f5a426097236129310e1129f4fbe65e5746352cf
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276
277 /**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
298
299 /*
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
307 */
308 if (WARN_ON(sk->sk_forward_alloc))
309 sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 int ret;
316 unsigned long pflags = current->flags;
317
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328
329 #if defined(CONFIG_CGROUPS)
330 #if !defined(CONFIG_NET_CLS_CGROUP)
331 int net_cls_subsys_id = -1;
332 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333 #endif
334 #if !defined(CONFIG_NETPRIO_CGROUP)
335 int net_prio_subsys_id = -1;
336 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337 #endif
338 #endif
339
340 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341 {
342 struct timeval tv;
343
344 if (optlen < sizeof(tv))
345 return -EINVAL;
346 if (copy_from_user(&tv, optval, sizeof(tv)))
347 return -EFAULT;
348 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349 return -EDOM;
350
351 if (tv.tv_sec < 0) {
352 static int warned __read_mostly;
353
354 *timeo_p = 0;
355 if (warned < 10 && net_ratelimit()) {
356 warned++;
357 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358 __func__, current->comm, task_pid_nr(current));
359 }
360 return 0;
361 }
362 *timeo_p = MAX_SCHEDULE_TIMEOUT;
363 if (tv.tv_sec == 0 && tv.tv_usec == 0)
364 return 0;
365 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367 return 0;
368 }
369
370 static void sock_warn_obsolete_bsdism(const char *name)
371 {
372 static int warned;
373 static char warncomm[TASK_COMM_LEN];
374 if (strcmp(warncomm, current->comm) && warned < 5) {
375 strcpy(warncomm, current->comm);
376 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377 warncomm, name);
378 warned++;
379 }
380 }
381
382 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385 {
386 if (sk->sk_flags & flags) {
387 sk->sk_flags &= ~flags;
388 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389 net_disable_timestamp();
390 }
391 }
392
393
394 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395 {
396 int err;
397 int skb_len;
398 unsigned long flags;
399 struct sk_buff_head *list = &sk->sk_receive_queue;
400
401 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402 atomic_inc(&sk->sk_drops);
403 trace_sock_rcvqueue_full(sk, skb);
404 return -ENOMEM;
405 }
406
407 err = sk_filter(sk, skb);
408 if (err)
409 return err;
410
411 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412 atomic_inc(&sk->sk_drops);
413 return -ENOBUFS;
414 }
415
416 skb->dev = NULL;
417 skb_set_owner_r(skb, sk);
418
419 /* Cache the SKB length before we tack it onto the receive
420 * queue. Once it is added it no longer belongs to us and
421 * may be freed by other threads of control pulling packets
422 * from the queue.
423 */
424 skb_len = skb->len;
425
426 /* we escape from rcu protected region, make sure we dont leak
427 * a norefcounted dst
428 */
429 skb_dst_force(skb);
430
431 spin_lock_irqsave(&list->lock, flags);
432 skb->dropcount = atomic_read(&sk->sk_drops);
433 __skb_queue_tail(list, skb);
434 spin_unlock_irqrestore(&list->lock, flags);
435
436 if (!sock_flag(sk, SOCK_DEAD))
437 sk->sk_data_ready(sk, skb_len);
438 return 0;
439 }
440 EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443 {
444 int rc = NET_RX_SUCCESS;
445
446 if (sk_filter(sk, skb))
447 goto discard_and_relse;
448
449 skb->dev = NULL;
450
451 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452 atomic_inc(&sk->sk_drops);
453 goto discard_and_relse;
454 }
455 if (nested)
456 bh_lock_sock_nested(sk);
457 else
458 bh_lock_sock(sk);
459 if (!sock_owned_by_user(sk)) {
460 /*
461 * trylock + unlock semantics:
462 */
463 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465 rc = sk_backlog_rcv(sk, skb);
466
467 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469 bh_unlock_sock(sk);
470 atomic_inc(&sk->sk_drops);
471 goto discard_and_relse;
472 }
473
474 bh_unlock_sock(sk);
475 out:
476 sock_put(sk);
477 return rc;
478 discard_and_relse:
479 kfree_skb(skb);
480 goto out;
481 }
482 EXPORT_SYMBOL(sk_receive_skb);
483
484 void sk_reset_txq(struct sock *sk)
485 {
486 sk_tx_queue_clear(sk);
487 }
488 EXPORT_SYMBOL(sk_reset_txq);
489
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 struct dst_entry *dst = __sk_dst_get(sk);
493
494 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 sk_tx_queue_clear(sk);
496 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 dst_release(dst);
498 return NULL;
499 }
500
501 return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 struct dst_entry *dst = sk_dst_get(sk);
508
509 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 sk_dst_reset(sk);
511 dst_release(dst);
512 return NULL;
513 }
514
515 return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518
519 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520 {
521 int ret = -ENOPROTOOPT;
522 #ifdef CONFIG_NETDEVICES
523 struct net *net = sock_net(sk);
524 char devname[IFNAMSIZ];
525 int index;
526
527 /* Sorry... */
528 ret = -EPERM;
529 if (!capable(CAP_NET_RAW))
530 goto out;
531
532 ret = -EINVAL;
533 if (optlen < 0)
534 goto out;
535
536 /* Bind this socket to a particular device like "eth0",
537 * as specified in the passed interface name. If the
538 * name is "" or the option length is zero the socket
539 * is not bound.
540 */
541 if (optlen > IFNAMSIZ - 1)
542 optlen = IFNAMSIZ - 1;
543 memset(devname, 0, sizeof(devname));
544
545 ret = -EFAULT;
546 if (copy_from_user(devname, optval, optlen))
547 goto out;
548
549 index = 0;
550 if (devname[0] != '\0') {
551 struct net_device *dev;
552
553 rcu_read_lock();
554 dev = dev_get_by_name_rcu(net, devname);
555 if (dev)
556 index = dev->ifindex;
557 rcu_read_unlock();
558 ret = -ENODEV;
559 if (!dev)
560 goto out;
561 }
562
563 lock_sock(sk);
564 sk->sk_bound_dev_if = index;
565 sk_dst_reset(sk);
566 release_sock(sk);
567
568 ret = 0;
569
570 out:
571 #endif
572
573 return ret;
574 }
575
576 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577 {
578 if (valbool)
579 sock_set_flag(sk, bit);
580 else
581 sock_reset_flag(sk, bit);
582 }
583
584 /*
585 * This is meant for all protocols to use and covers goings on
586 * at the socket level. Everything here is generic.
587 */
588
589 int sock_setsockopt(struct socket *sock, int level, int optname,
590 char __user *optval, unsigned int optlen)
591 {
592 struct sock *sk = sock->sk;
593 int val;
594 int valbool;
595 struct linger ling;
596 int ret = 0;
597
598 /*
599 * Options without arguments
600 */
601
602 if (optname == SO_BINDTODEVICE)
603 return sock_bindtodevice(sk, optval, optlen);
604
605 if (optlen < sizeof(int))
606 return -EINVAL;
607
608 if (get_user(val, (int __user *)optval))
609 return -EFAULT;
610
611 valbool = val ? 1 : 0;
612
613 lock_sock(sk);
614
615 switch (optname) {
616 case SO_DEBUG:
617 if (val && !capable(CAP_NET_ADMIN))
618 ret = -EACCES;
619 else
620 sock_valbool_flag(sk, SOCK_DBG, valbool);
621 break;
622 case SO_REUSEADDR:
623 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624 break;
625 case SO_TYPE:
626 case SO_PROTOCOL:
627 case SO_DOMAIN:
628 case SO_ERROR:
629 ret = -ENOPROTOOPT;
630 break;
631 case SO_DONTROUTE:
632 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633 break;
634 case SO_BROADCAST:
635 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636 break;
637 case SO_SNDBUF:
638 /* Don't error on this BSD doesn't and if you think
639 * about it this is right. Otherwise apps have to
640 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641 * are treated in BSD as hints
642 */
643 val = min_t(u32, val, sysctl_wmem_max);
644 set_sndbuf:
645 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647 /* Wake up sending tasks if we upped the value. */
648 sk->sk_write_space(sk);
649 break;
650
651 case SO_SNDBUFFORCE:
652 if (!capable(CAP_NET_ADMIN)) {
653 ret = -EPERM;
654 break;
655 }
656 goto set_sndbuf;
657
658 case SO_RCVBUF:
659 /* Don't error on this BSD doesn't and if you think
660 * about it this is right. Otherwise apps have to
661 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662 * are treated in BSD as hints
663 */
664 val = min_t(u32, val, sysctl_rmem_max);
665 set_rcvbuf:
666 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667 /*
668 * We double it on the way in to account for
669 * "struct sk_buff" etc. overhead. Applications
670 * assume that the SO_RCVBUF setting they make will
671 * allow that much actual data to be received on that
672 * socket.
