net: remove dead code after sk_data_ready change
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134
135 #include <linux/filter.h>
136
137 #include <trace/events/sock.h>
138
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capbility to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socke was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 struct proto *proto;
201 int ret = 0;
202
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
207 if (ret)
208 goto out;
209 }
210 }
211
212 mutex_unlock(&proto_list_mutex);
213 return ret;
214 out:
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
219 return ret;
220 }
221
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 struct proto *proto;
225
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233
234 /*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245
246 /*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327
328 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329 EXPORT_SYMBOL_GPL(memalloc_socks);
330
331 /**
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
334 *
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
338 */
339 void sk_set_memalloc(struct sock *sk)
340 {
341 sock_set_flag(sk, SOCK_MEMALLOC);
342 sk->sk_allocation |= __GFP_MEMALLOC;
343 static_key_slow_inc(&memalloc_socks);
344 }
345 EXPORT_SYMBOL_GPL(sk_set_memalloc);
346
347 void sk_clear_memalloc(struct sock *sk)
348 {
349 sock_reset_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation &= ~__GFP_MEMALLOC;
351 static_key_slow_dec(&memalloc_socks);
352
353 /*
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
361 */
362 if (WARN_ON(sk->sk_forward_alloc))
363 sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366
367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 int ret;
370 unsigned long pflags = current->flags;
371
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
378
379 return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382
383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 struct timeval tv;
386
387 if (optlen < sizeof(tv))
388 return -EINVAL;
389 if (copy_from_user(&tv, optval, sizeof(tv)))
390 return -EFAULT;
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 return -EDOM;
393
394 if (tv.tv_sec < 0) {
395 static int warned __read_mostly;
396
397 *timeo_p = 0;
398 if (warned < 10 && net_ratelimit()) {
399 warned++;
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
402 }
403 return 0;
404 }
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 return 0;
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 return 0;
411 }
412
413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 static int warned;
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 warncomm, name);
421 warned++;
422 }
423 }
424
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
426
427 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
428 {
429 if (sk->sk_flags & flags) {
430 sk->sk_flags &= ~flags;
431 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
432 net_disable_timestamp();
433 }
434 }
435
436
437 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
438 {
439 int err;
440 unsigned long flags;
441 struct sk_buff_head *list = &sk->sk_receive_queue;
442
443 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
444 atomic_inc(&sk->sk_drops);
445 trace_sock_rcvqueue_full(sk, skb);
446 return -ENOMEM;
447 }
448
449 err = sk_filter(sk, skb);
450 if (err)
451 return err;
452
453 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
454 atomic_inc(&sk->sk_drops);
455 return -ENOBUFS;
456 }
457
458 skb->dev = NULL;
459 skb_set_owner_r(skb, sk);
460
461 /* we escape from rcu protected region, make sure we dont leak
462 * a norefcounted dst
463 */
464 skb_dst_force(skb);
465
466 spin_lock_irqsave(&list->lock, flags);
467 skb->dropcount = atomic_read(&sk->sk_drops);
468 __skb_queue_tail(list, skb);
469 spin_unlock_irqrestore(&list->lock, flags);
470
471 if (!sock_flag(sk, SOCK_DEAD))
472 sk->sk_data_ready(sk);
473 return 0;
474 }
475 EXPORT_SYMBOL(sock_queue_rcv_skb);
476
477 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
478 {
479 int rc = NET_RX_SUCCESS;
480
481 if (sk_filter(sk, skb))
482 goto discard_and_relse;
483
484 skb->dev = NULL;
485
486 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
487 atomic_inc(&sk->sk_drops);
488 goto discard_and_relse;
489 }
490 if (nested)
491 bh_lock_sock_nested(sk);
492 else
493 bh_lock_sock(sk);
494 if (!sock_owned_by_user(sk)) {
495 /*
496 * trylock + unlock semantics:
497 */
498 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
499
500 rc = sk_backlog_rcv(sk, skb);
501
502 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
503 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
504 bh_unlock_sock(sk);
505 atomic_inc(&sk->sk_drops);
506 goto discard_and_relse;
507 }
508
509 bh_unlock_sock(sk);
510 out:
511 sock_put(sk);
512 return rc;
513 discard_and_relse:
514 kfree_skb(skb);
515 goto out;
516 }
517 EXPORT_SYMBOL(sk_receive_skb);
518
519 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
520 {
521 struct dst_entry *dst = __sk_dst_get(sk);
522
523 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
524 sk_tx_queue_clear(sk);
525 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
526 dst_release(dst);
527 return NULL;
528 }
529
530 return dst;
531 }
532 EXPORT_SYMBOL(__sk_dst_check);
533
534 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
535 {
536 struct dst_entry *dst = sk_dst_get(sk);
537
538 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
539 sk_dst_reset(sk);
540 dst_release(dst);
541 return NULL;
542 }
543
544 return dst;
545 }
546 EXPORT_SYMBOL(sk_dst_check);
547
548 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
549 int optlen)
550 {
551 int ret = -ENOPROTOOPT;
552 #ifdef CONFIG_NETDEVICES
553 struct net *net = sock_net(sk);
554 char devname[IFNAMSIZ];
555 int index;
556
557 /* Sorry... */
558 ret = -EPERM;
559 if (!ns_capable(net->user_ns, CAP_NET_RAW))
560 goto out;
561
562 ret = -EINVAL;
563 if (optlen < 0)
564 goto out;
565
566 /* Bind this socket to a particular device like "eth0",
567 * as specified in the passed interface name. If the
568 * name is "" or the option length is zero the socket
569 * is not bound.
570 */
571 if (optlen > IFNAMSIZ - 1)
572 optlen = IFNAMSIZ - 1;
573 memset(devname, 0, sizeof(devname));
574
575 ret = -EFAULT;
576 if (copy_from_user(devname, optval, optlen))
577 goto out;
578
579 index = 0;
580 if (devname[0] != '\0') {
581 struct net_device *dev;
582
583 rcu_read_lock();
584 dev = dev_get_by_name_rcu(net, devname);
585 if (dev)
586 index = dev->ifindex;
587 rcu_read_unlock();
588 ret = -ENODEV;
589 if (!dev)
590 goto out;
591 }
592
593 lock_sock(sk);
594 sk->sk_bound_dev_if = index;
595 sk_dst_reset(sk);
596 release_sock(sk);
597
598 ret = 0;
599
600 out:
601 #endif
602
603 return ret;
604 }
605
606 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
607 int __user *optlen, int len)
608 {
609 int ret = -ENOPROTOOPT;
610 #ifdef CONFIG_NETDEVICES
611 struct net *net = sock_net(sk);
612 char devname[IFNAMSIZ];
613
614 if (sk->sk_bound_dev_if == 0) {
615 len = 0;
616 goto zero;
617 }
618
619 ret = -EINVAL;
620 if (len < IFNAMSIZ)
621 goto out;
622
623 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
624 if (ret)
625 goto out;
626
627 len = strlen(devname) + 1;
628
629 ret = -EFAULT;
630 if (copy_to_user(optval, devname, len))
631 goto out;
632
633 zero:
634 ret = -EFAULT;
635 if (put_user(len, optlen))
636 goto out;
637
638 ret = 0;
639
640 out:
641 #endif
642
643 return ret;
644 }
645
646 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
647 {
648 if (valbool)
649 sock_set_flag(sk, bit);
650 else
651 sock_reset_flag(sk, bit);
652 }
653
654 /*
655 * This is meant for all protocols to use and covers goings on
656 * at the socket level. Everything here is generic.
