[NET]: Introduce SIOCGSTAMPNS ioctl to get timestamps with nanosec resolution
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
12 * Authors: Ross Biro
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/request_sock.h>
123 #include <net/sock.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126
127 #include <linux/filter.h>
128
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
132
133 /*
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
136 */
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
139
140 #ifdef CONFIG_DEBUG_LOCK_ALLOC
141 /*
142 * Make lock validator output more readable. (we pre-construct these
143 * strings build-time, so that runtime initialization of socket
144 * locks is fast):
145 */
146 static const char *af_family_key_strings[AF_MAX+1] = {
147 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
148 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
149 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
150 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
151 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
152 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
153 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
154 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
155 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
156 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
157 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
158 };
159 static const char *af_family_slock_key_strings[AF_MAX+1] = {
160 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
161 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
162 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
163 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
164 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
165 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
166 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
167 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
168 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
169 "slock-27" , "slock-28" , "slock-29" ,
170 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_MAX"
171 };
172 #endif
173
174 /*
175 * sk_callback_lock locking rules are per-address-family,
176 * so split the lock classes by using a per-AF key:
177 */
178 static struct lock_class_key af_callback_keys[AF_MAX];
179
180 /* Take into consideration the size of the struct sk_buff overhead in the
181 * determination of these values, since that is non-constant across
182 * platforms. This makes socket queueing behavior and performance
183 * not depend upon such differences.
184 */
185 #define _SK_MEM_PACKETS 256
186 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
187 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
189
190 /* Run time adjustable parameters. */
191 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
192 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
193 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
194 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
195
196 /* Maximal space eaten by iovec or ancilliary data plus some space */
197 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
198
199 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
200 {
201 struct timeval tv;
202
203 if (optlen < sizeof(tv))
204 return -EINVAL;
205 if (copy_from_user(&tv, optval, sizeof(tv)))
206 return -EFAULT;
207
208 *timeo_p = MAX_SCHEDULE_TIMEOUT;
209 if (tv.tv_sec == 0 && tv.tv_usec == 0)
210 return 0;
211 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
212 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
213 return 0;
214 }
215
216 static void sock_warn_obsolete_bsdism(const char *name)
217 {
218 static int warned;
219 static char warncomm[TASK_COMM_LEN];
220 if (strcmp(warncomm, current->comm) && warned < 5) {
221 strcpy(warncomm, current->comm);
222 printk(KERN_WARNING "process `%s' is using obsolete "
223 "%s SO_BSDCOMPAT\n", warncomm, name);
224 warned++;
225 }
226 }
227
228 static void sock_disable_timestamp(struct sock *sk)
229 {
230 if (sock_flag(sk, SOCK_TIMESTAMP)) {
231 sock_reset_flag(sk, SOCK_TIMESTAMP);
232 net_disable_timestamp();
233 }
234 }
235
236
237 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
238 {
239 int err = 0;
240 int skb_len;
241
242 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
243 number of warnings when compiling with -W --ANK
244 */
245 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
246 (unsigned)sk->sk_rcvbuf) {
247 err = -ENOMEM;
248 goto out;
249 }
250
251 err = sk_filter(sk, skb);
252 if (err)
253 goto out;
254
255 skb->dev = NULL;
256 skb_set_owner_r(skb, sk);
257
258 /* Cache the SKB length before we tack it onto the receive
259 * queue. Once it is added it no longer belongs to us and
260 * may be freed by other threads of control pulling packets
261 * from the queue.
262 */
263 skb_len = skb->len;
264
265 skb_queue_tail(&sk->sk_receive_queue, skb);
266
267 if (!sock_flag(sk, SOCK_DEAD))
268 sk->sk_data_ready(sk, skb_len);
269 out:
270 return err;
271 }
272 EXPORT_SYMBOL(sock_queue_rcv_skb);
273
274 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
275 {
276 int rc = NET_RX_SUCCESS;
277
278 if (sk_filter(sk, skb))
279 goto discard_and_relse;
280
281 skb->dev = NULL;
282
283 if (nested)
284 bh_lock_sock_nested(sk);
285 else
286 bh_lock_sock(sk);
287 if (!sock_owned_by_user(sk)) {
288 /*
289 * trylock + unlock semantics:
290 */
291 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
292
293 rc = sk->sk_backlog_rcv(sk, skb);
294
295 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
296 } else
297 sk_add_backlog(sk, skb);
298 bh_unlock_sock(sk);
299 out:
300 sock_put(sk);
301 return rc;
302 discard_and_relse:
303 kfree_skb(skb);
304 goto out;
305 }
306 EXPORT_SYMBOL(sk_receive_skb);
307
308 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
309 {
310 struct dst_entry *dst = sk->sk_dst_cache;
311
312 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
313 sk->sk_dst_cache = NULL;
314 dst_release(dst);
315 return NULL;
316 }
317
318 return dst;
319 }
320 EXPORT_SYMBOL(__sk_dst_check);
321
322 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
323 {
324 struct dst_entry *dst = sk_dst_get(sk);
325
326 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
327 sk_dst_reset(sk);
328 dst_release(dst);
329 return NULL;
330 }
331
332 return dst;
333 }
334 EXPORT_SYMBOL(sk_dst_check);
335
336 /*
337 * This is meant for all protocols to use and covers goings on
338 * at the socket level. Everything here is generic.
339 */
340
341 int sock_setsockopt(struct socket *sock, int level, int optname,
342 char __user *optval, int optlen)
343 {
344 struct sock *sk=sock->sk;
345 struct sk_filter *filter;
346 int val;
347 int valbool;
348 struct linger ling;
349 int ret = 0;
350
351 /*
352 * Options without arguments
353 */
354
355 #ifdef SO_DONTLINGER /* Compatibility item... */
356 if (optname == SO_DONTLINGER) {
357 lock_sock(sk);
358 sock_reset_flag(sk, SOCK_LINGER);
359 release_sock(sk);
360 return 0;
361 }
362 #endif
363
364 if(optlen<sizeof(int))
365 return(-EINVAL);
366
367 if (get_user(val, (int __user *)optval))
368 return -EFAULT;
369
370 valbool = val?1:0;
371
372 lock_sock(sk);
373
374 switch(optname)
375 {
376 case SO_DEBUG:
377 if(val && !capable(CAP_NET_ADMIN))
378 {
379 ret = -EACCES;
380 }
381 else if (valbool)
382 sock_set_flag(sk, SOCK_DBG);
383 else
384 sock_reset_flag(sk, SOCK_DBG);
385 break;
386 case SO_REUSEADDR:
387 sk->sk_reuse = valbool;
388 break;
389 case SO_TYPE:
390 case SO_ERROR:
391 ret = -ENOPROTOOPT;
392 break;
393 case SO_DONTROUTE:
394 if (valbool)
395 sock_set_flag(sk, SOCK_LOCALROUTE);
396 else
397 sock_reset_flag(sk, SOCK_LOCALROUTE);
398 break;
399 case SO_BROADCAST:
400 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
401 break;
402 case SO_SNDBUF:
403 /* Don't error on this BSD doesn't and if you think
404 about it this is right. Otherwise apps have to
405 play 'guess the biggest size' games. RCVBUF/SNDBUF
406 are treated in BSD as hints */
407
408 if (val > sysctl_wmem_max)
409 val = sysctl_wmem_max;
410 set_sndbuf:
411 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
412 if ((val * 2) < SOCK_MIN_SNDBUF)
413 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
414 else
415 sk->sk_sndbuf = val * 2;
416
417 /*
418 * Wake up sending tasks if we
419 * upped the value.
