e12197b359fdb016ffff853c55e7b999cb9d21b2
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138
139 #include <trace/events/sock.h>
140
141 #ifdef CONFIG_INET
142 #include <net/tcp.h>
143 #endif
144
145 #include <net/busy_poll.h>
146
147 static DEFINE_MUTEX(proto_list_mutex);
148 static LIST_HEAD(proto_list);
149
150 /**
151 * sk_ns_capable - General socket capability test
152 * @sk: Socket to use a capability on or through
153 * @user_ns: The user namespace of the capability to use
154 * @cap: The capability to use
155 *
156 * Test to see if the opener of the socket had when the socket was
157 * created and the current process has the capability @cap in the user
158 * namespace @user_ns.
159 */
160 bool sk_ns_capable(const struct sock *sk,
161 struct user_namespace *user_ns, int cap)
162 {
163 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
164 ns_capable(user_ns, cap);
165 }
166 EXPORT_SYMBOL(sk_ns_capable);
167
168 /**
169 * sk_capable - Socket global capability test
170 * @sk: Socket to use a capability on or through
171 * @cap: The global capability to use
172 *
173 * Test to see if the opener of the socket had when the socket was
174 * created and the current process has the capability @cap in all user
175 * namespaces.
176 */
177 bool sk_capable(const struct sock *sk, int cap)
178 {
179 return sk_ns_capable(sk, &init_user_ns, cap);
180 }
181 EXPORT_SYMBOL(sk_capable);
182
183 /**
184 * sk_net_capable - Network namespace socket capability test
185 * @sk: Socket to use a capability on or through
186 * @cap: The capability to use
187 *
188 * Test to see if the opener of the socket had when the socket was created
189 * and the current process has the capability @cap over the network namespace
190 * the socket is a member of.
191 */
192 bool sk_net_capable(const struct sock *sk, int cap)
193 {
194 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 }
196 EXPORT_SYMBOL(sk_net_capable);
197
198 /*
199 * Each address family might have different locking rules, so we have
200 * one slock key per address family:
201 */
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_slock_keys[AF_MAX];
204
205 /*
206 * Make lock validator output more readable. (we pre-construct these
207 * strings build-time, so that runtime initialization of socket
208 * locks is fast):
209 */
210 static const char *const af_family_key_strings[AF_MAX+1] = {
211 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
212 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
213 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
214 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
215 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
216 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
217 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
218 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
219 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
220 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
221 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
222 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
223 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
224 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
225 };
226 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
227 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
228 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
229 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
230 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
231 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
232 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
233 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
234 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
235 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
236 "slock-27" , "slock-28" , "slock-AF_CAN" ,
237 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
238 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
239 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
240 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
241 };
242 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
243 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
244 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
245 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
246 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
247 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
248 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
249 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
250 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
251 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
252 "clock-27" , "clock-28" , "clock-AF_CAN" ,
253 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
254 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
255 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
256 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
257 };
258
259 /*
260 * sk_callback_lock locking rules are per-address-family,
261 * so split the lock classes by using a per-AF key:
262 */
263 static struct lock_class_key af_callback_keys[AF_MAX];
264
265 /* Take into consideration the size of the struct sk_buff overhead in the
266 * determination of these values, since that is non-constant across
267 * platforms. This makes socket queueing behavior and performance
268 * not depend upon such differences.
269 */
270 #define _SK_MEM_PACKETS 256
271 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
272 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
273 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
274
275 /* Run time adjustable parameters. */
276 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
277 EXPORT_SYMBOL(sysctl_wmem_max);
278 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
279 EXPORT_SYMBOL(sysctl_rmem_max);
280 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
281 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
282
283 /* Maximal space eaten by iovec or ancillary data plus some space */
284 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
285 EXPORT_SYMBOL(sysctl_optmem_max);
286
287 int sysctl_tstamp_allow_data __read_mostly = 1;
288
289 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
290 EXPORT_SYMBOL_GPL(memalloc_socks);
291
292 /**
293 * sk_set_memalloc - sets %SOCK_MEMALLOC
294 * @sk: socket to set it on
295 *
296 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
297 * It's the responsibility of the admin to adjust min_free_kbytes
298 * to meet the requirements
299 */
300 void sk_set_memalloc(struct sock *sk)
301 {
302 sock_set_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation |= __GFP_MEMALLOC;
304 static_key_slow_inc(&memalloc_socks);
305 }
306 EXPORT_SYMBOL_GPL(sk_set_memalloc);
307
308 void sk_clear_memalloc(struct sock *sk)
309 {
310 sock_reset_flag(sk, SOCK_MEMALLOC);
311 sk->sk_allocation &= ~__GFP_MEMALLOC;
312 static_key_slow_dec(&memalloc_socks);
313
314 /*
315 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
316 * progress of swapping. SOCK_MEMALLOC may be cleared while
317 * it has rmem allocations due to the last swapfile being deactivated
318 * but there is a risk that the socket is unusable due to exceeding
319 * the rmem limits. Reclaim the reserves and obey rmem limits again.
320 */
321 sk_mem_reclaim(sk);
322 }
323 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
324
325 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
326 {
327 int ret;
328 unsigned long pflags = current->flags;
329
330 /* these should have been dropped before queueing */
331 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
332
333 current->flags |= PF_MEMALLOC;
334 ret = sk->sk_backlog_rcv(sk, skb);
335 tsk_restore_flags(current, pflags, PF_MEMALLOC);
336
337 return ret;
338 }
339 EXPORT_SYMBOL(__sk_backlog_rcv);
340
341 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
342 {
343 struct timeval tv;
344
345 if (optlen < sizeof(tv))
346 return -EINVAL;
347 if (copy_from_user(&tv, optval, sizeof(tv)))
348 return -EFAULT;
349 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
350 return -EDOM;
351
352 if (tv.tv_sec < 0) {
353 static int warned __read_mostly;
354
355 *timeo_p = 0;
356 if (warned < 10 && net_ratelimit()) {
357 warned++;
358 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
359 __func__, current->comm, task_pid_nr(current));
360 }
361 return 0;
362 }
363 *timeo_p = MAX_SCHEDULE_TIMEOUT;
364 if (tv.tv_sec == 0 && tv.tv_usec == 0)
365 return 0;
366 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
367 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
368 return 0;
369 }
370
371 static void sock_warn_obsolete_bsdism(const char *name)
372 {
373 static int warned;
374 static char warncomm[TASK_COMM_LEN];
375 if (strcmp(warncomm, current->comm) && warned < 5) {
376 strcpy(warncomm, current->comm);
377 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
378 warncomm, name);
379 warned++;
380 }
381 }
382
383 static bool sock_needs_netstamp(const struct sock *sk)
384 {
385 switch (sk->sk_family) {
386 case AF_UNSPEC:
387 case AF_UNIX:
388 return false;
389 default:
390 return true;
391 }
392 }
393
394 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
395 {
396 if (sk->sk_flags & flags) {
397 sk->sk_flags &= ~flags;
398 if (sock_needs_netstamp(sk) &&
399 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
400 net_disable_timestamp();
401 }
402 }
403
404
405 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
406 {
407 unsigned long flags;
408 struct sk_buff_head *list = &sk->sk_receive_queue;
409
410 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
411 atomic_inc(&sk->sk_drops);
412 trace_sock_rcvqueue_full(sk, skb);
413 return -ENOMEM;
414 }
415
416 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
417 atomic_inc(&sk->sk_drops);
418 return -ENOBUFS;
419 }
420
421 skb->dev = NULL;
422 skb_set_owner_r(skb, sk);
423
424 /* we escape from rcu protected region, make sure we dont leak
425 * a norefcounted dst
426 */
427 skb_dst_force(skb);
428
429 spin_lock_irqsave(&list->lock, flags);
430 sock_skb_set_dropcount(sk, skb);
431 __skb_queue_tail(list, skb);
432 spin_unlock_irqrestore(&list->lock, flags);
433
434 if (!sock_flag(sk, SOCK_DEAD))
435 sk->sk_data_ready(sk);
436 return 0;
437 }
438 EXPORT_SYMBOL(__sock_queue_rcv_skb);
439
440 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
441 {
442 int err;
443
444 err = sk_filter(sk, skb);
445 if (err)
446 return err;
447
448 return __sock_queue_rcv_skb(sk, skb);
449 }
450 EXPORT_SYMBOL(sock_queue_rcv_skb);
451
452 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
453 {
454 int rc = NET_RX_SUCCESS;
455
456 if (sk_filter(sk, skb))
457 goto discard_and_relse;
458
459 skb->dev = NULL;
460
461 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
462 atomic_inc(&sk->sk_drops);
463 goto discard_and_relse;
464 }
465 if (nested)
466 bh_lock_sock_nested(sk);
467 else
468 bh_lock_sock(sk);
469 if (!sock_owned_by_user(sk)) {
470 /*
471 * trylock + unlock semantics:
472 */
473 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
474
475 rc = sk_backlog_rcv(sk, skb);
476
477 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
478 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
479 bh_unlock_sock(sk);
480 atomic_inc(&sk->sk_drops);
481 goto discard_and_relse;
482 }
483
484 bh_unlock_sock(sk);
485 out:
486 sock_put(sk);
487 return rc;
488 discard_and_relse:
489 kfree_skb(skb);
490 goto out;
491 }
492 EXPORT_SYMBOL(sk_receive_skb);
493
494 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
495 {
496 struct dst_entry *dst = __sk_dst_get(sk);
497
498 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
499 sk_tx_queue_clear(sk);
500 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
501 dst_release(dst);
502 return NULL;
503 }
504
505 return dst;
506 }
507 EXPORT_SYMBOL(__sk_dst_check);
508
509 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
510 {
511 struct dst_entry *dst = sk_dst_get(sk);
512
513 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
514 sk_dst_reset(sk);
515 dst_release(dst);
516 return NULL;
517 }
518
519 return dst;
520 }
521 EXPORT_SYMBOL(sk_dst_check);
522
523 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
524 int optlen)
525 {
526 int ret = -ENOPROTOOPT;
527 #ifdef CONFIG_NETDEVICES
528 struct net *net = sock_net(sk);
529 char devname[IFNAMSIZ];
530 int index;
531
532 /* Sorry... */
533 ret = -EPERM;
534 if (!ns_capable(net->user_ns, CAP_NET_RAW))
535 goto out;
536
537 ret = -EINVAL;
538 if (optlen < 0)
539 goto out;
540
541 /* Bind this socket to a particular device like "eth0",
542 * as specified in the passed interface name. If the
543 * name is "" or the option length is zero the socket
544 * is not bound.
