net: proc: change proc_net_fops_create to proc_create
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276
277 /**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
298
299 /*
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
307 */
308 if (WARN_ON(sk->sk_forward_alloc))
309 sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 int ret;
316 unsigned long pflags = current->flags;
317
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328
329 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
330 {
331 struct timeval tv;
332
333 if (optlen < sizeof(tv))
334 return -EINVAL;
335 if (copy_from_user(&tv, optval, sizeof(tv)))
336 return -EFAULT;
337 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
338 return -EDOM;
339
340 if (tv.tv_sec < 0) {
341 static int warned __read_mostly;
342
343 *timeo_p = 0;
344 if (warned < 10 && net_ratelimit()) {
345 warned++;
346 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
347 __func__, current->comm, task_pid_nr(current));
348 }
349 return 0;
350 }
351 *timeo_p = MAX_SCHEDULE_TIMEOUT;
352 if (tv.tv_sec == 0 && tv.tv_usec == 0)
353 return 0;
354 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
355 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
356 return 0;
357 }
358
359 static void sock_warn_obsolete_bsdism(const char *name)
360 {
361 static int warned;
362 static char warncomm[TASK_COMM_LEN];
363 if (strcmp(warncomm, current->comm) && warned < 5) {
364 strcpy(warncomm, current->comm);
365 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
366 warncomm, name);
367 warned++;
368 }
369 }
370
371 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
372
373 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
374 {
375 if (sk->sk_flags & flags) {
376 sk->sk_flags &= ~flags;
377 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
378 net_disable_timestamp();
379 }
380 }
381
382
383 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
384 {
385 int err;
386 int skb_len;
387 unsigned long flags;
388 struct sk_buff_head *list = &sk->sk_receive_queue;
389
390 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
391 atomic_inc(&sk->sk_drops);
392 trace_sock_rcvqueue_full(sk, skb);
393 return -ENOMEM;
394 }
395
396 err = sk_filter(sk, skb);
397 if (err)
398 return err;
399
400 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
401 atomic_inc(&sk->sk_drops);
402 return -ENOBUFS;
403 }
404
405 skb->dev = NULL;
406 skb_set_owner_r(skb, sk);
407
408 /* Cache the SKB length before we tack it onto the receive
409 * queue. Once it is added it no longer belongs to us and
410 * may be freed by other threads of control pulling packets
411 * from the queue.
412 */
413 skb_len = skb->len;
414
415 /* we escape from rcu protected region, make sure we dont leak
416 * a norefcounted dst
417 */
418 skb_dst_force(skb);
419
420 spin_lock_irqsave(&list->lock, flags);
421 skb->dropcount = atomic_read(&sk->sk_drops);
422 __skb_queue_tail(list, skb);
423 spin_unlock_irqrestore(&list->lock, flags);
424
425 if (!sock_flag(sk, SOCK_DEAD))
426 sk->sk_data_ready(sk, skb_len);
427 return 0;
428 }
429 EXPORT_SYMBOL(sock_queue_rcv_skb);
430
431 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
432 {
433 int rc = NET_RX_SUCCESS;
434
435 if (sk_filter(sk, skb))
436 goto discard_and_relse;
437
438 skb->dev = NULL;
439
440 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
441 atomic_inc(&sk->sk_drops);
442 goto discard_and_relse;
443 }
444 if (nested)
445 bh_lock_sock_nested(sk);
446 else
447 bh_lock_sock(sk);
448 if (!sock_owned_by_user(sk)) {
449 /*
450 * trylock + unlock semantics:
451 */
452 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
453
454 rc = sk_backlog_rcv(sk, skb);
455
456 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
457 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
458 bh_unlock_sock(sk);
459 atomic_inc(&sk->sk_drops);
460 goto discard_and_relse;
461 }
462
463 bh_unlock_sock(sk);
464 out:
465 sock_put(sk);
466 return rc;
467 discard_and_relse:
468 kfree_skb(skb);
469 goto out;
470 }
471 EXPORT_SYMBOL(sk_receive_skb);
472
473 void sk_reset_txq(struct sock *sk)
474 {
475 sk_tx_queue_clear(sk);
476 }
477 EXPORT_SYMBOL(sk_reset_txq);
478
479 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
480 {
481 struct dst_entry *dst = __sk_dst_get(sk);
482
483 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
484 sk_tx_queue_clear(sk);
485 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
486 dst_release(dst);
487 return NULL;
488 }
489
490 return dst;
491 }
492 EXPORT_SYMBOL(__sk_dst_check);
493
494 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
495 {
496 struct dst_entry *dst = sk_dst_get(sk);
497
498 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
499 sk_dst_reset(sk);
500 dst_release(dst);
501 return NULL;
502 }
503
504 return dst;
505 }
506 EXPORT_SYMBOL(sk_dst_check);
507
508 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
509 int optlen)
510 {
511 int ret = -ENOPROTOOPT;
512 #ifdef CONFIG_NETDEVICES
513 struct net *net = sock_net(sk);
514 char devname[IFNAMSIZ];
515 int index;
516
517 /* Sorry... */
518 ret = -EPERM;
519 if (!ns_capable(net->user_ns, CAP_NET_RAW))
520 goto out;
521
522 ret = -EINVAL;
523 if (optlen < 0)
524 goto out;
525
526 /* Bind this socket to a particular device like "eth0",
527 * as specified in the passed interface name. If the
528 * name is "" or the option length is zero the socket
529 * is not bound.
530 */
531 if (optlen > IFNAMSIZ - 1)
532 optlen = IFNAMSIZ - 1;
533 memset(devname, 0, sizeof(devname));
534
535 ret = -EFAULT;
536 if (copy_from_user(devname, optval, optlen))
537 goto out;
538
539 index = 0;
540 if (devname[0] != '\0') {
541 struct net_device *dev;
542
543 rcu_read_lock();
544 dev = dev_get_by_name_rcu(net, devname);
545 if (dev)
546 index = dev->ifindex;
547 rcu_read_unlock();
548 ret = -ENODEV;
549 if (!dev)
550 goto out;
551 }
552
553 lock_sock(sk);
554 sk->sk_bound_dev_if = index;
555 sk_dst_reset(sk);
556 release_sock(sk);
557
558 ret = 0;
559
560 out:
561 #endif
562
563 return ret;
564 }
565
566 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
567 int __user *optlen, int len)
568 {
569 int ret = -ENOPROTOOPT;
570 #ifdef CONFIG_NETDEVICES
571 struct net *net = sock_net(sk);
572 struct net_device *dev;
573 char devname[IFNAMSIZ];
574 unsigned seq;
575
576 if (sk->sk_bound_dev_if == 0) {
577 len = 0;
578 goto zero;
579 }
580
581 ret = -EINVAL;
582 if (len < IFNAMSIZ)
583 goto out;
584
585 retry:
586 seq = read_seqcount_begin(&devnet_rename_seq);
587 rcu_read_lock();
588 dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
589 ret = -ENODEV;
590 if (!dev) {
591 rcu_read_unlock();
592 goto out;
593 }
594
595 strcpy(devname, dev->name);
596 rcu_read_unlock();
597 if (read_seqcount_retry(&devnet_rename_seq, seq))
598 goto retry;
599
600 len = strlen(devname) + 1;
601
602 ret = -EFAULT;
603 if (copy_to_user(optval, devname, len))
604 goto out;
605
606 zero:
607 ret = -EFAULT;
608 if (put_user(len, optlen))
609 goto out;
610
611 ret = 0;
612
613 out:
614 #endif
615
616 return ret;
617 }
618
619 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
620 {
621 if (valbool)
622 sock_set_flag(sk, bit);
623 else
624 sock_reset_flag(sk, bit);
625 }
626
627 /*
628 * This is meant for all protocols to use and covers goings on
629 * at the socket level. Everything here is generic.
630 */
631
632 int sock_setsockopt(struct socket *sock, int level, int optname,
633 char __user *optval, unsigned int optlen)
634 {
635 struct sock *sk = sock->sk;
636 int val;
637 int valbool;
638 struct linger ling;
639 int ret = 0;
640
641 /*
642 * Options without arguments
643 */
644
645 if (optname == SO_BINDTODEVICE)
646 return sock_setbindtodevice(sk, optval, optlen);
647
648 if (optlen < sizeof(int))
649 return -EINVAL;
650
651 if (get_user(val, (int __user *)optval))
652 return -EFAULT;
653
654 valbool = val ? 1 : 0;
655
656 lock_sock(sk);
657
658 switch (optname) {
659 case SO_DEBUG:
660 if (val && !capable(CAP_NET_ADMIN))
661 ret = -EACCES;
662 else
663 sock_valbool_flag(sk, SOCK_DBG, valbool);
664 break;
665 case SO_REUSEADDR:
666 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
667 break;
668 case SO_REUSEPORT:
669 sk->sk_reuseport = valbool;
670 break;
671 case SO_TYPE:
672 case SO_PROTOCOL:
673 case SO_DOMAIN:
674 case SO_ERROR:
675 ret = -ENOPROTOOPT;
676 break;
677 case SO_DONTROUTE:
678 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
679 break;
680 case SO_BROADCAST:
681 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
682 break;
683 case SO_SNDBUF:
684 /* Don't error on this BSD doesn't and if you think
685 * about it this is right. Otherwise apps have to
686 * play 'guess the biggest size' games. RCVBUF/SNDBUF
687 * are treated in BSD as hints
688 */
689 val = min_t(u32, val, sysctl_wmem_max);
690 set_sndbuf:
691 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
692 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
693 /* Wake up sending tasks if we upped the value. */
694 sk->sk_write_space(sk);
695 break;
696
697 case SO_SNDBUFFORCE:
698 if (!capable(CAP_NET_ADMIN)) {
699 ret = -EPERM;
700 break;
701 }
702 goto set_sndbuf;
703
704 case SO_RCVBUF:
705 /* Don't error on this BSD doesn't and if you think
706 * about it this is right. Otherwise apps have to
707 * play 'guess the biggest size' games. RCVBUF/SNDBUF
708 * are treated in BSD as hints
709 */
710 val = min_t(u32, val, sysctl_rmem_max);
711 set_rcvbuf:
712 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
713 /*
714 * We double it on the way in to account for
715 * "struct sk_buff" etc. overhead. Applications
716 * assume that the SO_RCVBUF setting they make will
717 * allow that much actual data to be received on that
718 * socket.