420 */
421 sk->sk_write_space(sk);
422 break;
423
424 case SO_SNDBUFFORCE:
425 if (!capable(CAP_NET_ADMIN)) {
426 ret = -EPERM;
427 break;
428 }
429 goto set_sndbuf;
430
431 case SO_RCVBUF:
432 /* Don't error on this BSD doesn't and if you think
433 about it this is right. Otherwise apps have to
434 play 'guess the biggest size' games. RCVBUF/SNDBUF
435 are treated in BSD as hints */
436
437 if (val > sysctl_rmem_max)
438 val = sysctl_rmem_max;
439 set_rcvbuf:
440 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
441 /*
442 * We double it on the way in to account for
443 * "struct sk_buff" etc. overhead. Applications
444 * assume that the SO_RCVBUF setting they make will
445 * allow that much actual data to be received on that
446 * socket.
447 *
448 * Applications are unaware that "struct sk_buff" and
449 * other overheads allocate from the receive buffer
450 * during socket buffer allocation.
451 *
452 * And after considering the possible alternatives,
453 * returning the value we actually used in getsockopt
454 * is the most desirable behavior.
455 */
456 if ((val * 2) < SOCK_MIN_RCVBUF)
457 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
458 else
459 sk->sk_rcvbuf = val * 2;
460 break;
461
462 case SO_RCVBUFFORCE:
463 if (!capable(CAP_NET_ADMIN)) {
464 ret = -EPERM;
465 break;
466 }
467 goto set_rcvbuf;
468
469 case SO_KEEPALIVE:
470 #ifdef CONFIG_INET
471 if (sk->sk_protocol == IPPROTO_TCP)
472 tcp_set_keepalive(sk, valbool);
473 #endif
474 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
475 break;
476
477 case SO_OOBINLINE:
478 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
479 break;
480
481 case SO_NO_CHECK:
482 sk->sk_no_check = valbool;
483 break;
484
485 case SO_PRIORITY:
486 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
487 sk->sk_priority = val;
488 else
489 ret = -EPERM;
490 break;
491
492 case SO_LINGER:
493 if(optlen<sizeof(ling)) {
494 ret = -EINVAL; /* 1003.1g */
495 break;
496 }
497 if (copy_from_user(&ling,optval,sizeof(ling))) {
498 ret = -EFAULT;
499 break;
500 }
501 if (!ling.l_onoff)
502 sock_reset_flag(sk, SOCK_LINGER);
503 else {
504 #if (BITS_PER_LONG == 32)
505 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
506 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
507 else
508 #endif
509 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
510 sock_set_flag(sk, SOCK_LINGER);
511 }
512 break;
513
514 case SO_BSDCOMPAT:
515 sock_warn_obsolete_bsdism("setsockopt");
516 break;
517
518 case SO_PASSCRED:
519 if (valbool)
520 set_bit(SOCK_PASSCRED, &sock->flags);
521 else
522 clear_bit(SOCK_PASSCRED, &sock->flags);
523 break;
524
525 case SO_TIMESTAMP:
526 if (valbool) {
527 sock_set_flag(sk, SOCK_RCVTSTAMP);
528 sock_enable_timestamp(sk);
529 } else
530 sock_reset_flag(sk, SOCK_RCVTSTAMP);
531 break;
532
533 case SO_RCVLOWAT:
534 if (val < 0)
535 val = INT_MAX;
536 sk->sk_rcvlowat = val ? : 1;
537 break;
538
539 case SO_RCVTIMEO:
540 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
541 break;
542
543 case SO_SNDTIMEO:
544 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
545 break;
546
547 #ifdef CONFIG_NETDEVICES
548 case SO_BINDTODEVICE:
549 {
550 char devname[IFNAMSIZ];
551
552 /* Sorry... */
553 if (!capable(CAP_NET_RAW)) {
554 ret = -EPERM;
555 break;
556 }
557
558 /* Bind this socket to a particular device like "eth0",
559 * as specified in the passed interface name. If the
560 * name is "" or the option length is zero the socket
561 * is not bound.