545 */
546 if (optlen > IFNAMSIZ - 1)
547 optlen = IFNAMSIZ - 1;
548 memset(devname, 0, sizeof(devname));
549
550 ret = -EFAULT;
551 if (copy_from_user(devname, optval, optlen))
552 goto out;
553
554 index = 0;
555 if (devname[0] != '\0') {
556 struct net_device *dev;
557
558 rcu_read_lock();
559 dev = dev_get_by_name_rcu(net, devname);
560 if (dev)
561 index = dev->ifindex;
562 rcu_read_unlock();
563 ret = -ENODEV;
564 if (!dev)
565 goto out;
566 }
567
568 lock_sock(sk);
569 sk->sk_bound_dev_if = index;
570 sk_dst_reset(sk);
571 release_sock(sk);
572
573 ret = 0;
574
575 out:
576 #endif
577
578 return ret;
579 }
580
581 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
582 int __user *optlen, int len)
583 {
584 int ret = -ENOPROTOOPT;
585 #ifdef CONFIG_NETDEVICES
586 struct net *net = sock_net(sk);
587 char devname[IFNAMSIZ];
588
589 if (sk->sk_bound_dev_if == 0) {
590 len = 0;
591 goto zero;
592 }
593
594 ret = -EINVAL;
595 if (len < IFNAMSIZ)
596 goto out;
597
598 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
599 if (ret)
600 goto out;
601
602 len = strlen(devname) + 1;
603
604 ret = -EFAULT;
605 if (copy_to_user(optval, devname, len))
606 goto out;
607
608 zero:
609 ret = -EFAULT;
610 if (put_user(len, optlen))
611 goto out;
612
613 ret = 0;
614
615 out:
616 #endif
617
618 return ret;
619 }
620
621 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
622 {
623 if (valbool)
624 sock_set_flag(sk, bit);
625 else
626 sock_reset_flag(sk, bit);
627 }
628
629 bool sk_mc_loop(struct sock *sk)
630 {
631 if (dev_recursion_level())
632 return false;
633 if (!sk)
634 return true;
635 switch (sk->sk_family) {
636 case AF_INET:
637 return inet_sk(sk)->mc_loop;
638 #if IS_ENABLED(CONFIG_IPV6)
639 case AF_INET6:
640 return inet6_sk(sk)->mc_loop;
641 #endif
642 }
643 WARN_ON(1);
644 return true;
645 }
646 EXPORT_SYMBOL(sk_mc_loop);
647
648 /*
649 * This is meant for all protocols to use and covers goings on
650 * at the socket level. Everything here is generic.
651 */
652
653 int sock_setsockopt(struct socket *sock, int level, int optname,
654 char __user *optval, unsigned int optlen)
655 {
656 struct sock *sk = sock->sk;
657 int val;
658 int valbool;
659 struct linger ling;
660 int ret = 0;
661
662 /*
663 * Options without arguments
664 */
665
666 if (optname == SO_BINDTODEVICE)
667 return sock_setbindtodevice(sk, optval, optlen);
668
669 if (optlen < sizeof(int))
670 return -EINVAL;
671
672 if (get_user(val, (int __user *)optval))
673 return -EFAULT;
674
675 valbool = val ? 1 : 0;
676
677 lock_sock(sk);
678
679 switch (optname) {
680 case SO_DEBUG:
681 if (val && !capable(CAP_NET_ADMIN))
682 ret = -EACCES;
683 else
684 sock_valbool_flag(sk, SOCK_DBG, valbool);
685 break;
686 case SO_REUSEADDR:
687 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
688 break;
689 case SO_REUSEPORT:
690 sk->sk_reuseport = valbool;
691 break;
692 case SO_TYPE:
693 case SO_PROTOCOL:
694 case SO_DOMAIN:
695 case SO_ERROR:
696 ret = -ENOPROTOOPT;
697 break;
698 case SO_DONTROUTE:
699 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
700 break;
701 case SO_BROADCAST:
702 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
703 break;
704 case SO_SNDBUF:
705 /* Don't error on this BSD doesn't and if you think
706 * about it this is right. Otherwise apps have to
707 * play 'guess the biggest size' games. RCVBUF/SNDBUF
708 * are treated in BSD as hints
709 */
710 val = min_t(u32, val, sysctl_wmem_max);
711 set_sndbuf:
712 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
713 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
714 /* Wake up sending tasks if we upped the value. */
715 sk->sk_write_space(sk);
716 break;
717
718 case SO_SNDBUFFORCE:
719 if (!capable(CAP_NET_ADMIN)) {
720 ret = -EPERM;
721 break;
722 }
723 goto set_sndbuf;
724
725 case SO_RCVBUF:
726 /* Don't error on this BSD doesn't and if you think
727 * about it this is right. Otherwise apps have to
728 * play 'guess the biggest size' games. RCVBUF/SNDBUF
729 * are treated in BSD as hints
730 */
731 val = min_t(u32, val, sysctl_rmem_max);
732 set_rcvbuf:
733 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
734 /*
735 * We double it on the way in to account for
736 * "struct sk_buff" etc. overhead. Applications
737 * assume that the SO_RCVBUF setting they make will
738 * allow that much actual data to be received on that
739 * socket.
740 *
741 * Applications are unaware that "struct sk_buff" and
742 * other overheads allocate from the receive buffer
743 * during socket buffer allocation.
744 *
745 * And after considering the possible alternatives,
746 * returning the value we actually used in getsockopt
747 * is the most desirable behavior.
748 */
749 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
750 break;
751
752 case SO_RCVBUFFORCE:
753 if (!capable(CAP_NET_ADMIN)) {
754 ret = -EPERM;
755 break;
756 }
757 goto set_rcvbuf;
758
759 case SO_KEEPALIVE:
760 #ifdef CONFIG_INET
761 if (sk->sk_protocol == IPPROTO_TCP &&
762 sk->sk_type == SOCK_STREAM)
763 tcp_set_keepalive(sk, valbool);
764 #endif
765 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
766 break;
767
768 case SO_OOBINLINE:
769 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
770 break;
771
772 case SO_NO_CHECK:
773 sk->sk_no_check_tx = valbool;
774 break;
775
776 case SO_PRIORITY:
777 if ((val >= 0 && val <= 6) ||
778 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
779 sk->sk_priority = val;
780 else
781 ret = -EPERM;
782 break;
783
784 case SO_LINGER:
785 if (optlen < sizeof(ling)) {
786 ret = -EINVAL; /* 1003.1g */
787 break;
788 }
789 if (copy_from_user(&ling, optval, sizeof(ling))) {
790 ret = -EFAULT;
791 break;
792 }
793 if (!ling.l_onoff)
794 sock_reset_flag(sk, SOCK_LINGER);
795 else {
796 #if (BITS_PER_LONG == 32)
797 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
798 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
799 else
800 #endif
801 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
802 sock_set_flag(sk, SOCK_LINGER);
803 }
804 break;
805
806 case SO_BSDCOMPAT:
807 sock_warn_obsolete_bsdism("setsockopt");
808 break;
809
810 case SO_PASSCRED:
811 if (valbool)
812 set_bit(SOCK_PASSCRED, &sock->flags);
813 else
814 clear_bit(SOCK_PASSCRED, &sock->flags);
815 break;
816
817 case SO_TIMESTAMP:
818 case SO_TIMESTAMPNS:
819 if (valbool) {
820 if (optname == SO_TIMESTAMP)
821 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
822 else
823 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
824 sock_set_flag(sk, SOCK_RCVTSTAMP);
825 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
826 } else {
827 sock_reset_flag(sk, SOCK_RCVTSTAMP);
828 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
829 }
830 break;
831
832 case SO_TIMESTAMPING:
833 if (val & ~SOF_TIMESTAMPING_MASK) {
834 ret = -EINVAL;
835 break;
836 }
837
838 if (val & SOF_TIMESTAMPING_OPT_ID &&
839 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
840 if (sk->sk_protocol == IPPROTO_TCP &&
841 sk->sk_type == SOCK_STREAM) {
842 if ((1 << sk->sk_state) &
843 (TCPF_CLOSE | TCPF_LISTEN)) {
844 ret = -EINVAL;
845 break;
846 }
847 sk->sk_tskey = tcp_sk(sk)->snd_una;
848 } else {
849 sk->sk_tskey = 0;
850 }
851 }
852 sk->sk_tsflags = val;
853 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
854 sock_enable_timestamp(sk,
855 SOCK_TIMESTAMPING_RX_SOFTWARE);
856 else
857 sock_disable_timestamp(sk,
858 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
859 break;
860
861 case SO_RCVLOWAT:
862 if (val < 0)
863 val = INT_MAX;
864 sk->sk_rcvlowat = val ? : 1;
865 break;
866
867 case SO_RCVTIMEO:
868 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
869 break;
870
871 case SO_SNDTIMEO:
872 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
873 break;
874
875 case SO_ATTACH_FILTER:
876 ret = -EINVAL;
877 if (optlen == sizeof(struct sock_fprog)) {
878 struct sock_fprog fprog;
879
880 ret = -EFAULT;
881 if (copy_from_user(&fprog, optval, sizeof(fprog)))
882 break;
883
884 ret = sk_attach_filter(&fprog, sk);
885 }
886 break;
887
888 case SO_ATTACH_BPF:
889 ret = -EINVAL;
890 if (optlen == sizeof(u32)) {
891 u32 ufd;
892
893 ret = -EFAULT;
894 if (copy_from_user(&ufd, optval, sizeof(ufd)))
895 break;
896
897 ret = sk_attach_bpf(ufd, sk);
898 }
899 break;
900
901 case SO_ATTACH_REUSEPORT_CBPF:
902 ret = -EINVAL;
903 if (optlen == sizeof(struct sock_fprog)) {
904 struct sock_fprog fprog;
905