657 */
658
659 int sock_setsockopt(struct socket *sock, int level, int optname,
660 char __user *optval, unsigned int optlen)
661 {
662 struct sock *sk = sock->sk;
663 int val;
664 int valbool;
665 struct linger ling;
666 int ret = 0;
667
668 /*
669 * Options without arguments
670 */
671
672 if (optname == SO_BINDTODEVICE)
673 return sock_setbindtodevice(sk, optval, optlen);
674
675 if (optlen < sizeof(int))
676 return -EINVAL;
677
678 if (get_user(val, (int __user *)optval))
679 return -EFAULT;
680
681 valbool = val ? 1 : 0;
682
683 lock_sock(sk);
684
685 switch (optname) {
686 case SO_DEBUG:
687 if (val && !capable(CAP_NET_ADMIN))
688 ret = -EACCES;
689 else
690 sock_valbool_flag(sk, SOCK_DBG, valbool);
691 break;
692 case SO_REUSEADDR:
693 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
694 break;
695 case SO_REUSEPORT:
696 sk->sk_reuseport = valbool;
697 break;
698 case SO_TYPE:
699 case SO_PROTOCOL:
700 case SO_DOMAIN:
701 case SO_ERROR:
702 ret = -ENOPROTOOPT;
703 break;
704 case SO_DONTROUTE:
705 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
706 break;
707 case SO_BROADCAST:
708 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
709 break;
710 case SO_SNDBUF:
711 /* Don't error on this BSD doesn't and if you think
712 * about it this is right. Otherwise apps have to
713 * play 'guess the biggest size' games. RCVBUF/SNDBUF
714 * are treated in BSD as hints
715 */
716 val = min_t(u32, val, sysctl_wmem_max);
717 set_sndbuf:
718 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
719 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
720 /* Wake up sending tasks if we upped the value. */
721 sk->sk_write_space(sk);
722 break;
723
724 case SO_SNDBUFFORCE:
725 if (!capable(CAP_NET_ADMIN)) {
726 ret = -EPERM;
727 break;
728 }
729 goto set_sndbuf;
730
731 case SO_RCVBUF:
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
736 */
737 val = min_t(u32, val, sysctl_rmem_max);
738 set_rcvbuf:
739 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
740 /*
741 * We double it on the way in to account for
742 * "struct sk_buff" etc. overhead. Applications
743 * assume that the SO_RCVBUF setting they make will
744 * allow that much actual data to be received on that
745 * socket.
746 *
747 * Applications are unaware that "struct sk_buff" and
748 * other overheads allocate from the receive buffer
749 * during socket buffer allocation.
750 *
751 * And after considering the possible alternatives,
752 * returning the value we actually used in getsockopt
753 * is the most desirable behavior.
754 */
755 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
756 break;
757
758 case SO_RCVBUFFORCE:
759 if (!capable(CAP_NET_ADMIN)) {
760 ret = -EPERM;
761 break;
762 }
763 goto set_rcvbuf;
764
765 case SO_KEEPALIVE:
766 #ifdef CONFIG_INET
767 if (sk->sk_protocol == IPPROTO_TCP &&
768 sk->sk_type == SOCK_STREAM)
769 tcp_set_keepalive(sk, valbool);
770 #endif
771 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
772 break;
773
774 case SO_OOBINLINE:
775 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
776 break;
777
778 case SO_NO_CHECK:
779 sk->sk_no_check_tx = valbool;
780 break;
781
782 case SO_PRIORITY:
783 if ((val >= 0 && val <= 6) ||
784 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
785 sk->sk_priority = val;
786 else
787 ret = -EPERM;
788 break;
789
790 case SO_LINGER:
791 if (optlen < sizeof(ling)) {
792 ret = -EINVAL; /* 1003.1g */
793 break;
794 }
795 if (copy_from_user(&ling, optval, sizeof(ling))) {
796 ret = -EFAULT;
797 break;
798 }
799 if (!ling.l_onoff)
800 sock_reset_flag(sk, SOCK_LINGER);
801 else {
802 #if (BITS_PER_LONG == 32)
803 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
804 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
805 else
806 #endif
807 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
808 sock_set_flag(sk, SOCK_LINGER);
809 }
810 break;
811
812 case SO_BSDCOMPAT:
813 sock_warn_obsolete_bsdism("setsockopt");
814 break;
815
816 case SO_PASSCRED:
817 if (valbool)
818 set_bit(SOCK_PASSCRED, &sock->flags);
819 else
820 clear_bit(SOCK_PASSCRED, &sock->flags);
821 break;
822
823 case SO_TIMESTAMP:
824 case SO_TIMESTAMPNS:
825 if (valbool) {
826 if (optname == SO_TIMESTAMP)
827 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
828 else
829 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
830 sock_set_flag(sk, SOCK_RCVTSTAMP);
831 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
832 } else {
833 sock_reset_flag(sk, SOCK_RCVTSTAMP);
834 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
835 }
836 break;
837
838 case SO_TIMESTAMPING:
839 if (val & ~SOF_TIMESTAMPING_MASK) {
840 ret = -EINVAL;
841 break;
842 }
843 if (val & SOF_TIMESTAMPING_OPT_ID &&
844 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
845 if (sk->sk_protocol == IPPROTO_TCP) {
846 if (sk->sk_state != TCP_ESTABLISHED) {
847 ret = -EINVAL;
848 break;
849 }
850 sk->sk_tskey = tcp_sk(sk)->snd_una;
851 } else {
852 sk->sk_tskey = 0;
853 }
854 }
855 sk->sk_tsflags = val;
856 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
857 sock_enable_timestamp(sk,
858 SOCK_TIMESTAMPING_RX_SOFTWARE);
859 else
860 sock_disable_timestamp(sk,
861 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
862 break;
863
864 case SO_RCVLOWAT:
865 if (val < 0)
866 val = INT_MAX;
867 sk->sk_rcvlowat = val ? : 1;
868 break;
869
870 case SO_RCVTIMEO:
871 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
872 break;
873
874 case SO_SNDTIMEO:
875 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
876 break;
877
878 case SO_ATTACH_FILTER:
879 ret = -EINVAL;
880 if (optlen == sizeof(struct sock_fprog)) {
881 struct sock_fprog fprog;
882
883 ret = -EFAULT;
884 if (copy_from_user(&fprog, optval, sizeof(fprog)))
885 break;
886
887 ret = sk_attach_filter(&fprog, sk);
888 }
889 break;
890
891 case SO_DETACH_FILTER:
892 ret = sk_detach_filter(sk);
893 break;
894
895 case SO_LOCK_FILTER:
896 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
897 ret = -EPERM;
898 else
899 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
900 break;
901
902 case SO_PASSSEC:
903 if (valbool)
904 set_bit(SOCK_PASSSEC, &sock->flags);