562 */
563
564 if (!valbool) {
565 sk->sk_bound_dev_if = 0;
566 } else {
567 if (optlen > IFNAMSIZ - 1)
568 optlen = IFNAMSIZ - 1;
569 memset(devname, 0, sizeof(devname));
570 if (copy_from_user(devname, optval, optlen)) {
571 ret = -EFAULT;
572 break;
573 }
574
575 /* Remove any cached route for this socket. */
576 sk_dst_reset(sk);
577
578 if (devname[0] == '\0') {
579 sk->sk_bound_dev_if = 0;
580 } else {
581 struct net_device *dev = dev_get_by_name(devname);
582 if (!dev) {
583 ret = -ENODEV;
584 break;
585 }
586 sk->sk_bound_dev_if = dev->ifindex;
587 dev_put(dev);
588 }
589 }
590 break;
591 }
592 #endif
593
594
595 case SO_ATTACH_FILTER:
596 ret = -EINVAL;
597 if (optlen == sizeof(struct sock_fprog)) {
598 struct sock_fprog fprog;
599
600 ret = -EFAULT;
601 if (copy_from_user(&fprog, optval, sizeof(fprog)))
602 break;
603
604 ret = sk_attach_filter(&fprog, sk);
605 }
606 break;
607
608 case SO_DETACH_FILTER:
609 rcu_read_lock_bh();
610 filter = rcu_dereference(sk->sk_filter);
611 if (filter) {
612 rcu_assign_pointer(sk->sk_filter, NULL);
613 sk_filter_release(sk, filter);
614 rcu_read_unlock_bh();
615 break;
616 }
617 rcu_read_unlock_bh();
618 ret = -ENONET;
619 break;
620
621 case SO_PASSSEC:
622 if (valbool)
623 set_bit(SOCK_PASSSEC, &sock->flags);
624 else
625 clear_bit(SOCK_PASSSEC, &sock->flags);
626 break;
627
628 /* We implement the SO_SNDLOWAT etc to
629 not be settable (1003.1g 5.3) */
630 default:
631 ret = -ENOPROTOOPT;
632 break;
633 }
634 release_sock(sk);
635 return ret;
636 }
637
638
639 int sock_getsockopt(struct socket *sock, int level, int optname,
640 char __user *optval, int __user *optlen)
641 {
642 struct sock *sk = sock->sk;
643
644 union
645 {
646 int val;
647 struct linger ling;
648 struct timeval tm;
649 } v;
650
651 unsigned int lv = sizeof(int);
652 int len;
653
654 if(get_user(len,optlen))
655 return -EFAULT;
656 if(len < 0)
657 return -EINVAL;
658
659 switch(optname)
660 {
661 case SO_DEBUG:
662 v.val = sock_flag(sk, SOCK_DBG);
663 break;
664
665 case SO_DONTROUTE:
666 v.val = sock_flag(sk, SOCK_LOCALROUTE);
667 break;
668
669 case SO_BROADCAST:
670 v.val = !!sock_flag(sk, SOCK_BROADCAST);
671 break;
672
673 case SO_SNDBUF:
674 v.val = sk->sk_sndbuf;
675 break;
676
677 case SO_RCVBUF:
678 v.val = sk->sk_rcvbuf;
679 break;
680
681 case SO_REUSEADDR:
682 v.val = sk->sk_reuse;
683 break;
684
685 case SO_KEEPALIVE:
686 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
687 break;
688
689 case SO_TYPE:
690 v.val = sk->sk_type;
691 break;
692
693 case SO_ERROR:
694 v.val = -sock_error(sk);
695 if(v.val==0)
696 v.val = xchg(&sk->sk_err_soft, 0);
697 break;
698
699 case SO_OOBINLINE:
700 v.val = !!sock_flag(sk, SOCK_URGINLINE);
701 break;
702
703 case SO_NO_CHECK:
704 v.val = sk->sk_no_check;
705 break;
706
707 case SO_PRIORITY:
708 v.val = sk->sk_priority;
709 break;
710
711 case SO_LINGER:
712 lv = sizeof(v.ling);
713 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
714 v.ling.l_linger = sk->sk_lingertime / HZ;
715 break;
716
717 case SO_BSDCOMPAT:
718 sock_warn_obsolete_bsdism("getsockopt");
719 break;
720
721 case SO_TIMESTAMP:
722 v.val = sock_flag(sk, SOCK_RCVTSTAMP);
723 break;
724
725 case SO_RCVTIMEO:
726 lv=sizeof(struct timeval);
727 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
728 v.tm.tv_sec = 0;
729 v.tm.tv_usec = 0;
730 } else {
731 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
732 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
733 }
734 break;
735
736 case SO_SNDTIMEO:
737 lv=sizeof(struct timeval);
738 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
739 v.tm.tv_sec = 0;
740 v.tm.tv_usec = 0;
741 } else {
742 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
743 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
744 }
745 break;
746
747 case SO_RCVLOWAT:
748 v.val = sk->sk_rcvlowat;
749 break;
750
751 case SO_SNDLOWAT:
752 v.val=1;
753 break;
754
755 case SO_PASSCRED:
756 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
757 break;
758
759 case SO_PEERCRED:
760 if (len > sizeof(sk->sk_peercred))
761 len = sizeof(sk->sk_peercred);
762 if (copy_to_user(optval, &sk->sk_peercred, len))
763 return -EFAULT;
764 goto lenout;
765
766 case SO_PEERNAME:
767 {
768 char address[128];
769
770 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
771 return -ENOTCONN;
772 if (lv < len)
773 return -EINVAL;
774 if (copy_to_user(optval, address, len))
775 return -EFAULT;
776 goto lenout;
777 }
778
779 /* Dubious BSD thing... Probably nobody even uses it, but
780 * the UNIX standard wants it for whatever reason... -DaveM
781 */
782 case SO_ACCEPTCONN:
783 v.val = sk->sk_state == TCP_LISTEN;
784 break;
785
786 case SO_PASSSEC:
787 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
788 break;
789
790 case SO_PEERSEC:
791 return security_socket_getpeersec_stream(sock, optval, optlen, len);
792
793 default:
794 return(-ENOPROTOOPT);
795 }
796 if (len > lv)
797 len = lv;
798 if (copy_to_user(optval, &v, len))
799 return -EFAULT;
800 lenout:
801 if (put_user(len, optlen))
802 return -EFAULT;
803 return 0;
804 }
805
806 /*
807 * Initialize an sk_lock.
808 *
809 * (We also register the sk_lock with the lock validator.)
810 */
811 static inline void sock_lock_init(struct sock *sk)
812 {
813 sock_lock_init_class_and_name(sk,
814 af_family_slock_key_strings[sk->sk_family],
815 af_family_slock_keys + sk->sk_family,
816 af_family_key_strings[sk->sk_family],
817 af_family_keys + sk->sk_family);
818 }
819
820 /**
821 * sk_alloc - All socket objects are allocated here
822 * @family: protocol family
823 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
824 * @prot: struct proto associated with this new sock instance
825 * @zero_it: if we should zero the newly allocated sock
826 */
827 struct sock *sk_alloc(int family, gfp_t priority,
828 struct proto *prot, int zero_it)
829 {
830 struct sock *sk = NULL;
831 struct kmem_cache *slab = prot->slab;
832
833 if (slab != NULL)
834 sk = kmem_cache_alloc(slab, priority);
835 else
836 sk = kmalloc(prot->obj_size, priority);
837
838 if (sk) {
839 if (zero_it) {
840 memset(sk, 0, prot->obj_size);
841 sk->sk_family = family;
842 /*
843 * See comment in struct sock definition to understand
844 * why we need sk_prot_creator -acme
845 */
846 sk->sk_prot = sk->sk_prot_creator = prot;
847 sock_lock_init(sk);
848 }
849
850 if (security_sk_alloc(sk, family, priority))