719 *
720 * Applications are unaware that "struct sk_buff" and
721 * other overheads allocate from the receive buffer
722 * during socket buffer allocation.
723 *
724 * And after considering the possible alternatives,
725 * returning the value we actually used in getsockopt
726 * is the most desirable behavior.
727 */
728 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
729 break;
730
731 case SO_RCVBUFFORCE:
732 if (!capable(CAP_NET_ADMIN)) {
733 ret = -EPERM;
734 break;
735 }
736 goto set_rcvbuf;
737
738 case SO_KEEPALIVE:
739 #ifdef CONFIG_INET
740 if (sk->sk_protocol == IPPROTO_TCP &&
741 sk->sk_type == SOCK_STREAM)
742 tcp_set_keepalive(sk, valbool);
743 #endif
744 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
745 break;
746
747 case SO_OOBINLINE:
748 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
749 break;
750
751 case SO_NO_CHECK:
752 sk->sk_no_check = valbool;
753 break;
754
755 case SO_PRIORITY:
756 if ((val >= 0 && val <= 6) ||
757 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
758 sk->sk_priority = val;
759 else
760 ret = -EPERM;
761 break;
762
763 case SO_LINGER:
764 if (optlen < sizeof(ling)) {
765 ret = -EINVAL; /* 1003.1g */
766 break;
767 }
768 if (copy_from_user(&ling, optval, sizeof(ling))) {
769 ret = -EFAULT;
770 break;
771 }
772 if (!ling.l_onoff)
773 sock_reset_flag(sk, SOCK_LINGER);
774 else {
775 #if (BITS_PER_LONG == 32)
776 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
777 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
778 else
779 #endif
780 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
781 sock_set_flag(sk, SOCK_LINGER);
782 }
783 break;
784
785 case SO_BSDCOMPAT:
786 sock_warn_obsolete_bsdism("setsockopt");
787 break;
788
789 case SO_PASSCRED:
790 if (valbool)
791 set_bit(SOCK_PASSCRED, &sock->flags);
792 else
793 clear_bit(SOCK_PASSCRED, &sock->flags);
794 break;
795
796 case SO_TIMESTAMP:
797 case SO_TIMESTAMPNS:
798 if (valbool) {
799 if (optname == SO_TIMESTAMP)
800 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
801 else
802 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
803 sock_set_flag(sk, SOCK_RCVTSTAMP);
804 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
805 } else {
806 sock_reset_flag(sk, SOCK_RCVTSTAMP);
807 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
808 }
809 break;
810
811 case SO_TIMESTAMPING:
812 if (val & ~SOF_TIMESTAMPING_MASK) {
813 ret = -EINVAL;
814 break;
815 }
816 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
817 val & SOF_TIMESTAMPING_TX_HARDWARE);
818 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
819 val & SOF_TIMESTAMPING_TX_SOFTWARE);
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
821 val & SOF_TIMESTAMPING_RX_HARDWARE);
822 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
823 sock_enable_timestamp(sk,
824 SOCK_TIMESTAMPING_RX_SOFTWARE);
825 else
826 sock_disable_timestamp(sk,
827 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
828 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
829 val & SOF_TIMESTAMPING_SOFTWARE);
830 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
831 val & SOF_TIMESTAMPING_SYS_HARDWARE);
832 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
833 val & SOF_TIMESTAMPING_RAW_HARDWARE);
834 break;
835
836 case SO_RCVLOWAT:
837 if (val < 0)
838 val = INT_MAX;
839 sk->sk_rcvlowat = val ? : 1;
840 break;
841
842 case SO_RCVTIMEO:
843 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
844 break;
845
846 case SO_SNDTIMEO:
847 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
848 break;
849
850 case SO_ATTACH_FILTER:
851 ret = -EINVAL;
852 if (optlen == sizeof(struct sock_fprog)) {
853 struct sock_fprog fprog;
854
855 ret = -EFAULT;
856 if (copy_from_user(&fprog, optval, sizeof(fprog)))
857 break;
858
859 ret = sk_attach_filter(&fprog, sk);
860 }
861 break;
862
863 case SO_DETACH_FILTER:
864 ret = sk_detach_filter(sk);
865 break;
866
867 case SO_LOCK_FILTER:
868 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
869 ret = -EPERM;
870 else
871 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
872 break;
873
874 case SO_PASSSEC:
875 if (valbool)
876 set_bit(SOCK_PASSSEC, &sock->flags);
877 else
878 clear_bit(SOCK_PASSSEC, &sock->flags);
879 break;
880 case SO_MARK:
881 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
882 ret = -EPERM;
883 else
884 sk->sk_mark = val;
885 break;
886
887 /* We implement the SO_SNDLOWAT etc to
888 not be settable (1003.1g 5.3) */
889 case SO_RXQ_OVFL:
890 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
891 break;
892
893 case SO_WIFI_STATUS:
894 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
895 break;
896
897 case SO_PEEK_OFF:
898 if (sock->ops->set_peek_off)
899 sock->ops->set_peek_off(sk, val);
900 else
901 ret = -EOPNOTSUPP;
902 break;
903
904 case SO_NOFCS:
905 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
906 break;
907
908 default:
909 ret = -ENOPROTOOPT;
910 break;
911 }
912 release_sock(sk);
913 return ret;
914 }
915 EXPORT_SYMBOL(sock_setsockopt);
916
917
918 void cred_to_ucred(struct pid *pid, const struct cred *cred,
919 struct ucred *ucred)
920 {
921 ucred->pid = pid_vnr(pid);
922 ucred->uid = ucred->gid = -1;
923 if (cred) {
924 struct user_namespace *current_ns = current_user_ns();
925
926 ucred->uid = from_kuid_munged(current_ns, cred->euid);
927 ucred->gid = from_kgid_munged(current_ns, cred->egid);
928 }
929 }
930 EXPORT_SYMBOL_GPL(cred_to_ucred);
931
932 int sock_getsockopt(struct socket *sock, int level, int optname,
933 char __user *optval, int __user *optlen)
934 {
935 struct sock *sk = sock->sk;
936
937 union {
938 int val;
939 struct linger ling;
940 struct timeval tm;
941 } v;
942
943 int lv = sizeof(int);
944 int len;
945
946 if (get_user(len, optlen))
947 return -EFAULT;
948 if (len < 0)
949 return -EINVAL;
950
951 memset(&v, 0, sizeof(v));
952
953 switch (optname) {
954 case SO_DEBUG:
955 v.val = sock_flag(sk, SOCK_DBG);
956 break;
957
958 case SO_DONTROUTE:
959 v.val = sock_flag(sk, SOCK_LOCALROUTE);
960 break;
961
962 case SO_BROADCAST:
963 v.val = sock_flag(sk, SOCK_BROADCAST);
964 break;
965
966 case SO_SNDBUF:
967 v.val = sk->sk_sndbuf;
968 break;
969
970 case SO_RCVBUF:
971 v.val = sk->sk_rcvbuf;
972 break;
973
974 case SO_REUSEADDR:
975 v.val = sk->sk_reuse;
976 break;
977
978 case SO_REUSEPORT:
979 v.val = sk->sk_reuseport;
980 break;
981
982 case SO_KEEPALIVE:
983 v.val = sock_flag(sk, SOCK_KEEPOPEN);
984 break;
985
986 case SO_TYPE:
987 v.val = sk->sk_type;
988 break;
989
990 case SO_PROTOCOL:
991 v.val = sk->sk_protocol;
992 break;
993
994 case SO_DOMAIN:
995 v.val = sk->sk_family;
996 break;
997
998 case SO_ERROR:
999 v.val = -sock_error(sk);
1000 if (v.val == 0)
1001 v.val = xchg(&sk->sk_err_soft, 0);
1002 break;
1003
1004 case SO_OOBINLINE:
1005 v.val = sock_flag(sk, SOCK_URGINLINE);
1006 break;
1007
1008 case SO_NO_CHECK:
1009 v.val = sk->sk_no_check;
1010 break;
1011
1012 case SO_PRIORITY:
1013 v.val = sk->sk_priority;
1014 break;
1015
1016 case SO_LINGER:
1017 lv = sizeof(v.ling);
1018 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1019 v.ling.l_linger = sk->sk_lingertime / HZ;
1020 break;
1021
1022 case SO_BSDCOMPAT:
1023 sock_warn_obsolete_bsdism("getsockopt");
1024 break;
1025
1026 case SO_TIMESTAMP:
1027 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1028 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1029 break;
1030
1031 case SO_TIMESTAMPNS:
1032 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1033 break;
1034
1035 case SO_TIMESTAMPING:
1036 v.val = 0;
1037 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1038 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1039 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1040 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1041 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1042 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1043 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1044 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1045 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1046 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1047 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1048 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1049 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1050 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1051 break;
1052
1053 case SO_RCVTIMEO:
1054 lv = sizeof(struct timeval);
1055 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1056 v.tm.tv_sec = 0;
1057 v.tm.tv_usec = 0;
