slock-AF_MAX"
226 };
227 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
228 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
229 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
230 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
231 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
232 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
233 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
234 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
235 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
236 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
237 "clock-27" , "clock-28" , "clock-AF_CAN" ,
238 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
239 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
240 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
241 "clock-AF_NFC" , "clock-AF_MAX"
242 };
243
244 /*
245 * sk_callback_lock locking rules are per-address-family,
246 * so split the lock classes by using a per-AF key:
247 */
248 static struct lock_class_key af_callback_keys[AF_MAX];
249
250 /* Take into consideration the size of the struct sk_buff overhead in the
251 * determination of these values, since that is non-constant across
252 * platforms. This makes socket queueing behavior and performance
253 * not depend upon such differences.
254 */
255 #define _SK_MEM_PACKETS 256
256 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
257 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
258 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
259
260 /* Run time adjustable parameters. */
261 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
262 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
263 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
264 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
265
266 /* Maximal space eaten by iovec or ancillary data plus some space */
267 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
268 EXPORT_SYMBOL(sysctl_optmem_max);
269
270 #if defined(CONFIG_CGROUPS)
271 #if !defined(CONFIG_NET_CLS_CGROUP)
272 int net_cls_subsys_id = -1;
273 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
274 #endif
275 #if !defined(CONFIG_NETPRIO_CGROUP)
276 int net_prio_subsys_id = -1;
277 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
278 #endif
279 #endif
280
281 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
282 {
283 struct timeval tv;
284
285 if (optlen < sizeof(tv))
286 return -EINVAL;
287 if (copy_from_user(&tv, optval, sizeof(tv)))
288 return -EFAULT;
289 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
290 return -EDOM;
291
292 if (tv.tv_sec < 0) {
293 static int warned __read_mostly;
294
295 *timeo_p = 0;
296 if (warned < 10 && net_ratelimit()) {
297 warned++;
298 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
299 "tries to set negative timeout\n",
300 current->comm, task_pid_nr(current));
301 }
302 return 0;
303 }
304 *timeo_p = MAX_SCHEDULE_TIMEOUT;
305 if (tv.tv_sec == 0 && tv.tv_usec == 0)
306 return 0;
307 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
308 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
309 return 0;
310 }
311
312 static void sock_warn_obsolete_bsdism(const char *name)
313 {
314 static int warned;
315 static char warncomm[TASK_COMM_LEN];
316 if (strcmp(warncomm, current->comm) && warned < 5) {
317 strcpy(warncomm, current->comm);
318 printk(KERN_WARNING "process `%s' is using obsolete "
319 "%s SO_BSDCOMPAT\n", warncomm, name);
320 warned++;
321 }
322 }
323
324 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
325
326 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
327 {
328 if (sk->sk_flags & flags) {
329 sk->sk_flags &= ~flags;
330 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
331 net_disable_timestamp();
332 }
333 }
334
335
336 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
337 {
338 int err;
339 int skb_len;
340 unsigned long flags;
341 struct sk_buff_head *list = &sk->sk_receive_queue;
342
343 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
344 atomic_inc(&sk->sk_drops);
345 trace_sock_rcvqueue_full(sk, skb);
346 return -ENOMEM;
347 }
348
349 err = sk_filter(sk, skb);
350 if (err)
351 return err;
352
353 if (!sk_rmem_schedule(sk, skb->truesize)) {
354 atomic_inc(&sk->sk_drops);
355 return -ENOBUFS;
356 }
357
358 skb->dev = NULL;
359 skb_set_owner_r(skb, sk);
360
361 /* Cache the SKB length before we tack it onto the receive
362 * queue. Once it is added it no longer belongs to us and
363 * may be freed by other threads of control pulling packets
364 * from the queue.
365 */
366 skb_len = skb->len;
367
368 /* we escape from rcu protected region, make sure we dont leak
369 * a norefcounted dst
370 */
371 skb_dst_force(skb);
372
373 spin_lock_irqsave(&list->lock, flags);
374 skb->dropcount = atomic_read(&sk->sk_drops);
375 __skb_queue_tail(list, skb);
376 spin_unlock_irqrestore(&list->lock, flags);
377
378 if (!sock_flag(sk, SOCK_DEAD))
379 sk->sk_data_ready(sk, skb_len);
380 return 0;
381 }
382 EXPORT_SYMBOL(sock_queue_rcv_skb);
383
384 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
385 {
386 int rc = NET_RX_SUCCESS;
387
388 if (sk_filter(sk, skb))
389 goto discard_and_relse;
390
391 skb->dev = NULL;
392
393 if (sk_rcvqueues_full(sk, skb)) {
394 atomic_inc(&sk->sk_drops);
395 goto discard_and_relse;
396 }
397 if (nested)
398 bh_lock_sock_nested(sk);
399 else
400 bh_lock_sock(sk);
401 if (!sock_owned_by_user(sk)) {
402 /*
403 * trylock + unlock semantics:
404 */
405 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
406
407 rc = sk_backlog_rcv(sk, skb);
408
409 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
410 } else if (sk_add_backlog(sk, skb)) {
411 bh_unlock_sock(sk);
412 atomic_inc(&sk->sk_drops);
413 goto discard_and_relse;
414 }
415
416 bh_unlock_sock(sk);
417 out:
418 sock_put(sk);
419 return rc;
420 discard_and_relse:
421 kfree_skb(skb);
422 goto out;
423 }
424 EXPORT_SYMBOL(sk_receive_skb);
425
426 void sk_reset_txq(struct sock *sk)
427 {
428 sk_tx_queue_clear(sk);
429 }
430 EXPORT_SYMBOL(sk_reset_txq);
431
432 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
433 {
434 struct dst_entry *dst = __sk_dst_get(sk);
435
436 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
437 sk_tx_queue_clear(sk);
438 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
439 dst_release(dst);
440 return NULL;
441 }
442
443 return dst;
444 }
445 EXPORT_SYMBOL(__sk_dst_check);
446
447 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
448 {
449 struct dst_entry *dst = sk_dst_get(sk);
450
451 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
452 sk_dst_reset(sk);
453 dst_release(dst);
454 return NULL;
455 }
456
457 return dst;
458 }
459 EXPORT_SYMBOL(sk_dst_check);
460
461 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
462 {
463 int ret = -ENOPROTOOPT;
464 #ifdef CONFIG_NETDEVICES
465 struct net *net = sock_net(sk);
466 char devname[IFNAMSIZ];
467 int index;
468
469 /* Sorry... */
470 ret = -EPERM;
471 if (!capable(CAP_NET_RAW))
472 goto out;
473
474 ret = -EINVAL;
475 if (optlen < 0)
476 goto out;
477
478 /* Bind this socket to a particular device like "eth0",
479 * as specified in the passed interface name. If the
480 * name is "" or the option length is zero the socket
481 * is not bound.
482 */
483 if (optlen > IFNAMSIZ - 1)
484 optlen = IFNAMSIZ - 1;
485 memset(devname, 0, sizeof(devname));
486
487 ret = -EFAULT;
488 if (copy_from_user(devname, optval, optlen))
489 goto out;
490
491 index = 0;
492 if (devname[0] != '\0') {
493 struct net_device *dev;
494
495 rcu_read_lock();
496 dev = dev_get_by_name_rcu(net, devname);
497 if (dev)
498 index = dev->ifindex;
499 rcu_read_unlock();
500 ret = -ENODEV;
501 if (!dev)
502 goto out;
503 }
504
505 lock_sock(sk);
506 sk->sk_bound_dev_if = index;
507 sk_dst_reset(sk);
508 release_sock(sk);
509
510 ret = 0;
511
512 out:
513 #endif
514
515 return ret;
516 }
517
518 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
519 {
520 if (valbool)
521 sock_set_flag(sk, bit);
522 else
523 sock_reset_flag(sk, bit);
524 }
525
526 /*
527 * This is meant for all protocols to use and covers goings on
528 * at the socket level. Everything here is generic.
529 */
530
531 int sock_setsockopt(struct socket *sock, int level, int optname,
532 char __user *optval, unsigned int optlen)
533 {
534 struct sock *sk = sock->sk;
535 int val;
536 int valbool;
537 struct linger ling;
538 int ret = 0;
539
540 /*
541 * Options without arguments
542 */
543
544 if (optname == SO_BINDTODEVICE)
545 return sock_bindtodevice(sk, optval, optlen);
546
547 if (optlen < sizeof(int))
548 return -EINVAL;
549
550 if (get_user(val, (int __user *)optval))
551 return -EFAULT;
552
553 valbool = val ? 1 : 0;
554
555 lock_sock(sk);
556
557 switch (optname) {
558 case SO_DEBUG:
559 if (val && !capable(CAP_NET_ADMIN))
560 ret = -EACCES;
561 else
562 sock_valbool_flag(sk, SOCK_DBG, valbool);
563 break;
564 case SO_REUSEADDR:
565 sk->sk_reuse = valbool;
566 break;
567 case SO_TYPE:
568 case SO_PROTOCOL:
569 case SO_DOMAIN:
570 case SO_ERROR:
571 ret = -ENOPROTOOPT;
572 break;
573 case SO_DONTROUTE:
574 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
575 break;
576 case SO_BROADCAST:
577 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
578 break;
579 case SO_SNDBUF:
580 /* Don't error on this BSD doesn't and if you think
581 about it this is right. Otherwise apps have to
582 play 'guess the biggest size' games. RCVBUF/SNDBUF
583 are treated in BSD as hints */
584
585 if (val > sysctl_wmem_max)
586 val = sysctl_wmem_max;
587 set_sndbuf:
588 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
589 if ((val * 2) < SOCK_MIN_SNDBUF)
590 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
591 else
592 sk->sk_sndbuf = val * 2;
593
594 /*
595 * Wake up sending tasks if we
596 * upped the value.