851 goto out_free;
852
853 if (!try_module_get(prot->owner))
854 goto out_free;
855 }
856 return sk;
857
858 out_free:
859 if (slab != NULL)
860 kmem_cache_free(slab, sk);
861 else
862 kfree(sk);
863 return NULL;
864 }
865
866 void sk_free(struct sock *sk)
867 {
868 struct sk_filter *filter;
869 struct module *owner = sk->sk_prot_creator->owner;
870
871 if (sk->sk_destruct)
872 sk->sk_destruct(sk);
873
874 filter = rcu_dereference(sk->sk_filter);
875 if (filter) {
876 sk_filter_release(sk, filter);
877 rcu_assign_pointer(sk->sk_filter, NULL);
878 }
879
880 sock_disable_timestamp(sk);
881
882 if (atomic_read(&sk->sk_omem_alloc))
883 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
884 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
885
886 security_sk_free(sk);
887 if (sk->sk_prot_creator->slab != NULL)
888 kmem_cache_free(sk->sk_prot_creator->slab, sk);
889 else
890 kfree(sk);
891 module_put(owner);
892 }
893
894 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
895 {
896 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
897
898 if (newsk != NULL) {
899 struct sk_filter *filter;
900
901 sock_copy(newsk, sk);
902
903 /* SANITY */
904 sk_node_init(&newsk->sk_node);
905 sock_lock_init(newsk);
906 bh_lock_sock(newsk);
907 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
908
909 atomic_set(&newsk->sk_rmem_alloc, 0);
910 atomic_set(&newsk->sk_wmem_alloc, 0);
911 atomic_set(&newsk->sk_omem_alloc, 0);
912 skb_queue_head_init(&newsk->sk_receive_queue);
913 skb_queue_head_init(&newsk->sk_write_queue);
914 #ifdef CONFIG_NET_DMA
915 skb_queue_head_init(&newsk->sk_async_wait_queue);
916 #endif
917
918 rwlock_init(&newsk->sk_dst_lock);
919 rwlock_init(&newsk->sk_callback_lock);
920 lockdep_set_class(&newsk->sk_callback_lock,
921 af_callback_keys + newsk->sk_family);
922
923 newsk->sk_dst_cache = NULL;
924 newsk->sk_wmem_queued = 0;
925 newsk->sk_forward_alloc = 0;
926 newsk->sk_send_head = NULL;
927 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
928
929 sock_reset_flag(newsk, SOCK_DONE);
930 skb_queue_head_init(&newsk->sk_error_queue);
931
932 filter = newsk->sk_filter;
933 if (filter != NULL)
934 sk_filter_charge(newsk, filter);
935
936 if (unlikely(xfrm_sk_clone_policy(newsk))) {
937 /* It is still raw copy of parent, so invalidate
938 * destructor and make plain sk_free() */
939 newsk->sk_destruct = NULL;
940 sk_free(newsk);
941 newsk = NULL;
942 goto out;
943 }
944
945 newsk->sk_err = 0;
946 newsk->sk_priority = 0;
947 atomic_set(&newsk->sk_refcnt, 2);
948
949 /*
950 * Increment the counter in the same struct proto as the master
951 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
952 * is the same as sk->sk_prot->socks, as this field was copied
953 * with memcpy).
954 *
955 * This _changes_ the previous behaviour, where
956 * tcp_create_openreq_child always was incrementing the
957 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
958 * to be taken into account in all callers. -acme
959 */
960 sk_refcnt_debug_inc(newsk);
961 newsk->sk_socket = NULL;
962 newsk->sk_sleep = NULL;
963
964 if (newsk->sk_prot->sockets_allocated)
965 atomic_inc(newsk->sk_prot->sockets_allocated);
966 }
967 out:
968 return newsk;
969 }
970
971 EXPORT_SYMBOL_GPL(sk_clone);
972
973 void __init sk_init(void)
974 {
975 if (num_physpages <= 4096) {
976 sysctl_wmem_max = 32767;
977 sysctl_rmem_max = 32767;
978 sysctl_wmem_default = 32767;
979 sysctl_rmem_default = 32767;
980 } else if (num_physpages >= 131072) {
981 sysctl_wmem_max = 131071;
982 sysctl_rmem_max = 131071;
983 }
984 }
985
986 /*
987 * Simple resource managers for sockets.
988 */
989
990
991 /*
992 * Write buffer destructor automatically called from kfree_skb.
993 */
994 void sock_wfree(struct sk_buff *skb)
995 {
996 struct sock *sk = skb->sk;
997
998 /* In case it might be waiting for more memory. */
999 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1000 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1001 sk->sk_write_space(sk);
1002 sock_put(sk);
1003 }
1004
1005 /*
1006 * Read buffer destructor automatically called from kfree_skb.
1007 */
1008 void sock_rfree(struct sk_buff *skb)
1009 {
1010 struct sock *sk = skb->sk;
1011
1012 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1013 }
1014
1015
1016 int sock_i_uid(struct sock *sk)
1017 {
1018 int uid;
1019
1020 read_lock(&sk->sk_callback_lock);
1021 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1022 read_unlock(&sk->sk_callback_lock);
1023 return uid;
1024 }
1025
1026 unsigned long sock_i_ino(struct sock *sk)
1027 {
1028 unsigned long ino;
1029
1030 read_lock(&sk->sk_callback_lock);
1031 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1032 read_unlock(&sk->sk_callback_lock);
1033 return ino;
1034 }
1035
1036 /*
1037 * Allocate a skb from the socket's send buffer.
1038 */
1039 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1040 gfp_t priority)
1041 {
1042 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1043 struct sk_buff * skb = alloc_skb(size, priority);
1044 if (skb) {
1045 skb_set_owner_w(skb, sk);
1046 return skb;
1047 }
1048 }
1049 return NULL;
1050 }
1051
1052 /*
1053 * Allocate a skb from the socket's receive buffer.
1054 */
1055 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1056 gfp_t priority)
1057 {
1058 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1059 struct sk_buff *skb = alloc_skb(size, priority);
1060 if (skb) {
1061 skb_set_owner_r(skb, sk);
1062 return skb;
1063 }
1064 }
1065 return NULL;
1066 }
1067
1068 /*
1069 * Allocate a memory block from the socket's option memory buffer.
1070 */
1071 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1072 {
1073 if ((unsigned)size <= sysctl_optmem_max &&
1074 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1075 void *mem;
1076 /* First do the add, to avoid the race if kmalloc
1077 * might sleep.
1078 */
1079 atomic_add(size, &sk->sk_omem_alloc);
1080 mem = kmalloc(size, priority);
1081 if (mem)
1082 return mem;
1083 atomic_sub(size, &sk->sk_omem_alloc);
1084 }
1085 return NULL;
1086 }
1087
1088 /*
1089 * Free an option memory block.
1090 */
1091 void sock_kfree_s(struct sock *sk, void *mem, int size)
1092 {
1093 kfree(mem);
1094 atomic_sub(size, &sk->sk_omem_alloc);
1095 }
1096
1097 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1098 I think, these locks should be removed for datagram sockets.