905 else
906 clear_bit(SOCK_PASSSEC, &sock->flags);
907 break;
908 case SO_MARK:
909 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
910 ret = -EPERM;
911 else
912 sk->sk_mark = val;
913 break;
914
915 /* We implement the SO_SNDLOWAT etc to
916 not be settable (1003.1g 5.3) */
917 case SO_RXQ_OVFL:
918 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
919 break;
920
921 case SO_WIFI_STATUS:
922 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
923 break;
924
925 case SO_PEEK_OFF:
926 if (sock->ops->set_peek_off)
927 ret = sock->ops->set_peek_off(sk, val);
928 else
929 ret = -EOPNOTSUPP;
930 break;
931
932 case SO_NOFCS:
933 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
934 break;
935
936 case SO_SELECT_ERR_QUEUE:
937 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
938 break;
939
940 #ifdef CONFIG_NET_RX_BUSY_POLL
941 case SO_BUSY_POLL:
942 /* allow unprivileged users to decrease the value */
943 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
944 ret = -EPERM;
945 else {
946 if (val < 0)
947 ret = -EINVAL;
948 else
949 sk->sk_ll_usec = val;
950 }
951 break;
952 #endif
953
954 case SO_MAX_PACING_RATE:
955 sk->sk_max_pacing_rate = val;
956 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
957 sk->sk_max_pacing_rate);
958 break;
959
960 default:
961 ret = -ENOPROTOOPT;
962 break;
963 }
964 release_sock(sk);
965 return ret;
966 }
967 EXPORT_SYMBOL(sock_setsockopt);
968
969
970 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
971 struct ucred *ucred)
972 {
973 ucred->pid = pid_vnr(pid);
974 ucred->uid = ucred->gid = -1;
975 if (cred) {
976 struct user_namespace *current_ns = current_user_ns();
977
978 ucred->uid = from_kuid_munged(current_ns, cred->euid);
979 ucred->gid = from_kgid_munged(current_ns, cred->egid);
980 }
981 }
982
983 int sock_getsockopt(struct socket *sock, int level, int optname,
984 char __user *optval, int __user *optlen)
985 {
986 struct sock *sk = sock->sk;
987
988 union {
989 int val;
990 struct linger ling;
991 struct timeval tm;
992 } v;
993
994 int lv = sizeof(int);
995 int len;
996
997 if (get_user(len, optlen))
998 return -EFAULT;
999 if (len < 0)
1000 return -EINVAL;
1001
1002 memset(&v, 0, sizeof(v));
1003
1004 switch (optname) {
1005 case SO_DEBUG:
1006 v.val = sock_flag(sk, SOCK_DBG);
1007 break;
1008
1009 case SO_DONTROUTE:
1010 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1011 break;
1012
1013 case SO_BROADCAST:
1014 v.val = sock_flag(sk, SOCK_BROADCAST);
1015 break;
1016
1017 case SO_SNDBUF:
1018 v.val = sk->sk_sndbuf;
1019 break;
1020
1021 case SO_RCVBUF:
1022 v.val = sk->sk_rcvbuf;
1023 break;
1024
1025 case SO_REUSEADDR:
1026 v.val = sk->sk_reuse;
1027 break;
1028
1029 case SO_REUSEPORT:
1030 v.val = sk->sk_reuseport;
1031 break;
1032
1033 case SO_KEEPALIVE:
1034 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1035 break;
1036
1037 case SO_TYPE:
1038 v.val = sk->sk_type;
1039 break;
1040
1041 case SO_PROTOCOL:
1042 v.val = sk->sk_protocol;
1043 break;
1044
1045 case SO_DOMAIN:
1046 v.val = sk->sk_family;
1047 break;
1048
1049 case SO_ERROR:
1050 v.val = -sock_error(sk);
1051 if (v.val == 0)
1052 v.val = xchg(&sk->sk_err_soft, 0);
1053 break;
1054
1055 case SO_OOBINLINE:
1056 v.val = sock_flag(sk, SOCK_URGINLINE);
1057 break;
1058
1059 case SO_NO_CHECK:
1060 v.val = sk->sk_no_check_tx;
1061 break;
1062
1063 case SO_PRIORITY:
1064 v.val = sk->sk_priority;
1065 break;
1066
1067 case SO_LINGER:
1068 lv = sizeof(v.ling);
1069 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1070 v.ling.l_linger = sk->sk_lingertime / HZ;
1071 break;
1072
1073 case SO_BSDCOMPAT:
1074 sock_warn_obsolete_bsdism("getsockopt");
1075 break;
1076
1077 case SO_TIMESTAMP:
1078 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1079 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1080 break;
1081
1082 case SO_TIMESTAMPNS:
1083 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1084 break;
1085
1086 case SO_TIMESTAMPING:
1087 v.val = sk->sk_tsflags;
1088 break;
1089
1090 case SO_RCVTIMEO:
1091 lv = sizeof(struct timeval);
1092 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1093 v.tm.tv_sec = 0;
1094 v.tm.tv_usec = 0;
1095 } else {
1096 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1097 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1098 }
1099 break;
1100
1101 case SO_SNDTIMEO:
1102 lv = sizeof(struct timeval);
1103 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1104 v.tm.tv_sec = 0;
1105 v.tm.tv_usec = 0;
1106 } else {
1107 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1108 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1109 }
1110 break;
1111
1112 case SO_RCVLOWAT:
1113 v.val = sk->sk_rcvlowat;
1114 break;
1115
1116 case SO_SNDLOWAT:
1117 v.val = 1;
1118 break;
1119
1120 case SO_PASSCRED:
1121 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1122 break;
1123
1124 case SO_PEERCRED:
1125 {
1126 struct ucred peercred;
1127 if (len > sizeof(peercred))
1128 len = sizeof(peercred);
1129 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1130 if (copy_to_user(optval, &peercred, len))
1131 return -EFAULT;
1132 goto lenout;
1133 }
1134
1135 case SO_PEERNAME:
1136 {
1137 char address[128];
1138
1139 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1140 return -ENOTCONN;
1141 if (lv < len)
1142 return -EINVAL;
1143 if (copy_to_user(optval, address, len))
1144 return -EFAULT;
1145 goto lenout;
1146 }
1147
1148 /* Dubious BSD thing... Probably nobody even uses it, but
1149 * the UNIX standard wants it for whatever reason... -DaveM
1150 */
1151 case SO_ACCEPTCONN:
1152 v.val = sk->sk_state == TCP_LISTEN;
1153 break;
1154
1155 case SO_PASSSEC:
1156 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1157 break;
1158
1159 case SO_PEERSEC:
1160 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1161
1162 case SO_MARK:
1163 v.val = sk->sk_mark;
1164 break;
1165
1166 case SO_RXQ_OVFL:
1167 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1168 break;
1169
1170 case SO_WIFI_STATUS:
1171 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1172 break;
1173
1174 case SO_PEEK_OFF:
1175 if (!sock->ops->set_peek_off)