673 *
674 * Applications are unaware that "struct sk_buff" and
675 * other overheads allocate from the receive buffer
676 * during socket buffer allocation.
677 *
678 * And after considering the possible alternatives,
679 * returning the value we actually used in getsockopt
680 * is the most desirable behavior.
681 */
682 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683 break;
684
685 case SO_RCVBUFFORCE:
686 if (!capable(CAP_NET_ADMIN)) {
687 ret = -EPERM;
688 break;
689 }
690 goto set_rcvbuf;
691
692 case SO_KEEPALIVE:
693 #ifdef CONFIG_INET
694 if (sk->sk_protocol == IPPROTO_TCP)
695 tcp_set_keepalive(sk, valbool);
696 #endif
697 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
698 break;
699
700 case SO_OOBINLINE:
701 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
702 break;
703
704 case SO_NO_CHECK:
705 sk->sk_no_check = valbool;
706 break;
707
708 case SO_PRIORITY:
709 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
710 sk->sk_priority = val;
711 else
712 ret = -EPERM;
713 break;
714
715 case SO_LINGER:
716 if (optlen < sizeof(ling)) {
717 ret = -EINVAL; /* 1003.1g */
718 break;
719 }
720 if (copy_from_user(&ling, optval, sizeof(ling))) {
721 ret = -EFAULT;
722 break;
723 }
724 if (!ling.l_onoff)
725 sock_reset_flag(sk, SOCK_LINGER);
726 else {
727 #if (BITS_PER_LONG == 32)
728 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
729 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
730 else
731 #endif
732 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
733 sock_set_flag(sk, SOCK_LINGER);
734 }
735 break;
736
737 case SO_BSDCOMPAT:
738 sock_warn_obsolete_bsdism("setsockopt");
739 break;
740
741 case SO_PASSCRED:
742 if (valbool)
743 set_bit(SOCK_PASSCRED, &sock->flags);
744 else
745 clear_bit(SOCK_PASSCRED, &sock->flags);
746 break;
747
748 case SO_TIMESTAMP:
749 case SO_TIMESTAMPNS:
750 if (valbool) {
751 if (optname == SO_TIMESTAMP)
752 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
753 else
754 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 break;
762
763 case SO_TIMESTAMPING:
764 if (val & ~SOF_TIMESTAMPING_MASK) {
765 ret = -EINVAL;
766 break;
767 }
768 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
769 val & SOF_TIMESTAMPING_TX_HARDWARE);
770 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
771 val & SOF_TIMESTAMPING_TX_SOFTWARE);
772 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
773 val & SOF_TIMESTAMPING_RX_HARDWARE);
774 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
775 sock_enable_timestamp(sk,
776 SOCK_TIMESTAMPING_RX_SOFTWARE);
777 else
778 sock_disable_timestamp(sk,
779 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
780 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
781 val & SOF_TIMESTAMPING_SOFTWARE);
782 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
783 val & SOF_TIMESTAMPING_SYS_HARDWARE);
784 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
785 val & SOF_TIMESTAMPING_RAW_HARDWARE);
786 break;
787
788 case SO_RCVLOWAT:
789 if (val < 0)
790 val = INT_MAX;
791 sk->sk_rcvlowat = val ? : 1;
792 break;
793
794 case SO_RCVTIMEO:
795 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
796 break;
797
798 case SO_SNDTIMEO:
799 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
800 break;
801
802 case SO_ATTACH_FILTER:
803 ret = -EINVAL;
804 if (optlen == sizeof(struct sock_fprog)) {
805 struct sock_fprog fprog;
806
807 ret = -EFAULT;
808 if (copy_from_user(&fprog, optval, sizeof(fprog)))
809 break;
810
811 ret = sk_attach_filter(&fprog, sk);
812 }
813 break;
814
815 case SO_DETACH_FILTER:
816 ret = sk_detach_filter(sk);
817 break;
818
819 case SO_PASSSEC:
820 if (valbool)
821 set_bit(SOCK_PASSSEC, &sock->flags);
822 else
823 clear_bit(SOCK_PASSSEC, &sock->flags);
824 break;
825 case SO_MARK:
826 if (!capable(CAP_NET_ADMIN))
827 ret = -EPERM;
828 else
829 sk->sk_mark = val;
830 break;
831
832 /* We implement the SO_SNDLOWAT etc to
833 not be settable (1003.1g 5.3) */
834 case SO_RXQ_OVFL:
835 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
836 break;
837
838 case SO_WIFI_STATUS:
839 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
840 break;
841
842 case SO_PEEK_OFF:
843 if (sock->ops->set_peek_off)
844 sock->ops->set_peek_off(sk, val);
845 else
846 ret = -EOPNOTSUPP;
847 break;
848
849 case SO_NOFCS:
850 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
851 break;
852
853 default:
854 ret = -ENOPROTOOPT;
855 break;
856 }
857 release_sock(sk);
858 return ret;
859 }
860 EXPORT_SYMBOL(sock_setsockopt);
861
862
863 void cred_to_ucred(struct pid *pid, const struct cred *cred,
864 struct ucred *ucred)
865 {
866 ucred->pid = pid_vnr(pid);
867 ucred->uid = ucred->gid = -1;
868 if (cred) {
869 struct user_namespace *current_ns = current_user_ns();
870
871 ucred->uid = from_kuid_munged(current_ns, cred->euid);
872 ucred->gid = from_kgid_munged(current_ns, cred->egid);
873 }
874 }
875 EXPORT_SYMBOL_GPL(cred_to_ucred);
876
877 int sock_getsockopt(struct socket *sock, int level, int optname,
878 char __user *optval, int __user *optlen)
879 {
880 struct sock *sk = sock->sk;
881
882 union {
883 int val;
884 struct linger ling;
885 struct timeval tm;
886 } v;
887
888 int lv = sizeof(int);
889 int len;
890
891 if (get_user(len, optlen))
892 return -EFAULT;
893 if (len < 0)
894 return -EINVAL;
895
896 memset(&v, 0, sizeof(v));
897
898 switch (optname) {
899 case SO_DEBUG:
900 v.val = sock_flag(sk, SOCK_DBG);
901 break;
902
903 case SO_DONTROUTE:
904 v.val = sock_flag(sk, SOCK_LOCALROUTE);
905 break;
906
907 case SO_BROADCAST:
908 v.val = sock_flag(sk, SOCK_BROADCAST);
909 break;
910
911 case SO_SNDBUF:
912 v.val = sk->sk_sndbuf;
913 break;
914
915 case SO_RCVBUF:
916 v.val = sk->sk_rcvbuf;
917 break;
918
919 case SO_REUSEADDR:
920 v.val = sk->sk_reuse;
921 break;
922
923 case SO_KEEPALIVE:
924 v.val = sock_flag(sk, SOCK_KEEPOPEN);
925 break;
926
927 case SO_TYPE:
928 v.val = sk->sk_type;
929 break;
930
931 case SO_PROTOCOL:
932 v.val = sk->sk_protocol;
933 break;
934
935 case SO_DOMAIN:
936 v.val = sk->sk_family;
937 break;
938
939 case SO_ERROR:
940 v.val = -sock_error(sk);
941 if (v.val == 0)
942 v.val = xchg(&sk->sk_err_soft, 0);
943 break;
944
945 case SO_OOBINLINE:
946 v.val = sock_flag(sk, SOCK_URGINLINE);
947 break;
948
949 case SO_NO_CHECK:
950 v.val = sk->sk_no_check;
951 break;
952
953 case SO_PRIORITY:
954 v.val = sk->sk_priority;
955 break;
956
957 case SO_LINGER:
958 lv = sizeof(v.ling);
959 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
960 v.ling.l_linger = sk->sk_lingertime / HZ;
961 break;
962
963 case SO_BSDCOMPAT:
964 sock_warn_obsolete_bsdism("getsockopt");
965 break;
966
967 case SO_TIMESTAMP:
968 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
969 !sock_flag(sk, SOCK_RCVTSTAMPNS);
970 break;
971
972 case SO_TIMESTAMPNS:
973 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
974 break;
975
976 case SO_TIMESTAMPING:
977 v.val = 0;
978 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
979 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
980 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
981 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
982 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
983 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
984 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
985 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
986 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
987 v.val |= SOF_TIMESTAMPING_SOFTWARE;
988 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
989 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
990 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
991 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
992 break;
993
994 case SO_RCVTIMEO:
995 lv = sizeof(struct timeval);
996 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
997 v.tm.tv_sec = 0;
998 v.tm.tv_usec = 0;
999 } else {
1000 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1001 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1002 }
1003 break;
1004
1005 case SO_SNDTIMEO:
1006 lv = sizeof(struct timeval);
1007 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1008 v.tm.tv_sec = 0;
1009 v.tm.tv_usec = 0;
1010 } else {
1011 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1012 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1013 }
1014 break;
1015
1016 case SO_RCVLOWAT:
1017 v.val = sk->sk_rcvlowat;
1018 break;
1019
1020 case SO_SNDLOWAT:
1021 v.val = 1;
1022 break;
1023
1024 case SO_PASSCRED:
1025 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1026 break;
1027
1028 case SO_PEERCRED:
1029 {
1030 struct ucred peercred;
1031 if (len > sizeof(peercred))
1032 len = sizeof(peercred);
1033 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1034 if (copy_to_user(optval, &peercred, len))
1035 return -EFAULT;
1036 goto lenout;
1037 }
1038
1039 case SO_PEERNAME:
1040 {
1041 char address[128];
1042
1043 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1044 return -ENOTCONN;
1045 if (lv < len)
1046 return -EINVAL;
1047 if (copy_to_user(optval, address, len))
1048 return -EFAULT;
1049 goto lenout;
1050 }
1051
1052 /* Dubious BSD thing... Probably nobody even uses it, but
1053 * the UNIX standard wants it for whatever reason... -DaveM
1054 */
1055 case SO_ACCEPTCONN:
1056 v.val = sk->sk_state == TCP_LISTEN;
1057 break;
1058
1059 case SO_PASSSEC:
1060 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1061 break;
1062
1063 case SO_PEERSEC:
1064 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1065
1066 case SO_MARK:
1067 v.val = sk->sk_mark;
1068 break;
1069
1070 case SO_RXQ_OVFL:
1071 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1072 break;
1073
1074 case SO_WIFI_STATUS:
1075 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1076 break;
1077
1078 case SO_PEEK_OFF:
1079 if (!sock->ops->set_peek_off)
1080 return -EOPNOTSUPP;
1081
1082 v.val = sk->sk_peek_off;
1083 break;
1084 case SO_NOFCS:
1085 v.val = sock_flag(sk, SOCK_NOFCS);
1086 break;
1087 default:
1088 return -ENOPROTOOPT;
1089 }
1090
1091 if (len > lv)
1092 len = lv;
1093 if (copy_to_user(optval, &v, len))
1094 return -EFAULT;
1095 lenout:
1096 if (put_user(len, optlen))
1097 return -EFAULT;
1098 return 0;
1099 }
1100
1101 /*
1102 * Initialize an sk_lock.