1058 } else {
1059 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1060 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1061 }
1062 break;
1063
1064 case SO_SNDTIMEO:
1065 lv = sizeof(struct timeval);
1066 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1067 v.tm.tv_sec = 0;
1068 v.tm.tv_usec = 0;
1069 } else {
1070 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1071 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1072 }
1073 break;
1074
1075 case SO_RCVLOWAT:
1076 v.val = sk->sk_rcvlowat;
1077 break;
1078
1079 case SO_SNDLOWAT:
1080 v.val = 1;
1081 break;
1082
1083 case SO_PASSCRED:
1084 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1085 break;
1086
1087 case SO_PEERCRED:
1088 {
1089 struct ucred peercred;
1090 if (len > sizeof(peercred))
1091 len = sizeof(peercred);
1092 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1093 if (copy_to_user(optval, &peercred, len))
1094 return -EFAULT;
1095 goto lenout;
1096 }
1097
1098 case SO_PEERNAME:
1099 {
1100 char address[128];
1101
1102 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1103 return -ENOTCONN;
1104 if (lv < len)
1105 return -EINVAL;
1106 if (copy_to_user(optval, address, len))
1107 return -EFAULT;
1108 goto lenout;
1109 }
1110
1111 /* Dubious BSD thing... Probably nobody even uses it, but
1112 * the UNIX standard wants it for whatever reason... -DaveM
1113 */
1114 case SO_ACCEPTCONN:
1115 v.val = sk->sk_state == TCP_LISTEN;
1116 break;
1117
1118 case SO_PASSSEC:
1119 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1120 break;
1121
1122 case SO_PEERSEC:
1123 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1124
1125 case SO_MARK:
1126 v.val = sk->sk_mark;
1127 break;
1128
1129 case SO_RXQ_OVFL:
1130 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1131 break;
1132
1133 case SO_WIFI_STATUS:
1134 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1135 break;
1136
1137 case SO_PEEK_OFF:
1138 if (!sock->ops->set_peek_off)
1139 return -EOPNOTSUPP;
1140
1141 v.val = sk->sk_peek_off;
1142 break;
1143 case SO_NOFCS:
1144 v.val = sock_flag(sk, SOCK_NOFCS);
1145 break;
1146
1147 case SO_BINDTODEVICE:
1148 return sock_getbindtodevice(sk, optval, optlen, len);
1149
1150 case SO_GET_FILTER:
1151 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1152 if (len < 0)
1153 return len;
1154
1155 goto lenout;
1156
1157 case SO_LOCK_FILTER:
1158 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1159 break;
1160
1161 default:
1162 return -ENOPROTOOPT;
1163 }
1164
1165 if (len > lv)
1166 len = lv;
1167 if (copy_to_user(optval, &v, len))
1168 return -EFAULT;
1169 lenout:
1170 if (put_user(len, optlen))
1171 return -EFAULT;
1172 return 0;
1173 }
1174
1175 /*
1176 * Initialize an sk_lock.
1177 *
1178 * (We also register the sk_lock with the lock validator.)
1179 */
1180 static inline void sock_lock_init(struct sock *sk)
1181 {
1182 sock_lock_init_class_and_name(sk,
1183 af_family_slock_key_strings[sk->sk_family],
1184 af_family_slock_keys + sk->sk_family,
1185 af_family_key_strings[sk->sk_family],
1186 af_family_keys + sk->sk_family);
1187 }
1188
1189 /*
1190 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1191 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1192 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1193 */
1194 static void sock_copy(struct sock *nsk, const struct sock *osk)
1195 {
1196 #ifdef CONFIG_SECURITY_NETWORK
1197 void *sptr = nsk->sk_security;
1198 #endif
1199 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1200
1201 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1202 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1203
1204 #ifdef CONFIG_SECURITY_NETWORK
1205 nsk->sk_security = sptr;
1206 security_sk_clone(osk, nsk);
1207 #endif
1208 }
1209
1210 /*
1211 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1212 * un-modified. Special care is taken when initializing object to zero.
1213 */
1214 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1215 {
1216 if (offsetof(struct sock, sk_node.next) != 0)
1217 memset(sk, 0, offsetof(struct sock, sk_node.next));
1218 memset(&sk->sk_node.pprev, 0,
1219 size - offsetof(struct sock, sk_node.pprev));
1220 }
1221
1222 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1223 {
1224 unsigned long nulls1, nulls2;
1225
1226 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1227 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1228 if (nulls1 > nulls2)
1229 swap(nulls1, nulls2);
1230
1231 if (nulls1 != 0)
1232 memset((char *)sk, 0, nulls1);
1233 memset((char *)sk + nulls1 + sizeof(void *), 0,
1234 nulls2 - nulls1 - sizeof(void *));
1235 memset((char *)sk + nulls2 + sizeof(void *), 0,
1236 size - nulls2 - sizeof(void *));
1237 }
1238 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1239
1240 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1241 int family)
1242 {
1243 struct sock *sk;
1244 struct kmem_cache *slab;
1245
1246 slab = prot->slab;
1247 if (slab != NULL) {
1248 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1249 if (!sk)
1250 return sk;
1251 if (priority & __GFP_ZERO) {
1252 if (prot->clear_sk)
1253 prot->clear_sk(sk, prot->obj_size);
1254 else
1255 sk_prot_clear_nulls(sk, prot->obj_size);
1256 }
1257 } else
1258 sk = kmalloc(prot->obj_size, priority);
1259
1260 if (sk != NULL) {
1261 kmemcheck_annotate_bitfield(sk, flags);
1262
1263 if (security_sk_alloc(sk, family, priority))
1264 goto out_free;
1265
1266 if (!try_module_get(prot->owner))
1267 goto out_free_sec;
1268 sk_tx_queue_clear(sk);
1269 }
1270
1271 return sk;
1272
1273 out_free_sec:
1274 security_sk_free(sk);
1275 out_free:
1276 if (slab != NULL)
1277 kmem_cache_free(slab, sk);
1278 else
1279 kfree(sk);
1280 return NULL;
1281 }
1282
1283 static void sk_prot_free(struct proto *prot, struct sock *sk)
1284 {
1285 struct kmem_cache *slab;
1286 struct module *owner;
1287
1288 owner = prot->owner;
1289 slab = prot->slab;
1290
1291 security_sk_free(sk);
1292 if (slab != NULL)
1293 kmem_cache_free(slab, sk);
1294 else
1295 kfree(sk);
1296 module_put(owner);
1297 }
1298
1299 #ifdef CONFIG_CGROUPS
1300 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1301 void sock_update_classid(struct sock *sk, struct task_struct *task)
1302 {
1303 u32 classid;
1304
1305 classid = task_cls_classid(task);
1306 if (classid != sk->sk_classid)
1307 sk->sk_classid = classid;
1308 }
1309 EXPORT_SYMBOL(sock_update_classid);
1310 #endif
1311
1312 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1313 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1314 {
1315 if (in_interrupt())
1316 return;
1317
1318 sk->sk_cgrp_prioidx = task_netprioidx(task);
1319 }
1320 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1321 #endif
1322 #endif
1323
1324 /**
1325 * sk_alloc - All socket objects are allocated here
1326 * @net: the applicable net namespace
1327 * @family: protocol family
1328 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1329 * @prot: struct proto associated with this new sock instance
1330 */
1331 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1332 struct proto *prot)
1333 {
1334 struct sock *sk;
1335
1336 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1337 if (sk) {
1338 sk->sk_family = family;
1339 /*
1340 * See comment in struct sock definition to understand
1341 * why we need sk_prot_creator -acme
1342 */
1343 sk->sk_prot = sk->sk_prot_creator = prot;
1344 sock_lock_init(sk);
1345 sock_net_set(sk, get_net(net));
1346 atomic_set(&sk->sk_wmem_alloc, 1);
1347
1348 sock_update_classid(sk, current);
1349 sock_update_netprioidx(sk, current);
1350 }
1351
1352 return sk;
1353 }
1354 EXPORT_SYMBOL(sk_alloc);
1355
1356 static void __sk_free(struct sock *sk)
1357 {
1358 struct sk_filter *filter;
1359
1360 if (sk->sk_destruct)
1361 sk->sk_destruct(sk);
1362
1363 filter = rcu_dereference_check(sk->sk_filter,
1364 atomic_read(&sk->sk_wmem_alloc) == 0);
1365 if (filter) {
1366 sk_filter_uncharge(sk, filter);
1367 RCU_INIT_POINTER(sk->sk_filter, NULL);
1368 }
1369
1370 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1371
1372 if (atomic_read(&sk->sk_omem_alloc))
1373 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1374 __func__, atomic_read(&sk->sk_omem_alloc));
1375
1376 if (sk->sk_peer_cred)
1377 put_cred(sk->sk_peer_cred);
1378 put_pid(sk->sk_peer_pid);
1379 put_net(sock_net(sk));
1380 sk_prot_free(sk->sk_prot_creator, sk);
1381 }
1382
1383 void sk_free(struct sock *sk)
1384 {
1385 /*
1386 * We subtract one from sk_wmem_alloc and can know if
1387 * some packets are still in some tx queue.