1099 */
1100 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1101 {
1102 DEFINE_WAIT(wait);
1103
1104 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1105 for (;;) {
1106 if (!timeo)
1107 break;
1108 if (signal_pending(current))
1109 break;
1110 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1111 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1112 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1113 break;
1114 if (sk->sk_shutdown & SEND_SHUTDOWN)
1115 break;
1116 if (sk->sk_err)
1117 break;
1118 timeo = schedule_timeout(timeo);
1119 }
1120 finish_wait(sk->sk_sleep, &wait);
1121 return timeo;
1122 }
1123
1124
1125 /*
1126 * Generic send/receive buffer handlers
1127 */
1128
1129 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1130 unsigned long header_len,
1131 unsigned long data_len,
1132 int noblock, int *errcode)
1133 {
1134 struct sk_buff *skb;
1135 gfp_t gfp_mask;
1136 long timeo;
1137 int err;
1138
1139 gfp_mask = sk->sk_allocation;
1140 if (gfp_mask & __GFP_WAIT)
1141 gfp_mask |= __GFP_REPEAT;
1142
1143 timeo = sock_sndtimeo(sk, noblock);
1144 while (1) {
1145 err = sock_error(sk);
1146 if (err != 0)
1147 goto failure;
1148
1149 err = -EPIPE;
1150 if (sk->sk_shutdown & SEND_SHUTDOWN)
1151 goto failure;
1152
1153 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1154 skb = alloc_skb(header_len, gfp_mask);
1155 if (skb) {
1156 int npages;
1157 int i;
1158
1159 /* No pages, we're done... */
1160 if (!data_len)
1161 break;
1162
1163 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1164 skb->truesize += data_len;
1165 skb_shinfo(skb)->nr_frags = npages;
1166 for (i = 0; i < npages; i++) {
1167 struct page *page;
1168 skb_frag_t *frag;
1169
1170 page = alloc_pages(sk->sk_allocation, 0);
1171 if (!page) {
1172 err = -ENOBUFS;
1173 skb_shinfo(skb)->nr_frags = i;
1174 kfree_skb(skb);
1175 goto failure;
1176 }
1177
1178 frag = &skb_shinfo(skb)->frags[i];
1179 frag->page = page;
1180 frag->page_offset = 0;
1181 frag->size = (data_len >= PAGE_SIZE ?
1182 PAGE_SIZE :
1183 data_len);
1184 data_len -= PAGE_SIZE;
1185 }
1186
1187 /* Full success... */
1188 break;
1189 }
1190 err = -ENOBUFS;
1191 goto failure;
1192 }
1193 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1194 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1195 err = -EAGAIN;
1196 if (!timeo)
1197 goto failure;
1198 if (signal_pending(current))
1199 goto interrupted;
1200 timeo = sock_wait_for_wmem(sk, timeo);
1201 }
1202
1203 skb_set_owner_w(skb, sk);
1204 return skb;
1205
1206 interrupted:
1207 err = sock_intr_errno(timeo);
1208 failure:
1209 *errcode = err;
1210 return NULL;
1211 }
1212
1213 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1214 int noblock, int *errcode)
1215 {
1216 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1217 }
1218
1219 static void __lock_sock(struct sock *sk)
1220 {
1221 DEFINE_WAIT(wait);
1222
1223 for(;;) {
1224 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1225 TASK_UNINTERRUPTIBLE);
1226 spin_unlock_bh(&sk->sk_lock.slock);
1227 schedule();
1228 spin_lock_bh(&sk->sk_lock.slock);
1229 if(!sock_owned_by_user(sk))
1230 break;
1231 }
1232 finish_wait(&sk->sk_lock.wq, &wait);
1233 }
1234
1235 static void __release_sock(struct sock *sk)
1236 {
1237 struct sk_buff *skb = sk->sk_backlog.head;
1238
1239 do {
1240 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1241 bh_unlock_sock(sk);
1242
1243 do {
1244 struct sk_buff *next = skb->next;
1245
1246 skb->next = NULL;
1247 sk->sk_backlog_rcv(sk, skb);
1248
1249 /*
1250 * We are in process context here with softirqs
1251 * disabled, use cond_resched_softirq() to preempt.
1252 * This is safe to do because we've taken the backlog
1253 * queue private:
1254 */
1255 cond_resched_softirq();
1256
1257 skb = next;
1258 } while (skb != NULL);
1259
1260 bh_lock_sock(sk);
1261 } while((skb = sk->sk_backlog.head) != NULL);
1262 }
1263
1264 /**
1265 * sk_wait_data - wait for data to arrive at sk_receive_queue
1266 * @sk: sock to wait on
1267 * @timeo: for how long
1268 *
1269 * Now socket state including sk->sk_err is changed only under lock,
1270 * hence we may omit checks after joining wait queue.
1271 * We check receive queue before schedule() only as optimization;
1272 * it is very likely that release_sock() added new data.
1273 */
1274 int sk_wait_data(struct sock *sk, long *timeo)
1275 {
1276 int rc;
1277 DEFINE_WAIT(wait);
1278
1279 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1280 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1281 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1282 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1283 finish_wait(sk->sk_sleep, &wait);
1284 return rc;
1285 }
1286
1287 EXPORT_SYMBOL(sk_wait_data);
1288
1289 /*
1290 * Set of default routines for initialising struct proto_ops when
1291 * the protocol does not support a particular function. In certain
1292 * cases where it makes no sense for a protocol to have a "do nothing"
1293 * function, some default processing is provided.