1103 *
1104 * (We also register the sk_lock with the lock validator.)
1105 */
1106 static inline void sock_lock_init(struct sock *sk)
1107 {
1108 sock_lock_init_class_and_name(sk,
1109 af_family_slock_key_strings[sk->sk_family],
1110 af_family_slock_keys + sk->sk_family,
1111 af_family_key_strings[sk->sk_family],
1112 af_family_keys + sk->sk_family);
1113 }
1114
1115 /*
1116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1117 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1119 */
1120 static void sock_copy(struct sock *nsk, const struct sock *osk)
1121 {
1122 #ifdef CONFIG_SECURITY_NETWORK
1123 void *sptr = nsk->sk_security;
1124 #endif
1125 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1126
1127 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1128 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1129
1130 #ifdef CONFIG_SECURITY_NETWORK
1131 nsk->sk_security = sptr;
1132 security_sk_clone(osk, nsk);
1133 #endif
1134 }
1135
1136 /*
1137 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1138 * un-modified. Special care is taken when initializing object to zero.
1139 */
1140 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1141 {
1142 if (offsetof(struct sock, sk_node.next) != 0)
1143 memset(sk, 0, offsetof(struct sock, sk_node.next));
1144 memset(&sk->sk_node.pprev, 0,
1145 size - offsetof(struct sock, sk_node.pprev));
1146 }
1147
1148 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1149 {
1150 unsigned long nulls1, nulls2;
1151
1152 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1153 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1154 if (nulls1 > nulls2)
1155 swap(nulls1, nulls2);
1156
1157 if (nulls1 != 0)
1158 memset((char *)sk, 0, nulls1);
1159 memset((char *)sk + nulls1 + sizeof(void *), 0,
1160 nulls2 - nulls1 - sizeof(void *));
1161 memset((char *)sk + nulls2 + sizeof(void *), 0,
1162 size - nulls2 - sizeof(void *));
1163 }
1164 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1165
1166 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1167 int family)
1168 {
1169 struct sock *sk;
1170 struct kmem_cache *slab;
1171
1172 slab = prot->slab;
1173 if (slab != NULL) {
1174 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1175 if (!sk)
1176 return sk;
1177 if (priority & __GFP_ZERO) {
1178 if (prot->clear_sk)
1179 prot->clear_sk(sk, prot->obj_size);
1180 else
1181 sk_prot_clear_nulls(sk, prot->obj_size);
1182 }
1183 } else
1184 sk = kmalloc(prot->obj_size, priority);
1185
1186 if (sk != NULL) {
1187 kmemcheck_annotate_bitfield(sk, flags);
1188
1189 if (security_sk_alloc(sk, family, priority))
1190 goto out_free;
1191
1192 if (!try_module_get(prot->owner))
1193 goto out_free_sec;
1194 sk_tx_queue_clear(sk);
1195 }
1196
1197 return sk;
1198
1199 out_free_sec:
1200 security_sk_free(sk);
1201 out_free:
1202 if (slab != NULL)
1203 kmem_cache_free(slab, sk);
1204 else
1205 kfree(sk);
1206 return NULL;
1207 }
1208
1209 static void sk_prot_free(struct proto *prot, struct sock *sk)
1210 {
1211 struct kmem_cache *slab;
1212 struct module *owner;
1213
1214 owner = prot->owner;
1215 slab = prot->slab;
1216
1217 security_sk_free(sk);
1218 if (slab != NULL)
1219 kmem_cache_free(slab, sk);
1220 else
1221 kfree(sk);
1222 module_put(owner);
1223 }
1224
1225 #ifdef CONFIG_CGROUPS
1226 void sock_update_classid(struct sock *sk)
1227 {
1228 u32 classid;
1229
1230 rcu_read_lock(); /* doing current task, which cannot vanish. */
1231 classid = task_cls_classid(current);
1232 rcu_read_unlock();
1233 if (classid != sk->sk_classid)
1234 sk->sk_classid = classid;
1235 }
1236 EXPORT_SYMBOL(sock_update_classid);
1237
1238 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1239 {
1240 if (in_interrupt())
1241 return;
1242
1243 sk->sk_cgrp_prioidx = task_netprioidx(task);
1244 }
1245 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1246 #endif
1247
1248 /**
1249 * sk_alloc - All socket objects are allocated here
1250 * @net: the applicable net namespace
1251 * @family: protocol family
1252 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1253 * @prot: struct proto associated with this new sock instance
1254 */
1255 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1256 struct proto *prot)
1257 {
1258 struct sock *sk;
1259
1260 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1261 if (sk) {
1262 sk->sk_family = family;
1263 /*
1264 * See comment in struct sock definition to understand
1265 * why we need sk_prot_creator -acme
1266 */
1267 sk->sk_prot = sk->sk_prot_creator = prot;
1268 sock_lock_init(sk);
1269 sock_net_set(sk, get_net(net));
1270 atomic_set(&sk->sk_wmem_alloc, 1);
1271
1272 sock_update_classid(sk);
1273 sock_update_netprioidx(sk, current);
1274 }
1275
1276 return sk;
1277 }
1278 EXPORT_SYMBOL(sk_alloc);
1279
1280 static void __sk_free(struct sock *sk)
1281 {
1282 struct sk_filter *filter;
1283
1284 if (sk->sk_destruct)
1285 sk->sk_destruct(sk);
1286
1287 filter = rcu_dereference_check(sk->sk_filter,
1288 atomic_read(&sk->sk_wmem_alloc) == 0);
1289 if (filter) {
1290 sk_filter_uncharge(sk, filter);
1291 RCU_INIT_POINTER(sk->sk_filter, NULL);
1292 }
1293
1294 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1295
1296 if (atomic_read(&sk->sk_omem_alloc))
1297 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1298 __func__, atomic_read(&sk->sk_omem_alloc));
1299
1300 if (sk->sk_peer_cred)
1301 put_cred(sk->sk_peer_cred);
1302 put_pid(sk->sk_peer_pid);
1303 put_net(sock_net(sk));
1304 sk_prot_free(sk->sk_prot_creator, sk);
1305 }
1306
1307 void sk_free(struct sock *sk)
1308 {
1309 /*
1310 * We subtract one from sk_wmem_alloc and can know if
1311 * some packets are still in some tx queue.
1312 * If not null, sock_wfree() will call __sk_free(sk) later
1313 */
1314 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1315 __sk_free(sk);
1316 }
1317 EXPORT_SYMBOL(sk_free);
1318
1319 /*
1320 * Last sock_put should drop reference to sk->sk_net. It has already
1321 * been dropped in sk_change_net. Taking reference to stopping namespace
1322 * is not an option.
1323 * Take reference to a socket to remove it from hash _alive_ and after that
1324 * destroy it in the context of init_net.