597 */
598 sk->sk_write_space(sk);
599 break;
600
601 case SO_SNDBUFFORCE:
602 if (!capable(CAP_NET_ADMIN)) {
603 ret = -EPERM;
604 break;
605 }
606 goto set_sndbuf;
607
608 case SO_RCVBUF:
609 /* Don't error on this BSD doesn't and if you think
610 about it this is right. Otherwise apps have to
611 play 'guess the biggest size' games. RCVBUF/SNDBUF
612 are treated in BSD as hints */
613
614 if (val > sysctl_rmem_max)
615 val = sysctl_rmem_max;
616 set_rcvbuf:
617 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
618 /*
619 * We double it on the way in to account for
620 * "struct sk_buff" etc. overhead. Applications
621 * assume that the SO_RCVBUF setting they make will
622 * allow that much actual data to be received on that
623 * socket.
624 *
625 * Applications are unaware that "struct sk_buff" and
626 * other overheads allocate from the receive buffer
627 * during socket buffer allocation.
628 *
629 * And after considering the possible alternatives,
630 * returning the value we actually used in getsockopt
631 * is the most desirable behavior.
632 */
633 if ((val * 2) < SOCK_MIN_RCVBUF)
634 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
635 else
636 sk->sk_rcvbuf = val * 2;
637 break;
638
639 case SO_RCVBUFFORCE:
640 if (!capable(CAP_NET_ADMIN)) {
641 ret = -EPERM;
642 break;
643 }
644 goto set_rcvbuf;
645
646 case SO_KEEPALIVE:
647 #ifdef CONFIG_INET
648 if (sk->sk_protocol == IPPROTO_TCP)
649 tcp_set_keepalive(sk, valbool);
650 #endif
651 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
652 break;
653
654 case SO_OOBINLINE:
655 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
656 break;
657
658 case SO_NO_CHECK:
659 sk->sk_no_check = valbool;
660 break;
661
662 case SO_PRIORITY:
663 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
664 sk->sk_priority = val;
665 else
666 ret = -EPERM;
667 break;
668
669 case SO_LINGER:
670 if (optlen < sizeof(ling)) {
671 ret = -EINVAL; /* 1003.1g */
672 break;
673 }
674 if (copy_from_user(&ling, optval, sizeof(ling))) {
675 ret = -EFAULT;
676 break;
677 }
678 if (!ling.l_onoff)
679 sock_reset_flag(sk, SOCK_LINGER);
680 else {
681 #if (BITS_PER_LONG == 32)
682 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
683 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
684 else
685 #endif
686 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
687 sock_set_flag(sk, SOCK_LINGER);
688 }
689 break;
690
691 case SO_BSDCOMPAT:
692 sock_warn_obsolete_bsdism("setsockopt");
693 break;
694
695 case SO_PASSCRED:
696 if (valbool)
697 set_bit(SOCK_PASSCRED, &sock->flags);
698 else
699 clear_bit(SOCK_PASSCRED, &sock->flags);
700 break;
701
702 case SO_TIMESTAMP:
703 case SO_TIMESTAMPNS:
704 if (valbool) {
705 if (optname == SO_TIMESTAMP)
706 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
707 else
708 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
709 sock_set_flag(sk, SOCK_RCVTSTAMP);
710 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
711 } else {
712 sock_reset_flag(sk, SOCK_RCVTSTAMP);
713 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
714 }
715 break;
716
717 case SO_TIMESTAMPING:
718 if (val & ~SOF_TIMESTAMPING_MASK) {
719 ret = -EINVAL;
720 break;
721 }
722 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
723 val & SOF_TIMESTAMPING_TX_HARDWARE);
724 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
725 val & SOF_TIMESTAMPING_TX_SOFTWARE);
726 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
727 val & SOF_TIMESTAMPING_RX_HARDWARE);
728 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
729 sock_enable_timestamp(sk,
730 SOCK_TIMESTAMPING_RX_SOFTWARE);
731 else
732 sock_disable_timestamp(sk,
733 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
734 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
735 val & SOF_TIMESTAMPING_SOFTWARE);
736 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
737 val & SOF_TIMESTAMPING_SYS_HARDWARE);
738 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
739 val & SOF_TIMESTAMPING_RAW_HARDWARE);
740 break;
741
742 case SO_RCVLOWAT:
743 if (val < 0)
744 val = INT_MAX;
745 sk->sk_rcvlowat = val ? : 1;
746 break;
747
748 case SO_RCVTIMEO:
749 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
750 break;
751
752 case SO_SNDTIMEO:
753 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
754 break;
755
756 case SO_ATTACH_FILTER:
757 ret = -EINVAL;
758 if (optlen == sizeof(struct sock_fprog)) {
759 struct sock_fprog fprog;
760
761 ret = -EFAULT;
762 if (copy_from_user(&fprog, optval, sizeof(fprog)))
763 break;
764
765 ret = sk_attach_filter(&fprog, sk);
766 }
767 break;
768
769 case SO_DETACH_FILTER:
770 ret = sk_detach_filter(sk);
771 break;
772
773 case SO_PASSSEC:
774 if (valbool)
775 set_bit(SOCK_PASSSEC, &sock->flags);
776 else
777 clear_bit(SOCK_PASSSEC, &sock->flags);
778 break;
779 case SO_MARK:
780 if (!capable(CAP_NET_ADMIN))
781 ret = -EPERM;
782 else
783 sk->sk_mark = val;
784 break;
785
786 /* We implement the SO_SNDLOWAT etc to
787 not be settable (1003.1g 5.3) */
788 case SO_RXQ_OVFL:
789 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
790 break;
791
792 case SO_WIFI_STATUS:
793 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
794 break;
795
796 case SO_PEEK_OFF:
797 if (sock->ops->set_peek_off)
798 sock->ops->set_peek_off(sk, val);
799 else
800 ret = -EOPNOTSUPP;
801 break;
802
803 case SO_NOFCS:
804 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
805 break;
806
807 default:
808 ret = -ENOPROTOOPT;
809 break;
810 }
811 release_sock(sk);
812 return ret;
813 }
814 EXPORT_SYMBOL(sock_setsockopt);
815
816
817 void cred_to_ucred(struct pid *pid, const struct cred *cred,
818 struct ucred *ucred)
819 {
820 ucred->pid = pid_vnr(pid);
821 ucred->uid = ucred->gid = -1;
822 if (cred) {
823 struct user_namespace *current_ns = current_user_ns();
824
825 ucred->uid = user_ns_map_uid(current_ns, cred, cred->euid);
826 ucred->gid = user_ns_map_gid(current_ns, cred, cred->egid);
827 }
828 }
829 EXPORT_SYMBOL_GPL(cred_to_ucred);
830
831 int sock_getsockopt(struct socket *sock, int level, int optname,
832 char __user *optval, int __user *optlen)
833 {
834 struct sock *sk = sock->sk;
835
836 union {
837 int val;
838 struct linger ling;
839 struct timeval tm;
840 } v;
841
842 int lv = sizeof(int);
843 int len;
844
845 if (get_user(len, optlen))
846 return -EFAULT;
847 if (len < 0)
848 return -EINVAL;
849
850 memset(&v, 0, sizeof(v));
851
852 switch (optname) {
853 case SO_DEBUG:
854 v.val = sock_flag(sk, SOCK_DBG);
855 break;
856
857 case SO_DONTROUTE:
858 v.val = sock_flag(sk, SOCK_LOCALROUTE);
859 break;
860
861 case SO_BROADCAST:
862 v.val = !!sock_flag(sk, SOCK_BROADCAST);
863 break;
864
865 case SO_SNDBUF:
866 v.val = sk->sk_sndbuf;
867 break;
868
869 case SO_RCVBUF:
870 v.val = sk->sk_rcvbuf;
871 break;
872
873 case SO_REUSEADDR:
874 v.val = sk->sk_reuse;
875 break;
876
877 case SO_KEEPALIVE:
878 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
879 break;
880
881 case SO_TYPE:
882 v.val = sk->sk_type;
883 break;
884
885 case SO_PROTOCOL:
886 v.val = sk->sk_protocol;
887 break;
888
889 case SO_DOMAIN:
890 v.val = sk->sk_family;
891 break;
892
893 case SO_ERROR:
894 v.val = -sock_error(sk);
895 if (v.val == 0)
896 v.val = xchg(&sk->sk_err_soft, 0);
897 break;
898
899 case SO_OOBINLINE:
900 v.val = !!sock_flag(sk, SOCK_URGINLINE);
901 break;
902
903 case SO_NO_CHECK:
904 v.val = sk->sk_no_check;
905 break;
906
907 case SO_PRIORITY:
908 v.val = sk->sk_priority;
909 break;
910
911 case SO_LINGER:
912 lv = sizeof(v.ling);
913 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
914 v.ling.l_linger = sk->sk_lingertime / HZ;
915 break;
916
917 case SO_BSDCOMPAT:
918 sock_warn_obsolete_bsdism("getsockopt");
919 break;
920
921 case SO_TIMESTAMP:
922 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
923 !sock_flag(sk, SOCK_RCVTSTAMPNS);
924 break;
925
926 case SO_TIMESTAMPNS:
927 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
928 break;
929
930 case SO_TIMESTAMPING:
931 v.val = 0;
932 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
933 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
934 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
935 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
936 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
937 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
938 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
939 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
940 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