1294 */
1295
1296 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1297 {
1298 return -EOPNOTSUPP;
1299 }
1300
1301 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1302 int len, int flags)
1303 {
1304 return -EOPNOTSUPP;
1305 }
1306
1307 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1308 {
1309 return -EOPNOTSUPP;
1310 }
1311
1312 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1313 {
1314 return -EOPNOTSUPP;
1315 }
1316
1317 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1318 int *len, int peer)
1319 {
1320 return -EOPNOTSUPP;
1321 }
1322
1323 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1324 {
1325 return 0;
1326 }
1327
1328 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1329 {
1330 return -EOPNOTSUPP;
1331 }
1332
1333 int sock_no_listen(struct socket *sock, int backlog)
1334 {
1335 return -EOPNOTSUPP;
1336 }
1337
1338 int sock_no_shutdown(struct socket *sock, int how)
1339 {
1340 return -EOPNOTSUPP;
1341 }
1342
1343 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1344 char __user *optval, int optlen)
1345 {
1346 return -EOPNOTSUPP;
1347 }
1348
1349 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1350 char __user *optval, int __user *optlen)
1351 {
1352 return -EOPNOTSUPP;
1353 }
1354
1355 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1356 size_t len)
1357 {
1358 return -EOPNOTSUPP;
1359 }
1360
1361 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1362 size_t len, int flags)
1363 {
1364 return -EOPNOTSUPP;
1365 }
1366
1367 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1368 {
1369 /* Mirror missing mmap method error code */
1370 return -ENODEV;
1371 }
1372
1373 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1374 {
1375 ssize_t res;
1376 struct msghdr msg = {.msg_flags = flags};
1377 struct kvec iov;
1378 char *kaddr = kmap(page);
1379 iov.iov_base = kaddr + offset;
1380 iov.iov_len = size;
1381 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1382 kunmap(page);
1383 return res;
1384 }
1385
1386 /*
1387 * Default Socket Callbacks
1388 */
1389
1390 static void sock_def_wakeup(struct sock *sk)
1391 {
1392 read_lock(&sk->sk_callback_lock);
1393 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1394 wake_up_interruptible_all(sk->sk_sleep);
1395 read_unlock(&sk->sk_callback_lock);
1396 }
1397
1398 static void sock_def_error_report(struct sock *sk)
1399 {
1400 read_lock(&sk->sk_callback_lock);
1401 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1402 wake_up_interruptible(sk->sk_sleep);
1403 sk_wake_async(sk,0,POLL_ERR);
1404 read_unlock(&sk->sk_callback_lock);
1405 }
1406
1407 static void sock_def_readable(struct sock *sk, int len)
1408 {
1409 read_lock(&sk->sk_callback_lock);
1410 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1411 wake_up_interruptible(sk->sk_sleep);
1412 sk_wake_async(sk,1,POLL_IN);
1413 read_unlock(&sk->sk_callback_lock);
1414 }
1415
1416 static void sock_def_write_space(struct sock *sk)
1417 {
1418 read_lock(&sk->sk_callback_lock);
1419
1420 /* Do not wake up a writer until he can make "significant"
1421 * progress. --DaveM
1422 */
1423 if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1424 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1425 wake_up_interruptible(sk->sk_sleep);
1426
1427 /* Should agree with poll, otherwise some programs break */
1428 if (sock_writeable(sk))
1429 sk_wake_async(sk, 2, POLL_OUT);
1430 }
1431
1432 read_unlock(&sk->sk_callback_lock);
1433 }
1434
1435 static void sock_def_destruct(struct sock *sk)
1436 {
1437 kfree(sk->sk_protinfo);
1438 }
1439
1440 void sk_send_sigurg(struct sock *sk)
1441 {
1442 if (sk->sk_socket && sk->sk_socket->file)
1443 if (send_sigurg(&sk->sk_socket->file->f_owner))
1444 sk_wake_async(sk, 3, POLL_PRI);
1445 }
1446
1447 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1448 unsigned long expires)
1449 {
1450 if (!mod_timer(timer, expires))
1451 sock_hold(sk);
1452 }
1453
1454 EXPORT_SYMBOL(sk_reset_timer);
1455
1456 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1457 {
1458 if (timer_pending(timer) && del_timer(timer))
1459 __sock_put(sk);
1460 }
1461
1462 EXPORT_SYMBOL(sk_stop_timer);
1463
1464 void sock_init_data(struct socket *sock, struct sock *sk)
1465 {
1466 skb_queue_head_init(&sk->sk_receive_queue);
1467 skb_queue_head_init(&sk->sk_write_queue);
1468 skb_queue_head_init(&sk->sk_error_queue);
1469 #ifdef CONFIG_NET_DMA
1470 skb_queue_head_init(&sk->sk_async_wait_queue);
1471 #endif
1472
1473 sk->sk_send_head = NULL;
1474
1475 init_timer(&sk->sk_timer);
1476
1477 sk->sk_allocation = GFP_KERNEL;
1478 sk->sk_rcvbuf = sysctl_rmem_default;
1479 sk->sk_sndbuf = sysctl_wmem_default;
1480 sk->sk_state = TCP_CLOSE;
1481 sk->sk_socket = sock;
1482
1483 sock_set_flag(sk, SOCK_ZAPPED);
1484
1485 if(sock)
1486 {
1487 sk->sk_type = sock->type;
1488 sk->sk_sleep = &sock->wait;
1489 sock->sk = sk;
1490 } else
1491 sk->sk_sleep = NULL;
1492
1493 rwlock_init(&sk->sk_dst_lock);
1494 rwlock_init(&sk->sk_callback_lock);
1495 lockdep_set_class(&sk->sk_callback_lock,
1496 af_callback_keys + sk->sk_family);
1497
1498 sk->sk_state_change = sock_def_wakeup;
1499 sk->sk_data_ready = sock_def_readable;
1500 sk->sk_write_space = sock_def_write_space;
1501 sk->sk_error_report = sock_def_error_report;
1502 sk->sk_destruct = sock_def_destruct;
1503
1504 sk->sk_sndmsg_page = NULL;
1505 sk->sk_sndmsg_off = 0;
1506
1507 sk->sk_peercred.pid = 0;
1508 sk->sk_peercred.uid = -1;
1509 sk->sk_peercred.gid = -1;
1510 sk->sk_write_pending = 0;
1511 sk->sk_rcvlowat = 1;
1512 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1513 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1514
1515 sk->sk_stamp = ktime_set(-1L, -1L);
1516
1517 atomic_set(&sk->sk_refcnt, 1);
1518 }
1519
1520 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1521 {
1522 might_sleep();
1523 spin_lock_bh(&sk->sk_lock.slock);
1524 if (sk->sk_lock.owner)
1525 __lock_sock(sk);
1526 sk->sk_lock.owner = (void *)1;
1527 spin_unlock(&sk->sk_lock.slock);
1528 /*
1529 * The sk_lock has mutex_lock() semantics here:
1530 */
1531 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1532 local_bh_enable();
1533 }
1534
1535 EXPORT_SYMBOL(lock_sock_nested);
1536
1537 void fastcall release_sock(struct sock *sk)
1538 {
1539 /*
1540 * The sk_lock has mutex_unlock() semantics:
1541 */
1542 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1543
1544 spin_lock_bh(&sk->sk_lock.slock);
1545 if (sk->sk_backlog.tail)
1546 __release_sock(sk);
1547 sk->sk_lock.owner = NULL;
1548 if (waitqueue_active(&sk->sk_lock.wq))
1549 wake_up(&sk->sk_lock.wq);
1550 spin_unlock_bh(&sk->sk_lock.slock);
1551 }
1552 EXPORT_SYMBOL(release_sock);
1553
1554 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1555 {
1556 struct timeval tv;
1557 if (!sock_flag(sk, SOCK_TIMESTAMP))
1558 sock_enable_timestamp(sk);
1559 tv = ktime_to_timeval(sk->sk_stamp);
1560 if (tv.tv_sec == -1)
1561 return -ENOENT;
1562 if (tv.tv_sec == 0) {
1563 sk->sk_stamp = ktime_get_real();
1564 tv = ktime_to_timeval(sk->sk_stamp);
1565 }
1566 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1567 }
1568 EXPORT_SYMBOL(sock_get_timestamp);
1569
1570 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1571 {
1572 struct timespec ts;
1573 if (!sock_flag(sk, SOCK_TIMESTAMP))
1574 sock_enable_timestamp(sk);
1575 ts = ktime_to_timespec(sk->sk_stamp);
1576 if (ts.tv_sec == -1)
1577 return -ENOENT;
1578 if (ts.tv_sec == 0) {
1579 sk->sk_stamp = ktime_get_real();
1580 ts = ktime_to_timespec(sk->sk_stamp);
1581 }
1582 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1583 }
1584 EXPORT_SYMBOL(sock_get_timestampns);
1585
1586 void sock_enable_timestamp(struct sock *sk)
1587 {
1588 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1589 sock_set_flag(sk, SOCK_TIMESTAMP);
1590 net_enable_timestamp();
1591 }
1592 }
1593 EXPORT_SYMBOL(sock_enable_timestamp);
1594
1595 /*
1596 * Get a socket option on an socket.