1325 */
1326 void sk_release_kernel(struct sock *sk)
1327 {
1328 if (sk == NULL || sk->sk_socket == NULL)
1329 return;
1330
1331 sock_hold(sk);
1332 sock_release(sk->sk_socket);
1333 release_net(sock_net(sk));
1334 sock_net_set(sk, get_net(&init_net));
1335 sock_put(sk);
1336 }
1337 EXPORT_SYMBOL(sk_release_kernel);
1338
1339 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1340 {
1341 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1342 sock_update_memcg(newsk);
1343 }
1344
1345 /**
1346 * sk_clone_lock - clone a socket, and lock its clone
1347 * @sk: the socket to clone
1348 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1349 *
1350 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1351 */
1352 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1353 {
1354 struct sock *newsk;
1355
1356 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1357 if (newsk != NULL) {
1358 struct sk_filter *filter;
1359
1360 sock_copy(newsk, sk);
1361
1362 /* SANITY */
1363 get_net(sock_net(newsk));
1364 sk_node_init(&newsk->sk_node);
1365 sock_lock_init(newsk);
1366 bh_lock_sock(newsk);
1367 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1368 newsk->sk_backlog.len = 0;
1369
1370 atomic_set(&newsk->sk_rmem_alloc, 0);
1371 /*
1372 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1373 */
1374 atomic_set(&newsk->sk_wmem_alloc, 1);
1375 atomic_set(&newsk->sk_omem_alloc, 0);
1376 skb_queue_head_init(&newsk->sk_receive_queue);
1377 skb_queue_head_init(&newsk->sk_write_queue);
1378 #ifdef CONFIG_NET_DMA
1379 skb_queue_head_init(&newsk->sk_async_wait_queue);
1380 #endif
1381
1382 spin_lock_init(&newsk->sk_dst_lock);
1383 rwlock_init(&newsk->sk_callback_lock);
1384 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1385 af_callback_keys + newsk->sk_family,
1386 af_family_clock_key_strings[newsk->sk_family]);
1387
1388 newsk->sk_dst_cache = NULL;
1389 newsk->sk_wmem_queued = 0;
1390 newsk->sk_forward_alloc = 0;
1391 newsk->sk_send_head = NULL;
1392 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1393
1394 sock_reset_flag(newsk, SOCK_DONE);
1395 skb_queue_head_init(&newsk->sk_error_queue);
1396
1397 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1398 if (filter != NULL)
1399 sk_filter_charge(newsk, filter);
1400
1401 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1402 /* It is still raw copy of parent, so invalidate
1403 * destructor and make plain sk_free() */
1404 newsk->sk_destruct = NULL;
1405 bh_unlock_sock(newsk);
1406 sk_free(newsk);
1407 newsk = NULL;
1408 goto out;
1409 }
1410
1411 newsk->sk_err = 0;
1412 newsk->sk_priority = 0;
1413 /*
1414 * Before updating sk_refcnt, we must commit prior changes to memory
1415 * (Documentation/RCU/rculist_nulls.txt for details)
1416 */
1417 smp_wmb();
1418 atomic_set(&newsk->sk_refcnt, 2);
1419
1420 /*
1421 * Increment the counter in the same struct proto as the master
1422 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1423 * is the same as sk->sk_prot->socks, as this field was copied
1424 * with memcpy).
1425 *
1426 * This _changes_ the previous behaviour, where
1427 * tcp_create_openreq_child always was incrementing the
1428 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1429 * to be taken into account in all callers. -acme
1430 */
1431 sk_refcnt_debug_inc(newsk);
1432 sk_set_socket(newsk, NULL);
1433 newsk->sk_wq = NULL;
1434
1435 sk_update_clone(sk, newsk);
1436
1437 if (newsk->sk_prot->sockets_allocated)
1438 sk_sockets_allocated_inc(newsk);
1439
1440 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1441 net_enable_timestamp();
1442 }
1443 out:
1444 return newsk;
1445 }
1446 EXPORT_SYMBOL_GPL(sk_clone_lock);
1447
1448 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1449 {
1450 __sk_dst_set(sk, dst);
1451 sk->sk_route_caps = dst->dev->features;
1452 if (sk->sk_route_caps & NETIF_F_GSO)
1453 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1454 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1455 if (sk_can_gso(sk)) {
1456 if (dst->header_len) {
1457 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1458 } else {
1459 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1460 sk->sk_gso_max_size = dst->dev->gso_max_size;
1461 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1462 }
1463 }
1464 }
1465 EXPORT_SYMBOL_GPL(sk_setup_caps);
1466
1467 /*
1468 * Simple resource managers for sockets.
1469 */
1470
1471
1472 /*
1473 * Write buffer destructor automatically called from kfree_skb.
1474 */
1475 void sock_wfree(struct sk_buff *skb)
1476 {
1477 struct sock *sk = skb->sk;
1478 unsigned int len = skb->truesize;
1479
1480 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1481 /*
1482 * Keep a reference on sk_wmem_alloc, this will be released
1483 * after sk_write_space() call
1484 */
1485 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1486 sk->sk_write_space(sk);
1487 len = 1;
1488 }
1489 /*
1490 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1491 * could not do because of in-flight packets
1492 */
1493 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1494 __sk_free(sk);
1495 }
1496 EXPORT_SYMBOL(sock_wfree);
1497
1498 /*
1499 * Read buffer destructor automatically called from kfree_skb.
1500 */
1501 void sock_rfree(struct sk_buff *skb)
1502 {
1503 struct sock *sk = skb->sk;
1504 unsigned int len = skb->truesize;
1505
1506 atomic_sub(len, &sk->sk_rmem_alloc);
1507 sk_mem_uncharge(sk, len);
1508 }
1509 EXPORT_SYMBOL(sock_rfree);
1510
1511 void sock_edemux(struct sk_buff *skb)
1512 {
1513 struct sock *sk = skb->sk;
1514
1515 #ifdef CONFIG_INET
1516 if (sk->sk_state == TCP_TIME_WAIT)
1517 inet_twsk_put(inet_twsk(sk));
1518 else
1519 #endif
1520 sock_put(sk);
1521 }
1522 EXPORT_SYMBOL(sock_edemux);
1523
1524 kuid_t sock_i_uid(struct sock *sk)
1525 {
1526 kuid_t uid;
1527
1528 read_lock_bh(&sk->sk_callback_lock);
1529 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1530 read_unlock_bh(&sk->sk_callback_lock);
1531 return uid;
1532 }
1533 EXPORT_SYMBOL(sock_i_uid);
1534
1535 unsigned long sock_i_ino(struct sock *sk)
1536 {
1537 unsigned long ino;
1538
1539 read_lock_bh(&sk->sk_callback_lock);
1540 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1541 read_unlock_bh(&sk->sk_callback_lock);
1542 return ino;
1543 }
1544 EXPORT_SYMBOL(sock_i_ino);
1545
1546 /*
1547 * Allocate a skb from the socket's send buffer.
1548 */
1549 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1550 gfp_t priority)
1551 {
1552 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1553 struct sk_buff *skb = alloc_skb(size, priority);
1554 if (skb) {
1555 skb_set_owner_w(skb, sk);
1556 return skb;
1557 }
1558 }
1559 return NULL;
1560 }
1561 EXPORT_SYMBOL(sock_wmalloc);
1562
1563 /*
1564 * Allocate a skb from the socket's receive buffer.
1565 */
1566 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1567 gfp_t priority)
1568 {
1569 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1570 struct sk_buff *skb = alloc_skb(size, priority);
1571 if (skb) {
1572 skb_set_owner_r(skb, sk);
1573 return skb;
1574 }
1575 }
1576 return NULL;
1577 }
1578
1579 /*
1580 * Allocate a memory block from the socket's option memory buffer.
1581 */
1582 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1583 {
1584 if ((unsigned int)size <= sysctl_optmem_max &&
1585 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1586 void *mem;
1587 /* First do the add, to avoid the race if kmalloc
1588 * might sleep.
1589 */
1590 atomic_add(size, &sk->sk_omem_alloc);
1591 mem = kmalloc(size, priority);
1592 if (mem)
1593 return mem;
1594 atomic_sub(size, &sk->sk_omem_alloc);
1595 }
1596 return NULL;
1597 }
1598 EXPORT_SYMBOL(sock_kmalloc);
1599
1600 /*
1601 * Free an option memory block.
1602 */
1603 void sock_kfree_s(struct sock *sk, void *mem, int size)
1604 {
1605 kfree(mem);
1606 atomic_sub(size, &sk->sk_omem_alloc);
1607 }
1608 EXPORT_SYMBOL(sock_kfree_s);
1609
1610 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1611 I think, these locks should be removed for datagram sockets.