941 v.val |= SOF_TIMESTAMPING_SOFTWARE;
942 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
943 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
944 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
945 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
946 break;
947
948 case SO_RCVTIMEO:
949 lv = sizeof(struct timeval);
950 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
951 v.tm.tv_sec = 0;
952 v.tm.tv_usec = 0;
953 } else {
954 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
955 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
956 }
957 break;
958
959 case SO_SNDTIMEO:
960 lv = sizeof(struct timeval);
961 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
962 v.tm.tv_sec = 0;
963 v.tm.tv_usec = 0;
964 } else {
965 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
966 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
967 }
968 break;
969
970 case SO_RCVLOWAT:
971 v.val = sk->sk_rcvlowat;
972 break;
973
974 case SO_SNDLOWAT:
975 v.val = 1;
976 break;
977
978 case SO_PASSCRED:
979 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
980 break;
981
982 case SO_PEERCRED:
983 {
984 struct ucred peercred;
985 if (len > sizeof(peercred))
986 len = sizeof(peercred);
987 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
988 if (copy_to_user(optval, &peercred, len))
989 return -EFAULT;
990 goto lenout;
991 }
992
993 case SO_PEERNAME:
994 {
995 char address[128];
996
997 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
998 return -ENOTCONN;
999 if (lv < len)
1000 return -EINVAL;
1001 if (copy_to_user(optval, address, len))
1002 return -EFAULT;
1003 goto lenout;
1004 }
1005
1006 /* Dubious BSD thing... Probably nobody even uses it, but
1007 * the UNIX standard wants it for whatever reason... -DaveM
1008 */
1009 case SO_ACCEPTCONN:
1010 v.val = sk->sk_state == TCP_LISTEN;
1011 break;
1012
1013 case SO_PASSSEC:
1014 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
1015 break;
1016
1017 case SO_PEERSEC:
1018 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1019
1020 case SO_MARK:
1021 v.val = sk->sk_mark;
1022 break;
1023
1024 case SO_RXQ_OVFL:
1025 v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
1026 break;
1027
1028 case SO_WIFI_STATUS:
1029 v.val = !!sock_flag(sk, SOCK_WIFI_STATUS);
1030 break;
1031
1032 case SO_PEEK_OFF:
1033 if (!sock->ops->set_peek_off)
1034 return -EOPNOTSUPP;
1035
1036 v.val = sk->sk_peek_off;
1037 break;
1038 case SO_NOFCS:
1039 v.val = !!sock_flag(sk, SOCK_NOFCS);
1040 break;
1041 default:
1042 return -ENOPROTOOPT;
1043 }
1044
1045 if (len > lv)
1046 len = lv;
1047 if (copy_to_user(optval, &v, len))
1048 return -EFAULT;
1049 lenout:
1050 if (put_user(len, optlen))
1051 return -EFAULT;
1052 return 0;
1053 }
1054
1055 /*
1056 * Initialize an sk_lock.
1057 *
1058 * (We also register the sk_lock with the lock validator.)
1059 */
1060 static inline void sock_lock_init(struct sock *sk)
1061 {
1062 sock_lock_init_class_and_name(sk,
1063 af_family_slock_key_strings[sk->sk_family],
1064 af_family_slock_keys + sk->sk_family,
1065 af_family_key_strings[sk->sk_family],
1066 af_family_keys + sk->sk_family);
1067 }
1068
1069 /*
1070 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1071 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1072 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1073 */
1074 static void sock_copy(struct sock *nsk, const struct sock *osk)
1075 {
1076 #ifdef CONFIG_SECURITY_NETWORK
1077 void *sptr = nsk->sk_security;
1078 #endif
1079 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1080
1081 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1082 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1083
1084 #ifdef CONFIG_SECURITY_NETWORK
1085 nsk->sk_security = sptr;
1086 security_sk_clone(osk, nsk);
1087 #endif
1088 }
1089
1090 /*
1091 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1092 * un-modified. Special care is taken when initializing object to zero.
1093 */
1094 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1095 {
1096 if (offsetof(struct sock, sk_node.next) != 0)
1097 memset(sk, 0, offsetof(struct sock, sk_node.next));
1098 memset(&sk->sk_node.pprev, 0,
1099 size - offsetof(struct sock, sk_node.pprev));
1100 }
1101
1102 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1103 {
1104 unsigned long nulls1, nulls2;
1105
1106 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1107 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1108 if (nulls1 > nulls2)
1109 swap(nulls1, nulls2);
1110
1111 if (nulls1 != 0)
1112 memset((char *)sk, 0, nulls1);
1113 memset((char *)sk + nulls1 + sizeof(void *), 0,
1114 nulls2 - nulls1 - sizeof(void *));
1115 memset((char *)sk + nulls2 + sizeof(void *), 0,
1116 size - nulls2 - sizeof(void *));
1117 }
1118 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1119
1120 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1121 int family)
1122 {
1123 struct sock *sk;
1124 struct kmem_cache *slab;
1125
1126 slab = prot->slab;
1127 if (slab != NULL) {
1128 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1129 if (!sk)
1130 return sk;
1131 if (priority & __GFP_ZERO) {
1132 if (prot->clear_sk)
1133 prot->clear_sk(sk, prot->obj_size);
1134 else
1135 sk_prot_clear_nulls(sk, prot->obj_size);
1136 }
1137 } else
1138 sk = kmalloc(prot->obj_size, priority);
1139
1140 if (sk != NULL) {
1141 kmemcheck_annotate_bitfield(sk, flags);
1142
1143 if (security_sk_alloc(sk, family, priority))
1144 goto out_free;
1145
1146 if (!try_module_get(prot->owner))
1147 goto out_free_sec;
1148 sk_tx_queue_clear(sk);
1149 }
1150
1151 return sk;
1152
1153 out_free_sec:
1154 security_sk_free(sk);
1155 out_free:
1156 if (slab != NULL)
1157 kmem_cache_free(slab, sk);
1158 else
1159 kfree(sk);
1160 return NULL;
1161 }
1162
1163 static void sk_prot_free(struct proto *prot, struct sock *sk)
1164 {
1165 struct kmem_cache *slab;
1166 struct module *owner;
1167
1168 owner = prot->owner;
1169 slab = prot->slab;
1170
1171 security_sk_free(sk);
1172 if (slab != NULL)
1173 kmem_cache_free(slab, sk);
1174 else
1175 kfree(sk);
1176 module_put(owner);
1177 }
1178
1179 #ifdef CONFIG_CGROUPS
1180 void sock_update_classid(struct sock *sk)
1181 {
1182 u32 classid;
1183
1184 rcu_read_lock(); /* doing current task, which cannot vanish. */
1185 classid = task_cls_classid(current);
1186 rcu_read_unlock();
1187 if (classid && classid != sk->sk_classid)
1188 sk->sk_classid = classid;
1189 }
1190 EXPORT_SYMBOL(sock_update_classid);
1191
1192 void sock_update_netprioidx(struct sock *sk)
1193 {
1194 if (in_interrupt())
1195 return;
1196
1197 sk->sk_cgrp_prioidx = task_netprioidx(current);
1198 }
1199 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1200 #endif
1201
1202 /**
1203 * sk_alloc - All socket objects are allocated here
1204 * @net: the applicable net namespace
1205 * @family: protocol family
1206 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1207 * @prot: struct proto associated with this new sock instance
1208 */
1209 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1210 struct proto *prot)
1211 {
1212 struct sock *sk;
1213
1214 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1215 if (sk) {
1216 sk->sk_family = family;
1217 /*
1218 * See comment in struct sock definition to understand
1219 * why we need sk_prot_creator -acme
1220 */
1221 sk->sk_prot = sk->sk_prot_creator = prot;
1222 sock_lock_init(sk);
1223 sock_net_set(sk, get_net(net));
1224 atomic_set(&sk->sk_wmem_alloc, 1);
1225
1226 sock_update_classid(sk);
1227 sock_update_netprioidx(sk);
1228 }
1229
1230 return sk;
1231 }
1232 EXPORT_SYMBOL(sk_alloc);
1233
1234 static void __sk_free(struct sock *sk)
1235 {
1236 struct sk_filter *filter;
1237
1238 if (sk->sk_destruct)
1239 sk->sk_destruct(sk);
1240
1241 filter = rcu_dereference_check(sk->sk_filter,
1242 atomic_read(&sk->sk_wmem_alloc) == 0);
1243 if (filter) {
1244 sk_filter_uncharge(sk, filter);
1245 RCU_INIT_POINTER(sk->sk_filter, NULL);
1246 }
1247
1248 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1249
1250 if (atomic_read(&sk->sk_omem_alloc))
1251 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1252 __func__, atomic_read(&sk->sk_omem_alloc));
1253
1254 if (sk->sk_peer_cred)
1255 put_cred(sk->sk_peer_cred);
1256 put_pid(sk->sk_peer_pid);
1257 put_net(sock_net(sk));
1258 sk_prot_free(sk->sk_prot_creator, sk);
1259 }
1260
1261 void sk_free(struct sock *sk)
1262 {
1263 /*
1264 * We subtract one from sk_wmem_alloc and can know if
1265 * some packets are still in some tx queue.