1597 *
1598 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1599 * asynchronous errors should be reported by getsockopt. We assume
1600 * this means if you specify SO_ERROR (otherwise whats the point of it).
1601 */
1602 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1603 char __user *optval, int __user *optlen)
1604 {
1605 struct sock *sk = sock->sk;
1606
1607 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1608 }
1609
1610 EXPORT_SYMBOL(sock_common_getsockopt);
1611
1612 #ifdef CONFIG_COMPAT
1613 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1614 char __user *optval, int __user *optlen)
1615 {
1616 struct sock *sk = sock->sk;
1617
1618 if (sk->sk_prot->compat_getsockopt != NULL)
1619 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1620 optval, optlen);
1621 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1622 }
1623 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1624 #endif
1625
1626 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1627 struct msghdr *msg, size_t size, int flags)
1628 {
1629 struct sock *sk = sock->sk;
1630 int addr_len = 0;
1631 int err;
1632
1633 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1634 flags & ~MSG_DONTWAIT, &addr_len);
1635 if (err >= 0)
1636 msg->msg_namelen = addr_len;
1637 return err;
1638 }
1639
1640 EXPORT_SYMBOL(sock_common_recvmsg);
1641
1642 /*
1643 * Set socket options on an inet socket.
1644 */
1645 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1646 char __user *optval, int optlen)
1647 {
1648 struct sock *sk = sock->sk;
1649
1650 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1651 }
1652
1653 EXPORT_SYMBOL(sock_common_setsockopt);
1654
1655 #ifdef CONFIG_COMPAT
1656 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1657 char __user *optval, int optlen)
1658 {
1659 struct sock *sk = sock->sk;
1660
1661 if (sk->sk_prot->compat_setsockopt != NULL)
1662 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1663 optval, optlen);
1664 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1665 }
1666 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1667 #endif
1668
1669 void sk_common_release(struct sock *sk)
1670 {
1671 if (sk->sk_prot->destroy)
1672 sk->sk_prot->destroy(sk);
1673
1674 /*
1675 * Observation: when sock_common_release is called, processes have
1676 * no access to socket. But net still has.
1677 * Step one, detach it from networking:
1678 *
1679 * A. Remove from hash tables.
1680 */
1681
1682 sk->sk_prot->unhash(sk);
1683
1684 /*
1685 * In this point socket cannot receive new packets, but it is possible
1686 * that some packets are in flight because some CPU runs receiver and
1687 * did hash table lookup before we unhashed socket. They will achieve
1688 * receive queue and will be purged by socket destructor.
1689 *
1690 * Also we still have packets pending on receive queue and probably,
1691 * our own packets waiting in device queues. sock_destroy will drain
1692 * receive queue, but transmitted packets will delay socket destruction
1693 * until the last reference will be released.
1694 */
1695
1696 sock_orphan(sk);
1697
1698 xfrm_sk_free_policy(sk);
1699
1700 sk_refcnt_debug_release(sk);
1701 sock_put(sk);
1702 }
1703
1704 EXPORT_SYMBOL(sk_common_release);
1705
1706 static DEFINE_RWLOCK(proto_list_lock);
1707 static LIST_HEAD(proto_list);
1708
1709 int proto_register(struct proto *prot, int alloc_slab)
1710 {
1711 char *request_sock_slab_name = NULL;
1712 char *timewait_sock_slab_name;
1713 int rc = -ENOBUFS;
1714
1715 if (alloc_slab) {
1716 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1717 SLAB_HWCACHE_ALIGN, NULL, NULL);
1718
1719 if (prot->slab == NULL) {
1720 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1721 prot->name);
1722 goto out;
1723 }
1724
1725 if (prot->rsk_prot != NULL) {
1726 static const char mask[] = "request_sock_%s";
1727
1728 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1729 if (request_sock_slab_name == NULL)
1730 goto out_free_sock_slab;
1731
1732 sprintf(request_sock_slab_name, mask, prot->name);
1733 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1734 prot->rsk_prot->obj_size, 0,
1735 SLAB_HWCACHE_ALIGN, NULL, NULL);
1736
1737 if (prot->rsk_prot->slab == NULL) {
1738 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1739 prot->name);
1740 goto out_free_request_sock_slab_name;
1741 }
1742 }
1743
1744 if (prot->twsk_prot != NULL) {
1745 static const char mask[] = "tw_sock_%s";
1746
1747 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1748
1749 if (timewait_sock_slab_name == NULL)
1750 goto out_free_request_sock_slab;
1751
1752 sprintf(timewait_sock_slab_name, mask, prot->name);
1753 prot->twsk_prot->twsk_slab =
1754 kmem_cache_create(timewait_sock_slab_name,
1755 prot->twsk_prot->twsk_obj_size,
1756 0, SLAB_HWCACHE_ALIGN,
1757 NULL, NULL);
1758 if (prot->twsk_prot->twsk_slab == NULL)
1759 goto out_free_timewait_sock_slab_name;
1760 }
1761 }
1762
1763 write_lock(&proto_list_lock);
1764 list_add(&prot->node, &proto_list);
1765 write_unlock(&proto_list_lock);
1766 rc = 0;
1767 out:
1768 return rc;
1769 out_free_timewait_sock_slab_name:
1770 kfree(timewait_sock_slab_name);
1771 out_free_request_sock_slab:
1772 if (prot->rsk_prot && prot->rsk_prot->slab) {
1773 kmem_cache_destroy(prot->rsk_prot->slab);
1774 prot->rsk_prot->slab = NULL;
1775 }
1776 out_free_request_sock_slab_name:
1777 kfree(request_sock_slab_name);
1778 out_free_sock_slab:
1779 kmem_cache_destroy(prot->slab);
1780 prot->slab = NULL;
1781 goto out;
1782 }
1783
1784 EXPORT_SYMBOL(proto_register);
1785
1786 void proto_unregister(struct proto *prot)
1787 {
1788 write_lock(&proto_list_lock);
1789 list_del(&prot->node);
1790 write_unlock(&proto_list_lock);
1791