906 ret = -EFAULT;
907 if (copy_from_user(&fprog, optval, sizeof(fprog)))
908 break;
909
910 ret = sk_reuseport_attach_filter(&fprog, sk);
911 }
912 break;
913
914 case SO_ATTACH_REUSEPORT_EBPF:
915 ret = -EINVAL;
916 if (optlen == sizeof(u32)) {
917 u32 ufd;
918
919 ret = -EFAULT;
920 if (copy_from_user(&ufd, optval, sizeof(ufd)))
921 break;
922
923 ret = sk_reuseport_attach_bpf(ufd, sk);
924 }
925 break;
926
927 case SO_DETACH_FILTER:
928 ret = sk_detach_filter(sk);
929 break;
930
931 case SO_LOCK_FILTER:
932 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
933 ret = -EPERM;
934 else
935 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
936 break;
937
938 case SO_PASSSEC:
939 if (valbool)
940 set_bit(SOCK_PASSSEC, &sock->flags);
941 else
942 clear_bit(SOCK_PASSSEC, &sock->flags);
943 break;
944 case SO_MARK:
945 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
946 ret = -EPERM;
947 else
948 sk->sk_mark = val;
949 break;
950
951 case SO_RXQ_OVFL:
952 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
953 break;
954
955 case SO_WIFI_STATUS:
956 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
957 break;
958
959 case SO_PEEK_OFF:
960 if (sock->ops->set_peek_off)
961 ret = sock->ops->set_peek_off(sk, val);
962 else
963 ret = -EOPNOTSUPP;
964 break;
965
966 case SO_NOFCS:
967 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
968 break;
969
970 case SO_SELECT_ERR_QUEUE:
971 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
972 break;
973
974 #ifdef CONFIG_NET_RX_BUSY_POLL
975 case SO_BUSY_POLL:
976 /* allow unprivileged users to decrease the value */
977 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
978 ret = -EPERM;
979 else {
980 if (val < 0)
981 ret = -EINVAL;
982 else
983 sk->sk_ll_usec = val;
984 }
985 break;
986 #endif
987
988 case SO_MAX_PACING_RATE:
989 sk->sk_max_pacing_rate = val;
990 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
991 sk->sk_max_pacing_rate);
992 break;
993
994 case SO_INCOMING_CPU:
995 sk->sk_incoming_cpu = val;
996 break;
997
998 case SO_CNX_ADVICE:
999 if (val == 1)
1000 dst_negative_advice(sk);
1001 break;
1002 default:
1003 ret = -ENOPROTOOPT;
1004 break;
1005 }
1006 release_sock(sk);
1007 return ret;
1008 }
1009 EXPORT_SYMBOL(sock_setsockopt);
1010
1011
1012 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1013 struct ucred *ucred)
1014 {
1015 ucred->pid = pid_vnr(pid);
1016 ucred->uid = ucred->gid = -1;
1017 if (cred) {
1018 struct user_namespace *current_ns = current_user_ns();
1019
1020 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1021 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1022 }
1023 }
1024
1025 int sock_getsockopt(struct socket *sock, int level, int optname,
1026 char __user *optval, int __user *optlen)
1027 {
1028 struct sock *sk = sock->sk;
1029
1030 union {
1031 int val;
1032 struct linger ling;
1033 struct timeval tm;
1034 } v;
1035
1036 int lv = sizeof(int);
1037 int len;
1038
1039 if (get_user(len, optlen))
1040 return -EFAULT;
1041 if (len < 0)
1042 return -EINVAL;
1043
1044 memset(&v, 0, sizeof(v));
1045
1046 switch (optname) {
1047 case SO_DEBUG:
1048 v.val = sock_flag(sk, SOCK_DBG);
1049 break;
1050
1051 case SO_DONTROUTE:
1052 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1053 break;
1054
1055 case SO_BROADCAST:
1056 v.val = sock_flag(sk, SOCK_BROADCAST);
1057 break;
1058
1059 case SO_SNDBUF:
1060 v.val = sk->sk_sndbuf;
1061 break;
1062
1063 case SO_RCVBUF:
1064 v.val = sk->sk_rcvbuf;
1065 break;
1066
1067 case SO_REUSEADDR:
1068 v.val = sk->sk_reuse;
1069 break;
1070
1071 case SO_REUSEPORT:
1072 v.val = sk->sk_reuseport;
1073 break;
1074
1075 case SO_KEEPALIVE:
1076 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1077 break;
1078
1079 case SO_TYPE:
1080 v.val = sk->sk_type;
1081 break;
1082
1083 case SO_PROTOCOL:
1084 v.val = sk->sk_protocol;
1085 break;
1086
1087 case SO_DOMAIN:
1088 v.val = sk->sk_family;
1089 break;
1090
1091 case SO_ERROR:
1092 v.val = -sock_error(sk);
1093 if (v.val == 0)
1094 v.val = xchg(&sk->sk_err_soft, 0);
1095 break;
1096
1097 case SO_OOBINLINE:
1098 v.val = sock_flag(sk, SOCK_URGINLINE);
1099 break;
1100
1101 case SO_NO_CHECK:
1102 v.val = sk->sk_no_check_tx;
1103 break;
1104
1105 case SO_PRIORITY:
1106 v.val = sk->sk_priority;
1107 break;
1108
1109 case SO_LINGER:
1110 lv = sizeof(v.ling);
1111 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1112 v.ling.l_linger = sk->sk_lingertime / HZ;
1113 break;
1114
1115 case SO_BSDCOMPAT:
1116 sock_warn_obsolete_bsdism("getsockopt");
1117 break;
1118
1119 case SO_TIMESTAMP:
1120 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1121 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1122 break;
1123
1124 case SO_TIMESTAMPNS:
1125 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1126 break;
1127
1128 case SO_TIMESTAMPING:
1129 v.val = sk->sk_tsflags;
1130 break;
1131
1132 case SO_RCVTIMEO:
1133 lv = sizeof(struct timeval);
1134 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1135 v.tm.tv_sec = 0;
1136 v.tm.tv_usec = 0;
1137 } else {
1138 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1139 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1140 }
1141 break;
1142
1143 case SO_SNDTIMEO:
1144 lv = sizeof(struct timeval);
1145 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1146 v.tm.tv_sec = 0;
1147 v.tm.tv_usec = 0;
1148 } else {
1149 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1150 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1151 }
1152 break;
1153
1154 case SO_RCVLOWAT:
1155 v.val = sk->sk_rcvlowat;
1156 break;
1157
1158 case SO_SNDLOWAT:
1159 v.val = 1;
1160 break;
1161
1162 case SO_PASSCRED:
1163 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1164 break;
1165
1166 case SO_PEERCRED:
1167 {
1168 struct ucred peercred;
1169 if (len > sizeof(peercred))
1170 len = sizeof(peercred);
1171 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1172 if (copy_to_user(optval, &peercred, len))
1173 return -EFAULT;
1174 goto lenout;
1175 }
1176
1177 case SO_PEERNAME:
1178 {
1179 char address[128];
1180
1181 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1182 return -ENOTCONN;
1183 if (lv < len)
1184 return -EINVAL;
1185 if (copy_to_user(optval, address, len))
1186 return -EFAULT;
1187 goto lenout;
1188 }
1189
1190 /* Dubious BSD thing... Probably nobody even uses it, but
1191 * the UNIX standard wants it for whatever reason... -DaveM
1192 */
1193 case SO_ACCEPTCONN:
1194 v.val = sk->sk_state == TCP_LISTEN;
1195 break;
1196
1197 case SO_PASSSEC:
1198 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1199 break;
1200
1201 case SO_PEERSEC:
1202 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1203
1204 case SO_MARK:
1205 v.val = sk->sk_mark;
1206 break;
1207
1208 case SO_RXQ_OVFL:
1209 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1210 break;
1211
1212 case SO_WIFI_STATUS:
1213 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1214 break;
1215
1216 case SO_PEEK_OFF:
1217 if (!sock->ops->set_peek_off)
1218 return -EOPNOTSUPP;
1219
1220 v.val = sk->sk_peek_off;
1221 break;
1222 case SO_NOFCS:
1223 v.val = sock_flag(sk, SOCK_NOFCS);
1224 break;
1225
1226 case SO_BINDTODEVICE:
1227 return sock_getbindtodevice(sk, optval, optlen, len);
1228
1229 case SO_GET_FILTER:
1230 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1231 if (len < 0)
1232 return len;
1233
1234 goto lenout;
1235
1236 case SO_LOCK_FILTER:
1237 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1238 break;
1239
1240 case SO_BPF_EXTENSIONS:
1241 v.val = bpf_tell_extensions();
1242 break;
1243
1244 case SO_SELECT_ERR_QUEUE:
1245 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1246 break;
1247
1248 #ifdef CONFIG_NET_RX_BUSY_POLL
1249 case SO_BUSY_POLL:
1250 v.val = sk->sk_ll_usec;
1251 break;
1252 #endif
1253
1254 case SO_MAX_PACING_RATE:
1255 v.val = sk->sk_max_pacing_rate;
1256 break;
1257
1258 case SO_INCOMING_CPU:
1259 v.val = sk->sk_incoming_cpu;
1260 break;
1261
1262 default:
1263 /* We implement the SO_SNDLOWAT etc to not be settable
1264 * (1003.1g 7).
1265 */
1266 return -ENOPROTOOPT;
1267 }
1268
1269 if (len > lv)
1270 len = lv;
1271 if (copy_to_user(optval, &v, len))
1272 return -EFAULT;
1273 lenout:
1274 if (put_user(len, optlen))
1275 return -EFAULT;
1276 return 0;
1277 }
1278
1279 /*
1280 * Initialize an sk_lock.
1281 *
1282 * (We also register the sk_lock with the lock validator.)