1266 * If not null, sock_wfree() will call __sk_free(sk) later
1267 */
1268 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1269 __sk_free(sk);
1270 }
1271 EXPORT_SYMBOL(sk_free);
1272
1273 /*
1274 * Last sock_put should drop reference to sk->sk_net. It has already
1275 * been dropped in sk_change_net. Taking reference to stopping namespace
1276 * is not an option.
1277 * Take reference to a socket to remove it from hash _alive_ and after that
1278 * destroy it in the context of init_net.
1279 */
1280 void sk_release_kernel(struct sock *sk)
1281 {
1282 if (sk == NULL || sk->sk_socket == NULL)
1283 return;
1284
1285 sock_hold(sk);
1286 sock_release(sk->sk_socket);
1287 release_net(sock_net(sk));
1288 sock_net_set(sk, get_net(&init_net));
1289 sock_put(sk);
1290 }
1291 EXPORT_SYMBOL(sk_release_kernel);
1292
1293 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1294 {
1295 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1296 sock_update_memcg(newsk);
1297 }
1298
1299 /**
1300 * sk_clone_lock - clone a socket, and lock its clone
1301 * @sk: the socket to clone
1302 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1303 *
1304 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1305 */
1306 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1307 {
1308 struct sock *newsk;
1309
1310 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1311 if (newsk != NULL) {
1312 struct sk_filter *filter;
1313
1314 sock_copy(newsk, sk);
1315
1316 /* SANITY */
1317 get_net(sock_net(newsk));
1318 sk_node_init(&newsk->sk_node);
1319 sock_lock_init(newsk);
1320 bh_lock_sock(newsk);
1321 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1322 newsk->sk_backlog.len = 0;
1323
1324 atomic_set(&newsk->sk_rmem_alloc, 0);
1325 /*
1326 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1327 */
1328 atomic_set(&newsk->sk_wmem_alloc, 1);
1329 atomic_set(&newsk->sk_omem_alloc, 0);
1330 skb_queue_head_init(&newsk->sk_receive_queue);
1331 skb_queue_head_init(&newsk->sk_write_queue);
1332 #ifdef CONFIG_NET_DMA
1333 skb_queue_head_init(&newsk->sk_async_wait_queue);
1334 #endif
1335
1336 spin_lock_init(&newsk->sk_dst_lock);
1337 rwlock_init(&newsk->sk_callback_lock);
1338 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1339 af_callback_keys + newsk->sk_family,
1340 af_family_clock_key_strings[newsk->sk_family]);
1341
1342 newsk->sk_dst_cache = NULL;
1343 newsk->sk_wmem_queued = 0;
1344 newsk->sk_forward_alloc = 0;
1345 newsk->sk_send_head = NULL;
1346 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1347
1348 sock_reset_flag(newsk, SOCK_DONE);
1349 skb_queue_head_init(&newsk->sk_error_queue);
1350
1351 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1352 if (filter != NULL)
1353 sk_filter_charge(newsk, filter);
1354
1355 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1356 /* It is still raw copy of parent, so invalidate
1357 * destructor and make plain sk_free() */
1358 newsk->sk_destruct = NULL;
1359 bh_unlock_sock(newsk);
1360 sk_free(newsk);
1361 newsk = NULL;
1362 goto out;
1363 }
1364
1365 newsk->sk_err = 0;
1366 newsk->sk_priority = 0;
1367 /*
1368 * Before updating sk_refcnt, we must commit prior changes to memory
1369 * (Documentation/RCU/rculist_nulls.txt for details)
1370 */
1371 smp_wmb();
1372 atomic_set(&newsk->sk_refcnt, 2);
1373
1374 /*
1375 * Increment the counter in the same struct proto as the master
1376 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1377 * is the same as sk->sk_prot->socks, as this field was copied
1378 * with memcpy).
1379 *
1380 * This _changes_ the previous behaviour, where
1381 * tcp_create_openreq_child always was incrementing the
1382 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1383 * to be taken into account in all callers. -acme
1384 */
1385 sk_refcnt_debug_inc(newsk);
1386 sk_set_socket(newsk, NULL);
1387 newsk->sk_wq = NULL;
1388
1389 sk_update_clone(sk, newsk);
1390
1391 if (newsk->sk_prot->sockets_allocated)
1392 sk_sockets_allocated_inc(newsk);
1393
1394 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1395 net_enable_timestamp();
1396 }
1397 out:
1398 return newsk;
1399 }
1400 EXPORT_SYMBOL_GPL(sk_clone_lock);
1401
1402 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1403 {
1404 __sk_dst_set(sk, dst);
1405 sk->sk_route_caps = dst->dev->features;
1406 if (sk->sk_route_caps & NETIF_F_GSO)
1407 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1408 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1409 if (sk_can_gso(sk)) {
1410 if (dst->header_len) {
1411 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1412 } else {
1413 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1414 sk->sk_gso_max_size = dst->dev->gso_max_size;
1415 }
1416 }
1417 }
1418 EXPORT_SYMBOL_GPL(sk_setup_caps);
1419
1420 void __init sk_init(void)
1421 {
1422 if (totalram_pages <= 4096) {
1423 sysctl_wmem_max = 32767;
1424 sysctl_rmem_max = 32767;
1425 sysctl_wmem_default = 32767;
1426 sysctl_rmem_default = 32767;
1427 } else if (totalram_pages >= 131072) {
1428 sysctl_wmem_max = 131071;
1429 sysctl_rmem_max = 131071;
1430 }
1431 }
1432
1433 /*
1434 * Simple resource managers for sockets.
1435 */
1436
1437
1438 /*
1439 * Write buffer destructor automatically called from kfree_skb.
1440 */
1441 void sock_wfree(struct sk_buff *skb)
1442 {
1443 struct sock *sk = skb->sk;
1444 unsigned int len = skb->truesize;
1445
1446 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1447 /*
1448 * Keep a reference on sk_wmem_alloc, this will be released
1449 * after sk_write_space() call
1450 */
1451 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1452 sk->sk_write_space(sk);
1453 len = 1;
1454 }
1455 /*
1456 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1457 * could not do because of in-flight packets
1458 */
1459 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1460 __sk_free(sk);
1461 }
1462 EXPORT_SYMBOL(sock_wfree);
1463
1464 /*
1465 * Read buffer destructor automatically called from kfree_skb.
1466 */
1467 void sock_rfree(struct sk_buff *skb)
1468 {
1469 struct sock *sk = skb->sk;
1470 unsigned int len = skb->truesize;
1471
1472 atomic_sub(len, &sk->sk_rmem_alloc);
1473 sk_mem_uncharge(sk, len);
1474 }
1475 EXPORT_SYMBOL(sock_rfree);
1476
1477
1478 int sock_i_uid(struct sock *sk)
1479 {
1480 int uid;
1481
1482 read_lock_bh(&sk->sk_callback_lock);
1483 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1484 read_unlock_bh(&sk->sk_callback_lock);
1485 return uid;
1486 }
1487 EXPORT_SYMBOL(sock_i_uid);
1488
1489 unsigned long sock_i_ino(struct sock *sk)
1490 {
1491 unsigned long ino;
1492
1493 read_lock_bh(&sk->sk_callback_lock);
1494 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1495 read_unlock_bh(&sk->sk_callback_lock);
1496 return ino;
1497 }
1498 EXPORT_SYMBOL(sock_i_ino);
1499
1500 /*
1501 * Allocate a skb from the socket's send buffer.