1388 * If not null, sock_wfree() will call __sk_free(sk) later
1389 */
1390 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1391 __sk_free(sk);
1392 }
1393 EXPORT_SYMBOL(sk_free);
1394
1395 /*
1396 * Last sock_put should drop reference to sk->sk_net. It has already
1397 * been dropped in sk_change_net. Taking reference to stopping namespace
1398 * is not an option.
1399 * Take reference to a socket to remove it from hash _alive_ and after that
1400 * destroy it in the context of init_net.
1401 */
1402 void sk_release_kernel(struct sock *sk)
1403 {
1404 if (sk == NULL || sk->sk_socket == NULL)
1405 return;
1406
1407 sock_hold(sk);
1408 sock_release(sk->sk_socket);
1409 release_net(sock_net(sk));
1410 sock_net_set(sk, get_net(&init_net));
1411 sock_put(sk);
1412 }
1413 EXPORT_SYMBOL(sk_release_kernel);
1414
1415 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1416 {
1417 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1418 sock_update_memcg(newsk);
1419 }
1420
1421 /**
1422 * sk_clone_lock - clone a socket, and lock its clone
1423 * @sk: the socket to clone
1424 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1425 *
1426 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1427 */
1428 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1429 {
1430 struct sock *newsk;
1431
1432 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1433 if (newsk != NULL) {
1434 struct sk_filter *filter;
1435
1436 sock_copy(newsk, sk);
1437
1438 /* SANITY */
1439 get_net(sock_net(newsk));
1440 sk_node_init(&newsk->sk_node);
1441 sock_lock_init(newsk);
1442 bh_lock_sock(newsk);
1443 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1444 newsk->sk_backlog.len = 0;
1445
1446 atomic_set(&newsk->sk_rmem_alloc, 0);
1447 /*
1448 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1449 */
1450 atomic_set(&newsk->sk_wmem_alloc, 1);
1451 atomic_set(&newsk->sk_omem_alloc, 0);
1452 skb_queue_head_init(&newsk->sk_receive_queue);
1453 skb_queue_head_init(&newsk->sk_write_queue);
1454 #ifdef CONFIG_NET_DMA
1455 skb_queue_head_init(&newsk->sk_async_wait_queue);
1456 #endif
1457
1458 spin_lock_init(&newsk->sk_dst_lock);
1459 rwlock_init(&newsk->sk_callback_lock);
1460 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1461 af_callback_keys + newsk->sk_family,
1462 af_family_clock_key_strings[newsk->sk_family]);
1463
1464 newsk->sk_dst_cache = NULL;
1465 newsk->sk_wmem_queued = 0;
1466 newsk->sk_forward_alloc = 0;
1467 newsk->sk_send_head = NULL;
1468 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1469
1470 sock_reset_flag(newsk, SOCK_DONE);
1471 skb_queue_head_init(&newsk->sk_error_queue);
1472
1473 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1474 if (filter != NULL)
1475 sk_filter_charge(newsk, filter);
1476
1477 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1478 /* It is still raw copy of parent, so invalidate
1479 * destructor and make plain sk_free() */
1480 newsk->sk_destruct = NULL;
1481 bh_unlock_sock(newsk);
1482 sk_free(newsk);
1483 newsk = NULL;
1484 goto out;
1485 }
1486
1487 newsk->sk_err = 0;
1488 newsk->sk_priority = 0;
1489 /*
1490 * Before updating sk_refcnt, we must commit prior changes to memory
1491 * (Documentation/RCU/rculist_nulls.txt for details)
1492 */
1493 smp_wmb();
1494 atomic_set(&newsk->sk_refcnt, 2);
1495
1496 /*
1497 * Increment the counter in the same struct proto as the master
1498 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1499 * is the same as sk->sk_prot->socks, as this field was copied
1500 * with memcpy).
1501 *
1502 * This _changes_ the previous behaviour, where
1503 * tcp_create_openreq_child always was incrementing the
1504 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1505 * to be taken into account in all callers. -acme
1506 */
1507 sk_refcnt_debug_inc(newsk);
1508 sk_set_socket(newsk, NULL);
1509 newsk->sk_wq = NULL;
1510
1511 sk_update_clone(sk, newsk);
1512
1513 if (newsk->sk_prot->sockets_allocated)
1514 sk_sockets_allocated_inc(newsk);
1515
1516 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1517 net_enable_timestamp();
1518 }
1519 out:
1520 return newsk;
1521 }
1522 EXPORT_SYMBOL_GPL(sk_clone_lock);
1523
1524 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1525 {
1526 __sk_dst_set(sk, dst);
1527 sk->sk_route_caps = dst->dev->features;
1528 if (sk->sk_route_caps & NETIF_F_GSO)
1529 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1530 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1531 if (sk_can_gso(sk)) {
1532 if (dst->header_len) {
1533 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1534 } else {
1535 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1536 sk->sk_gso_max_size = dst->dev->gso_max_size;
1537 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1538 }
1539 }
1540 }
1541 EXPORT_SYMBOL_GPL(sk_setup_caps);
1542
1543 /*
1544 * Simple resource managers for sockets.
1545 */
1546
1547
1548 /*
1549 * Write buffer destructor automatically called from kfree_skb.
1550 */
1551 void sock_wfree(struct sk_buff *skb)
1552 {
1553 struct sock *sk = skb->sk;
1554 unsigned int len = skb->truesize;
1555
1556 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1557 /*
1558 * Keep a reference on sk_wmem_alloc, this will be released
1559 * after sk_write_space() call
1560 */
1561 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1562 sk->sk_write_space(sk);
1563 len = 1;
1564 }
1565 /*
1566 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1567 * could not do because of in-flight packets
1568 */
1569 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1570 __sk_free(sk);
1571 }
1572 EXPORT_SYMBOL(sock_wfree);
1573
1574 /*
1575 * Read buffer destructor automatically called from kfree_skb.
1576 */
1577 void sock_rfree(struct sk_buff *skb)
1578 {
1579 struct sock *sk = skb->sk;
1580 unsigned int len = skb->truesize;
1581
1582 atomic_sub(len, &sk->sk_rmem_alloc);
1583 sk_mem_uncharge(sk, len);
1584 }
1585 EXPORT_SYMBOL(sock_rfree);
1586
1587 void sock_edemux(struct sk_buff *skb)
1588 {
1589 struct sock *sk = skb->sk;
1590
1591 #ifdef CONFIG_INET
1592 if (sk->sk_state == TCP_TIME_WAIT)
1593 inet_twsk_put(inet_twsk(sk));
1594 else
1595 #endif
1596 sock_put(sk);
1597 }
1598 EXPORT_SYMBOL(sock_edemux);
1599
1600 kuid_t sock_i_uid(struct sock *sk)
1601 {
1602 kuid_t uid;
1603
1604 read_lock_bh(&sk->sk_callback_lock);
1605 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1606 read_unlock_bh(&sk->sk_callback_lock);
1607 return uid;
1608 }
1609 EXPORT_SYMBOL(sock_i_uid);
1610
1611 unsigned long sock_i_ino(struct sock *sk)
1612 {
1613 unsigned long ino;
1614
1615 read_lock_bh(&sk->sk_callback_lock);
1616 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1617 read_unlock_bh(&sk->sk_callback_lock);
1618 return ino;
1619 }
1620 EXPORT_SYMBOL(sock_i_ino);
1621
1622 /*
1623 * Allocate a skb from the socket's send buffer.
1624 */
1625 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1626 gfp_t priority)
1627 {
1628 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1629 struct sk_buff *skb = alloc_skb(size, priority);
1630 if (skb) {
1631 skb_set_owner_w(skb, sk);
1632 return skb;
1633 }
1634 }
1635 return NULL;
1636 }
1637 EXPORT_SYMBOL(sock_wmalloc);
1638
1639 /*
1640 * Allocate a skb from the socket's receive buffer.
1641 */
1642 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1643 gfp_t priority)
1644 {
1645 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1646 struct sk_buff *skb = alloc_skb(size, priority);
1647 if (skb) {
1648 skb_set_owner_r(skb, sk);
1649 return skb;
1650 }
1651 }
1652 return NULL;
1653 }
1654
1655 /*
1656 * Allocate a memory block from the socket's option memory buffer.