1283 */
1284 static inline void sock_lock_init(struct sock *sk)
1285 {
1286 sock_lock_init_class_and_name(sk,
1287 af_family_slock_key_strings[sk->sk_family],
1288 af_family_slock_keys + sk->sk_family,
1289 af_family_key_strings[sk->sk_family],
1290 af_family_keys + sk->sk_family);
1291 }
1292
1293 /*
1294 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1295 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1296 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1297 */
1298 static void sock_copy(struct sock *nsk, const struct sock *osk)
1299 {
1300 #ifdef CONFIG_SECURITY_NETWORK
1301 void *sptr = nsk->sk_security;
1302 #endif
1303 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1304
1305 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1306 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1307
1308 #ifdef CONFIG_SECURITY_NETWORK
1309 nsk->sk_security = sptr;
1310 security_sk_clone(osk, nsk);
1311 #endif
1312 }
1313
1314 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1315 {
1316 unsigned long nulls1, nulls2;
1317
1318 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1319 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1320 if (nulls1 > nulls2)
1321 swap(nulls1, nulls2);
1322
1323 if (nulls1 != 0)
1324 memset((char *)sk, 0, nulls1);
1325 memset((char *)sk + nulls1 + sizeof(void *), 0,
1326 nulls2 - nulls1 - sizeof(void *));
1327 memset((char *)sk + nulls2 + sizeof(void *), 0,
1328 size - nulls2 - sizeof(void *));
1329 }
1330 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1331
1332 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1333 int family)
1334 {
1335 struct sock *sk;
1336 struct kmem_cache *slab;
1337
1338 slab = prot->slab;
1339 if (slab != NULL) {
1340 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1341 if (!sk)
1342 return sk;
1343 if (priority & __GFP_ZERO) {
1344 if (prot->clear_sk)
1345 prot->clear_sk(sk, prot->obj_size);
1346 else
1347 sk_prot_clear_nulls(sk, prot->obj_size);
1348 }
1349 } else
1350 sk = kmalloc(prot->obj_size, priority);
1351
1352 if (sk != NULL) {
1353 kmemcheck_annotate_bitfield(sk, flags);
1354
1355 if (security_sk_alloc(sk, family, priority))
1356 goto out_free;
1357
1358 if (!try_module_get(prot->owner))
1359 goto out_free_sec;
1360 sk_tx_queue_clear(sk);
1361 cgroup_sk_alloc(&sk->sk_cgrp_data);
1362 }
1363
1364 return sk;
1365
1366 out_free_sec:
1367 security_sk_free(sk);
1368 out_free:
1369 if (slab != NULL)
1370 kmem_cache_free(slab, sk);
1371 else
1372 kfree(sk);
1373 return NULL;
1374 }
1375
1376 static void sk_prot_free(struct proto *prot, struct sock *sk)
1377 {
1378 struct kmem_cache *slab;
1379 struct module *owner;
1380
1381 owner = prot->owner;
1382 slab = prot->slab;
1383
1384 cgroup_sk_free(&sk->sk_cgrp_data);
1385 security_sk_free(sk);
1386 if (slab != NULL)
1387 kmem_cache_free(slab, sk);
1388 else
1389 kfree(sk);
1390 module_put(owner);
1391 }
1392
1393 /**
1394 * sk_alloc - All socket objects are allocated here
1395 * @net: the applicable net namespace
1396 * @family: protocol family
1397 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1398 * @prot: struct proto associated with this new sock instance
1399 * @kern: is this to be a kernel socket?
1400 */
1401 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1402 struct proto *prot, int kern)
1403 {
1404 struct sock *sk;
1405
1406 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1407 if (sk) {
1408 sk->sk_family = family;
1409 /*
1410 * See comment in struct sock definition to understand
1411 * why we need sk_prot_creator -acme
1412 */
1413 sk->sk_prot = sk->sk_prot_creator = prot;
1414 sock_lock_init(sk);
1415 sk->sk_net_refcnt = kern ? 0 : 1;
1416 if (likely(sk->sk_net_refcnt))
1417 get_net(net);
1418 sock_net_set(sk, net);
1419 atomic_set(&sk->sk_wmem_alloc, 1);
1420
1421 sock_update_classid(&sk->sk_cgrp_data);
1422 sock_update_netprioidx(&sk->sk_cgrp_data);
1423 }
1424
1425 return sk;
1426 }
1427 EXPORT_SYMBOL(sk_alloc);
1428
1429 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1430 * grace period. This is the case for UDP sockets and TCP listeners.
1431 */
1432 static void __sk_destruct(struct rcu_head *head)
1433 {
1434 struct sock *sk = container_of(head, struct sock, sk_rcu);
1435 struct sk_filter *filter;
1436
1437 if (sk->sk_destruct)
1438 sk->sk_destruct(sk);
1439
1440 filter = rcu_dereference_check(sk->sk_filter,
1441 atomic_read(&sk->sk_wmem_alloc) == 0);
1442 if (filter) {
1443 sk_filter_uncharge(sk, filter);
1444 RCU_INIT_POINTER(sk->sk_filter, NULL);
1445 }
1446 if (rcu_access_pointer(sk->sk_reuseport_cb))
1447 reuseport_detach_sock(sk);
1448
1449 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1450
1451 if (atomic_read(&sk->sk_omem_alloc))
1452 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1453 __func__, atomic_read(&sk->sk_omem_alloc));
1454
1455 if (sk->sk_peer_cred)
1456 put_cred(sk->sk_peer_cred);
1457 put_pid(sk->sk_peer_pid);
1458 if (likely(sk->sk_net_refcnt))
1459 put_net(sock_net(sk));
1460 sk_prot_free(sk->sk_prot_creator, sk);
1461 }
1462
1463 void sk_destruct(struct sock *sk)
1464 {
1465 if (sock_flag(sk, SOCK_RCU_FREE))
1466 call_rcu(&sk->sk_rcu, __sk_destruct);
1467 else
1468 __sk_destruct(&sk->sk_rcu);
1469 }
1470
1471 static void __sk_free(struct sock *sk)
1472 {
1473 if (unlikely(sock_diag_has_destroy_listeners(sk) && sk->sk_net_refcnt))
1474 sock_diag_broadcast_destroy(sk);
1475 else
1476 sk_destruct(sk);
1477 }
1478
1479 void sk_free(struct sock *sk)
1480 {
1481 /*
1482 * We subtract one from sk_wmem_alloc and can know if
1483 * some packets are still in some tx queue.
1484 * If not null, sock_wfree() will call __sk_free(sk) later
1485 */
1486 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1487 __sk_free(sk);
1488 }
1489 EXPORT_SYMBOL(sk_free);
1490
1491 /**
1492 * sk_clone_lock - clone a socket, and lock its clone
1493 * @sk: the socket to clone
1494 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1495 *
1496 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1497 */
1498 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1499 {
1500 struct sock *newsk;
1501 bool is_charged = true;
1502
1503 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1504 if (newsk != NULL) {
1505 struct sk_filter *filter;
1506
1507 sock_copy(newsk, sk);
1508
1509 /* SANITY */
1510 if (likely(newsk->sk_net_refcnt))
1511 get_net(sock_net(newsk));
1512 sk_node_init(&newsk->sk_node);
1513 sock_lock_init(newsk);
1514 bh_lock_sock(newsk);
1515 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1516 newsk->sk_backlog.len = 0;
1517
1518 atomic_set(&newsk->sk_rmem_alloc, 0);
1519 /*
1520 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1521 */
1522 atomic_set(&newsk->sk_wmem_alloc, 1);
1523 atomic_set(&newsk->sk_omem_alloc, 0);
1524 skb_queue_head_init(&newsk->sk_receive_queue);
1525 skb_queue_head_init(&newsk->sk_write_queue);
1526
1527 rwlock_init(&newsk->sk_callback_lock);
1528 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1529 af_callback_keys + newsk->sk_family,
1530 af_family_clock_key_strings[newsk->sk_family]);
1531
1532 newsk->sk_dst_cache = NULL;
1533 newsk->sk_wmem_queued = 0;
1534 newsk->sk_forward_alloc = 0;
1535 atomic_set(&newsk->sk_drops, 0);
1536 newsk->sk_send_head = NULL;
1537 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1538
1539 sock_reset_flag(newsk, SOCK_DONE);
1540 skb_queue_head_init(&newsk->sk_error_queue);
1541
1542 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1543 if (filter != NULL)
1544 /* though it's an empty new sock, the charging may fail
1545 * if sysctl_optmem_max was changed between creation of
1546 * original socket and cloning
1547 */
1548 is_charged = sk_filter_charge(newsk, filter);
1549
1550 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1551 /* It is still raw copy of parent, so invalidate
1552 * destructor and make plain sk_free() */
1553 newsk->sk_destruct = NULL;
1554 bh_unlock_sock(newsk);
1555 sk_free(newsk);
1556 newsk = NULL;
1557 goto out;
1558 }
1559 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1560
1561 newsk->sk_err = 0;
1562 newsk->sk_priority = 0;
1563 newsk->sk_incoming_cpu = raw_smp_processor_id();
1564 atomic64_set(&newsk->sk_cookie, 0);
1565 /*
1566 * Before updating sk_refcnt, we must commit prior changes to memory
1567 * (Documentation/RCU/rculist_nulls.txt for details)
1568 */
1569 smp_wmb();
1570 atomic_set(&newsk->sk_refcnt, 2);
1571
1572 /*
1573 * Increment the counter in the same struct proto as the master
1574 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1575 * is the same as sk->sk_prot->socks, as this field was copied
1576 * with memcpy).
1577 *
1578 * This _changes_ the previous behaviour, where
1579 * tcp_create_openreq_child always was incrementing the
1580 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1581 * to be taken into account in all callers. -acme
1582 */
1583 sk_refcnt_debug_inc(newsk);
1584 sk_set_socket(newsk, NULL);
1585 newsk->sk_wq = NULL;
1586
1587 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
1588 sock_update_memcg(newsk);
1589
1590 if (newsk->sk_prot->sockets_allocated)
1591 sk_sockets_allocated_inc(newsk);
1592
1593 if (sock_needs_netstamp(sk) &&
1594 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1595 net_enable_timestamp();
1596 }
1597 out:
1598 return newsk;
1599 }
1600 EXPORT_SYMBOL_GPL(sk_clone_lock);
1601
1602 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1603 {
1604 u32 max_segs = 1;
1605
1606 sk_dst_set(sk, dst);
1607 sk->sk_route_caps = dst->dev->features;
1608 if (sk->sk_route_caps & NETIF_F_GSO)
1609 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1610 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1611 if (sk_can_gso(sk)) {
1612 if (dst->header_len) {
1613 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1614 } else {
1615 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1616 sk->sk_gso_max_size = dst->dev->gso_max_size;
1617 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1618 }
1619 }
1620 sk->sk_gso_max_segs = max_segs;
1621 }
1622 EXPORT_SYMBOL_GPL(sk_setup_caps);
1623
1624 /*
1625 * Simple resource managers for sockets.
1626 */
1627
1628
1629 /*
1630 * Write buffer destructor automatically called from kfree_skb.