1502 */
1503 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1504 gfp_t priority)
1505 {
1506 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1507 struct sk_buff *skb = alloc_skb(size, priority);
1508 if (skb) {
1509 skb_set_owner_w(skb, sk);
1510 return skb;
1511 }
1512 }
1513 return NULL;
1514 }
1515 EXPORT_SYMBOL(sock_wmalloc);
1516
1517 /*
1518 * Allocate a skb from the socket's receive buffer.
1519 */
1520 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1521 gfp_t priority)
1522 {
1523 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1524 struct sk_buff *skb = alloc_skb(size, priority);
1525 if (skb) {
1526 skb_set_owner_r(skb, sk);
1527 return skb;
1528 }
1529 }
1530 return NULL;
1531 }
1532
1533 /*
1534 * Allocate a memory block from the socket's option memory buffer.
1535 */
1536 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1537 {
1538 if ((unsigned)size <= sysctl_optmem_max &&
1539 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1540 void *mem;
1541 /* First do the add, to avoid the race if kmalloc
1542 * might sleep.
1543 */
1544 atomic_add(size, &sk->sk_omem_alloc);
1545 mem = kmalloc(size, priority);
1546 if (mem)
1547 return mem;
1548 atomic_sub(size, &sk->sk_omem_alloc);
1549 }
1550 return NULL;
1551 }
1552 EXPORT_SYMBOL(sock_kmalloc);
1553
1554 /*
1555 * Free an option memory block.
1556 */
1557 void sock_kfree_s(struct sock *sk, void *mem, int size)
1558 {
1559 kfree(mem);
1560 atomic_sub(size, &sk->sk_omem_alloc);
1561 }
1562 EXPORT_SYMBOL(sock_kfree_s);
1563
1564 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1565 I think, these locks should be removed for datagram sockets.
1566 */
1567 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1568 {
1569 DEFINE_WAIT(wait);
1570
1571 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1572 for (;;) {
1573 if (!timeo)
1574 break;
1575 if (signal_pending(current))
1576 break;
1577 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1578 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1579 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1580 break;
1581 if (sk->sk_shutdown & SEND_SHUTDOWN)
1582 break;
1583 if (sk->sk_err)
1584 break;
1585 timeo = schedule_timeout(timeo);
1586 }
1587 finish_wait(sk_sleep(sk), &wait);
1588 return timeo;
1589 }
1590
1591
1592 /*
1593 * Generic send/receive buffer handlers
1594 */
1595
1596 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1597 unsigned long data_len, int noblock,
1598 int *errcode)
1599 {
1600 struct sk_buff *skb;
1601 gfp_t gfp_mask;
1602 long timeo;
1603 int err;
1604
1605 gfp_mask = sk->sk_allocation;
1606 if (gfp_mask & __GFP_WAIT)
1607 gfp_mask |= __GFP_REPEAT;
1608
1609 timeo = sock_sndtimeo(sk, noblock);
1610 while (1) {
1611 err = sock_error(sk);
1612 if (err != 0)
1613 goto failure;
1614
1615 err = -EPIPE;
1616 if (sk->sk_shutdown & SEND_SHUTDOWN)
1617 goto failure;
1618
1619 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1620 skb = alloc_skb(header_len, gfp_mask);
1621 if (skb) {
1622 int npages;
1623 int i;
1624
1625 /* No pages, we're done... */
1626 if (!data_len)
1627 break;
1628
1629 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1630 skb->truesize += data_len;
1631 skb_shinfo(skb)->nr_frags = npages;
1632 for (i = 0; i < npages; i++) {
1633 struct page *page;
1634
1635 page = alloc_pages(sk->sk_allocation, 0);
1636 if (!page) {
1637 err = -ENOBUFS;
1638 skb_shinfo(skb)->nr_frags = i;
1639 kfree_skb(skb);
1640 goto failure;
1641 }
1642
1643 __skb_fill_page_desc(skb, i,
1644 page, 0,
1645 (data_len >= PAGE_SIZE ?
1646 PAGE_SIZE :
1647 data_len));
1648 data_len -= PAGE_SIZE;
1649 }
1650
1651 /* Full success... */
1652 break;
1653 }
1654 err = -ENOBUFS;
1655 goto failure;
1656 }
1657 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1658 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1659 err = -EAGAIN;
1660 if (!timeo)
1661 goto failure;
1662 if (signal_pending(current))
1663 goto interrupted;
1664 timeo = sock_wait_for_wmem(sk, timeo);
1665 }
1666
1667 skb_set_owner_w(skb, sk);
1668 return skb;
1669
1670 interrupted:
1671 err = sock_intr_errno(timeo);
1672 failure:
1673 *errcode = err;
1674 return NULL;
1675 }
1676 EXPORT_SYMBOL(sock_alloc_send_pskb);
1677
1678 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1679 int noblock, int *errcode)
1680 {
1681 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1682 }
1683 EXPORT_SYMBOL(sock_alloc_send_skb);
1684
1685 static void __lock_sock(struct sock *sk)
1686 __releases(&sk->sk_lock.slock)
1687 __acquires(&sk->sk_lock.slock)
1688 {
1689 DEFINE_WAIT(wait);
1690
1691 for (;;) {
1692 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1693 TASK_UNINTERRUPTIBLE);
1694 spin_unlock_bh(&sk->sk_lock.slock);
1695 schedule();
1696 spin_lock_bh(&sk->sk_lock.slock);
1697 if (!sock_owned_by_user(sk))
1698 break;
1699 }
1700 finish_wait(&sk->sk_lock.wq, &wait);
1701 }
1702
1703 static void __release_sock(struct sock *sk)
1704 __releases(&sk->sk_lock.slock)
1705 __acquires(&sk->sk_lock.slock)
1706 {
1707 struct sk_buff *skb = sk->sk_backlog.head;
1708
1709 do {
1710 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1711 bh_unlock_sock(sk);
1712
1713 do {
1714 struct sk_buff *next = skb->next;
1715
1716 WARN_ON_ONCE(skb_dst_is_noref(skb));
1717 skb->next = NULL;
1718 sk_backlog_rcv(sk, skb);
1719
1720 /*
1721 * We are in process context here with softirqs
1722 * disabled, use cond_resched_softirq() to preempt.
1723 * This is safe to do because we've taken the backlog
1724 * queue private:
1725 */
1726 cond_resched_softirq();
1727
1728 skb = next;
1729 } while (skb != NULL);
1730
1731 bh_lock_sock(sk);
1732 } while ((skb = sk->sk_backlog.head) != NULL);
1733
1734 /*
1735 * Doing the zeroing here guarantee we can not loop forever
1736 * while a wild producer attempts to flood us.
1737 */
1738 sk->sk_backlog.len = 0;
1739 }
1740
1741 /**
1742 * sk_wait_data - wait for data to arrive at sk_receive_queue
1743 * @sk: sock to wait on
1744 * @timeo: for how long
1745 *
1746 * Now socket state including sk->sk_err is changed only under lock,
1747 * hence we may omit checks after joining wait queue.
1748 * We check receive queue before schedule() only as optimization;
1749 * it is very likely that release_sock() added new data.
1750 */
1751 int sk_wait_data(struct sock *sk, long *timeo)
1752 {
1753 int rc;
1754 DEFINE_WAIT(wait);
1755
1756 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1757 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1758 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1759 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1760 finish_wait(sk_sleep(sk), &wait);
1761 return rc;
1762 }
1763 EXPORT_SYMBOL(sk_wait_data);
1764
1765 /**
1766 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1767 * @sk: socket
1768 * @size: memory size to allocate
1769 * @kind: allocation type
1770 *
1771 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1772 * rmem allocation. This function assumes that protocols which have
1773 * memory_pressure use sk_wmem_queued as write buffer accounting.
1774 */
1775 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1776 {
1777 struct proto *prot = sk->sk_prot;
1778 int amt = sk_mem_pages(size);
1779 long allocated;
1780 int parent_status = UNDER_LIMIT;
1781
1782 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1783
1784 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1785
1786 /* Under limit. */
1787 if (parent_status == UNDER_LIMIT &&
1788 allocated <= sk_prot_mem_limits(sk, 0)) {
1789 sk_leave_memory_pressure(sk);
1790 return 1;
1791 }
1792
1793 /* Under pressure. (we or our parents) */
1794 if ((parent_status > SOFT_LIMIT) ||
1795 allocated > sk_prot_mem_limits(sk, 1))
1796 sk_enter_memory_pressure(sk);
1797
1798 /* Over hard limit (we or our parents) */
1799 if ((parent_status == OVER_LIMIT) ||
1800 (allocated > sk_prot_mem_limits(sk, 2)))
1801 goto suppress_allocation;
1802
1803 /* guarantee minimum buffer size under pressure */
1804 if (kind == SK_MEM_RECV) {
1805 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1806 return 1;
1807
1808 } else { /* SK_MEM_SEND */
1809 if (sk->sk_type == SOCK_STREAM) {
1810 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1811 return 1;
1812 } else if (atomic_read(&sk->sk_wmem_alloc) <
1813 prot->sysctl_wmem[0])
1814 return 1;
1815 }
1816
1817 if (sk_has_memory_pressure(sk)) {
1818 int alloc;
1819
1820 if (!sk_under_memory_pressure(sk))
1821 return 1;
1822 alloc = sk_sockets_allocated_read_positive(sk);
1823 if (sk_prot_mem_limits(sk, 2) > alloc *
1824 sk_mem_pages(sk->sk_wmem_queued +
1825 atomic_read(&sk->sk_rmem_alloc) +
1826 sk->sk_forward_alloc))
1827 return 1;
1828 }
1829
1830 suppress_allocation:
1831
1832 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1833 sk_stream_moderate_sndbuf(sk);
1834
1835 /* Fail only if socket is _under_ its sndbuf.