1612 */
1613 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1614 {
1615 DEFINE_WAIT(wait);
1616
1617 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1618 for (;;) {
1619 if (!timeo)
1620 break;
1621 if (signal_pending(current))
1622 break;
1623 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1624 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1625 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1626 break;
1627 if (sk->sk_shutdown & SEND_SHUTDOWN)
1628 break;
1629 if (sk->sk_err)
1630 break;
1631 timeo = schedule_timeout(timeo);
1632 }
1633 finish_wait(sk_sleep(sk), &wait);
1634 return timeo;
1635 }
1636
1637
1638 /*
1639 * Generic send/receive buffer handlers
1640 */
1641
1642 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1643 unsigned long data_len, int noblock,
1644 int *errcode)
1645 {
1646 struct sk_buff *skb;
1647 gfp_t gfp_mask;
1648 long timeo;
1649 int err;
1650 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1651
1652 err = -EMSGSIZE;
1653 if (npages > MAX_SKB_FRAGS)
1654 goto failure;
1655
1656 gfp_mask = sk->sk_allocation;
1657 if (gfp_mask & __GFP_WAIT)
1658 gfp_mask |= __GFP_REPEAT;
1659
1660 timeo = sock_sndtimeo(sk, noblock);
1661 while (1) {
1662 err = sock_error(sk);
1663 if (err != 0)
1664 goto failure;
1665
1666 err = -EPIPE;
1667 if (sk->sk_shutdown & SEND_SHUTDOWN)
1668 goto failure;
1669
1670 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1671 skb = alloc_skb(header_len, gfp_mask);
1672 if (skb) {
1673 int i;
1674
1675 /* No pages, we're done... */
1676 if (!data_len)
1677 break;
1678
1679 skb->truesize += data_len;
1680 skb_shinfo(skb)->nr_frags = npages;
1681 for (i = 0; i < npages; i++) {
1682 struct page *page;
1683
1684 page = alloc_pages(sk->sk_allocation, 0);
1685 if (!page) {
1686 err = -ENOBUFS;
1687 skb_shinfo(skb)->nr_frags = i;
1688 kfree_skb(skb);
1689 goto failure;
1690 }
1691
1692 __skb_fill_page_desc(skb, i,
1693 page, 0,
1694 (data_len >= PAGE_SIZE ?
1695 PAGE_SIZE :
1696 data_len));
1697 data_len -= PAGE_SIZE;
1698 }
1699
1700 /* Full success... */
1701 break;
1702 }
1703 err = -ENOBUFS;
1704 goto failure;
1705 }
1706 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1707 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1708 err = -EAGAIN;
1709 if (!timeo)
1710 goto failure;
1711 if (signal_pending(current))
1712 goto interrupted;
1713 timeo = sock_wait_for_wmem(sk, timeo);
1714 }
1715
1716 skb_set_owner_w(skb, sk);
1717 return skb;
1718
1719 interrupted:
1720 err = sock_intr_errno(timeo);
1721 failure:
1722 *errcode = err;
1723 return NULL;
1724 }
1725 EXPORT_SYMBOL(sock_alloc_send_pskb);
1726
1727 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1728 int noblock, int *errcode)
1729 {
1730 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1731 }
1732 EXPORT_SYMBOL(sock_alloc_send_skb);
1733
1734 /* On 32bit arches, an skb frag is limited to 2^15 */
1735 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1736
1737 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1738 {
1739 int order;
1740
1741 if (pfrag->page) {
1742 if (atomic_read(&pfrag->page->_count) == 1) {
1743 pfrag->offset = 0;
1744 return true;
1745 }
1746 if (pfrag->offset < pfrag->size)
1747 return true;
1748 put_page(pfrag->page);
1749 }
1750
1751 /* We restrict high order allocations to users that can afford to wait */
1752 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1753
1754 do {
1755 gfp_t gfp = sk->sk_allocation;
1756
1757 if (order)
1758 gfp |= __GFP_COMP | __GFP_NOWARN;
1759 pfrag->page = alloc_pages(gfp, order);
1760 if (likely(pfrag->page)) {
1761 pfrag->offset = 0;
1762 pfrag->size = PAGE_SIZE << order;
1763 return true;
1764 }
1765 } while (--order >= 0);
1766
1767 sk_enter_memory_pressure(sk);
1768 sk_stream_moderate_sndbuf(sk);
1769 return false;
1770 }
1771 EXPORT_SYMBOL(sk_page_frag_refill);
1772
1773 static void __lock_sock(struct sock *sk)
1774 __releases(&sk->sk_lock.slock)
1775 __acquires(&sk->sk_lock.slock)
1776 {
1777 DEFINE_WAIT(wait);
1778
1779 for (;;) {
1780 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1781 TASK_UNINTERRUPTIBLE);
1782 spin_unlock_bh(&sk->sk_lock.slock);
1783 schedule();
1784 spin_lock_bh(&sk->sk_lock.slock);
1785 if (!sock_owned_by_user(sk))
1786 break;
1787 }
1788 finish_wait(&sk->sk_lock.wq, &wait);
1789 }
1790
1791 static void __release_sock(struct sock *sk)
1792 __releases(&sk->sk_lock.slock)
1793 __acquires(&sk->sk_lock.slock)
1794 {
1795 struct sk_buff *skb = sk->sk_backlog.head;
1796
1797 do {
1798 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1799 bh_unlock_sock(sk);
1800
1801 do {
1802 struct sk_buff *next = skb->next;
1803
1804 prefetch(next);
1805 WARN_ON_ONCE(skb_dst_is_noref(skb));
1806 skb->next = NULL;
1807 sk_backlog_rcv(sk, skb);
1808
1809 /*
1810 * We are in process context here with softirqs
1811 * disabled, use cond_resched_softirq() to preempt.
1812 * This is safe to do because we've taken the backlog
1813 * queue private:
1814 */
1815 cond_resched_softirq();
1816
1817 skb = next;
1818 } while (skb != NULL);
1819
1820 bh_lock_sock(sk);
1821 } while ((skb = sk->sk_backlog.head) != NULL);
1822
1823 /*
1824 * Doing the zeroing here guarantee we can not loop forever
1825 * while a wild producer attempts to flood us.
1826 */
1827 sk->sk_backlog.len = 0;
1828 }
1829
1830 /**
1831 * sk_wait_data - wait for data to arrive at sk_receive_queue
1832 * @sk: sock to wait on
1833 * @timeo: for how long
1834 *
1835 * Now socket state including sk->sk_err is changed only under lock,
1836 * hence we may omit checks after joining wait queue.
1837 * We check receive queue before schedule() only as optimization;
1838 * it is very likely that release_sock() added new data.
1839 */
1840 int sk_wait_data(struct sock *sk, long *timeo)
1841 {
1842 int rc;
1843 DEFINE_WAIT(wait);
1844
1845 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1846 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1847 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1848 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1849 finish_wait(sk_sleep(sk), &wait);
1850 return rc;
1851 }
1852 EXPORT_SYMBOL(sk_wait_data);
1853
1854 /**
1855 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1856 * @sk: socket
1857 * @size: memory size to allocate
1858 * @kind: allocation type
1859 *
1860 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1861 * rmem allocation. This function assumes that protocols which have
1862 * memory_pressure use sk_wmem_queued as write buffer accounting.
1863 */
1864 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1865 {
1866 struct proto *prot = sk->sk_prot;
1867 int amt = sk_mem_pages(size);
1868 long allocated;
1869 int parent_status = UNDER_LIMIT;
1870
1871 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1872
1873 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1874
1875 /* Under limit. */
1876 if (parent_status == UNDER_LIMIT &&
1877 allocated <= sk_prot_mem_limits(sk, 0)) {
1878 sk_leave_memory_pressure(sk);
1879 return 1;
1880 }
1881
1882 /* Under pressure. (we or our parents) */
1883 if ((parent_status > SOFT_LIMIT) ||
1884 allocated > sk_prot_mem_limits(sk, 1))
1885 sk_enter_memory_pressure(sk);
1886
1887 /* Over hard limit (we or our parents) */
1888 if ((parent_status == OVER_LIMIT) ||
1889 (allocated > sk_prot_mem_limits(sk, 2)))
1890 goto suppress_allocation;
1891
1892 /* guarantee minimum buffer size under pressure */
1893 if (kind == SK_MEM_RECV) {
1894 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1895 return 1;
1896
1897 } else { /* SK_MEM_SEND */
1898 if (sk->sk_type == SOCK_STREAM) {
1899 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1900 return 1;
1901 } else if (atomic_read(&sk->sk_wmem_alloc) <
1902 prot->sysctl_wmem[0])
1903 return 1;
1904 }
1905
1906 if (sk_has_memory_pressure(sk)) {
1907 int alloc;
1908
1909 if (!sk_under_memory_pressure(sk))
1910 return 1;
1911 alloc = sk_sockets_allocated_read_positive(sk);
1912 if (sk_prot_mem_limits(sk, 2) > alloc *
1913 sk_mem_pages(sk->sk_wmem_queued +
1914 atomic_read(&sk->sk_rmem_alloc) +
1915 sk->sk_forward_alloc))
1916 return 1;
1917 }
1918
1919 suppress_allocation:
1920
1921 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1922 sk_stream_moderate_sndbuf(sk);
1923
1924 /* Fail only if socket is _under_ its sndbuf.