1631 */
1632 void sock_wfree(struct sk_buff *skb)
1633 {
1634 struct sock *sk = skb->sk;
1635 unsigned int len = skb->truesize;
1636
1637 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1638 /*
1639 * Keep a reference on sk_wmem_alloc, this will be released
1640 * after sk_write_space() call
1641 */
1642 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1643 sk->sk_write_space(sk);
1644 len = 1;
1645 }
1646 /*
1647 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1648 * could not do because of in-flight packets
1649 */
1650 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1651 __sk_free(sk);
1652 }
1653 EXPORT_SYMBOL(sock_wfree);
1654
1655 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1656 {
1657 skb_orphan(skb);
1658 skb->sk = sk;
1659 #ifdef CONFIG_INET
1660 if (unlikely(!sk_fullsock(sk))) {
1661 skb->destructor = sock_edemux;
1662 sock_hold(sk);
1663 return;
1664 }
1665 #endif
1666 skb->destructor = sock_wfree;
1667 skb_set_hash_from_sk(skb, sk);
1668 /*
1669 * We used to take a refcount on sk, but following operation
1670 * is enough to guarantee sk_free() wont free this sock until
1671 * all in-flight packets are completed
1672 */
1673 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1674 }
1675 EXPORT_SYMBOL(skb_set_owner_w);
1676
1677 void skb_orphan_partial(struct sk_buff *skb)
1678 {
1679 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1680 * so we do not completely orphan skb, but transfert all
1681 * accounted bytes but one, to avoid unexpected reorders.
1682 */
1683 if (skb->destructor == sock_wfree
1684 #ifdef CONFIG_INET
1685 || skb->destructor == tcp_wfree
1686 #endif
1687 ) {
1688 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1689 skb->truesize = 1;
1690 } else {
1691 skb_orphan(skb);
1692 }
1693 }
1694 EXPORT_SYMBOL(skb_orphan_partial);
1695
1696 /*
1697 * Read buffer destructor automatically called from kfree_skb.
1698 */
1699 void sock_rfree(struct sk_buff *skb)
1700 {
1701 struct sock *sk = skb->sk;
1702 unsigned int len = skb->truesize;
1703
1704 atomic_sub(len, &sk->sk_rmem_alloc);
1705 sk_mem_uncharge(sk, len);
1706 }
1707 EXPORT_SYMBOL(sock_rfree);
1708
1709 /*
1710 * Buffer destructor for skbs that are not used directly in read or write
1711 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1712 */
1713 void sock_efree(struct sk_buff *skb)
1714 {
1715 sock_put(skb->sk);
1716 }
1717 EXPORT_SYMBOL(sock_efree);
1718
1719 kuid_t sock_i_uid(struct sock *sk)
1720 {
1721 kuid_t uid;
1722
1723 read_lock_bh(&sk->sk_callback_lock);
1724 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1725 read_unlock_bh(&sk->sk_callback_lock);
1726 return uid;
1727 }
1728 EXPORT_SYMBOL(sock_i_uid);
1729
1730 unsigned long sock_i_ino(struct sock *sk)
1731 {
1732 unsigned long ino;
1733
1734 read_lock_bh(&sk->sk_callback_lock);
1735 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1736 read_unlock_bh(&sk->sk_callback_lock);
1737 return ino;
1738 }
1739 EXPORT_SYMBOL(sock_i_ino);
1740
1741 /*
1742 * Allocate a skb from the socket's send buffer.
1743 */
1744 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1745 gfp_t priority)
1746 {
1747 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1748 struct sk_buff *skb = alloc_skb(size, priority);
1749 if (skb) {
1750 skb_set_owner_w(skb, sk);
1751 return skb;
1752 }
1753 }
1754 return NULL;
1755 }
1756 EXPORT_SYMBOL(sock_wmalloc);
1757
1758 /*
1759 * Allocate a memory block from the socket's option memory buffer.
1760 */
1761 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1762 {
1763 if ((unsigned int)size <= sysctl_optmem_max &&
1764 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1765 void *mem;
1766 /* First do the add, to avoid the race if kmalloc
1767 * might sleep.
1768 */
1769 atomic_add(size, &sk->sk_omem_alloc);
1770 mem = kmalloc(size, priority);
1771 if (mem)
1772 return mem;
1773 atomic_sub(size, &sk->sk_omem_alloc);
1774 }
1775 return NULL;
1776 }
1777 EXPORT_SYMBOL(sock_kmalloc);
1778
1779 /* Free an option memory block. Note, we actually want the inline
1780 * here as this allows gcc to detect the nullify and fold away the
1781 * condition entirely.
1782 */
1783 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1784 const bool nullify)
1785 {
1786 if (WARN_ON_ONCE(!mem))
1787 return;
1788 if (nullify)
1789 kzfree(mem);
1790 else
1791 kfree(mem);
1792 atomic_sub(size, &sk->sk_omem_alloc);
1793 }
1794
1795 void sock_kfree_s(struct sock *sk, void *mem, int size)
1796 {
1797 __sock_kfree_s(sk, mem, size, false);
1798 }
1799 EXPORT_SYMBOL(sock_kfree_s);
1800
1801 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1802 {
1803 __sock_kfree_s(sk, mem, size, true);
1804 }
1805 EXPORT_SYMBOL(sock_kzfree_s);
1806
1807 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1808 I think, these locks should be removed for datagram sockets.
1809 */
1810 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1811 {
1812 DEFINE_WAIT(wait);
1813
1814 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1815 for (;;) {
1816 if (!timeo)
1817 break;
1818 if (signal_pending(current))
1819 break;
1820 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1821 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1822 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1823 break;
1824 if (sk->sk_shutdown & SEND_SHUTDOWN)
1825 break;
1826 if (sk->sk_err)
1827 break;
1828 timeo = schedule_timeout(timeo);
1829 }
1830 finish_wait(sk_sleep(sk), &wait);
1831 return timeo;
1832 }
1833
1834
1835 /*
1836 * Generic send/receive buffer handlers
1837 */
1838
1839 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1840 unsigned long data_len, int noblock,
1841 int *errcode, int max_page_order)
1842 {
1843 struct sk_buff *skb;
1844 long timeo;
1845 int err;
1846
1847 timeo = sock_sndtimeo(sk, noblock);
1848 for (;;) {
1849 err = sock_error(sk);
1850 if (err != 0)
1851 goto failure;
1852
1853 err = -EPIPE;
1854 if (sk->sk_shutdown & SEND_SHUTDOWN)
1855 goto failure;
1856
1857 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1858 break;
1859
1860 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1861 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1862 err = -EAGAIN;
1863 if (!timeo)
1864 goto failure;
1865 if (signal_pending(current))
1866 goto interrupted;
1867 timeo = sock_wait_for_wmem(sk, timeo);
1868 }
1869 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1870 errcode, sk->sk_allocation);
1871 if (skb)
1872 skb_set_owner_w(skb, sk);
1873 return skb;
1874
1875 interrupted:
1876 err = sock_intr_errno(timeo);
1877 failure:
1878 *errcode = err;
1879 return NULL;
1880 }
1881 EXPORT_SYMBOL(sock_alloc_send_pskb);
1882
1883 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1884 int noblock, int *errcode)
1885 {
1886 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1887 }
1888 EXPORT_SYMBOL(sock_alloc_send_skb);
1889
1890 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1891 struct sockcm_cookie *sockc)
1892 {
1893 u32 tsflags;
1894
1895 switch (cmsg->cmsg_type) {
1896 case SO_MARK:
1897 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1898 return -EPERM;
1899 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1900 return -EINVAL;
1901 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1902 break;
1903 case SO_TIMESTAMPING:
1904 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1905 return -EINVAL;
1906
1907 tsflags = *(u32 *)CMSG_DATA(cmsg);
1908 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
1909 return -EINVAL;
1910
1911 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
1912 sockc->tsflags |= tsflags;
1913 break;
1914 default:
1915 return -EINVAL;
1916 }
1917 return 0;
1918 }
1919 EXPORT_SYMBOL(__sock_cmsg_send);
1920
1921 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1922 struct sockcm_cookie *sockc)
1923 {
1924 struct cmsghdr *cmsg;
1925 int ret;
1926
1927 for_each_cmsghdr(cmsg, msg) {
1928 if (!CMSG_OK(msg, cmsg))
1929 return -EINVAL;
1930 if (cmsg->cmsg_level != SOL_SOCKET)
1931 continue;
1932 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
1933 if (ret)
1934 return ret;
1935 }
1936 return 0;
1937 }
1938 EXPORT_SYMBOL(sock_cmsg_send);
1939
1940 /* On 32bit arches, an skb frag is limited to 2^15 */
1941 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1942
1943 /**
1944 * skb_page_frag_refill - check that a page_frag contains enough room
1945 * @sz: minimum size of the fragment we want to get
1946 * @pfrag: pointer to page_frag
1947 * @gfp: priority for memory allocation
1948 *
1949 * Note: While this allocator tries to use high order pages, there is
1950 * no guarantee that allocations succeed. Therefore, @sz MUST be
1951 * less or equal than PAGE_SIZE.
1952 */
1953 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1954 {
1955 if (pfrag->page) {
1956 if (page_ref_count(pfrag->page) == 1) {
1957 pfrag->offset = 0;
1958 return true;
1959 }
1960 if (pfrag->offset + sz <= pfrag->size)
1961 return true;
1962 put_page(pfrag->page);
1963 }
1964
1965 pfrag->offset = 0;
1966 if (SKB_FRAG_PAGE_ORDER) {
1967 /* Avoid direct reclaim but allow kswapd to wake */
1968 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1969 __GFP_COMP | __GFP_NOWARN |
1970 __GFP_NORETRY,
1971 SKB_FRAG_PAGE_ORDER);
1972 if (likely(pfrag->page)) {
1973 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1974 return true;
1975 }
1976 }
1977 pfrag->page = alloc_page(gfp);
1978 if (likely(pfrag->page)) {
1979 pfrag->size = PAGE_SIZE;
1980 return true;
1981 }
1982 return false;
1983 }
1984 EXPORT_SYMBOL(skb_page_frag_refill);
1985
1986 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1987 {
1988 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1989 return true;
1990
1991 sk_enter_memory_pressure(sk);
1992 sk_stream_moderate_sndbuf(sk);
1993 return false;
1994 }
1995 EXPORT_SYMBOL(sk_page_frag_refill);
1996
1997 static void __lock_sock(struct sock *sk)
1998 __releases(&sk->sk_lock.slock)
1999 __acquires(&sk->sk_lock.slock)
2000 {
2001 DEFINE_WAIT(wait);
2002
2003 for (;;) {
2004 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2005 TASK_UNINTERRUPTIBLE);
2006 spin_unlock_bh(&sk->sk_lock.slock);
2007 schedule();
2008 spin_lock_bh(&sk->sk_lock.slock);
2009 if (!sock_owned_by_user(sk))
2010 break;
2011 }
2012 finish_wait(&sk->sk_lock.wq, &wait);
2013 }
2014
2015 static void __release_sock(struct sock *sk)
2016 __releases(&sk->sk_lock.slock)
2017 __acquires(&sk->sk_lock.slock)
2018 {
2019 struct sk_buff *skb = sk->sk_backlog.head;
2020
2021 do {
2022 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2023 bh_unlock_sock(sk);
2024
2025 do {
2026 struct sk_buff *next = skb->next;
2027
2028 prefetch(next);
2029 WARN_ON_ONCE(skb_dst_is_noref(skb));
2030 skb->next = NULL;
2031 sk_backlog_rcv(sk, skb);
2032
2033 /*
2034 * We are in process context here with softirqs
2035 * disabled, use cond_resched_softirq() to preempt.