1836 * In this case we cannot block, so that we have to fail.
1837 */
1838 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1839 return 1;
1840 }
1841
1842 trace_sock_exceed_buf_limit(sk, prot, allocated);
1843
1844 /* Alas. Undo changes. */
1845 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1846
1847 sk_memory_allocated_sub(sk, amt);
1848
1849 return 0;
1850 }
1851 EXPORT_SYMBOL(__sk_mem_schedule);
1852
1853 /**
1854 * __sk_reclaim - reclaim memory_allocated
1855 * @sk: socket
1856 */
1857 void __sk_mem_reclaim(struct sock *sk)
1858 {
1859 sk_memory_allocated_sub(sk,
1860 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1861 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1862
1863 if (sk_under_memory_pressure(sk) &&
1864 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1865 sk_leave_memory_pressure(sk);
1866 }
1867 EXPORT_SYMBOL(__sk_mem_reclaim);
1868
1869
1870 /*
1871 * Set of default routines for initialising struct proto_ops when
1872 * the protocol does not support a particular function. In certain
1873 * cases where it makes no sense for a protocol to have a "do nothing"
1874 * function, some default processing is provided.
1875 */
1876
1877 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1878 {
1879 return -EOPNOTSUPP;
1880 }
1881 EXPORT_SYMBOL(sock_no_bind);
1882
1883 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1884 int len, int flags)
1885 {
1886 return -EOPNOTSUPP;
1887 }
1888 EXPORT_SYMBOL(sock_no_connect);
1889
1890 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1891 {
1892 return -EOPNOTSUPP;
1893 }
1894 EXPORT_SYMBOL(sock_no_socketpair);
1895
1896 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1897 {
1898 return -EOPNOTSUPP;
1899 }
1900 EXPORT_SYMBOL(sock_no_accept);
1901
1902 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1903 int *len, int peer)
1904 {
1905 return -EOPNOTSUPP;
1906 }
1907 EXPORT_SYMBOL(sock_no_getname);
1908
1909 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1910 {
1911 return 0;
1912 }
1913 EXPORT_SYMBOL(sock_no_poll);
1914
1915 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1916 {
1917 return -EOPNOTSUPP;
1918 }
1919 EXPORT_SYMBOL(sock_no_ioctl);
1920
1921 int sock_no_listen(struct socket *sock, int backlog)
1922 {
1923 return -EOPNOTSUPP;
1924 }
1925 EXPORT_SYMBOL(sock_no_listen);
1926
1927 int sock_no_shutdown(struct socket *sock, int how)
1928 {
1929 return -EOPNOTSUPP;
1930 }
1931 EXPORT_SYMBOL(sock_no_shutdown);
1932
1933 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1934 char __user *optval, unsigned int optlen)
1935 {
1936 return -EOPNOTSUPP;
1937 }
1938 EXPORT_SYMBOL(sock_no_setsockopt);
1939
1940 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1941 char __user *optval, int __user *optlen)
1942 {
1943 return -EOPNOTSUPP;
1944 }
1945 EXPORT_SYMBOL(sock_no_getsockopt);
1946
1947 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1948 size_t len)
1949 {
1950 return -EOPNOTSUPP;
1951 }
1952 EXPORT_SYMBOL(sock_no_sendmsg);
1953
1954 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1955 size_t len, int flags)
1956 {
1957 return -EOPNOTSUPP;
1958 }
1959 EXPORT_SYMBOL(sock_no_recvmsg);
1960
1961 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1962 {
1963 /* Mirror missing mmap method error code */
1964 return -ENODEV;
1965 }
1966 EXPORT_SYMBOL(sock_no_mmap);
1967
1968 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1969 {
1970 ssize_t res;
1971 struct msghdr msg = {.msg_flags = flags};
1972 struct kvec iov;
1973 char *kaddr = kmap(page);
1974 iov.iov_base = kaddr + offset;
1975 iov.iov_len = size;
1976 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1977 kunmap(page);
1978 return res;
1979 }
1980 EXPORT_SYMBOL(sock_no_sendpage);
1981
1982 /*
1983 * Default Socket Callbacks
1984 */
1985
1986 static void sock_def_wakeup(struct sock *sk)
1987 {
1988 struct socket_wq *wq;
1989
1990 rcu_read_lock();
1991 wq = rcu_dereference(sk->sk_wq);
1992 if (wq_has_sleeper(wq))
1993 wake_up_interruptible_all(&wq->wait);
1994 rcu_read_unlock();
1995 }
1996
1997 static void sock_def_error_report(struct sock *sk)
1998 {
1999 struct socket_wq *wq;
2000
2001 rcu_read_lock();
2002 wq = rcu_dereference(sk->sk_wq);
2003 if (wq_has_sleeper(wq))
2004 wake_up_interruptible_poll(&wq->wait, POLLERR);
2005 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2006 rcu_read_unlock();
2007 }
2008
2009 static void sock_def_readable(struct sock *sk, int len)
2010 {
2011 struct socket_wq *wq;
2012
2013 rcu_read_lock();
2014 wq = rcu_dereference(sk->sk_wq);
2015 if (wq_has_sleeper(wq))
2016 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2017 POLLRDNORM | POLLRDBAND);
2018 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2019 rcu_read_unlock();
2020 }
2021
2022 static void sock_def_write_space(struct sock *sk)
2023 {
2024 struct socket_wq *wq;
2025
2026 rcu_read_lock();
2027
2028 /* Do not wake up a writer until he can make "significant"
2029 * progress. --DaveM
2030 */
2031 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2032 wq = rcu_dereference(sk->sk_wq);
2033 if (wq_has_sleeper(wq))
2034 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2035 POLLWRNORM | POLLWRBAND);
2036
2037 /* Should agree with poll, otherwise some programs break */
2038 if (sock_writeable(sk))
2039 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2040 }
2041
2042 rcu_read_unlock();
2043 }
2044
2045 static void sock_def_destruct(struct sock *sk)
2046 {
2047 kfree(sk->sk_protinfo);
2048 }
2049
2050 void sk_send_sigurg(struct sock *sk)
2051 {
2052 if (sk->sk_socket && sk->sk_socket->file)
2053 if (send_sigurg(&sk->sk_socket->file->f_owner))
2054 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2055 }
2056 EXPORT_SYMBOL(sk_send_sigurg);
2057
2058 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2059 unsigned long expires)
2060 {
2061 if (!mod_timer(timer, expires))
2062 sock_hold(sk);
2063 }
2064 EXPORT_SYMBOL(sk_reset_timer);
2065
2066 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2067 {
2068 if (timer_pending(timer) && del_timer(timer))
2069 __sock_put(sk);
2070 }
2071 EXPORT_SYMBOL(sk_stop_timer);
2072
2073 void sock_init_data(struct socket *sock, struct sock *sk)
2074 {
2075 skb_queue_head_init(&sk->sk_receive_queue);
2076 skb_queue_head_init(&sk->sk_write_queue);
2077 skb_queue_head_init(&sk->sk_error_queue);
2078 #ifdef CONFIG_NET_DMA
2079 skb_queue_head_init(&sk->sk_async_wait_queue);
2080 #endif
2081
2082 sk->sk_send_head = NULL;
2083
2084 init_timer(&sk->sk_timer);
2085
2086 sk->sk_allocation = GFP_KERNEL;
2087 sk->sk_rcvbuf = sysctl_rmem_default;
2088 sk->sk_sndbuf = sysctl_wmem_default;
2089 sk->sk_state = TCP_CLOSE;
2090 sk_set_socket(sk, sock);
2091
2092 sock_set_flag(sk, SOCK_ZAPPED);
2093
2094 if (sock) {
2095 sk->sk_type = sock->type;
2096 sk->sk_wq = sock->wq;
2097 sock->sk = sk;
2098 } else
2099 sk->sk_wq = NULL;
2100
2101 spin_lock_init(&sk->sk_dst_lock);
2102 rwlock_init(&sk->sk_callback_lock);
2103 lockdep_set_class_and_name(&sk->sk_callback_lock,
2104 af_callback_keys + sk->sk_family,
2105 af_family_clock_key_strings[sk->sk_family]);
2106
2107 sk->sk_state_change = sock_def_wakeup;
2108 sk->sk_data_ready = sock_def_readable;