1925 * In this case we cannot block, so that we have to fail.
1926 */
1927 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1928 return 1;
1929 }
1930
1931 trace_sock_exceed_buf_limit(sk, prot, allocated);
1932
1933 /* Alas. Undo changes. */
1934 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1935
1936 sk_memory_allocated_sub(sk, amt);
1937
1938 return 0;
1939 }
1940 EXPORT_SYMBOL(__sk_mem_schedule);
1941
1942 /**
1943 * __sk_reclaim - reclaim memory_allocated
1944 * @sk: socket
1945 */
1946 void __sk_mem_reclaim(struct sock *sk)
1947 {
1948 sk_memory_allocated_sub(sk,
1949 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1950 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1951
1952 if (sk_under_memory_pressure(sk) &&
1953 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1954 sk_leave_memory_pressure(sk);
1955 }
1956 EXPORT_SYMBOL(__sk_mem_reclaim);
1957
1958
1959 /*
1960 * Set of default routines for initialising struct proto_ops when
1961 * the protocol does not support a particular function. In certain
1962 * cases where it makes no sense for a protocol to have a "do nothing"
1963 * function, some default processing is provided.
1964 */
1965
1966 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1967 {
1968 return -EOPNOTSUPP;
1969 }
1970 EXPORT_SYMBOL(sock_no_bind);
1971
1972 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1973 int len, int flags)
1974 {
1975 return -EOPNOTSUPP;
1976 }
1977 EXPORT_SYMBOL(sock_no_connect);
1978
1979 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1980 {
1981 return -EOPNOTSUPP;
1982 }
1983 EXPORT_SYMBOL(sock_no_socketpair);
1984
1985 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1986 {
1987 return -EOPNOTSUPP;
1988 }
1989 EXPORT_SYMBOL(sock_no_accept);
1990
1991 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1992 int *len, int peer)
1993 {
1994 return -EOPNOTSUPP;
1995 }
1996 EXPORT_SYMBOL(sock_no_getname);
1997
1998 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1999 {
2000 return 0;
2001 }
2002 EXPORT_SYMBOL(sock_no_poll);
2003
2004 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2005 {
2006 return -EOPNOTSUPP;
2007 }
2008 EXPORT_SYMBOL(sock_no_ioctl);
2009
2010 int sock_no_listen(struct socket *sock, int backlog)
2011 {
2012 return -EOPNOTSUPP;
2013 }
2014 EXPORT_SYMBOL(sock_no_listen);
2015
2016 int sock_no_shutdown(struct socket *sock, int how)
2017 {
2018 return -EOPNOTSUPP;
2019 }
2020 EXPORT_SYMBOL(sock_no_shutdown);
2021
2022 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2023 char __user *optval, unsigned int optlen)
2024 {
2025 return -EOPNOTSUPP;
2026 }
2027 EXPORT_SYMBOL(sock_no_setsockopt);
2028
2029 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2030 char __user *optval, int __user *optlen)
2031 {
2032 return -EOPNOTSUPP;
2033 }
2034 EXPORT_SYMBOL(sock_no_getsockopt);
2035
2036 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2037 size_t len)
2038 {
2039 return -EOPNOTSUPP;
2040 }
2041 EXPORT_SYMBOL(sock_no_sendmsg);
2042
2043 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2044 size_t len, int flags)
2045 {
2046 return -EOPNOTSUPP;
2047 }
2048 EXPORT_SYMBOL(sock_no_recvmsg);
2049
2050 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2051 {
2052 /* Mirror missing mmap method error code */
2053 return -ENODEV;
2054 }
2055 EXPORT_SYMBOL(sock_no_mmap);
2056
2057 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2058 {
2059 ssize_t res;
2060 struct msghdr msg = {.msg_flags = flags};
2061 struct kvec iov;
2062 char *kaddr = kmap(page);
2063 iov.iov_base = kaddr + offset;
2064 iov.iov_len = size;
2065 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2066 kunmap(page);
2067 return res;
2068 }
2069 EXPORT_SYMBOL(sock_no_sendpage);
2070
2071 /*
2072 * Default Socket Callbacks
2073 */
2074
2075 static void sock_def_wakeup(struct sock *sk)
2076 {
2077 struct socket_wq *wq;
2078
2079 rcu_read_lock();
2080 wq = rcu_dereference(sk->sk_wq);
2081 if (wq_has_sleeper(wq))
2082 wake_up_interruptible_all(&wq->wait);
2083 rcu_read_unlock();
2084 }
2085
2086 static void sock_def_error_report(struct sock *sk)
2087 {
2088 struct socket_wq *wq;
2089
2090 rcu_read_lock();
2091 wq = rcu_dereference(sk->sk_wq);
2092 if (wq_has_sleeper(wq))
2093 wake_up_interruptible_poll(&wq->wait, POLLERR);
2094 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2095 rcu_read_unlock();
2096 }
2097
2098 static void sock_def_readable(struct sock *sk, int len)
2099 {
2100 struct socket_wq *wq;
2101
2102 rcu_read_lock();
2103 wq = rcu_dereference(sk->sk_wq);
2104 if (wq_has_sleeper(wq))
2105 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2106 POLLRDNORM | POLLRDBAND);
2107 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2108 rcu_read_unlock();
2109 }
2110
2111 static void sock_def_write_space(struct sock *sk)
2112 {
2113 struct socket_wq *wq;
2114
2115 rcu_read_lock();
2116
2117 /* Do not wake up a writer until he can make "significant"
2118 * progress. --DaveM
2119 */
2120 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2121 wq = rcu_dereference(sk->sk_wq);
2122 if (wq_has_sleeper(wq))
2123 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2124 POLLWRNORM | POLLWRBAND);
2125
2126 /* Should agree with poll, otherwise some programs break */
2127 if (sock_writeable(sk))
2128 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2129 }
2130
2131 rcu_read_unlock();
2132 }
2133
2134 static void sock_def_destruct(struct sock *sk)
2135 {
2136 kfree(sk->sk_protinfo);
2137 }
2138
2139 void sk_send_sigurg(struct sock *sk)
2140 {
2141 if (sk->sk_socket && sk->sk_socket->file)
2142 if (send_sigurg(&sk->sk_socket->file->f_owner))
2143 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2144 }
2145 EXPORT_SYMBOL(sk_send_sigurg);
2146
2147 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2148 unsigned long expires)
2149 {
2150 if (!mod_timer(timer, expires))
2151 sock_hold(sk);
2152 }
2153 EXPORT_SYMBOL(sk_reset_timer);
2154
2155 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2156 {
2157 if (timer_pending(timer) && del_timer(timer))
2158 __sock_put(sk);
2159 }
2160 EXPORT_SYMBOL(sk_stop_timer);
2161
2162 void sock_init_data(struct socket *sock, struct sock *sk)
2163 {
2164 skb_queue_head_init(&sk->sk_receive_queue);
2165 skb_queue_head_init(&sk->sk_write_queue);
2166 skb_queue_head_init(&sk->sk_error_queue);
2167 #ifdef CONFIG_NET_DMA
2168 skb_queue_head_init(&sk->sk_async_wait_queue);
2169 #endif
2170
2171 sk->sk_send_head = NULL;
2172
2173 init_timer(&sk->sk_timer);
2174
2175 sk->sk_allocation = GFP_KERNEL;
2176 sk->sk_rcvbuf = sysctl_rmem_default;
2177 sk->sk_sndbuf = sysctl_wmem_default;
2178 sk->sk_state = TCP_CLOSE;
2179 sk_set_socket(sk, sock);
2180
2181 sock_set_flag(sk, SOCK_ZAPPED);
2182
2183 if (sock) {
2184 sk->sk_type = sock->type;
2185 sk->sk_wq = sock->wq;
2186 sock->sk = sk;
2187 } else
2188 sk->sk_wq = NULL;
2189
2190 spin_lock_init(&sk->sk_dst_lock);
2191 rwlock_init(&sk->sk_callback_lock);
2192 lockdep_set_class_and_name(&sk->sk_callback_lock,
2193 af_callback_keys + sk->sk_family,
2194 af_family_clock_key_strings[sk->sk_family]);
2195
2196 sk->sk_state_change = sock_def_wakeup;
2197 sk->sk_data_ready = sock_def_readable;
2198 sk->sk_write_space = sock_def_write_space;