2036 * This is safe to do because we've taken the backlog
2037 * queue private:
2038 */
2039 cond_resched_softirq();
2040
2041 skb = next;
2042 } while (skb != NULL);
2043
2044 bh_lock_sock(sk);
2045 } while ((skb = sk->sk_backlog.head) != NULL);
2046
2047 /*
2048 * Doing the zeroing here guarantee we can not loop forever
2049 * while a wild producer attempts to flood us.
2050 */
2051 sk->sk_backlog.len = 0;
2052 }
2053
2054 /**
2055 * sk_wait_data - wait for data to arrive at sk_receive_queue
2056 * @sk: sock to wait on
2057 * @timeo: for how long
2058 * @skb: last skb seen on sk_receive_queue
2059 *
2060 * Now socket state including sk->sk_err is changed only under lock,
2061 * hence we may omit checks after joining wait queue.
2062 * We check receive queue before schedule() only as optimization;
2063 * it is very likely that release_sock() added new data.
2064 */
2065 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2066 {
2067 int rc;
2068 DEFINE_WAIT(wait);
2069
2070 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2071 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2072 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2073 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2074 finish_wait(sk_sleep(sk), &wait);
2075 return rc;
2076 }
2077 EXPORT_SYMBOL(sk_wait_data);
2078
2079 /**
2080 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2081 * @sk: socket
2082 * @size: memory size to allocate
2083 * @kind: allocation type
2084 *
2085 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2086 * rmem allocation. This function assumes that protocols which have
2087 * memory_pressure use sk_wmem_queued as write buffer accounting.
2088 */
2089 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2090 {
2091 struct proto *prot = sk->sk_prot;
2092 int amt = sk_mem_pages(size);
2093 long allocated;
2094
2095 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2096
2097 allocated = sk_memory_allocated_add(sk, amt);
2098
2099 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2100 !mem_cgroup_charge_skmem(sk->sk_memcg, amt))
2101 goto suppress_allocation;
2102
2103 /* Under limit. */
2104 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2105 sk_leave_memory_pressure(sk);
2106 return 1;
2107 }
2108
2109 /* Under pressure. */
2110 if (allocated > sk_prot_mem_limits(sk, 1))
2111 sk_enter_memory_pressure(sk);
2112
2113 /* Over hard limit. */
2114 if (allocated > sk_prot_mem_limits(sk, 2))
2115 goto suppress_allocation;
2116
2117 /* guarantee minimum buffer size under pressure */
2118 if (kind == SK_MEM_RECV) {
2119 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2120 return 1;
2121
2122 } else { /* SK_MEM_SEND */
2123 if (sk->sk_type == SOCK_STREAM) {
2124 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2125 return 1;
2126 } else if (atomic_read(&sk->sk_wmem_alloc) <
2127 prot->sysctl_wmem[0])
2128 return 1;
2129 }
2130
2131 if (sk_has_memory_pressure(sk)) {
2132 int alloc;
2133
2134 if (!sk_under_memory_pressure(sk))
2135 return 1;
2136 alloc = sk_sockets_allocated_read_positive(sk);
2137 if (sk_prot_mem_limits(sk, 2) > alloc *
2138 sk_mem_pages(sk->sk_wmem_queued +
2139 atomic_read(&sk->sk_rmem_alloc) +
2140 sk->sk_forward_alloc))
2141 return 1;
2142 }
2143
2144 suppress_allocation:
2145
2146 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2147 sk_stream_moderate_sndbuf(sk);
2148
2149 /* Fail only if socket is _under_ its sndbuf.
2150 * In this case we cannot block, so that we have to fail.
2151 */
2152 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2153 return 1;
2154 }
2155
2156 trace_sock_exceed_buf_limit(sk, prot, allocated);
2157
2158 /* Alas. Undo changes. */
2159 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2160
2161 sk_memory_allocated_sub(sk, amt);
2162
2163 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2164 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2165
2166 return 0;
2167 }
2168 EXPORT_SYMBOL(__sk_mem_schedule);
2169
2170 /**
2171 * __sk_mem_reclaim - reclaim memory_allocated
2172 * @sk: socket
2173 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2174 */
2175 void __sk_mem_reclaim(struct sock *sk, int amount)
2176 {
2177 amount >>= SK_MEM_QUANTUM_SHIFT;
2178 sk_memory_allocated_sub(sk, amount);
2179 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2180
2181 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2182 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2183
2184 if (sk_under_memory_pressure(sk) &&
2185 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2186 sk_leave_memory_pressure(sk);
2187 }
2188 EXPORT_SYMBOL(__sk_mem_reclaim);
2189
2190
2191 /*
2192 * Set of default routines for initialising struct proto_ops when
2193 * the protocol does not support a particular function. In certain
2194 * cases where it makes no sense for a protocol to have a "do nothing"
2195 * function, some default processing is provided.
2196 */
2197
2198 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2199 {
2200 return -EOPNOTSUPP;
2201 }
2202 EXPORT_SYMBOL(sock_no_bind);
2203
2204 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2205 int len, int flags)
2206 {
2207 return -EOPNOTSUPP;
2208 }
2209 EXPORT_SYMBOL(sock_no_connect);
2210
2211 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2212 {
2213 return -EOPNOTSUPP;
2214 }
2215 EXPORT_SYMBOL(sock_no_socketpair);
2216
2217 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2218 {
2219 return -EOPNOTSUPP;
2220 }
2221 EXPORT_SYMBOL(sock_no_accept);
2222
2223 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2224 int *len, int peer)
2225 {
2226 return -EOPNOTSUPP;
2227 }
2228 EXPORT_SYMBOL(sock_no_getname);
2229
2230 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2231 {
2232 return 0;
2233 }
2234 EXPORT_SYMBOL(sock_no_poll);
2235
2236 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2237 {
2238 return -EOPNOTSUPP;
2239 }
2240 EXPORT_SYMBOL(sock_no_ioctl);
2241
2242 int sock_no_listen(struct socket *sock, int backlog)
2243 {
2244 return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_listen);
2247
2248 int sock_no_shutdown(struct socket *sock, int how)
2249 {
2250 return -EOPNOTSUPP;
2251 }
2252 EXPORT_SYMBOL(sock_no_shutdown);
2253
2254 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2255 char __user *optval, unsigned int optlen)
2256 {
2257 return -EOPNOTSUPP;
2258 }
2259 EXPORT_SYMBOL(sock_no_setsockopt);
2260
2261 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2262 char __user *optval, int __user *optlen)
2263 {
2264 return -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(sock_no_getsockopt);
2267
2268 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2269 {
2270 return -EOPNOTSUPP;
2271 }
2272 EXPORT_SYMBOL(sock_no_sendmsg);
2273
2274 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2275 int flags)
2276 {
2277 return -EOPNOTSUPP;
2278 }
2279 EXPORT_SYMBOL(sock_no_recvmsg);
2280
2281 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2282 {
2283 /* Mirror missing mmap method error code */
2284 return -ENODEV;
2285 }
2286 EXPORT_SYMBOL(sock_no_mmap);
2287
2288 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2289 {
2290 ssize_t res;
2291 struct msghdr msg = {.msg_flags = flags};
2292 struct kvec iov;
2293 char *kaddr = kmap(page);
2294 iov.iov_base = kaddr + offset;
2295 iov.iov_len = size;
2296 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2297 kunmap(page);
2298 return res;
2299 }
2300 EXPORT_SYMBOL(sock_no_sendpage);
2301
2302 /*
2303 * Default Socket Callbacks
2304 */
2305
2306 static void sock_def_wakeup(struct sock *sk)
2307 {
2308 struct socket_wq *wq;
2309
2310 rcu_read_lock();
2311 wq = rcu_dereference(sk->sk_wq);
2312 if (skwq_has_sleeper(wq))
2313 wake_up_interruptible_all(&wq->wait);
2314 rcu_read_unlock();
2315 }
2316
2317 static void sock_def_error_report(struct sock *sk)
2318 {
2319 struct socket_wq *wq;
2320
2321 rcu_read_lock();
2322 wq = rcu_dereference(sk->sk_wq);
2323 if (skwq_has_sleeper(wq))
2324 wake_up_interruptible_poll(&wq->wait, POLLERR);
2325 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2326 rcu_read_unlock();
2327 }
2328
2329 static void sock_def_readable(struct sock *sk)
2330 {
2331 struct socket_wq *wq;
2332
2333 rcu_read_lock();
2334 wq = rcu_dereference(sk->sk_wq);
2335 if (skwq_has_sleeper(wq))
2336 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2337 POLLRDNORM | POLLRDBAND);
2338 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2339 rcu_read_unlock();
2340 }
2341
2342 static void sock_def_write_space(struct sock *sk)
2343 {
2344 struct socket_wq *wq;
2345
2346 rcu_read_lock();
2347
2348 /* Do not wake up a writer until he can make "significant"
2349 * progress. --DaveM
2350 */
2351 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2352 wq = rcu_dereference(sk->sk_wq);
2353 if (skwq_has_sleeper(wq))
2354 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2355 POLLWRNORM | POLLWRBAND);
2356
2357 /* Should agree with poll, otherwise some programs break */
2358 if (sock_writeable(sk))
2359 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2360 }
2361
2362 rcu_read_unlock();
2363 }
2364
2365 static void sock_def_destruct(struct sock *sk)
2366 {
2367 }
2368
2369 void sk_send_sigurg(struct sock *sk)
2370 {
2371 if (sk->sk_socket && sk->sk_socket->file)
2372 if (send_sigurg(&sk->sk_socket->file->f_owner))
2373 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2374 }
2375 EXPORT_SYMBOL(sk_send_sigurg);