1792 if (prot->slab != NULL) {
1793 kmem_cache_destroy(prot->slab);
1794 prot->slab = NULL;
1795 }
1796
1797 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1798 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1799
1800 kmem_cache_destroy(prot->rsk_prot->slab);
1801 kfree(name);
1802 prot->rsk_prot->slab = NULL;
1803 }
1804
1805 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1806 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1807
1808 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1809 kfree(name);
1810 prot->twsk_prot->twsk_slab = NULL;
1811 }
1812 }
1813
1814 EXPORT_SYMBOL(proto_unregister);
1815
1816 #ifdef CONFIG_PROC_FS
1817 static inline struct proto *__proto_head(void)
1818 {
1819 return list_entry(proto_list.next, struct proto, node);
1820 }
1821
1822 static inline struct proto *proto_head(void)
1823 {
1824 return list_empty(&proto_list) ? NULL : __proto_head();
1825 }
1826
1827 static inline struct proto *proto_next(struct proto *proto)
1828 {
1829 return proto->node.next == &proto_list ? NULL :
1830 list_entry(proto->node.next, struct proto, node);
1831 }
1832
1833 static inline struct proto *proto_get_idx(loff_t pos)
1834 {
1835 struct proto *proto;
1836 loff_t i = 0;
1837
1838 list_for_each_entry(proto, &proto_list, node)
1839 if (i++ == pos)
1840 goto out;
1841
1842 proto = NULL;
1843 out:
1844 return proto;
1845 }
1846
1847 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1848 {
1849 read_lock(&proto_list_lock);
1850 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1851 }
1852
1853 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1854 {
1855 ++*pos;
1856 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1857 }
1858
1859 static void proto_seq_stop(struct seq_file *seq, void *v)
1860 {
1861 read_unlock(&proto_list_lock);
1862 }
1863
1864 static char proto_method_implemented(const void *method)
1865 {
1866 return method == NULL ? 'n' : 'y';
1867 }
1868
1869 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1870 {
1871 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1872 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1873 proto->name,
1874 proto->obj_size,
1875 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1876 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1877 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1878 proto->max_header,
1879 proto->slab == NULL ? "no" : "yes",
1880 module_name(proto->owner),
1881 proto_method_implemented(proto->close),
1882 proto_method_implemented(proto->connect),
1883 proto_method_implemented(proto->disconnect),
1884 proto_method_implemented(proto->accept),
1885 proto_method_implemented(proto->ioctl),
1886 proto_method_implemented(proto->init),
1887 proto_method_implemented(proto->destroy),
1888 proto_method_implemented(proto->shutdown),
1889 proto_method_implemented(proto->setsockopt),
1890 proto_method_implemented(proto->getsockopt),
1891 proto_method_implemented(proto->sendmsg),
1892 proto_method_implemented(proto->recvmsg),
1893 proto_method_implemented(proto->sendpage),
1894 proto_method_implemented(proto->bind),
1895 proto_method_implemented(proto->backlog_rcv),
1896 proto_method_implemented(proto->hash),
1897 proto_method_implemented(proto->unhash),
1898 proto_method_implemented(proto->get_port),
1899 proto_method_implemented(proto->enter_memory_pressure));
1900 }
1901
1902 static int proto_seq_show(struct seq_file *seq, void *v)
1903 {
1904 if (v == SEQ_START_TOKEN)
1905 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1906 "protocol",
1907 "size",
1908 "sockets",
1909 "memory",
1910 "press",
1911 "maxhdr",
1912 "slab",
1913 "module",
1914 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1915 else
1916 proto_seq_printf(seq, v);
1917 return 0;
1918 }
1919
1920 static struct seq_operations proto_seq_ops = {
1921 .start = proto_seq_start,
1922 .next = proto_seq_next,
1923 .stop = proto_seq_stop,
1924 .show = proto_seq_show,
1925 };
1926
1927 static int proto_seq_open(struct inode *inode, struct file *file)
1928 {
1929 return seq_open(file, &proto_seq_ops);
1930 }
1931
1932 static const struct file_operations proto_seq_fops = {
1933 .owner = THIS_MODULE,
1934 .open = proto_seq_open,
1935 .read = seq_read,
1936 .llseek = seq_lseek,
1937 .release = seq_release,
1938 };
1939
1940 static int __init proto_init(void)
1941 {
1942 /* register /proc/net/protocols */
1943 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1944 }
1945
1946 subsys_initcall(proto_init);
1947
1948 #endif /* PROC_FS */
1949
1950 EXPORT_SYMBOL(sk_alloc);
1951 EXPORT_SYMBOL(sk_free);
1952 EXPORT_SYMBOL(sk_send_sigurg);
1953 EXPORT_SYMBOL(sock_alloc_send_skb);
1954 EXPORT_SYMBOL(sock_init_data);
1955 EXPORT_SYMBOL(sock_kfree_s);
1956 EXPORT_SYMBOL(sock_kmalloc);
1957 EXPORT_SYMBOL(sock_no_accept);
1958 EXPORT_SYMBOL(sock_no_bind);
1959 EXPORT_SYMBOL(sock_no_connect);
1960 EXPORT_SYMBOL(sock_no_getname);
1961 EXPORT_SYMBOL(sock_no_getsockopt);
1962 EXPORT_SYMBOL(sock_no_ioctl);
1963 EXPORT_SYMBOL(sock_no_listen);
1964 EXPORT_SYMBOL(sock_no_mmap);
1965 EXPORT_SYMBOL(sock_no_poll);
1966 EXPORT_SYMBOL(sock_no_recvmsg);
1967 EXPORT_SYMBOL(sock_no_sendmsg);
1968 EXPORT_SYMBOL(sock_no_sendpage);
1969 EXPORT_SYMBOL(sock_no_setsockopt);
1970 EXPORT_SYMBOL(sock_no_shutdown);
1971 EXPORT_SYMBOL(sock_no_socketpair);
1972 EXPORT_SYMBOL(sock_rfree);
1973 EXPORT_SYMBOL(sock_setsockopt);
1974 EXPORT_SYMBOL(sock_wfree);
1975 EXPORT_SYMBOL(sock_wmalloc);
1976 EXPORT_SYMBOL(sock_i_uid);
1977 EXPORT_SYMBOL(sock_i_ino);
1978 EXPORT_SYMBOL(sysctl_optmem_max);
1979 #ifdef CONFIG_SYSCTL
1980 EXPORT_SYMBOL(sysctl_rmem_max);
1981 EXPORT_SYMBOL(sysctl_wmem_max);
1982 #endif
This page took 0.072956 seconds and 5 git commands to generate.