2199 sk->sk_error_report = sock_def_error_report;
2200 sk->sk_destruct = sock_def_destruct;
2201
2202 sk->sk_frag.page = NULL;
2203 sk->sk_frag.offset = 0;
2204 sk->sk_peek_off = -1;
2205
2206 sk->sk_peer_pid = NULL;
2207 sk->sk_peer_cred = NULL;
2208 sk->sk_write_pending = 0;
2209 sk->sk_rcvlowat = 1;
2210 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2211 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2212
2213 sk->sk_stamp = ktime_set(-1L, 0);
2214
2215 /*
2216 * Before updating sk_refcnt, we must commit prior changes to memory
2217 * (Documentation/RCU/rculist_nulls.txt for details)
2218 */
2219 smp_wmb();
2220 atomic_set(&sk->sk_refcnt, 1);
2221 atomic_set(&sk->sk_drops, 0);
2222 }
2223 EXPORT_SYMBOL(sock_init_data);
2224
2225 void lock_sock_nested(struct sock *sk, int subclass)
2226 {
2227 might_sleep();
2228 spin_lock_bh(&sk->sk_lock.slock);
2229 if (sk->sk_lock.owned)
2230 __lock_sock(sk);
2231 sk->sk_lock.owned = 1;
2232 spin_unlock(&sk->sk_lock.slock);
2233 /*
2234 * The sk_lock has mutex_lock() semantics here:
2235 */
2236 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2237 local_bh_enable();
2238 }
2239 EXPORT_SYMBOL(lock_sock_nested);
2240
2241 void release_sock(struct sock *sk)
2242 {
2243 /*
2244 * The sk_lock has mutex_unlock() semantics:
2245 */
2246 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2247
2248 spin_lock_bh(&sk->sk_lock.slock);
2249 if (sk->sk_backlog.tail)
2250 __release_sock(sk);
2251
2252 if (sk->sk_prot->release_cb)
2253 sk->sk_prot->release_cb(sk);
2254
2255 sk->sk_lock.owned = 0;
2256 if (waitqueue_active(&sk->sk_lock.wq))
2257 wake_up(&sk->sk_lock.wq);
2258 spin_unlock_bh(&sk->sk_lock.slock);
2259 }
2260 EXPORT_SYMBOL(release_sock);
2261
2262 /**
2263 * lock_sock_fast - fast version of lock_sock
2264 * @sk: socket
2265 *
2266 * This version should be used for very small section, where process wont block
2267 * return false if fast path is taken
2268 * sk_lock.slock locked, owned = 0, BH disabled
2269 * return true if slow path is taken
2270 * sk_lock.slock unlocked, owned = 1, BH enabled
2271 */
2272 bool lock_sock_fast(struct sock *sk)
2273 {
2274 might_sleep();
2275 spin_lock_bh(&sk->sk_lock.slock);
2276
2277 if (!sk->sk_lock.owned)
2278 /*
2279 * Note : We must disable BH
2280 */
2281 return false;
2282
2283 __lock_sock(sk);
2284 sk->sk_lock.owned = 1;
2285 spin_unlock(&sk->sk_lock.slock);
2286 /*
2287 * The sk_lock has mutex_lock() semantics here:
2288 */
2289 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2290 local_bh_enable();
2291 return true;
2292 }
2293 EXPORT_SYMBOL(lock_sock_fast);
2294
2295 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2296 {
2297 struct timeval tv;
2298 if (!sock_flag(sk, SOCK_TIMESTAMP))
2299 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2300 tv = ktime_to_timeval(sk->sk_stamp);
2301 if (tv.tv_sec == -1)
2302 return -ENOENT;
2303 if (tv.tv_sec == 0) {
2304 sk->sk_stamp = ktime_get_real();
2305 tv = ktime_to_timeval(sk->sk_stamp);
2306 }
2307 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2308 }
2309 EXPORT_SYMBOL(sock_get_timestamp);
2310
2311 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2312 {
2313 struct timespec ts;
2314 if (!sock_flag(sk, SOCK_TIMESTAMP))
2315 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2316 ts = ktime_to_timespec(sk->sk_stamp);
2317 if (ts.tv_sec == -1)
2318 return -ENOENT;
2319 if (ts.tv_sec == 0) {
2320 sk->sk_stamp = ktime_get_real();
2321 ts = ktime_to_timespec(sk->sk_stamp);
2322 }
2323 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2324 }
2325 EXPORT_SYMBOL(sock_get_timestampns);
2326
2327 void sock_enable_timestamp(struct sock *sk, int flag)
2328 {
2329 if (!sock_flag(sk, flag)) {
2330 unsigned long previous_flags = sk->sk_flags;
2331
2332 sock_set_flag(sk, flag);
2333 /*
2334 * we just set one of the two flags which require net
2335 * time stamping, but time stamping might have been on
2336 * already because of the other one
2337 */
2338 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2339 net_enable_timestamp();
2340 }
2341 }
2342
2343 /*
2344 * Get a socket option on an socket.
2345 *
2346 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2347 * asynchronous errors should be reported by getsockopt. We assume
2348 * this means if you specify SO_ERROR (otherwise whats the point of it).
2349 */
2350 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2351 char __user *optval, int __user *optlen)
2352 {
2353 struct sock *sk = sock->sk;
2354
2355 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2356 }
2357 EXPORT_SYMBOL(sock_common_getsockopt);
2358
2359 #ifdef CONFIG_COMPAT
2360 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2361 char __user *optval, int __user *optlen)
2362 {
2363 struct sock *sk = sock->sk;
2364
2365 if (sk->sk_prot->compat_getsockopt != NULL)
2366 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2367 optval, optlen);
2368 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2369 }
2370 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2371 #endif
2372
2373 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2374 struct msghdr *msg, size_t size, int flags)
2375 {
2376 struct sock *sk = sock->sk;
2377 int addr_len = 0;
2378 int err;
2379
2380 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2381 flags & ~MSG_DONTWAIT, &addr_len);
2382 if (err >= 0)
2383 msg->msg_namelen = addr_len;
2384 return err;
2385 }
2386 EXPORT_SYMBOL(sock_common_recvmsg);
2387
2388 /*
2389 * Set socket options on an inet socket.
2390 */
2391 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2392 char __user *optval, unsigned int optlen)
2393 {
2394 struct sock *sk = sock->sk;
2395
2396 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2397 }
2398 EXPORT_SYMBOL(sock_common_setsockopt);
2399
2400 #ifdef CONFIG_COMPAT
2401 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2402 char __user *optval, unsigned int optlen)
2403 {
2404 struct sock *sk = sock->sk;
2405
2406 if (sk->sk_prot->compat_setsockopt != NULL)
2407 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2408 optval, optlen);
2409 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2410 }
2411 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2412 #endif
2413
2414 void sk_common_release(struct sock *sk)
2415 {
2416 if (sk->sk_prot->destroy)
2417 sk->sk_prot->destroy(sk);
2418
2419 /*
2420 * Observation: when sock_common_release is called, processes have
2421 * no access to socket. But net still has.
2422 * Step one, detach it from networking:
2423 *
2424 * A. Remove from hash tables.
2425 */
2426
2427 sk->sk_prot->unhash(sk);
2428
2429 /*
2430 * In this point socket cannot receive new packets, but it is possible
2431 * that some packets are in flight because some CPU runs receiver and
2432 * did hash table lookup before we unhashed socket. They will achieve
2433 * receive queue and will be purged by socket destructor.
2434 *
2435 * Also we still have packets pending on receive queue and probably,
2436 * our own packets waiting in device queues. sock_destroy will drain
2437 * receive queue, but transmitted packets will delay socket destruction
2438 * until the last reference will be released.