1657 */
1658 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1659 {
1660 if ((unsigned int)size <= sysctl_optmem_max &&
1661 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1662 void *mem;
1663 /* First do the add, to avoid the race if kmalloc
1664 * might sleep.
1665 */
1666 atomic_add(size, &sk->sk_omem_alloc);
1667 mem = kmalloc(size, priority);
1668 if (mem)
1669 return mem;
1670 atomic_sub(size, &sk->sk_omem_alloc);
1671 }
1672 return NULL;
1673 }
1674 EXPORT_SYMBOL(sock_kmalloc);
1675
1676 /*
1677 * Free an option memory block.
1678 */
1679 void sock_kfree_s(struct sock *sk, void *mem, int size)
1680 {
1681 kfree(mem);
1682 atomic_sub(size, &sk->sk_omem_alloc);
1683 }
1684 EXPORT_SYMBOL(sock_kfree_s);
1685
1686 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1687 I think, these locks should be removed for datagram sockets.
1688 */
1689 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1690 {
1691 DEFINE_WAIT(wait);
1692
1693 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1694 for (;;) {
1695 if (!timeo)
1696 break;
1697 if (signal_pending(current))
1698 break;
1699 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1700 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1701 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1702 break;
1703 if (sk->sk_shutdown & SEND_SHUTDOWN)
1704 break;
1705 if (sk->sk_err)
1706 break;
1707 timeo = schedule_timeout(timeo);
1708 }
1709 finish_wait(sk_sleep(sk), &wait);
1710 return timeo;
1711 }
1712
1713
1714 /*
1715 * Generic send/receive buffer handlers
1716 */
1717
1718 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1719 unsigned long data_len, int noblock,
1720 int *errcode)
1721 {
1722 struct sk_buff *skb;
1723 gfp_t gfp_mask;
1724 long timeo;
1725 int err;
1726 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1727
1728 err = -EMSGSIZE;
1729 if (npages > MAX_SKB_FRAGS)
1730 goto failure;
1731
1732 gfp_mask = sk->sk_allocation;
1733 if (gfp_mask & __GFP_WAIT)
1734 gfp_mask |= __GFP_REPEAT;
1735
1736 timeo = sock_sndtimeo(sk, noblock);
1737 while (1) {
1738 err = sock_error(sk);
1739 if (err != 0)
1740 goto failure;
1741
1742 err = -EPIPE;
1743 if (sk->sk_shutdown & SEND_SHUTDOWN)
1744 goto failure;
1745
1746 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1747 skb = alloc_skb(header_len, gfp_mask);
1748 if (skb) {
1749 int i;
1750
1751 /* No pages, we're done... */
1752 if (!data_len)
1753 break;
1754
1755 skb->truesize += data_len;
1756 skb_shinfo(skb)->nr_frags = npages;
1757 for (i = 0; i < npages; i++) {
1758 struct page *page;
1759
1760 page = alloc_pages(sk->sk_allocation, 0);
1761 if (!page) {
1762 err = -ENOBUFS;
1763 skb_shinfo(skb)->nr_frags = i;
1764 kfree_skb(skb);
1765 goto failure;
1766 }
1767
1768 __skb_fill_page_desc(skb, i,
1769 page, 0,
1770 (data_len >= PAGE_SIZE ?
1771 PAGE_SIZE :
1772 data_len));
1773 data_len -= PAGE_SIZE;
1774 }
1775
1776 /* Full success... */
1777 break;
1778 }
1779 err = -ENOBUFS;
1780 goto failure;
1781 }
1782 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1783 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1784 err = -EAGAIN;
1785 if (!timeo)
1786 goto failure;
1787 if (signal_pending(current))
1788 goto interrupted;
1789 timeo = sock_wait_for_wmem(sk, timeo);
1790 }
1791
1792 skb_set_owner_w(skb, sk);
1793 return skb;
1794
1795 interrupted:
1796 err = sock_intr_errno(timeo);
1797 failure:
1798 *errcode = err;
1799 return NULL;
1800 }
1801 EXPORT_SYMBOL(sock_alloc_send_pskb);
1802
1803 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1804 int noblock, int *errcode)
1805 {
1806 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1807 }
1808 EXPORT_SYMBOL(sock_alloc_send_skb);
1809
1810 /* On 32bit arches, an skb frag is limited to 2^15 */
1811 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1812
1813 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1814 {
1815 int order;
1816
1817 if (pfrag->page) {
1818 if (atomic_read(&pfrag->page->_count) == 1) {
1819 pfrag->offset = 0;
1820 return true;
1821 }
1822 if (pfrag->offset < pfrag->size)
1823 return true;
1824 put_page(pfrag->page);
1825 }
1826
1827 /* We restrict high order allocations to users that can afford to wait */
1828 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1829
1830 do {
1831 gfp_t gfp = sk->sk_allocation;
1832
1833 if (order)
1834 gfp |= __GFP_COMP | __GFP_NOWARN;
1835 pfrag->page = alloc_pages(gfp, order);
1836 if (likely(pfrag->page)) {
1837 pfrag->offset = 0;
1838 pfrag->size = PAGE_SIZE << order;
1839 return true;
1840 }
1841 } while (--order >= 0);
1842
1843 sk_enter_memory_pressure(sk);
1844 sk_stream_moderate_sndbuf(sk);
1845 return false;
1846 }
1847 EXPORT_SYMBOL(sk_page_frag_refill);
1848
1849 static void __lock_sock(struct sock *sk)
1850 __releases(&sk->sk_lock.slock)
1851 __acquires(&sk->sk_lock.slock)
1852 {
1853 DEFINE_WAIT(wait);
1854
1855 for (;;) {
1856 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1857 TASK_UNINTERRUPTIBLE);
1858 spin_unlock_bh(&sk->sk_lock.slock);
1859 schedule();
1860 spin_lock_bh(&sk->sk_lock.slock);
1861 if (!sock_owned_by_user(sk))
1862 break;
1863 }
1864 finish_wait(&sk->sk_lock.wq, &wait);
1865 }
1866
1867 static void __release_sock(struct sock *sk)
1868 __releases(&sk->sk_lock.slock)
1869 __acquires(&sk->sk_lock.slock)
1870 {
1871 struct sk_buff *skb = sk->sk_backlog.head;
1872
1873 do {
1874 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1875 bh_unlock_sock(sk);
1876
1877 do {
1878 struct sk_buff *next = skb->next;
1879
1880 prefetch(next);
1881 WARN_ON_ONCE(skb_dst_is_noref(skb));
1882 skb->next = NULL;
1883 sk_backlog_rcv(sk, skb);
1884
1885 /*
1886 * We are in process context here with softirqs
1887 * disabled, use cond_resched_softirq() to preempt.
1888 * This is safe to do because we've taken the backlog
1889 * queue private:
1890 */
1891 cond_resched_softirq();
1892
1893 skb = next;
1894 } while (skb != NULL);
1895
1896 bh_lock_sock(sk);
1897 } while ((skb = sk->sk_backlog.head) != NULL);
1898
1899 /*
1900 * Doing the zeroing here guarantee we can not loop forever
1901 * while a wild producer attempts to flood us.
1902 */
1903 sk->sk_backlog.len = 0;
1904 }
1905
1906 /**
1907 * sk_wait_data - wait for data to arrive at sk_receive_queue
1908 * @sk: sock to wait on
1909 * @timeo: for how long
1910 *
1911 * Now socket state including sk->sk_err is changed only under lock,
1912 * hence we may omit checks after joining wait queue.
1913 * We check receive queue before schedule() only as optimization;
1914 * it is very likely that release_sock() added new data.
1915 */
1916 int sk_wait_data(struct sock *sk, long *timeo)
1917 {
1918 int rc;
1919 DEFINE_WAIT(wait);
1920
1921 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1922 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1923 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1924 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925 finish_wait(sk_sleep(sk), &wait);
1926 return rc;
1927 }
1928 EXPORT_SYMBOL(sk_wait_data);
1929
1930 /**
1931 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1932 * @sk: socket
1933 * @size: memory size to allocate
1934 * @kind: allocation type
1935 *
1936 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1937 * rmem allocation. This function assumes that protocols which have
1938 * memory_pressure use sk_wmem_queued as write buffer accounting.