2376
2377 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2378 unsigned long expires)
2379 {
2380 if (!mod_timer(timer, expires))
2381 sock_hold(sk);
2382 }
2383 EXPORT_SYMBOL(sk_reset_timer);
2384
2385 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2386 {
2387 if (del_timer(timer))
2388 __sock_put(sk);
2389 }
2390 EXPORT_SYMBOL(sk_stop_timer);
2391
2392 void sock_init_data(struct socket *sock, struct sock *sk)
2393 {
2394 skb_queue_head_init(&sk->sk_receive_queue);
2395 skb_queue_head_init(&sk->sk_write_queue);
2396 skb_queue_head_init(&sk->sk_error_queue);
2397
2398 sk->sk_send_head = NULL;
2399
2400 init_timer(&sk->sk_timer);
2401
2402 sk->sk_allocation = GFP_KERNEL;
2403 sk->sk_rcvbuf = sysctl_rmem_default;
2404 sk->sk_sndbuf = sysctl_wmem_default;
2405 sk->sk_state = TCP_CLOSE;
2406 sk_set_socket(sk, sock);
2407
2408 sock_set_flag(sk, SOCK_ZAPPED);
2409
2410 if (sock) {
2411 sk->sk_type = sock->type;
2412 sk->sk_wq = sock->wq;
2413 sock->sk = sk;
2414 } else
2415 sk->sk_wq = NULL;
2416
2417 rwlock_init(&sk->sk_callback_lock);
2418 lockdep_set_class_and_name(&sk->sk_callback_lock,
2419 af_callback_keys + sk->sk_family,
2420 af_family_clock_key_strings[sk->sk_family]);
2421
2422 sk->sk_state_change = sock_def_wakeup;
2423 sk->sk_data_ready = sock_def_readable;
2424 sk->sk_write_space = sock_def_write_space;
2425 sk->sk_error_report = sock_def_error_report;
2426 sk->sk_destruct = sock_def_destruct;
2427
2428 sk->sk_frag.page = NULL;
2429 sk->sk_frag.offset = 0;
2430 sk->sk_peek_off = -1;
2431
2432 sk->sk_peer_pid = NULL;
2433 sk->sk_peer_cred = NULL;
2434 sk->sk_write_pending = 0;
2435 sk->sk_rcvlowat = 1;
2436 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2437 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2438
2439 sk->sk_stamp = ktime_set(-1L, 0);
2440
2441 #ifdef CONFIG_NET_RX_BUSY_POLL
2442 sk->sk_napi_id = 0;
2443 sk->sk_ll_usec = sysctl_net_busy_read;
2444 #endif
2445
2446 sk->sk_max_pacing_rate = ~0U;
2447 sk->sk_pacing_rate = ~0U;
2448 sk->sk_incoming_cpu = -1;
2449 /*
2450 * Before updating sk_refcnt, we must commit prior changes to memory
2451 * (Documentation/RCU/rculist_nulls.txt for details)
2452 */
2453 smp_wmb();
2454 atomic_set(&sk->sk_refcnt, 1);
2455 atomic_set(&sk->sk_drops, 0);
2456 }
2457 EXPORT_SYMBOL(sock_init_data);
2458
2459 void lock_sock_nested(struct sock *sk, int subclass)
2460 {
2461 might_sleep();
2462 spin_lock_bh(&sk->sk_lock.slock);
2463 if (sk->sk_lock.owned)
2464 __lock_sock(sk);
2465 sk->sk_lock.owned = 1;
2466 spin_unlock(&sk->sk_lock.slock);
2467 /*
2468 * The sk_lock has mutex_lock() semantics here:
2469 */
2470 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2471 local_bh_enable();
2472 }
2473 EXPORT_SYMBOL(lock_sock_nested);
2474
2475 void release_sock(struct sock *sk)
2476 {
2477 /*
2478 * The sk_lock has mutex_unlock() semantics:
2479 */
2480 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2481
2482 spin_lock_bh(&sk->sk_lock.slock);
2483 if (sk->sk_backlog.tail)
2484 __release_sock(sk);
2485
2486 /* Warning : release_cb() might need to release sk ownership,
2487 * ie call sock_release_ownership(sk) before us.
2488 */
2489 if (sk->sk_prot->release_cb)
2490 sk->sk_prot->release_cb(sk);
2491
2492 sock_release_ownership(sk);
2493 if (waitqueue_active(&sk->sk_lock.wq))
2494 wake_up(&sk->sk_lock.wq);
2495 spin_unlock_bh(&sk->sk_lock.slock);
2496 }
2497 EXPORT_SYMBOL(release_sock);
2498
2499 /**
2500 * lock_sock_fast - fast version of lock_sock
2501 * @sk: socket
2502 *
2503 * This version should be used for very small section, where process wont block
2504 * return false if fast path is taken
2505 * sk_lock.slock locked, owned = 0, BH disabled
2506 * return true if slow path is taken
2507 * sk_lock.slock unlocked, owned = 1, BH enabled
2508 */
2509 bool lock_sock_fast(struct sock *sk)
2510 {
2511 might_sleep();
2512 spin_lock_bh(&sk->sk_lock.slock);
2513
2514 if (!sk->sk_lock.owned)
2515 /*
2516 * Note : We must disable BH
2517 */
2518 return false;
2519
2520 __lock_sock(sk);
2521 sk->sk_lock.owned = 1;
2522 spin_unlock(&sk->sk_lock.slock);
2523 /*
2524 * The sk_lock has mutex_lock() semantics here:
2525 */
2526 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2527 local_bh_enable();
2528 return true;
2529 }
2530 EXPORT_SYMBOL(lock_sock_fast);
2531
2532 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2533 {
2534 struct timeval tv;
2535 if (!sock_flag(sk, SOCK_TIMESTAMP))
2536 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2537 tv = ktime_to_timeval(sk->sk_stamp);
2538 if (tv.tv_sec == -1)
2539 return -ENOENT;
2540 if (tv.tv_sec == 0) {
2541 sk->sk_stamp = ktime_get_real();
2542 tv = ktime_to_timeval(sk->sk_stamp);
2543 }
2544 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2545 }
2546 EXPORT_SYMBOL(sock_get_timestamp);
2547
2548 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2549 {
2550 struct timespec ts;
2551 if (!sock_flag(sk, SOCK_TIMESTAMP))
2552 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2553 ts = ktime_to_timespec(sk->sk_stamp);
2554 if (ts.tv_sec == -1)
2555 return -ENOENT;
2556 if (ts.tv_sec == 0) {
2557 sk->sk_stamp = ktime_get_real();
2558 ts = ktime_to_timespec(sk->sk_stamp);
2559 }
2560 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2561 }
2562 EXPORT_SYMBOL(sock_get_timestampns);
2563
2564 void sock_enable_timestamp(struct sock *sk, int flag)
2565 {
2566 if (!sock_flag(sk, flag)) {
2567 unsigned long previous_flags = sk->sk_flags;
2568
2569 sock_set_flag(sk, flag);
2570 /*
2571 * we just set one of the two flags which require net
2572 * time stamping, but time stamping might have been on
2573 * already because of the other one
2574 */
2575 if (sock_needs_netstamp(sk) &&
2576 !(previous_flags & SK_FLAGS_TIMESTAMP))
2577 net_enable_timestamp();
2578 }
2579 }
2580
2581 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2582 int level, int type)
2583 {
2584 struct sock_exterr_skb *serr;
2585 struct sk_buff *skb;
2586 int copied, err;
2587
2588 err = -EAGAIN;
2589 skb = sock_dequeue_err_skb(sk);
2590 if (skb == NULL)
2591 goto out;
2592
2593 copied = skb->len;
2594 if (copied > len) {
2595 msg->msg_flags |= MSG_TRUNC;
2596 copied = len;
2597 }
2598 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2599 if (err)
2600 goto out_free_skb;
2601
2602 sock_recv_timestamp(msg, sk, skb);
2603
2604 serr = SKB_EXT_ERR(skb);
2605 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2606
2607 msg->msg_flags |= MSG_ERRQUEUE;
2608 err = copied;
2609
2610 out_free_skb:
2611 kfree_skb(skb);
2612 out:
2613 return err;
2614 }
2615 EXPORT_SYMBOL(sock_recv_errqueue);
2616
2617 /*
2618 * Get a socket option on an socket.
2619 *
2620 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2621 * asynchronous errors should be reported by getsockopt. We assume
2622 * this means if you specify SO_ERROR (otherwise whats the point of it).
2623 */
2624 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2625 char __user *optval, int __user *optlen)
2626 {
2627 struct sock *sk = sock->sk;
2628
2629 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2630 }
2631 EXPORT_SYMBOL(sock_common_getsockopt);
2632
2633 #ifdef CONFIG_COMPAT
2634 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2635 char __user *optval, int __user *optlen)
2636 {
2637 struct sock *sk = sock->sk;
2638
2639 if (sk->sk_prot->compat_getsockopt != NULL)
2640 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2641 optval, optlen);
2642 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2643 }
2644 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2645 #endif
2646
2647 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2648 int flags)
2649 {
2650 struct sock *sk = sock->sk;
2651 int addr_len = 0;
2652 int err;
2653
2654 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2655 flags & ~MSG_DONTWAIT, &addr_len);
2656 if (err >= 0)
2657 msg->msg_namelen = addr_len;
2658 return err;
2659 }
2660 EXPORT_SYMBOL(sock_common_recvmsg);
2661
2662 /*
2663 * Set socket options on an inet socket.
2664 */
2665 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2666 char __user *optval, unsigned int optlen)
2667 {
2668 struct sock *sk = sock->sk;
2669
2670 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2671 }
2672 EXPORT_SYMBOL(sock_common_setsockopt);
2673
2674 #ifdef CONFIG_COMPAT
2675 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2676 char __user *optval, unsigned int optlen)
2677 {
2678 struct sock *sk = sock->sk;
2679
2680 if (sk->sk_prot->compat_setsockopt != NULL)
2681 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2682 optval, optlen);
2683 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2684 }
2685 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2686 #endif
2687
2688 void sk_common_release(struct sock *sk)
2689 {
2690 if (sk->sk_prot->destroy)
2691 sk->sk_prot->destroy(sk);
2692
2693 /*
2694 * Observation: when sock_common_release is called, processes have
2695 * no access to socket. But net still has.
2696 * Step one, detach it from networking:
2697 *
2698 * A. Remove from hash tables.
2699 */
2700
2701 sk->sk_prot->unhash(sk);
2702
2703 /*
2704 * In this point socket cannot receive new packets, but it is possible
2705 * that some packets are in flight because some CPU runs receiver and
2706 * did hash table lookup before we unhashed socket. They will achieve
2707 * receive queue and will be purged by socket destructor.