1176 return -EOPNOTSUPP;
1177
1178 v.val = sk->sk_peek_off;
1179 break;
1180 case SO_NOFCS:
1181 v.val = sock_flag(sk, SOCK_NOFCS);
1182 break;
1183
1184 case SO_BINDTODEVICE:
1185 return sock_getbindtodevice(sk, optval, optlen, len);
1186
1187 case SO_GET_FILTER:
1188 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1189 if (len < 0)
1190 return len;
1191
1192 goto lenout;
1193
1194 case SO_LOCK_FILTER:
1195 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1196 break;
1197
1198 case SO_BPF_EXTENSIONS:
1199 v.val = bpf_tell_extensions();
1200 break;
1201
1202 case SO_SELECT_ERR_QUEUE:
1203 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1204 break;
1205
1206 #ifdef CONFIG_NET_RX_BUSY_POLL
1207 case SO_BUSY_POLL:
1208 v.val = sk->sk_ll_usec;
1209 break;
1210 #endif
1211
1212 case SO_MAX_PACING_RATE:
1213 v.val = sk->sk_max_pacing_rate;
1214 break;
1215
1216 default:
1217 return -ENOPROTOOPT;
1218 }
1219
1220 if (len > lv)
1221 len = lv;
1222 if (copy_to_user(optval, &v, len))
1223 return -EFAULT;
1224 lenout:
1225 if (put_user(len, optlen))
1226 return -EFAULT;
1227 return 0;
1228 }
1229
1230 /*
1231 * Initialize an sk_lock.
1232 *
1233 * (We also register the sk_lock with the lock validator.)
1234 */
1235 static inline void sock_lock_init(struct sock *sk)
1236 {
1237 sock_lock_init_class_and_name(sk,
1238 af_family_slock_key_strings[sk->sk_family],
1239 af_family_slock_keys + sk->sk_family,
1240 af_family_key_strings[sk->sk_family],
1241 af_family_keys + sk->sk_family);
1242 }
1243
1244 /*
1245 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1246 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1247 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1248 */
1249 static void sock_copy(struct sock *nsk, const struct sock *osk)
1250 {
1251 #ifdef CONFIG_SECURITY_NETWORK
1252 void *sptr = nsk->sk_security;
1253 #endif
1254 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1255
1256 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1257 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1258
1259 #ifdef CONFIG_SECURITY_NETWORK
1260 nsk->sk_security = sptr;
1261 security_sk_clone(osk, nsk);
1262 #endif
1263 }
1264
1265 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1266 {
1267 unsigned long nulls1, nulls2;
1268
1269 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1270 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1271 if (nulls1 > nulls2)
1272 swap(nulls1, nulls2);
1273
1274 if (nulls1 != 0)
1275 memset((char *)sk, 0, nulls1);
1276 memset((char *)sk + nulls1 + sizeof(void *), 0,
1277 nulls2 - nulls1 - sizeof(void *));
1278 memset((char *)sk + nulls2 + sizeof(void *), 0,
1279 size - nulls2 - sizeof(void *));
1280 }
1281 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1282
1283 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1284 int family)
1285 {
1286 struct sock *sk;
1287 struct kmem_cache *slab;
1288
1289 slab = prot->slab;
1290 if (slab != NULL) {
1291 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1292 if (!sk)
1293 return sk;
1294 if (priority & __GFP_ZERO) {
1295 if (prot->clear_sk)
1296 prot->clear_sk(sk, prot->obj_size);
1297 else
1298 sk_prot_clear_nulls(sk, prot->obj_size);
1299 }
1300 } else
1301 sk = kmalloc(prot->obj_size, priority);
1302
1303 if (sk != NULL) {
1304 kmemcheck_annotate_bitfield(sk, flags);
1305
1306 if (security_sk_alloc(sk, family, priority))
1307 goto out_free;
1308
1309 if (!try_module_get(prot->owner))
1310 goto out_free_sec;
1311 sk_tx_queue_clear(sk);
1312 }
1313
1314 return sk;
1315
1316 out_free_sec:
1317 security_sk_free(sk);
1318 out_free:
1319 if (slab != NULL)
1320 kmem_cache_free(slab, sk);
1321 else
1322 kfree(sk);
1323 return NULL;
1324 }
1325
1326 static void sk_prot_free(struct proto *prot, struct sock *sk)
1327 {
1328 struct kmem_cache *slab;
1329 struct module *owner;
1330
1331 owner = prot->owner;
1332 slab = prot->slab;
1333
1334 security_sk_free(sk);
1335 if (slab != NULL)
1336 kmem_cache_free(slab, sk);
1337 else
1338 kfree(sk);
1339 module_put(owner);
1340 }
1341
1342 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1343 void sock_update_netprioidx(struct sock *sk)
1344 {
1345 if (in_interrupt())
1346 return;
1347
1348 sk->sk_cgrp_prioidx = task_netprioidx(current);
1349 }
1350 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1351 #endif
1352
1353 /**
1354 * sk_alloc - All socket objects are allocated here
1355 * @net: the applicable net namespace
1356 * @family: protocol family
1357 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1358 * @prot: struct proto associated with this new sock instance
1359 */
1360 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1361 struct proto *prot)
1362 {
1363 struct sock *sk;
1364
1365 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1366 if (sk) {
1367 sk->sk_family = family;
1368 /*
1369 * See comment in struct sock definition to understand
1370 * why we need sk_prot_creator -acme
1371 */
1372 sk->sk_prot = sk->sk_prot_creator = prot;
1373 sock_lock_init(sk);
1374 sock_net_set(sk, get_net(net));
1375 atomic_set(&sk->sk_wmem_alloc, 1);
1376
1377 sock_update_classid(sk);
1378 sock_update_netprioidx(sk);
1379 }
1380
1381 return sk;
1382 }
1383 EXPORT_SYMBOL(sk_alloc);
1384
1385 static void __sk_free(struct sock *sk)
1386 {
1387 struct sk_filter *filter;
1388
1389 if (sk->sk_destruct)
1390 sk->sk_destruct(sk);
1391
1392 filter = rcu_dereference_check(sk->sk_filter,
1393 atomic_read(&sk->sk_wmem_alloc) == 0);
1394 if (filter) {
1395 sk_filter_uncharge(sk, filter);
1396 RCU_INIT_POINTER(sk->sk_filter, NULL);
1397 }
1398
1399 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1400
1401 if (atomic_read(&sk->sk_omem_alloc))
1402 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1403 __func__, atomic_read(&sk->sk_omem_alloc));
1404
1405 if (sk->sk_peer_cred)
1406 put_cred(sk->sk_peer_cred);
1407 put_pid(sk->sk_peer_pid);
1408 put_net(sock_net(sk));
1409 sk_prot_free(sk->sk_prot_creator, sk);
1410 }
1411
1412 void sk_free(struct sock *sk)
1413 {
1414 /*
1415 * We subtract one from sk_wmem_alloc and can know if
1416 * some packets are still in some tx queue.