1939 */
1940 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1941 {
1942 struct proto *prot = sk->sk_prot;
1943 int amt = sk_mem_pages(size);
1944 long allocated;
1945 int parent_status = UNDER_LIMIT;
1946
1947 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1948
1949 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1950
1951 /* Under limit. */
1952 if (parent_status == UNDER_LIMIT &&
1953 allocated <= sk_prot_mem_limits(sk, 0)) {
1954 sk_leave_memory_pressure(sk);
1955 return 1;
1956 }
1957
1958 /* Under pressure. (we or our parents) */
1959 if ((parent_status > SOFT_LIMIT) ||
1960 allocated > sk_prot_mem_limits(sk, 1))
1961 sk_enter_memory_pressure(sk);
1962
1963 /* Over hard limit (we or our parents) */
1964 if ((parent_status == OVER_LIMIT) ||
1965 (allocated > sk_prot_mem_limits(sk, 2)))
1966 goto suppress_allocation;
1967
1968 /* guarantee minimum buffer size under pressure */
1969 if (kind == SK_MEM_RECV) {
1970 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1971 return 1;
1972
1973 } else { /* SK_MEM_SEND */
1974 if (sk->sk_type == SOCK_STREAM) {
1975 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1976 return 1;
1977 } else if (atomic_read(&sk->sk_wmem_alloc) <
1978 prot->sysctl_wmem[0])
1979 return 1;
1980 }
1981
1982 if (sk_has_memory_pressure(sk)) {
1983 int alloc;
1984
1985 if (!sk_under_memory_pressure(sk))
1986 return 1;
1987 alloc = sk_sockets_allocated_read_positive(sk);
1988 if (sk_prot_mem_limits(sk, 2) > alloc *
1989 sk_mem_pages(sk->sk_wmem_queued +
1990 atomic_read(&sk->sk_rmem_alloc) +
1991 sk->sk_forward_alloc))
1992 return 1;
1993 }
1994
1995 suppress_allocation:
1996
1997 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1998 sk_stream_moderate_sndbuf(sk);
1999
2000 /* Fail only if socket is _under_ its sndbuf.
2001 * In this case we cannot block, so that we have to fail.
2002 */
2003 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2004 return 1;
2005 }
2006
2007 trace_sock_exceed_buf_limit(sk, prot, allocated);
2008
2009 /* Alas. Undo changes. */
2010 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2011
2012 sk_memory_allocated_sub(sk, amt);
2013
2014 return 0;
2015 }
2016 EXPORT_SYMBOL(__sk_mem_schedule);
2017
2018 /**
2019 * __sk_reclaim - reclaim memory_allocated
2020 * @sk: socket
2021 */
2022 void __sk_mem_reclaim(struct sock *sk)
2023 {
2024 sk_memory_allocated_sub(sk,
2025 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2026 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2027
2028 if (sk_under_memory_pressure(sk) &&
2029 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2030 sk_leave_memory_pressure(sk);
2031 }
2032 EXPORT_SYMBOL(__sk_mem_reclaim);
2033
2034
2035 /*
2036 * Set of default routines for initialising struct proto_ops when
2037 * the protocol does not support a particular function. In certain
2038 * cases where it makes no sense for a protocol to have a "do nothing"
2039 * function, some default processing is provided.
2040 */
2041
2042 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2043 {
2044 return -EOPNOTSUPP;
2045 }
2046 EXPORT_SYMBOL(sock_no_bind);
2047
2048 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2049 int len, int flags)
2050 {
2051 return -EOPNOTSUPP;
2052 }
2053 EXPORT_SYMBOL(sock_no_connect);
2054
2055 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2056 {
2057 return -EOPNOTSUPP;
2058 }
2059 EXPORT_SYMBOL(sock_no_socketpair);
2060
2061 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2062 {
2063 return -EOPNOTSUPP;
2064 }
2065 EXPORT_SYMBOL(sock_no_accept);
2066
2067 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2068 int *len, int peer)
2069 {
2070 return -EOPNOTSUPP;
2071 }
2072 EXPORT_SYMBOL(sock_no_getname);
2073
2074 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2075 {
2076 return 0;
2077 }
2078 EXPORT_SYMBOL(sock_no_poll);
2079
2080 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2081 {
2082 return -EOPNOTSUPP;
2083 }
2084 EXPORT_SYMBOL(sock_no_ioctl);
2085
2086 int sock_no_listen(struct socket *sock, int backlog)
2087 {
2088 return -EOPNOTSUPP;
2089 }
2090 EXPORT_SYMBOL(sock_no_listen);
2091
2092 int sock_no_shutdown(struct socket *sock, int how)
2093 {
2094 return -EOPNOTSUPP;
2095 }
2096 EXPORT_SYMBOL(sock_no_shutdown);
2097
2098 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2099 char __user *optval, unsigned int optlen)
2100 {
2101 return -EOPNOTSUPP;
2102 }
2103 EXPORT_SYMBOL(sock_no_setsockopt);
2104
2105 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2106 char __user *optval, int __user *optlen)
2107 {
2108 return -EOPNOTSUPP;
2109 }
2110 EXPORT_SYMBOL(sock_no_getsockopt);
2111
2112 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2113 size_t len)
2114 {
2115 return -EOPNOTSUPP;
2116 }
2117 EXPORT_SYMBOL(sock_no_sendmsg);
2118
2119 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2120 size_t len, int flags)
2121 {
2122 return -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(sock_no_recvmsg);
2125
2126 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2127 {
2128 /* Mirror missing mmap method error code */
2129 return -ENODEV;
2130 }
2131 EXPORT_SYMBOL(sock_no_mmap);
2132
2133 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2134 {
2135 ssize_t res;
2136 struct msghdr msg = {.msg_flags = flags};
2137 struct kvec iov;
2138 char *kaddr = kmap(page);
2139 iov.iov_base = kaddr + offset;
2140 iov.iov_len = size;
2141 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2142 kunmap(page);
2143 return res;
2144 }
2145 EXPORT_SYMBOL(sock_no_sendpage);
2146
2147 /*
2148 * Default Socket Callbacks
2149 */
2150
2151 static void sock_def_wakeup(struct sock *sk)
2152 {
2153 struct socket_wq *wq;
2154
2155 rcu_read_lock();
2156 wq = rcu_dereference(sk->sk_wq);
2157 if (wq_has_sleeper(wq))
2158 wake_up_interruptible_all(&wq->wait);
2159 rcu_read_unlock();
2160 }
2161
2162 static void sock_def_error_report(struct sock *sk)
2163 {
2164 struct socket_wq *wq;
2165
2166 rcu_read_lock();
2167 wq = rcu_dereference(sk->sk_wq);
2168 if (wq_has_sleeper(wq))
2169 wake_up_interruptible_poll(&wq->wait, POLLERR);
2170 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2171 rcu_read_unlock();
2172 }
2173
2174 static void sock_def_readable(struct sock *sk, int len)
2175 {
2176 struct socket_wq *wq;
2177
2178 rcu_read_lock();
2179 wq = rcu_dereference(sk->sk_wq);
2180 if (wq_has_sleeper(wq))
2181 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2182 POLLRDNORM | POLLRDBAND);
2183 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2184 rcu_read_unlock();
2185 }
2186
2187 static void sock_def_write_space(struct sock *sk)
2188 {
2189 struct socket_wq *wq;
2190
2191 rcu_read_lock();
2192
2193 /* Do not wake up a writer until he can make "significant"
2194 * progress. --DaveM
2195 */
2196 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2197 wq = rcu_dereference(sk->sk_wq);
2198 if (wq_has_sleeper(wq))
2199 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2200 POLLWRNORM | POLLWRBAND);
2201
2202 /* Should agree with poll, otherwise some programs break */
2203 if (sock_writeable(sk))
2204 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2205 }
2206
2207 rcu_read_unlock();
2208 }
2209
2210 static void sock_def_destruct(struct sock *sk)
2211 {
2212 kfree(sk->sk_protinfo);
2213 }
2214
2215 void sk_send_sigurg(struct sock *sk)
2216 {
2217 if (sk->sk_socket && sk->sk_socket->file)
2218 if (send_sigurg(&sk->sk_socket->file->f_owner))
2219 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2220 }
2221 EXPORT_SYMBOL(sk_send_sigurg);
2222
2223 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2224 unsigned long expires)
2225 {
2226 if (!mod_timer(timer, expires))
2227 sock_hold(sk);
2228 }
2229 EXPORT_SYMBOL(sk_reset_timer);
2230
2231 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2232 {
2233 if (del_timer(timer))
2234 __sock_put(sk);
2235 }
2236 EXPORT_SYMBOL(sk_stop_timer);
2237
2238 void sock_init_data(struct socket *sock, struct sock *sk)
2239 {
2240 skb_queue_head_init(&sk->sk_receive_queue);
2241 skb_queue_head_init(&sk->sk_write_queue);
2242 skb_queue_head_init(&sk->sk_error_queue);