2708 *
2709 * Also we still have packets pending on receive queue and probably,
2710 * our own packets waiting in device queues. sock_destroy will drain
2711 * receive queue, but transmitted packets will delay socket destruction
2712 * until the last reference will be released.
2713 */
2714
2715 sock_orphan(sk);
2716
2717 xfrm_sk_free_policy(sk);
2718
2719 sk_refcnt_debug_release(sk);
2720
2721 if (sk->sk_frag.page) {
2722 put_page(sk->sk_frag.page);
2723 sk->sk_frag.page = NULL;
2724 }
2725
2726 sock_put(sk);
2727 }
2728 EXPORT_SYMBOL(sk_common_release);
2729
2730 #ifdef CONFIG_PROC_FS
2731 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2732 struct prot_inuse {
2733 int val[PROTO_INUSE_NR];
2734 };
2735
2736 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2737
2738 #ifdef CONFIG_NET_NS
2739 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2740 {
2741 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2742 }
2743 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2744
2745 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2746 {
2747 int cpu, idx = prot->inuse_idx;
2748 int res = 0;
2749
2750 for_each_possible_cpu(cpu)
2751 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2752
2753 return res >= 0 ? res : 0;
2754 }
2755 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2756
2757 static int __net_init sock_inuse_init_net(struct net *net)
2758 {
2759 net->core.inuse = alloc_percpu(struct prot_inuse);
2760 return net->core.inuse ? 0 : -ENOMEM;
2761 }
2762
2763 static void __net_exit sock_inuse_exit_net(struct net *net)
2764 {
2765 free_percpu(net->core.inuse);
2766 }
2767
2768 static struct pernet_operations net_inuse_ops = {
2769 .init = sock_inuse_init_net,
2770 .exit = sock_inuse_exit_net,
2771 };
2772
2773 static __init int net_inuse_init(void)
2774 {
2775 if (register_pernet_subsys(&net_inuse_ops))
2776 panic("Cannot initialize net inuse counters");
2777
2778 return 0;
2779 }
2780
2781 core_initcall(net_inuse_init);
2782 #else
2783 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2784
2785 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2786 {
2787 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2788 }
2789 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2790
2791 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2792 {
2793 int cpu, idx = prot->inuse_idx;
2794 int res = 0;
2795
2796 for_each_possible_cpu(cpu)
2797 res += per_cpu(prot_inuse, cpu).val[idx];
2798
2799 return res >= 0 ? res : 0;
2800 }
2801 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2802 #endif
2803
2804 static void assign_proto_idx(struct proto *prot)
2805 {
2806 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2807
2808 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2809 pr_err("PROTO_INUSE_NR exhausted\n");
2810 return;
2811 }
2812
2813 set_bit(prot->inuse_idx, proto_inuse_idx);
2814 }
2815
2816 static void release_proto_idx(struct proto *prot)
2817 {
2818 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2819 clear_bit(prot->inuse_idx, proto_inuse_idx);
2820 }
2821 #else
2822 static inline void assign_proto_idx(struct proto *prot)
2823 {
2824 }
2825
2826 static inline void release_proto_idx(struct proto *prot)
2827 {
2828 }
2829 #endif
2830
2831 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2832 {
2833 if (!rsk_prot)
2834 return;
2835 kfree(rsk_prot->slab_name);
2836 rsk_prot->slab_name = NULL;
2837 kmem_cache_destroy(rsk_prot->slab);
2838 rsk_prot->slab = NULL;
2839 }
2840
2841 static int req_prot_init(const struct proto *prot)
2842 {
2843 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2844
2845 if (!rsk_prot)
2846 return 0;
2847
2848 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2849 prot->name);
2850 if (!rsk_prot->slab_name)
2851 return -ENOMEM;
2852
2853 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2854 rsk_prot->obj_size, 0,
2855 prot->slab_flags, NULL);
2856
2857 if (!rsk_prot->slab) {
2858 pr_crit("%s: Can't create request sock SLAB cache!\n",
2859 prot->name);
2860 return -ENOMEM;
2861 }
2862 return 0;
2863 }
2864
2865 int proto_register(struct proto *prot, int alloc_slab)
2866 {
2867 if (alloc_slab) {
2868 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2869 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2870 NULL);
2871
2872 if (prot->slab == NULL) {
2873 pr_crit("%s: Can't create sock SLAB cache!\n",
2874 prot->name);
2875 goto out;
2876 }
2877
2878 if (req_prot_init(prot))
2879 goto out_free_request_sock_slab;
2880
2881 if (prot->twsk_prot != NULL) {
2882 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2883
2884 if (prot->twsk_prot->twsk_slab_name == NULL)
2885 goto out_free_request_sock_slab;
2886
2887 prot->twsk_prot->twsk_slab =
2888 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2889 prot->twsk_prot->twsk_obj_size,
2890 0,
2891 prot->slab_flags,
2892 NULL);
2893 if (prot->twsk_prot->twsk_slab == NULL)
2894 goto out_free_timewait_sock_slab_name;
2895 }
2896 }
2897
2898 mutex_lock(&proto_list_mutex);
2899 list_add(&prot->node, &proto_list);
2900 assign_proto_idx(prot);
2901 mutex_unlock(&proto_list_mutex);
2902 return 0;
2903
2904 out_free_timewait_sock_slab_name:
2905 kfree(prot->twsk_prot->twsk_slab_name);
2906 out_free_request_sock_slab:
2907 req_prot_cleanup(prot->rsk_prot);
2908
2909 kmem_cache_destroy(prot->slab);
2910 prot->slab = NULL;
2911 out:
2912 return -ENOBUFS;
2913 }
2914 EXPORT_SYMBOL(proto_register);
2915
2916 void proto_unregister(struct proto *prot)
2917 {
2918 mutex_lock(&proto_list_mutex);
2919 release_proto_idx(prot);
2920 list_del(&prot->node);
2921 mutex_unlock(&proto_list_mutex);
2922
2923 kmem_cache_destroy(prot->slab);
2924 prot->slab = NULL;
2925
2926 req_prot_cleanup(prot->rsk_prot);
2927
2928 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2929 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2930 kfree(prot->twsk_prot->twsk_slab_name);
2931 prot->twsk_prot->twsk_slab = NULL;
2932 }
2933 }
2934 EXPORT_SYMBOL(proto_unregister);
2935
2936 #ifdef CONFIG_PROC_FS
2937 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2938 __acquires(proto_list_mutex)
2939 {
2940 mutex_lock(&proto_list_mutex);
2941 return seq_list_start_head(&proto_list, *pos);
2942 }
2943
2944 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2945 {
2946 return seq_list_next(v, &proto_list, pos);
2947 }
2948
2949 static void proto_seq_stop(struct seq_file *seq, void *v)
2950 __releases(proto_list_mutex)
2951 {
2952 mutex_unlock(&proto_list_mutex);
2953 }
2954
2955 static char proto_method_implemented(const void *method)
2956 {
2957 return method == NULL ? 'n' : 'y';
2958 }
2959 static long sock_prot_memory_allocated(struct proto *proto)
2960 {
2961 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2962 }
2963
2964 static char *sock_prot_memory_pressure(struct proto *proto)
2965 {
2966 return proto->memory_pressure != NULL ?
2967 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2968 }
2969
2970 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2971 {
2972
2973 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2974 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2975 proto->name,
2976 proto->obj_size,
2977 sock_prot_inuse_get(seq_file_net(seq), proto),
2978 sock_prot_memory_allocated(proto),
2979 sock_prot_memory_pressure(proto),
2980 proto->max_header,
2981 proto->slab == NULL ? "no" : "yes",
2982 module_name(proto->owner),
2983 proto_method_implemented(proto->close),
2984 proto_method_implemented(proto->connect),
2985 proto_method_implemented(proto->disconnect),
2986 proto_method_implemented(proto->accept),
2987 proto_method_implemented(proto->ioctl),
2988 proto_method_implemented(proto->init),
2989 proto_method_implemented(proto->destroy),
2990 proto_method_implemented(proto->shutdown),
2991 proto_method_implemented(proto->setsockopt),
2992 proto_method_implemented(proto->getsockopt),
2993 proto_method_implemented(proto->sendmsg),
2994 proto_method_implemented(proto->recvmsg),
2995 proto_method_implemented(proto->sendpage),
2996 proto_method_implemented(proto->bind),
2997 proto_method_implemented(proto->backlog_rcv),
2998 proto_method_implemented(proto->hash),
2999 proto_method_implemented(proto->unhash),
3000 proto_method_implemented(proto->get_port),
3001 proto_method_implemented(proto->enter_memory_pressure));
3002 }
3003
3004 static int proto_seq_show(struct seq_file *seq, void *v)
3005 {
3006 if (v == &proto_list)
3007 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3008 "protocol",
3009 "size",
3010 "sockets",
3011 "memory",
3012 "press",
3013 "maxhdr",
3014 "slab",
3015 "module",
3016 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3017 else
3018 proto_seq_printf(seq, list_entry(v, struct proto, node));
3019 return 0;
3020 }
3021
3022 static const struct seq_operations proto_seq_ops = {
3023 .start = proto_seq_start,
3024 .next = proto_seq_next,
3025 .stop = proto_seq_stop,
3026 .show = proto_seq_show,
3027 };
3028
3029 static int proto_seq_open(struct inode *inode, struct file *file)
3030 {
3031 return seq_open_net(inode, file, &proto_seq_ops,
3032 sizeof(struct seq_net_private));
3033 }
3034
3035 static const struct file_operations proto_seq_fops = {
3036 .owner = THIS_MODULE,
3037 .open = proto_seq_open,
3038 .read = seq_read,
3039 .llseek = seq_lseek,
3040 .release = seq_release_net,
3041 };
3042
3043 static __net_init int proto_init_net(struct net *net)
3044 {
3045 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3046 return -ENOMEM;
3047
3048 return 0;
3049 }
3050
3051 static __net_exit void proto_exit_net(struct net *net)
3052 {
3053 remove_proc_entry("protocols", net->proc_net);
3054 }
3055
3056
3057 static __net_initdata struct pernet_operations proto_net_ops = {
3058 .init = proto_init_net,
3059 .exit = proto_exit_net,
3060 };
3061
3062 static int __init proto_init(void)
3063 {
3064 return register_pernet_subsys(&proto_net_ops);
3065 }
3066
3067 subsys_initcall(proto_init);
3068
3069 #endif /* PROC_FS */
This page took 0.153944 seconds and 5 git commands to generate.