1417 * If not null, sock_wfree() will call __sk_free(sk) later
1418 */
1419 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1420 __sk_free(sk);
1421 }
1422 EXPORT_SYMBOL(sk_free);
1423
1424 /*
1425 * Last sock_put should drop reference to sk->sk_net. It has already
1426 * been dropped in sk_change_net. Taking reference to stopping namespace
1427 * is not an option.
1428 * Take reference to a socket to remove it from hash _alive_ and after that
1429 * destroy it in the context of init_net.
1430 */
1431 void sk_release_kernel(struct sock *sk)
1432 {
1433 if (sk == NULL || sk->sk_socket == NULL)
1434 return;
1435
1436 sock_hold(sk);
1437 sock_release(sk->sk_socket);
1438 release_net(sock_net(sk));
1439 sock_net_set(sk, get_net(&init_net));
1440 sock_put(sk);
1441 }
1442 EXPORT_SYMBOL(sk_release_kernel);
1443
1444 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1445 {
1446 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1447 sock_update_memcg(newsk);
1448 }
1449
1450 /**
1451 * sk_clone_lock - clone a socket, and lock its clone
1452 * @sk: the socket to clone
1453 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1454 *
1455 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1456 */
1457 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1458 {
1459 struct sock *newsk;
1460 bool is_charged = true;
1461
1462 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1463 if (newsk != NULL) {
1464 struct sk_filter *filter;
1465
1466 sock_copy(newsk, sk);
1467
1468 /* SANITY */
1469 get_net(sock_net(newsk));
1470 sk_node_init(&newsk->sk_node);
1471 sock_lock_init(newsk);
1472 bh_lock_sock(newsk);
1473 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1474 newsk->sk_backlog.len = 0;
1475
1476 atomic_set(&newsk->sk_rmem_alloc, 0);
1477 /*
1478 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1479 */
1480 atomic_set(&newsk->sk_wmem_alloc, 1);
1481 atomic_set(&newsk->sk_omem_alloc, 0);
1482 skb_queue_head_init(&newsk->sk_receive_queue);
1483 skb_queue_head_init(&newsk->sk_write_queue);
1484 #ifdef CONFIG_NET_DMA
1485 skb_queue_head_init(&newsk->sk_async_wait_queue);
1486 #endif
1487
1488 spin_lock_init(&newsk->sk_dst_lock);
1489 rwlock_init(&newsk->sk_callback_lock);
1490 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1491 af_callback_keys + newsk->sk_family,
1492 af_family_clock_key_strings[newsk->sk_family]);
1493
1494 newsk->sk_dst_cache = NULL;
1495 newsk->sk_wmem_queued = 0;
1496 newsk->sk_forward_alloc = 0;
1497 newsk->sk_send_head = NULL;
1498 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1499
1500 sock_reset_flag(newsk, SOCK_DONE);
1501 skb_queue_head_init(&newsk->sk_error_queue);
1502
1503 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1504 if (filter != NULL)
1505 /* though it's an empty new sock, the charging may fail
1506 * if sysctl_optmem_max was changed between creation of
1507 * original socket and cloning
1508 */
1509 is_charged = sk_filter_charge(newsk, filter);
1510
1511 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1512 /* It is still raw copy of parent, so invalidate
1513 * destructor and make plain sk_free() */
1514 newsk->sk_destruct = NULL;
1515 bh_unlock_sock(newsk);
1516 sk_free(newsk);
1517 newsk = NULL;
1518 goto out;
1519 }
1520
1521 newsk->sk_err = 0;
1522 newsk->sk_priority = 0;
1523 /*
1524 * Before updating sk_refcnt, we must commit prior changes to memory
1525 * (Documentation/RCU/rculist_nulls.txt for details)
1526 */
1527 smp_wmb();
1528 atomic_set(&newsk->sk_refcnt, 2);
1529
1530 /*
1531 * Increment the counter in the same struct proto as the master
1532 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1533 * is the same as sk->sk_prot->socks, as this field was copied
1534 * with memcpy).
1535 *
1536 * This _changes_ the previous behaviour, where
1537 * tcp_create_openreq_child always was incrementing the
1538 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1539 * to be taken into account in all callers. -acme
1540 */
1541 sk_refcnt_debug_inc(newsk);
1542 sk_set_socket(newsk, NULL);
1543 newsk->sk_wq = NULL;
1544
1545 sk_update_clone(sk, newsk);
1546
1547 if (newsk->sk_prot->sockets_allocated)
1548 sk_sockets_allocated_inc(newsk);
1549
1550 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1551 net_enable_timestamp();
1552 }
1553 out:
1554 return newsk;
1555 }
1556 EXPORT_SYMBOL_GPL(sk_clone_lock);
1557
1558 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1559 {
1560 __sk_dst_set(sk, dst);
1561 sk->sk_route_caps = dst->dev->features;
1562 if (sk->sk_route_caps & NETIF_F_GSO)
1563 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1564 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1565 if (sk_can_gso(sk)) {
1566 if (dst->header_len) {
1567 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1568 } else {
1569 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1570 sk->sk_gso_max_size = dst->dev->gso_max_size;
1571 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1572 }
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(sk_setup_caps);
1576
1577 /*
1578 * Simple resource managers for sockets.
1579 */
1580
1581
1582 /*
1583 * Write buffer destructor automatically called from kfree_skb.