2439 */
2440
2441 sock_orphan(sk);
2442
2443 xfrm_sk_free_policy(sk);
2444
2445 sk_refcnt_debug_release(sk);
2446
2447 if (sk->sk_frag.page) {
2448 put_page(sk->sk_frag.page);
2449 sk->sk_frag.page = NULL;
2450 }
2451
2452 sock_put(sk);
2453 }
2454 EXPORT_SYMBOL(sk_common_release);
2455
2456 #ifdef CONFIG_PROC_FS
2457 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2458 struct prot_inuse {
2459 int val[PROTO_INUSE_NR];
2460 };
2461
2462 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2463
2464 #ifdef CONFIG_NET_NS
2465 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2466 {
2467 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2468 }
2469 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2470
2471 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2472 {
2473 int cpu, idx = prot->inuse_idx;
2474 int res = 0;
2475
2476 for_each_possible_cpu(cpu)
2477 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2478
2479 return res >= 0 ? res : 0;
2480 }
2481 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2482
2483 static int __net_init sock_inuse_init_net(struct net *net)
2484 {
2485 net->core.inuse = alloc_percpu(struct prot_inuse);
2486 return net->core.inuse ? 0 : -ENOMEM;
2487 }
2488
2489 static void __net_exit sock_inuse_exit_net(struct net *net)
2490 {
2491 free_percpu(net->core.inuse);
2492 }
2493
2494 static struct pernet_operations net_inuse_ops = {
2495 .init = sock_inuse_init_net,
2496 .exit = sock_inuse_exit_net,
2497 };
2498
2499 static __init int net_inuse_init(void)
2500 {
2501 if (register_pernet_subsys(&net_inuse_ops))
2502 panic("Cannot initialize net inuse counters");
2503
2504 return 0;
2505 }
2506
2507 core_initcall(net_inuse_init);
2508 #else
2509 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2510
2511 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2512 {
2513 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2514 }
2515 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2516
2517 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2518 {
2519 int cpu, idx = prot->inuse_idx;
2520 int res = 0;
2521
2522 for_each_possible_cpu(cpu)
2523 res += per_cpu(prot_inuse, cpu).val[idx];
2524
2525 return res >= 0 ? res : 0;
2526 }
2527 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2528 #endif
2529
2530 static void assign_proto_idx(struct proto *prot)
2531 {
2532 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2533
2534 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2535 pr_err("PROTO_INUSE_NR exhausted\n");
2536 return;
2537 }
2538
2539 set_bit(prot->inuse_idx, proto_inuse_idx);
2540 }
2541
2542 static void release_proto_idx(struct proto *prot)
2543 {
2544 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2545 clear_bit(prot->inuse_idx, proto_inuse_idx);
2546 }
2547 #else
2548 static inline void assign_proto_idx(struct proto *prot)
2549 {
2550 }
2551
2552 static inline void release_proto_idx(struct proto *prot)
2553 {
2554 }
2555 #endif
2556
2557 int proto_register(struct proto *prot, int alloc_slab)
2558 {
2559 if (alloc_slab) {
2560 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2561 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2562 NULL);
2563
2564 if (prot->slab == NULL) {
2565 pr_crit("%s: Can't create sock SLAB cache!\n",
2566 prot->name);
2567 goto out;
2568 }
2569
2570 if (prot->rsk_prot != NULL) {
2571 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2572 if (prot->rsk_prot->slab_name == NULL)
2573 goto out_free_sock_slab;
2574
2575 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2576 prot->rsk_prot->obj_size, 0,
2577 SLAB_HWCACHE_ALIGN, NULL);
2578
2579 if (prot->rsk_prot->slab == NULL) {
2580 pr_crit("%s: Can't create request sock SLAB cache!\n",
2581 prot->name);
2582 goto out_free_request_sock_slab_name;
2583 }
2584 }
2585
2586 if (prot->twsk_prot != NULL) {
2587 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2588
2589 if (prot->twsk_prot->twsk_slab_name == NULL)
2590 goto out_free_request_sock_slab;
2591
2592 prot->twsk_prot->twsk_slab =
2593 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2594 prot->twsk_prot->twsk_obj_size,
2595 0,
2596 SLAB_HWCACHE_ALIGN |
2597 prot->slab_flags,
2598 NULL);
2599 if (prot->twsk_prot->twsk_slab == NULL)
2600 goto out_free_timewait_sock_slab_name;
2601 }
2602 }
2603
2604 mutex_lock(&proto_list_mutex);
2605 list_add(&prot->node, &proto_list);
2606 assign_proto_idx(prot);
2607 mutex_unlock(&proto_list_mutex);
2608 return 0;
2609
2610 out_free_timewait_sock_slab_name:
2611 kfree(prot->twsk_prot->twsk_slab_name);
2612 out_free_request_sock_slab:
2613 if (prot->rsk_prot && prot->rsk_prot->slab) {
2614 kmem_cache_destroy(prot->rsk_prot->slab);
2615 prot->rsk_prot->slab = NULL;
2616 }
2617 out_free_request_sock_slab_name:
2618 if (prot->rsk_prot)
2619 kfree(prot->rsk_prot->slab_name);
2620 out_free_sock_slab:
2621 kmem_cache_destroy(prot->slab);
2622 prot->slab = NULL;
2623 out:
2624 return -ENOBUFS;
2625 }
2626 EXPORT_SYMBOL(proto_register);
2627
2628 void proto_unregister(struct proto *prot)
2629 {
2630 mutex_lock(&proto_list_mutex);
2631 release_proto_idx(prot);
2632 list_del(&prot->node);
2633 mutex_unlock(&proto_list_mutex);
2634
2635 if (prot->slab != NULL) {
2636 kmem_cache_destroy(prot->slab);
2637 prot->slab = NULL;
2638 }
2639
2640 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2641 kmem_cache_destroy(prot->rsk_prot->slab);
2642 kfree(prot->rsk_prot->slab_name);
2643 prot->rsk_prot->slab = NULL;
2644 }
2645
2646 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2647 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2648 kfree(prot->twsk_prot->twsk_slab_name);
2649 prot->twsk_prot->twsk_slab = NULL;
2650 }
2651 }
2652 EXPORT_SYMBOL(proto_unregister);
2653
2654 #ifdef CONFIG_PROC_FS
2655 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2656 __acquires(proto_list_mutex)
2657 {
2658 mutex_lock(&proto_list_mutex);
2659 return seq_list_start_head(&proto_list, *pos);
2660 }
2661
2662 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2663 {
2664 return seq_list_next(v, &proto_list, pos);
2665 }
2666
2667 static void proto_seq_stop(struct seq_file *seq, void *v)
2668 __releases(proto_list_mutex)
2669 {
2670 mutex_unlock(&proto_list_mutex);
2671 }
2672
2673 static char proto_method_implemented(const void *method)
2674 {
2675 return method == NULL ? 'n' : 'y';
2676 }
2677 static long sock_prot_memory_allocated(struct proto *proto)
2678 {
2679 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2680 }
2681
2682 static char *sock_prot_memory_pressure(struct proto *proto)
2683 {
2684 return proto->memory_pressure != NULL ?
2685 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2686 }
2687
2688 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2689 {
2690
2691 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2692 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2693 proto->name,
2694 proto->obj_size,
2695 sock_prot_inuse_get(seq_file_net(seq), proto),
2696 sock_prot_memory_allocated(proto),
2697 sock_prot_memory_pressure(proto),
2698 proto->max_header,
2699 proto->slab == NULL ? "no" : "yes",
2700 module_name(proto->owner),
2701 proto_method_implemented(proto->close),
2702 proto_method_implemented(proto->connect),
2703 proto_method_implemented(proto->disconnect),
2704 proto_method_implemented(proto->accept),
2705 proto_method_implemented(proto->ioctl),
2706 proto_method_implemented(proto->init),
2707 proto_method_implemented(proto->destroy),
2708 proto_method_implemented(proto->shutdown),
2709 proto_method_implemented(proto->setsockopt),
2710 proto_method_implemented(proto->getsockopt),
2711 proto_method_implemented(proto->sendmsg),
2712 proto_method_implemented(proto->recvmsg),
2713 proto_method_implemented(proto->sendpage),
2714 proto_method_implemented(proto->bind),
2715 proto_method_implemented(proto->backlog_rcv),
2716 proto_method_implemented(proto->hash),
2717 proto_method_implemented(proto->unhash),
2718 proto_method_implemented(proto->get_port),
2719 proto_method_implemented(proto->enter_memory_pressure));
2720 }
2721
2722 static int proto_seq_show(struct seq_file *seq, void *v)
2723 {
2724 if (v == &proto_list)
2725 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2726 "protocol",
2727 "size",
2728 "sockets",
2729 "memory",
2730 "press",
2731 "maxhdr",
2732 "slab",
2733 "module",
2734 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2735 else
2736 proto_seq_printf(seq, list_entry(v, struct proto, node));
2737 return 0;
2738 }
2739
2740 static const struct seq_operations proto_seq_ops = {
2741 .start = proto_seq_start,
2742 .next = proto_seq_next,
2743 .stop = proto_seq_stop,
2744 .show = proto_seq_show,
2745 };
2746
2747 static int proto_seq_open(struct inode *inode, struct file *file)
2748 {
2749 return seq_open_net(inode, file, &proto_seq_ops,
2750 sizeof(struct seq_net_private));
2751 }
2752
2753 static const struct file_operations proto_seq_fops = {
2754 .owner = THIS_MODULE,
2755 .open = proto_seq_open,
2756 .read = seq_read,
2757 .llseek = seq_lseek,
2758 .release = seq_release_net,
2759 };
2760
2761 static __net_init int proto_init_net(struct net *net)
2762 {
2763 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2764 return -ENOMEM;
2765
2766 return 0;
2767 }
2768
2769 static __net_exit void proto_exit_net(struct net *net)
2770 {
2771 proc_net_remove(net, "protocols");
2772 }
2773
2774
2775 static __net_initdata struct pernet_operations proto_net_ops = {
2776 .init = proto_init_net,
2777 .exit = proto_exit_net,
2778 };
2779
2780 static int __init proto_init(void)
2781 {
2782 return register_pernet_subsys(&proto_net_ops);
2783 }
2784
2785 subsys_initcall(proto_init);
2786
2787 #endif /* PROC_FS */
This page took 0.093795 seconds and 5 git commands to generate.