2243 #ifdef CONFIG_NET_DMA
2244 skb_queue_head_init(&sk->sk_async_wait_queue);
2245 #endif
2246
2247 sk->sk_send_head = NULL;
2248
2249 init_timer(&sk->sk_timer);
2250
2251 sk->sk_allocation = GFP_KERNEL;
2252 sk->sk_rcvbuf = sysctl_rmem_default;
2253 sk->sk_sndbuf = sysctl_wmem_default;
2254 sk->sk_state = TCP_CLOSE;
2255 sk_set_socket(sk, sock);
2256
2257 sock_set_flag(sk, SOCK_ZAPPED);
2258
2259 if (sock) {
2260 sk->sk_type = sock->type;
2261 sk->sk_wq = sock->wq;
2262 sock->sk = sk;
2263 } else
2264 sk->sk_wq = NULL;
2265
2266 spin_lock_init(&sk->sk_dst_lock);
2267 rwlock_init(&sk->sk_callback_lock);
2268 lockdep_set_class_and_name(&sk->sk_callback_lock,
2269 af_callback_keys + sk->sk_family,
2270 af_family_clock_key_strings[sk->sk_family]);
2271
2272 sk->sk_state_change = sock_def_wakeup;
2273 sk->sk_data_ready = sock_def_readable;
2274 sk->sk_write_space = sock_def_write_space;
2275 sk->sk_error_report = sock_def_error_report;
2276 sk->sk_destruct = sock_def_destruct;
2277
2278 sk->sk_frag.page = NULL;
2279 sk->sk_frag.offset = 0;
2280 sk->sk_peek_off = -1;
2281
2282 sk->sk_peer_pid = NULL;
2283 sk->sk_peer_cred = NULL;
2284 sk->sk_write_pending = 0;
2285 sk->sk_rcvlowat = 1;
2286 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2287 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2288
2289 sk->sk_stamp = ktime_set(-1L, 0);
2290
2291 /*
2292 * Before updating sk_refcnt, we must commit prior changes to memory
2293 * (Documentation/RCU/rculist_nulls.txt for details)
2294 */
2295 smp_wmb();
2296 atomic_set(&sk->sk_refcnt, 1);
2297 atomic_set(&sk->sk_drops, 0);
2298 }
2299 EXPORT_SYMBOL(sock_init_data);
2300
2301 void lock_sock_nested(struct sock *sk, int subclass)
2302 {
2303 might_sleep();
2304 spin_lock_bh(&sk->sk_lock.slock);
2305 if (sk->sk_lock.owned)
2306 __lock_sock(sk);
2307 sk->sk_lock.owned = 1;
2308 spin_unlock(&sk->sk_lock.slock);
2309 /*
2310 * The sk_lock has mutex_lock() semantics here:
2311 */
2312 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2313 local_bh_enable();
2314 }
2315 EXPORT_SYMBOL(lock_sock_nested);
2316
2317 void release_sock(struct sock *sk)
2318 {
2319 /*
2320 * The sk_lock has mutex_unlock() semantics:
2321 */
2322 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2323
2324 spin_lock_bh(&sk->sk_lock.slock);
2325 if (sk->sk_backlog.tail)
2326 __release_sock(sk);
2327
2328 if (sk->sk_prot->release_cb)
2329 sk->sk_prot->release_cb(sk);
2330
2331 sk->sk_lock.owned = 0;
2332 if (waitqueue_active(&sk->sk_lock.wq))
2333 wake_up(&sk->sk_lock.wq);
2334 spin_unlock_bh(&sk->sk_lock.slock);
2335 }
2336 EXPORT_SYMBOL(release_sock);
2337
2338 /**
2339 * lock_sock_fast - fast version of lock_sock
2340 * @sk: socket
2341 *
2342 * This version should be used for very small section, where process wont block
2343 * return false if fast path is taken
2344 * sk_lock.slock locked, owned = 0, BH disabled
2345 * return true if slow path is taken
2346 * sk_lock.slock unlocked, owned = 1, BH enabled
2347 */
2348 bool lock_sock_fast(struct sock *sk)
2349 {
2350 might_sleep();
2351 spin_lock_bh(&sk->sk_lock.slock);
2352
2353 if (!sk->sk_lock.owned)
2354 /*
2355 * Note : We must disable BH
2356 */
2357 return false;
2358
2359 __lock_sock(sk);
2360 sk->sk_lock.owned = 1;
2361 spin_unlock(&sk->sk_lock.slock);
2362 /*
2363 * The sk_lock has mutex_lock() semantics here:
2364 */
2365 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2366 local_bh_enable();
2367 return true;
2368 }
2369 EXPORT_SYMBOL(lock_sock_fast);
2370
2371 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2372 {
2373 struct timeval tv;
2374 if (!sock_flag(sk, SOCK_TIMESTAMP))
2375 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2376 tv = ktime_to_timeval(sk->sk_stamp);
2377 if (tv.tv_sec == -1)
2378 return -ENOENT;
2379 if (tv.tv_sec == 0) {
2380 sk->sk_stamp = ktime_get_real();
2381 tv = ktime_to_timeval(sk->sk_stamp);
2382 }
2383 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2384 }
2385 EXPORT_SYMBOL(sock_get_timestamp);
2386
2387 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2388 {
2389 struct timespec ts;
2390 if (!sock_flag(sk, SOCK_TIMESTAMP))
2391 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2392 ts = ktime_to_timespec(sk->sk_stamp);
2393 if (ts.tv_sec == -1)
2394 return -ENOENT;
2395 if (ts.tv_sec == 0) {
2396 sk->sk_stamp = ktime_get_real();
2397 ts = ktime_to_timespec(sk->sk_stamp);
2398 }
2399 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2400 }
2401 EXPORT_SYMBOL(sock_get_timestampns);
2402
2403 void sock_enable_timestamp(struct sock *sk, int flag)
2404 {
2405 if (!sock_flag(sk, flag)) {
2406 unsigned long previous_flags = sk->sk_flags;
2407
2408 sock_set_flag(sk, flag);
2409 /*
2410 * we just set one of the two flags which require net
2411 * time stamping, but time stamping might have been on
2412 * already because of the other one
2413 */
2414 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2415 net_enable_timestamp();
2416 }
2417 }
2418
2419 /*
2420 * Get a socket option on an socket.
2421 *
2422 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2423 * asynchronous errors should be reported by getsockopt. We assume
2424 * this means if you specify SO_ERROR (otherwise whats the point of it).
2425 */
2426 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2427 char __user *optval, int __user *optlen)
2428 {
2429 struct sock *sk = sock->sk;
2430
2431 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2432 }
2433 EXPORT_SYMBOL(sock_common_getsockopt);
2434
2435 #ifdef CONFIG_COMPAT
2436 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2437 char __user *optval, int __user *optlen)
2438 {
2439 struct sock *sk = sock->sk;
2440
2441 if (sk->sk_prot->compat_getsockopt != NULL)
2442 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2443 optval, optlen);
2444 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2445 }
2446 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2447 #endif
2448
2449 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2450 struct msghdr *msg, size_t size, int flags)
2451 {
2452 struct sock *sk = sock->sk;
2453 int addr_len = 0;
2454 int err;
2455
2456 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2457 flags & ~MSG_DONTWAIT, &addr_len);
2458 if (err >= 0)
2459 msg->msg_namelen = addr_len;
2460 return err;
2461 }
2462 EXPORT_SYMBOL(sock_common_recvmsg);
2463
2464 /*
2465 * Set socket options on an inet socket.
2466 */
2467 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2468 char __user *optval, unsigned int optlen)
2469 {
2470 struct sock *sk = sock->sk;
2471
2472 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2473 }
2474 EXPORT_SYMBOL(sock_common_setsockopt);
2475
2476 #ifdef CONFIG_COMPAT
2477 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2478 char __user *optval, unsigned int optlen)
2479 {
2480 struct sock *sk = sock->sk;
2481
2482 if (sk->sk_prot->compat_setsockopt != NULL)
2483 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2484 optval, optlen);
2485 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2486 }
2487 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2488 #endif
2489
2490 void sk_common_release(struct sock *sk)
2491 {
2492 if (sk->sk_prot->destroy)
2493 sk->sk_prot->destroy(sk);
2494
2495 /*
2496 * Observation: when sock_common_release is called, processes have
2497 * no access to socket. But net still has.
2498 * Step one, detach it from networking:
2499 *
2500 * A. Remove from hash tables.
2501 */
2502
2503 sk->sk_prot->unhash(sk);
2504
2505 /*
2506 * In this point socket cannot receive new packets, but it is possible
2507 * that some packets are in flight because some CPU runs receiver and
2508 * did hash table lookup before we unhashed socket. They will achieve
2509 * receive queue and will be purged by socket destructor.
2510 *
2511 * Also we still have packets pending on receive queue and probably,
2512 * our own packets waiting in device queues. sock_destroy will drain
2513 * receive queue, but transmitted packets will delay socket destruction
2514 * until the last reference will be released.