1584 */
1585 void sock_wfree(struct sk_buff *skb)
1586 {
1587 struct sock *sk = skb->sk;
1588 unsigned int len = skb->truesize;
1589
1590 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1591 /*
1592 * Keep a reference on sk_wmem_alloc, this will be released
1593 * after sk_write_space() call
1594 */
1595 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1596 sk->sk_write_space(sk);
1597 len = 1;
1598 }
1599 /*
1600 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1601 * could not do because of in-flight packets
1602 */
1603 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1604 __sk_free(sk);
1605 }
1606 EXPORT_SYMBOL(sock_wfree);
1607
1608 void skb_orphan_partial(struct sk_buff *skb)
1609 {
1610 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1611 * so we do not completely orphan skb, but transfert all
1612 * accounted bytes but one, to avoid unexpected reorders.
1613 */
1614 if (skb->destructor == sock_wfree
1615 #ifdef CONFIG_INET
1616 || skb->destructor == tcp_wfree
1617 #endif
1618 ) {
1619 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1620 skb->truesize = 1;
1621 } else {
1622 skb_orphan(skb);
1623 }
1624 }
1625 EXPORT_SYMBOL(skb_orphan_partial);
1626
1627 /*
1628 * Read buffer destructor automatically called from kfree_skb.
1629 */
1630 void sock_rfree(struct sk_buff *skb)
1631 {
1632 struct sock *sk = skb->sk;
1633 unsigned int len = skb->truesize;
1634
1635 atomic_sub(len, &sk->sk_rmem_alloc);
1636 sk_mem_uncharge(sk, len);
1637 }
1638 EXPORT_SYMBOL(sock_rfree);
1639
1640 void sock_edemux(struct sk_buff *skb)
1641 {
1642 struct sock *sk = skb->sk;
1643
1644 #ifdef CONFIG_INET
1645 if (sk->sk_state == TCP_TIME_WAIT)
1646 inet_twsk_put(inet_twsk(sk));
1647 else
1648 #endif
1649 sock_put(sk);
1650 }
1651 EXPORT_SYMBOL(sock_edemux);
1652
1653 kuid_t sock_i_uid(struct sock *sk)
1654 {
1655 kuid_t uid;
1656
1657 read_lock_bh(&sk->sk_callback_lock);
1658 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1659 read_unlock_bh(&sk->sk_callback_lock);
1660 return uid;
1661 }
1662 EXPORT_SYMBOL(sock_i_uid);
1663
1664 unsigned long sock_i_ino(struct sock *sk)
1665 {
1666 unsigned long ino;
1667
1668 read_lock_bh(&sk->sk_callback_lock);
1669 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1670 read_unlock_bh(&sk->sk_callback_lock);
1671 return ino;
1672 }
1673 EXPORT_SYMBOL(sock_i_ino);
1674
1675 /*
1676 * Allocate a skb from the socket's send buffer.
1677 */
1678 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1679 gfp_t priority)
1680 {
1681 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1682 struct sk_buff *skb = alloc_skb(size, priority);
1683 if (skb) {
1684 skb_set_owner_w(skb, sk);
1685 return skb;
1686 }
1687 }
1688 return NULL;
1689 }
1690 EXPORT_SYMBOL(sock_wmalloc);
1691
1692 /*
1693 * Allocate a memory block from the socket's option memory buffer.
1694 */
1695 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1696 {
1697 if ((unsigned int)size <= sysctl_optmem_max &&
1698 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1699 void *mem;
1700 /* First do the add, to avoid the race if kmalloc
1701 * might sleep.
1702 */
1703 atomic_add(size, &sk->sk_omem_alloc);
1704 mem = kmalloc(size, priority);
1705 if (mem)
1706 return mem;
1707 atomic_sub(size, &sk->sk_omem_alloc);
1708 }
1709 return NULL;
1710 }
1711 EXPORT_SYMBOL(sock_kmalloc);
1712
1713 /*
1714 * Free an option memory block.
1715 */
1716 void sock_kfree_s(struct sock *sk, void *mem, int size)
1717 {
1718 kfree(mem);
1719 atomic_sub(size, &sk->sk_omem_alloc);
1720 }
1721 EXPORT_SYMBOL(sock_kfree_s);
1722
1723 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1724 I think, these locks should be removed for datagram sockets.
1725 */
1726 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1727 {
1728 DEFINE_WAIT(wait);
1729
1730 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1731 for (;;) {
1732 if (!timeo)
1733 break;
1734 if (signal_pending(current))
1735 break;
1736 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1737 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1738 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1739 break;
1740 if (sk->sk_shutdown & SEND_SHUTDOWN)
1741 break;
1742 if (sk->sk_err)
1743 break;
1744 timeo = schedule_timeout(timeo);
1745 }
1746 finish_wait(sk_sleep(sk), &wait);
1747 return timeo;
1748 }
1749
1750
1751 /*
1752 * Generic send/receive buffer handlers
1753 */
1754
1755 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1756 unsigned long data_len, int noblock,
1757 int *errcode, int max_page_order)
1758 {
1759 struct sk_buff *skb = NULL;
1760 unsigned long chunk;
1761 gfp_t gfp_mask;
1762 long timeo;
1763 int err;
1764 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1765 struct page *page;
1766 int i;
1767
1768 err = -EMSGSIZE;
1769 if (npages > MAX_SKB_FRAGS)
1770 goto failure;
1771
1772 timeo = sock_sndtimeo(sk, noblock);
1773 while (!skb) {
1774 err = sock_error(sk);
1775 if (err != 0)
1776 goto failure;
1777
1778 err = -EPIPE;
1779 if (sk->sk_shutdown & SEND_SHUTDOWN)
1780 goto failure;
1781
1782 if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
1783 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1784 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1785 err = -EAGAIN;
1786 if (!timeo)
1787 goto failure;
1788 if (signal_pending(current))
1789 goto interrupted;
1790 timeo = sock_wait_for_wmem(sk, timeo);
1791 continue;
1792 }
1793
1794 err = -ENOBUFS;
1795 gfp_mask = sk->sk_allocation;
1796 if (gfp_mask & __GFP_WAIT)
1797 gfp_mask |= __GFP_REPEAT;
1798
1799 skb = alloc_skb(header_len, gfp_mask);
1800 if (!skb)
1801 goto failure;
1802
1803 skb->truesize += data_len;
1804
1805 for (i = 0; npages > 0; i++) {
1806 int order = max_page_order;
1807
1808 while (order) {
1809 if (npages >= 1 << order) {
1810 page = alloc_pages(sk->sk_allocation |
1811 __GFP_COMP |
1812 __GFP_NOWARN |
1813 __GFP_NORETRY,
1814 order);
1815 if (page)
1816 goto fill_page;
1817 }
1818 order--;
1819 }
1820 page = alloc_page(sk->sk_allocation);
1821 if (!page)
1822 goto failure;
1823 fill_page:
1824 chunk = min_t(unsigned long, data_len,
1825 PAGE_SIZE << order);
1826 skb_fill_page_desc(skb, i, page, 0, chunk);
1827 data_len -= chunk;
1828 npages -= 1 << order;
1829 }
1830 }
1831
1832 skb_set_owner_w(skb, sk);
1833 return skb;
1834
1835 interrupted:
1836 err = sock_intr_errno(timeo);
1837 failure:
1838 kfree_skb(skb);
1839 *errcode = err;
1840 return NULL;
1841 }
1842 EXPORT_SYMBOL(sock_alloc_send_pskb);
1843
1844 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1845 int noblock, int *errcode)
1846 {
1847 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1848 }
1849 EXPORT_SYMBOL(sock_alloc_send_skb);
1850
1851 /* On 32bit arches, an skb frag is limited to 2^15 */
1852 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1853
1854 /**
1855 * skb_page_frag_refill - check that a page_frag contains enough room
1856 * @sz: minimum size of the fragment we want to get
1857 * @pfrag: pointer to page_frag
1858 * @prio: priority for memory allocation
1859 *
1860 * Note: While this allocator tries to use high order pages, there is
1861 * no guarantee that allocations succeed. Therefore, @sz MUST be
1862 * less or equal than PAGE_SIZE.