2109 sk->sk_write_space = sock_def_write_space;
2110 sk->sk_error_report = sock_def_error_report;
2111 sk->sk_destruct = sock_def_destruct;
2112
2113 sk->sk_sndmsg_page = NULL;
2114 sk->sk_sndmsg_off = 0;
2115 sk->sk_peek_off = -1;
2116
2117 sk->sk_peer_pid = NULL;
2118 sk->sk_peer_cred = NULL;
2119 sk->sk_write_pending = 0;
2120 sk->sk_rcvlowat = 1;
2121 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2122 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2123
2124 sk->sk_stamp = ktime_set(-1L, 0);
2125
2126 /*
2127 * Before updating sk_refcnt, we must commit prior changes to memory
2128 * (Documentation/RCU/rculist_nulls.txt for details)
2129 */
2130 smp_wmb();
2131 atomic_set(&sk->sk_refcnt, 1);
2132 atomic_set(&sk->sk_drops, 0);
2133 }
2134 EXPORT_SYMBOL(sock_init_data);
2135
2136 void lock_sock_nested(struct sock *sk, int subclass)
2137 {
2138 might_sleep();
2139 spin_lock_bh(&sk->sk_lock.slock);
2140 if (sk->sk_lock.owned)
2141 __lock_sock(sk);
2142 sk->sk_lock.owned = 1;
2143 spin_unlock(&sk->sk_lock.slock);
2144 /*
2145 * The sk_lock has mutex_lock() semantics here:
2146 */
2147 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2148 local_bh_enable();
2149 }
2150 EXPORT_SYMBOL(lock_sock_nested);
2151
2152 void release_sock(struct sock *sk)
2153 {
2154 /*
2155 * The sk_lock has mutex_unlock() semantics:
2156 */
2157 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2158
2159 spin_lock_bh(&sk->sk_lock.slock);
2160 if (sk->sk_backlog.tail)
2161 __release_sock(sk);
2162 sk->sk_lock.owned = 0;
2163 if (waitqueue_active(&sk->sk_lock.wq))
2164 wake_up(&sk->sk_lock.wq);
2165 spin_unlock_bh(&sk->sk_lock.slock);
2166 }
2167 EXPORT_SYMBOL(release_sock);
2168
2169 /**
2170 * lock_sock_fast - fast version of lock_sock
2171 * @sk: socket
2172 *
2173 * This version should be used for very small section, where process wont block
2174 * return false if fast path is taken
2175 * sk_lock.slock locked, owned = 0, BH disabled
2176 * return true if slow path is taken
2177 * sk_lock.slock unlocked, owned = 1, BH enabled
2178 */
2179 bool lock_sock_fast(struct sock *sk)
2180 {
2181 might_sleep();
2182 spin_lock_bh(&sk->sk_lock.slock);
2183
2184 if (!sk->sk_lock.owned)
2185 /*
2186 * Note : We must disable BH
2187 */
2188 return false;
2189
2190 __lock_sock(sk);
2191 sk->sk_lock.owned = 1;
2192 spin_unlock(&sk->sk_lock.slock);
2193 /*
2194 * The sk_lock has mutex_lock() semantics here:
2195 */
2196 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2197 local_bh_enable();
2198 return true;
2199 }
2200 EXPORT_SYMBOL(lock_sock_fast);
2201
2202 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2203 {
2204 struct timeval tv;
2205 if (!sock_flag(sk, SOCK_TIMESTAMP))
2206 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2207 tv = ktime_to_timeval(sk->sk_stamp);
2208 if (tv.tv_sec == -1)
2209 return -ENOENT;
2210 if (tv.tv_sec == 0) {
2211 sk->sk_stamp = ktime_get_real();
2212 tv = ktime_to_timeval(sk->sk_stamp);
2213 }
2214 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2215 }
2216 EXPORT_SYMBOL(sock_get_timestamp);
2217
2218 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2219 {
2220 struct timespec ts;
2221 if (!sock_flag(sk, SOCK_TIMESTAMP))
2222 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2223 ts = ktime_to_timespec(sk->sk_stamp);
2224 if (ts.tv_sec == -1)
2225 return -ENOENT;
2226 if (ts.tv_sec == 0) {
2227 sk->sk_stamp = ktime_get_real();
2228 ts = ktime_to_timespec(sk->sk_stamp);
2229 }
2230 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2231 }
2232 EXPORT_SYMBOL(sock_get_timestampns);
2233
2234 void sock_enable_timestamp(struct sock *sk, int flag)
2235 {
2236 if (!sock_flag(sk, flag)) {
2237 unsigned long previous_flags = sk->sk_flags;
2238
2239 sock_set_flag(sk, flag);
2240 /*
2241 * we just set one of the two flags which require net
2242 * time stamping, but time stamping might have been on
2243 * already because of the other one
2244 */
2245 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2246 net_enable_timestamp();
2247 }
2248 }
2249
2250 /*
2251 * Get a socket option on an socket.
2252 *
2253 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2254 * asynchronous errors should be reported by getsockopt. We assume
2255 * this means if you specify SO_ERROR (otherwise whats the point of it).
2256 */
2257 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2258 char __user *optval, int __user *optlen)
2259 {
2260 struct sock *sk = sock->sk;
2261
2262 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2263 }
2264 EXPORT_SYMBOL(sock_common_getsockopt);
2265
2266 #ifdef CONFIG_COMPAT
2267 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2268 char __user *optval, int __user *optlen)
2269 {
2270 struct sock *sk = sock->sk;
2271
2272 if (sk->sk_prot->compat_getsockopt != NULL)
2273 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2274 optval, optlen);
2275 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2276 }
2277 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2278 #endif
2279
2280 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2281 struct msghdr *msg, size_t size, int flags)
2282 {
2283 struct sock *sk = sock->sk;
2284 int addr_len = 0;
2285 int err;
2286
2287 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2288 flags & ~MSG_DONTWAIT, &addr_len);
2289 if (err >= 0)
2290 msg->msg_namelen = addr_len;
2291 return err;
2292 }
2293 EXPORT_SYMBOL(sock_common_recvmsg);
2294
2295 /*
2296 * Set socket options on an inet socket.
2297 */
2298 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2299 char __user *optval, unsigned int optlen)
2300 {
2301 struct sock *sk = sock->sk;
2302
2303 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2304 }
2305 EXPORT_SYMBOL(sock_common_setsockopt);
2306
2307 #ifdef CONFIG_COMPAT
2308 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2309 char __user *optval, unsigned int optlen)
2310 {
2311 struct sock *sk = sock->sk;
2312
2313 if (sk->sk_prot->compat_setsockopt != NULL)
2314 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2315 optval, optlen);
2316 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2317 }
2318 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2319 #endif
2320
2321 void sk_common_release(struct sock *sk)
2322 {
2323 if (sk->sk_prot->destroy)
2324 sk->sk_prot->destroy(sk);
2325
2326 /*
2327 * Observation: when sock_common_release is called, processes have
2328 * no access to socket. But net still has.
2329 * Step one, detach it from networking:
2330 *
2331 * A. Remove from hash tables.
2332 */
2333
2334 sk->sk_prot->unhash(sk);
2335
2336 /*
2337 * In this point socket cannot receive new packets, but it is possible
2338 * that some packets are in flight because some CPU runs receiver and
2339 * did hash table lookup before we unhashed socket. They will achieve
2340 * receive queue and will be purged by socket destructor.
2341 *
2342 * Also we still have packets pending on receive queue and probably,
2343 * our own packets waiting in device queues. sock_destroy will drain
2344 * receive queue, but transmitted packets will delay socket destruction
2345 * until the last reference will be released.