2515 */
2516
2517 sock_orphan(sk);
2518
2519 xfrm_sk_free_policy(sk);
2520
2521 sk_refcnt_debug_release(sk);
2522
2523 if (sk->sk_frag.page) {
2524 put_page(sk->sk_frag.page);
2525 sk->sk_frag.page = NULL;
2526 }
2527
2528 sock_put(sk);
2529 }
2530 EXPORT_SYMBOL(sk_common_release);
2531
2532 #ifdef CONFIG_PROC_FS
2533 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2534 struct prot_inuse {
2535 int val[PROTO_INUSE_NR];
2536 };
2537
2538 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2539
2540 #ifdef CONFIG_NET_NS
2541 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2542 {
2543 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2544 }
2545 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2546
2547 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2548 {
2549 int cpu, idx = prot->inuse_idx;
2550 int res = 0;
2551
2552 for_each_possible_cpu(cpu)
2553 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2554
2555 return res >= 0 ? res : 0;
2556 }
2557 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2558
2559 static int __net_init sock_inuse_init_net(struct net *net)
2560 {
2561 net->core.inuse = alloc_percpu(struct prot_inuse);
2562 return net->core.inuse ? 0 : -ENOMEM;
2563 }
2564
2565 static void __net_exit sock_inuse_exit_net(struct net *net)
2566 {
2567 free_percpu(net->core.inuse);
2568 }
2569
2570 static struct pernet_operations net_inuse_ops = {
2571 .init = sock_inuse_init_net,
2572 .exit = sock_inuse_exit_net,
2573 };
2574
2575 static __init int net_inuse_init(void)
2576 {
2577 if (register_pernet_subsys(&net_inuse_ops))
2578 panic("Cannot initialize net inuse counters");
2579
2580 return 0;
2581 }
2582
2583 core_initcall(net_inuse_init);
2584 #else
2585 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2586
2587 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2588 {
2589 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2590 }
2591 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2592
2593 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2594 {
2595 int cpu, idx = prot->inuse_idx;
2596 int res = 0;
2597
2598 for_each_possible_cpu(cpu)
2599 res += per_cpu(prot_inuse, cpu).val[idx];
2600
2601 return res >= 0 ? res : 0;
2602 }
2603 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2604 #endif
2605
2606 static void assign_proto_idx(struct proto *prot)
2607 {
2608 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2609
2610 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2611 pr_err("PROTO_INUSE_NR exhausted\n");
2612 return;
2613 }
2614
2615 set_bit(prot->inuse_idx, proto_inuse_idx);
2616 }
2617
2618 static void release_proto_idx(struct proto *prot)
2619 {
2620 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2621 clear_bit(prot->inuse_idx, proto_inuse_idx);
2622 }
2623 #else
2624 static inline void assign_proto_idx(struct proto *prot)
2625 {
2626 }
2627
2628 static inline void release_proto_idx(struct proto *prot)
2629 {
2630 }
2631 #endif
2632
2633 int proto_register(struct proto *prot, int alloc_slab)
2634 {
2635 if (alloc_slab) {
2636 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2637 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2638 NULL);
2639
2640 if (prot->slab == NULL) {
2641 pr_crit("%s: Can't create sock SLAB cache!\n",
2642 prot->name);
2643 goto out;
2644 }
2645
2646 if (prot->rsk_prot != NULL) {
2647 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2648 if (prot->rsk_prot->slab_name == NULL)
2649 goto out_free_sock_slab;
2650
2651 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2652 prot->rsk_prot->obj_size, 0,
2653 SLAB_HWCACHE_ALIGN, NULL);
2654
2655 if (prot->rsk_prot->slab == NULL) {
2656 pr_crit("%s: Can't create request sock SLAB cache!\n",
2657 prot->name);
2658 goto out_free_request_sock_slab_name;
2659 }
2660 }
2661
2662 if (prot->twsk_prot != NULL) {
2663 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2664
2665 if (prot->twsk_prot->twsk_slab_name == NULL)
2666 goto out_free_request_sock_slab;
2667
2668 prot->twsk_prot->twsk_slab =
2669 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2670 prot->twsk_prot->twsk_obj_size,
2671 0,
2672 SLAB_HWCACHE_ALIGN |
2673 prot->slab_flags,
2674 NULL);
2675 if (prot->twsk_prot->twsk_slab == NULL)
2676 goto out_free_timewait_sock_slab_name;
2677 }
2678 }
2679
2680 mutex_lock(&proto_list_mutex);
2681 list_add(&prot->node, &proto_list);
2682 assign_proto_idx(prot);
2683 mutex_unlock(&proto_list_mutex);
2684 return 0;
2685
2686 out_free_timewait_sock_slab_name:
2687 kfree(prot->twsk_prot->twsk_slab_name);
2688 out_free_request_sock_slab:
2689 if (prot->rsk_prot && prot->rsk_prot->slab) {
2690 kmem_cache_destroy(prot->rsk_prot->slab);
2691 prot->rsk_prot->slab = NULL;
2692 }
2693 out_free_request_sock_slab_name:
2694 if (prot->rsk_prot)
2695 kfree(prot->rsk_prot->slab_name);
2696 out_free_sock_slab:
2697 kmem_cache_destroy(prot->slab);
2698 prot->slab = NULL;
2699 out:
2700 return -ENOBUFS;
2701 }
2702 EXPORT_SYMBOL(proto_register);
2703
2704 void proto_unregister(struct proto *prot)
2705 {
2706 mutex_lock(&proto_list_mutex);
2707 release_proto_idx(prot);
2708 list_del(&prot->node);
2709 mutex_unlock(&proto_list_mutex);
2710
2711 if (prot->slab != NULL) {
2712 kmem_cache_destroy(prot->slab);
2713 prot->slab = NULL;
2714 }
2715
2716 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2717 kmem_cache_destroy(prot->rsk_prot->slab);
2718 kfree(prot->rsk_prot->slab_name);
2719 prot->rsk_prot->slab = NULL;
2720 }
2721
2722 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2723 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2724 kfree(prot->twsk_prot->twsk_slab_name);
2725 prot->twsk_prot->twsk_slab = NULL;
2726 }
2727 }
2728 EXPORT_SYMBOL(proto_unregister);
2729
2730 #ifdef CONFIG_PROC_FS
2731 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2732 __acquires(proto_list_mutex)
2733 {
2734 mutex_lock(&proto_list_mutex);
2735 return seq_list_start_head(&proto_list, *pos);
2736 }
2737
2738 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2739 {
2740 return seq_list_next(v, &proto_list, pos);
2741 }
2742
2743 static void proto_seq_stop(struct seq_file *seq, void *v)
2744 __releases(proto_list_mutex)
2745 {
2746 mutex_unlock(&proto_list_mutex);
2747 }
2748
2749 static char proto_method_implemented(const void *method)
2750 {
2751 return method == NULL ? 'n' : 'y';
2752 }
2753 static long sock_prot_memory_allocated(struct proto *proto)
2754 {
2755 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2756 }
2757
2758 static char *sock_prot_memory_pressure(struct proto *proto)
2759 {
2760 return proto->memory_pressure != NULL ?
2761 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2762 }
2763
2764 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2765 {
2766
2767 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2768 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2769 proto->name,
2770 proto->obj_size,
2771 sock_prot_inuse_get(seq_file_net(seq), proto),
2772 sock_prot_memory_allocated(proto),
2773 sock_prot_memory_pressure(proto),
2774 proto->max_header,
2775 proto->slab == NULL ? "no" : "yes",
2776 module_name(proto->owner),
2777 proto_method_implemented(proto->close),
2778 proto_method_implemented(proto->connect),
2779 proto_method_implemented(proto->disconnect),
2780 proto_method_implemented(proto->accept),
2781 proto_method_implemented(proto->ioctl),
2782 proto_method_implemented(proto->init),
2783 proto_method_implemented(proto->destroy),
2784 proto_method_implemented(proto->shutdown),
2785 proto_method_implemented(proto->setsockopt),
2786 proto_method_implemented(proto->getsockopt),
2787 proto_method_implemented(proto->sendmsg),
2788 proto_method_implemented(proto->recvmsg),
2789 proto_method_implemented(proto->sendpage),
2790 proto_method_implemented(proto->bind),
2791 proto_method_implemented(proto->backlog_rcv),
2792 proto_method_implemented(proto->hash),
2793 proto_method_implemented(proto->unhash),
2794 proto_method_implemented(proto->get_port),
2795 proto_method_implemented(proto->enter_memory_pressure));
2796 }
2797
2798 static int proto_seq_show(struct seq_file *seq, void *v)
2799 {
2800 if (v == &proto_list)
2801 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2802 "protocol",
2803 "size",
2804 "sockets",
2805 "memory",
2806 "press",
2807 "maxhdr",
2808 "slab",
2809 "module",
2810 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2811 else
2812 proto_seq_printf(seq, list_entry(v, struct proto, node));
2813 return 0;
2814 }
2815
2816 static const struct seq_operations proto_seq_ops = {
2817 .start = proto_seq_start,
2818 .next = proto_seq_next,
2819 .stop = proto_seq_stop,
2820 .show = proto_seq_show,
2821 };
2822
2823 static int proto_seq_open(struct inode *inode, struct file *file)
2824 {
2825 return seq_open_net(inode, file, &proto_seq_ops,
2826 sizeof(struct seq_net_private));
2827 }
2828
2829 static const struct file_operations proto_seq_fops = {
2830 .owner = THIS_MODULE,
2831 .open = proto_seq_open,
2832 .read = seq_read,
2833 .llseek = seq_lseek,
2834 .release = seq_release_net,
2835 };
2836
2837 static __net_init int proto_init_net(struct net *net)
2838 {
2839 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2840 return -ENOMEM;
2841
2842 return 0;
2843 }
2844
2845 static __net_exit void proto_exit_net(struct net *net)
2846 {
2847 proc_net_remove(net, "protocols");
2848 }
2849
2850
2851 static __net_initdata struct pernet_operations proto_net_ops = {
2852 .init = proto_init_net,
2853 .exit = proto_exit_net,
2854 };
2855
2856 static int __init proto_init(void)
2857 {
2858 return register_pernet_subsys(&proto_net_ops);
2859 }
2860
2861 subsys_initcall(proto_init);
2862
2863 #endif /* PROC_FS */
This page took 0.101615 seconds and 5 git commands to generate.