1863 */
1864 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
1865 {
1866 int order;
1867
1868 if (pfrag->page) {
1869 if (atomic_read(&pfrag->page->_count) == 1) {
1870 pfrag->offset = 0;
1871 return true;
1872 }
1873 if (pfrag->offset + sz <= pfrag->size)
1874 return true;
1875 put_page(pfrag->page);
1876 }
1877
1878 order = SKB_FRAG_PAGE_ORDER;
1879 do {
1880 gfp_t gfp = prio;
1881
1882 if (order)
1883 gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY;
1884 pfrag->page = alloc_pages(gfp, order);
1885 if (likely(pfrag->page)) {
1886 pfrag->offset = 0;
1887 pfrag->size = PAGE_SIZE << order;
1888 return true;
1889 }
1890 } while (--order >= 0);
1891
1892 return false;
1893 }
1894 EXPORT_SYMBOL(skb_page_frag_refill);
1895
1896 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1897 {
1898 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1899 return true;
1900
1901 sk_enter_memory_pressure(sk);
1902 sk_stream_moderate_sndbuf(sk);
1903 return false;
1904 }
1905 EXPORT_SYMBOL(sk_page_frag_refill);
1906
1907 static void __lock_sock(struct sock *sk)
1908 __releases(&sk->sk_lock.slock)
1909 __acquires(&sk->sk_lock.slock)
1910 {
1911 DEFINE_WAIT(wait);
1912
1913 for (;;) {
1914 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1915 TASK_UNINTERRUPTIBLE);
1916 spin_unlock_bh(&sk->sk_lock.slock);
1917 schedule();
1918 spin_lock_bh(&sk->sk_lock.slock);
1919 if (!sock_owned_by_user(sk))
1920 break;
1921 }
1922 finish_wait(&sk->sk_lock.wq, &wait);
1923 }
1924
1925 static void __release_sock(struct sock *sk)
1926 __releases(&sk->sk_lock.slock)
1927 __acquires(&sk->sk_lock.slock)
1928 {
1929 struct sk_buff *skb = sk->sk_backlog.head;
1930
1931 do {
1932 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1933 bh_unlock_sock(sk);
1934
1935 do {
1936 struct sk_buff *next = skb->next;
1937
1938 prefetch(next);
1939 WARN_ON_ONCE(skb_dst_is_noref(skb));
1940 skb->next = NULL;
1941 sk_backlog_rcv(sk, skb);
1942
1943 /*
1944 * We are in process context here with softirqs
1945 * disabled, use cond_resched_softirq() to preempt.
1946 * This is safe to do because we've taken the backlog
1947 * queue private:
1948 */
1949 cond_resched_softirq();
1950
1951 skb = next;
1952 } while (skb != NULL);
1953
1954 bh_lock_sock(sk);
1955 } while ((skb = sk->sk_backlog.head) != NULL);
1956
1957 /*
1958 * Doing the zeroing here guarantee we can not loop forever
1959 * while a wild producer attempts to flood us.
1960 */
1961 sk->sk_backlog.len = 0;
1962 }
1963
1964 /**
1965 * sk_wait_data - wait for data to arrive at sk_receive_queue
1966 * @sk: sock to wait on
1967 * @timeo: for how long
1968 *
1969 * Now socket state including sk->sk_err is changed only under lock,
1970 * hence we may omit checks after joining wait queue.
1971 * We check receive queue before schedule() only as optimization;
1972 * it is very likely that release_sock() added new data.
1973 */
1974 int sk_wait_data(struct sock *sk, long *timeo)
1975 {
1976 int rc;
1977 DEFINE_WAIT(wait);
1978
1979 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1980 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1981 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1982 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1983 finish_wait(sk_sleep(sk), &wait);
1984 return rc;
1985 }
1986 EXPORT_SYMBOL(sk_wait_data);
1987
1988 /**
1989 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1990 * @sk: socket
1991 * @size: memory size to allocate
1992 * @kind: allocation type
1993 *
1994 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1995 * rmem allocation. This function assumes that protocols which have
1996 * memory_pressure use sk_wmem_queued as write buffer accounting.
1997 */
1998 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1999 {
2000 struct proto *prot = sk->sk_prot;
2001 int amt = sk_mem_pages(size);
2002 long allocated;
2003 int parent_status = UNDER_LIMIT;
2004
2005 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2006
2007 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2008
2009 /* Under limit. */
2010 if (parent_status == UNDER_LIMIT &&
2011 allocated <= sk_prot_mem_limits(sk, 0)) {
2012 sk_leave_memory_pressure(sk);
2013 return 1;
2014 }
2015
2016 /* Under pressure. (we or our parents) */
2017 if ((parent_status > SOFT_LIMIT) ||
2018 allocated > sk_prot_mem_limits(sk, 1))
2019 sk_enter_memory_pressure(sk);
2020
2021 /* Over hard limit (we or our parents) */
2022 if ((parent_status == OVER_LIMIT) ||
2023 (allocated > sk_prot_mem_limits(sk, 2)))
2024 goto suppress_allocation;
2025
2026 /* guarantee minimum buffer size under pressure */
2027 if (kind == SK_MEM_RECV) {
2028 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2029 return 1;
2030
2031 } else { /* SK_MEM_SEND */
2032 if (sk->sk_type == SOCK_STREAM) {
2033 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2034 return 1;
2035 } else if (atomic_read(&sk->sk_wmem_alloc) <
2036 prot->sysctl_wmem[0])
2037 return 1;
2038 }
2039
2040 if (sk_has_memory_pressure(sk)) {
2041 int alloc;
2042
2043 if (!sk_under_memory_pressure(sk))
2044 return 1;
2045 alloc = sk_sockets_allocated_read_positive(sk);
2046 if (sk_prot_mem_limits(sk, 2) > alloc *
2047 sk_mem_pages(sk->sk_wmem_queued +
2048 atomic_read(&sk->sk_rmem_alloc) +
2049 sk->sk_forward_alloc))
2050 return 1;
2051 }
2052
2053 suppress_allocation:
2054
2055 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2056 sk_stream_moderate_sndbuf(sk);
2057
2058 /* Fail only if socket is _under_ its sndbuf.