2346 */
2347
2348 sock_orphan(sk);
2349
2350 xfrm_sk_free_policy(sk);
2351
2352 sk_refcnt_debug_release(sk);
2353 sock_put(sk);
2354 }
2355 EXPORT_SYMBOL(sk_common_release);
2356
2357 #ifdef CONFIG_PROC_FS
2358 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2359 struct prot_inuse {
2360 int val[PROTO_INUSE_NR];
2361 };
2362
2363 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2364
2365 #ifdef CONFIG_NET_NS
2366 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2367 {
2368 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2369 }
2370 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2371
2372 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2373 {
2374 int cpu, idx = prot->inuse_idx;
2375 int res = 0;
2376
2377 for_each_possible_cpu(cpu)
2378 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2379
2380 return res >= 0 ? res : 0;
2381 }
2382 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2383
2384 static int __net_init sock_inuse_init_net(struct net *net)
2385 {
2386 net->core.inuse = alloc_percpu(struct prot_inuse);
2387 return net->core.inuse ? 0 : -ENOMEM;
2388 }
2389
2390 static void __net_exit sock_inuse_exit_net(struct net *net)
2391 {
2392 free_percpu(net->core.inuse);
2393 }
2394
2395 static struct pernet_operations net_inuse_ops = {
2396 .init = sock_inuse_init_net,
2397 .exit = sock_inuse_exit_net,
2398 };
2399
2400 static __init int net_inuse_init(void)
2401 {
2402 if (register_pernet_subsys(&net_inuse_ops))
2403 panic("Cannot initialize net inuse counters");
2404
2405 return 0;
2406 }
2407
2408 core_initcall(net_inuse_init);
2409 #else
2410 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2411
2412 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2413 {
2414 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2415 }
2416 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2417
2418 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2419 {
2420 int cpu, idx = prot->inuse_idx;
2421 int res = 0;
2422
2423 for_each_possible_cpu(cpu)
2424 res += per_cpu(prot_inuse, cpu).val[idx];
2425
2426 return res >= 0 ? res : 0;
2427 }
2428 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2429 #endif
2430
2431 static void assign_proto_idx(struct proto *prot)
2432 {
2433 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2434
2435 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2436 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2437 return;
2438 }
2439
2440 set_bit(prot->inuse_idx, proto_inuse_idx);
2441 }
2442
2443 static void release_proto_idx(struct proto *prot)
2444 {
2445 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2446 clear_bit(prot->inuse_idx, proto_inuse_idx);
2447 }
2448 #else
2449 static inline void assign_proto_idx(struct proto *prot)
2450 {
2451 }
2452
2453 static inline void release_proto_idx(struct proto *prot)
2454 {
2455 }
2456 #endif
2457
2458 int proto_register(struct proto *prot, int alloc_slab)
2459 {
2460 if (alloc_slab) {
2461 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2462 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2463 NULL);
2464
2465 if (prot->slab == NULL) {
2466 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2467 prot->name);
2468 goto out;
2469 }
2470
2471 if (prot->rsk_prot != NULL) {
2472 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2473 if (prot->rsk_prot->slab_name == NULL)
2474 goto out_free_sock_slab;
2475
2476 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2477 prot->rsk_prot->obj_size, 0,
2478 SLAB_HWCACHE_ALIGN, NULL);
2479
2480 if (prot->rsk_prot->slab == NULL) {
2481 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2482 prot->name);
2483 goto out_free_request_sock_slab_name;
2484 }
2485 }
2486
2487 if (prot->twsk_prot != NULL) {
2488 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2489
2490 if (prot->twsk_prot->twsk_slab_name == NULL)
2491 goto out_free_request_sock_slab;
2492
2493 prot->twsk_prot->twsk_slab =
2494 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2495 prot->twsk_prot->twsk_obj_size,
2496 0,
2497 SLAB_HWCACHE_ALIGN |
2498 prot->slab_flags,
2499 NULL);
2500 if (prot->twsk_prot->twsk_slab == NULL)
2501 goto out_free_timewait_sock_slab_name;
2502 }
2503 }
2504
2505 mutex_lock(&proto_list_mutex);
2506 list_add(&prot->node, &proto_list);
2507 assign_proto_idx(prot);
2508 mutex_unlock(&proto_list_mutex);
2509 return 0;
2510
2511 out_free_timewait_sock_slab_name:
2512 kfree(prot->twsk_prot->twsk_slab_name);
2513 out_free_request_sock_slab:
2514 if (prot->rsk_prot && prot->rsk_prot->slab) {
2515 kmem_cache_destroy(prot->rsk_prot->slab);
2516 prot->rsk_prot->slab = NULL;
2517 }
2518 out_free_request_sock_slab_name:
2519 if (prot->rsk_prot)
2520 kfree(prot->rsk_prot->slab_name);
2521 out_free_sock_slab:
2522 kmem_cache_destroy(prot->slab);
2523 prot->slab = NULL;
2524 out:
2525 return -ENOBUFS;
2526 }
2527 EXPORT_SYMBOL(proto_register);
2528
2529 void proto_unregister(struct proto *prot)
2530 {
2531 mutex_lock(&proto_list_mutex);
2532 release_proto_idx(prot);
2533 list_del(&prot->node);
2534 mutex_unlock(&proto_list_mutex);
2535
2536 if (prot->slab != NULL) {
2537 kmem_cache_destroy(prot->slab);
2538 prot->slab = NULL;
2539 }
2540
2541 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2542 kmem_cache_destroy(prot->rsk_prot->slab);
2543 kfree(prot->rsk_prot->slab_name);
2544 prot->rsk_prot->slab = NULL;
2545 }
2546
2547 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2548 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2549 kfree(prot->twsk_prot->twsk_slab_name);
2550 prot->twsk_prot->twsk_slab = NULL;
2551 }
2552 }
2553 EXPORT_SYMBOL(proto_unregister);
2554
2555 #ifdef CONFIG_PROC_FS
2556 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2557 __acquires(proto_list_mutex)
2558 {
2559 mutex_lock(&proto_list_mutex);
2560 return seq_list_start_head(&proto_list, *pos);
2561 }
2562
2563 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2564 {
2565 return seq_list_next(v, &proto_list, pos);
2566 }
2567
2568 static void proto_seq_stop(struct seq_file *seq, void *v)
2569 __releases(proto_list_mutex)
2570 {
2571 mutex_unlock(&proto_list_mutex);
2572 }
2573
2574 static char proto_method_implemented(const void *method)
2575 {
2576 return method == NULL ? 'n' : 'y';
2577 }
2578 static long sock_prot_memory_allocated(struct proto *proto)
2579 {
2580 return proto->memory_allocated != NULL ? proto_memory_allocated(proto): -1L;
2581 }
2582
2583 static char *sock_prot_memory_pressure(struct proto *proto)
2584 {
2585 return proto->memory_pressure != NULL ?
2586 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2587 }
2588
2589 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2590 {
2591
2592 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2593 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2594 proto->name,
2595 proto->obj_size,
2596 sock_prot_inuse_get(seq_file_net(seq), proto),
2597 sock_prot_memory_allocated(proto),
2598 sock_prot_memory_pressure(proto),
2599 proto->max_header,
2600 proto->slab == NULL ? "no" : "yes",
2601 module_name(proto->owner),
2602 proto_method_implemented(proto->close),
2603 proto_method_implemented(proto->connect),
2604 proto_method_implemented(proto->disconnect),
2605 proto_method_implemented(proto->accept),
2606 proto_method_implemented(proto->ioctl),
2607 proto_method_implemented(proto->init),
2608 proto_method_implemented(proto->destroy),
2609 proto_method_implemented(proto->shutdown),
2610 proto_method_implemented(proto->setsockopt),
2611 proto_method_implemented(proto->getsockopt),
2612 proto_method_implemented(proto->sendmsg),
2613 proto_method_implemented(proto->recvmsg),
2614 proto_method_implemented(proto->sendpage),
2615 proto_method_implemented(proto->bind),
2616 proto_method_implemented(proto->backlog_rcv),
2617 proto_method_implemented(proto->hash),
2618 proto_method_implemented(proto->unhash),
2619 proto_method_implemented(proto->get_port),
2620 proto_method_implemented(proto->enter_memory_pressure));
2621 }
2622
2623 static int proto_seq_show(struct seq_file *seq, void *v)
2624 {
2625 if (v == &proto_list)
2626 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2627 "protocol",
2628 "size",
2629 "sockets",
2630 "memory",
2631 "press",
2632 "maxhdr",
2633 "slab",
2634 "module",
2635 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2636 else
2637 proto_seq_printf(seq, list_entry(v, struct proto, node));
2638 return 0;
2639 }
2640
2641 static const struct seq_operations proto_seq_ops = {
2642 .start = proto_seq_start,
2643 .next = proto_seq_next,
2644 .stop = proto_seq_stop,
2645 .show = proto_seq_show,
2646 };
2647
2648 static int proto_seq_open(struct inode *inode, struct file *file)
2649 {
2650 return seq_open_net(inode, file, &proto_seq_ops,
2651 sizeof(struct seq_net_private));
2652 }
2653
2654 static const struct file_operations proto_seq_fops = {
2655 .owner = THIS_MODULE,
2656 .open = proto_seq_open,
2657 .read = seq_read,
2658 .llseek = seq_lseek,
2659 .release = seq_release_net,
2660 };
2661
2662 static __net_init int proto_init_net(struct net *net)
2663 {
2664 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2665 return -ENOMEM;
2666
2667 return 0;
2668 }
2669
2670 static __net_exit void proto_exit_net(struct net *net)
2671 {
2672 proc_net_remove(net, "protocols");
2673 }
2674
2675
2676 static __net_initdata struct pernet_operations proto_net_ops = {
2677 .init = proto_init_net,
2678 .exit = proto_exit_net,
2679 };
2680
2681 static int __init proto_init(void)
2682 {
2683 return register_pernet_subsys(&proto_net_ops);
2684 }
2685
2686 subsys_initcall(proto_init);
2687
2688 #endif /* PROC_FS */
This page took 0.104397 seconds and 5 git commands to generate.