2059 * In this case we cannot block, so that we have to fail.
2060 */
2061 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2062 return 1;
2063 }
2064
2065 trace_sock_exceed_buf_limit(sk, prot, allocated);
2066
2067 /* Alas. Undo changes. */
2068 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2069
2070 sk_memory_allocated_sub(sk, amt);
2071
2072 return 0;
2073 }
2074 EXPORT_SYMBOL(__sk_mem_schedule);
2075
2076 /**
2077 * __sk_reclaim - reclaim memory_allocated
2078 * @sk: socket
2079 */
2080 void __sk_mem_reclaim(struct sock *sk)
2081 {
2082 sk_memory_allocated_sub(sk,
2083 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2084 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2085
2086 if (sk_under_memory_pressure(sk) &&
2087 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2088 sk_leave_memory_pressure(sk);
2089 }
2090 EXPORT_SYMBOL(__sk_mem_reclaim);
2091
2092
2093 /*
2094 * Set of default routines for initialising struct proto_ops when
2095 * the protocol does not support a particular function. In certain
2096 * cases where it makes no sense for a protocol to have a "do nothing"
2097 * function, some default processing is provided.
2098 */
2099
2100 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2101 {
2102 return -EOPNOTSUPP;
2103 }
2104 EXPORT_SYMBOL(sock_no_bind);
2105
2106 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2107 int len, int flags)
2108 {
2109 return -EOPNOTSUPP;
2110 }
2111 EXPORT_SYMBOL(sock_no_connect);
2112
2113 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2114 {
2115 return -EOPNOTSUPP;
2116 }
2117 EXPORT_SYMBOL(sock_no_socketpair);
2118
2119 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2120 {
2121 return -EOPNOTSUPP;
2122 }
2123 EXPORT_SYMBOL(sock_no_accept);
2124
2125 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2126 int *len, int peer)
2127 {
2128 return -EOPNOTSUPP;
2129 }
2130 EXPORT_SYMBOL(sock_no_getname);
2131
2132 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2133 {
2134 return 0;
2135 }
2136 EXPORT_SYMBOL(sock_no_poll);
2137
2138 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2139 {
2140 return -EOPNOTSUPP;
2141 }
2142 EXPORT_SYMBOL(sock_no_ioctl);
2143
2144 int sock_no_listen(struct socket *sock, int backlog)
2145 {
2146 return -EOPNOTSUPP;
2147 }
2148 EXPORT_SYMBOL(sock_no_listen);
2149
2150 int sock_no_shutdown(struct socket *sock, int how)
2151 {
2152 return -EOPNOTSUPP;
2153 }
2154 EXPORT_SYMBOL(sock_no_shutdown);
2155
2156 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2157 char __user *optval, unsigned int optlen)
2158 {
2159 return -EOPNOTSUPP;
2160 }
2161 EXPORT_SYMBOL(sock_no_setsockopt);
2162
2163 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2164 char __user *optval, int __user *optlen)
2165 {
2166 return -EOPNOTSUPP;
2167 }
2168 EXPORT_SYMBOL(sock_no_getsockopt);
2169
2170 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2171 size_t len)
2172 {
2173 return -EOPNOTSUPP;
2174 }
2175 EXPORT_SYMBOL(sock_no_sendmsg);
2176
2177 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2178 size_t len, int flags)
2179 {
2180 return -EOPNOTSUPP;
2181 }
2182 EXPORT_SYMBOL(sock_no_recvmsg);
2183
2184 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2185 {
2186 /* Mirror missing mmap method error code */
2187 return -ENODEV;
2188 }
2189 EXPORT_SYMBOL(sock_no_mmap);
2190
2191 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2192 {
2193 ssize_t res;
2194 struct msghdr msg = {.msg_flags = flags};
2195 struct kvec iov;
2196 char *kaddr = kmap(page);
2197 iov.iov_base = kaddr + offset;
2198 iov.iov_len = size;
2199 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2200 kunmap(page);
2201 return res;
2202 }
2203 EXPORT_SYMBOL(sock_no_sendpage);
2204
2205 /*
2206 * Default Socket Callbacks
2207 */
2208
2209 static void sock_def_wakeup(struct sock *sk)
2210 {
2211 struct socket_wq *wq;
2212
2213 rcu_read_lock();
2214 wq = rcu_dereference(sk->sk_wq);
2215 if (wq_has_sleeper(wq))
2216 wake_up_interruptible_all(&wq->wait);
2217 rcu_read_unlock();
2218 }
2219
2220 static void sock_def_error_report(struct sock *sk)
2221 {
2222 struct socket_wq *wq;
2223
2224 rcu_read_lock();
2225 wq = rcu_dereference(sk->sk_wq);
2226 if (wq_has_sleeper(wq))
2227 wake_up_interruptible_poll(&wq->wait, POLLERR);
2228 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2229 rcu_read_unlock();
2230 }
2231
2232 static void sock_def_readable(struct sock *sk)
2233 {
2234 struct socket_wq *wq;
2235
2236 rcu_read_lock();
2237 wq = rcu_dereference(sk->sk_wq);
2238 if (wq_has_sleeper(wq))
2239 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2240 POLLRDNORM | POLLRDBAND);
2241 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2242 rcu_read_unlock();
2243 }
2244
2245 static void sock_def_write_space(struct sock *sk)
2246 {
2247 struct socket_wq *wq;
2248
2249 rcu_read_lock();
2250
2251 /* Do not wake up a writer until he can make "significant"
2252 * progress. --DaveM
2253 */
2254 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2255 wq = rcu_dereference(sk->sk_wq);
2256 if (wq_has_sleeper(wq))
2257 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2258 POLLWRNORM | POLLWRBAND);
2259
2260 /* Should agree with poll, otherwise some programs break */
2261 if (sock_writeable(sk))
2262 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2263 }
2264
2265 rcu_read_unlock();
2266 }
2267
2268 static void sock_def_destruct(struct sock *sk)
2269 {
2270 kfree(sk->sk_protinfo);
2271 }
2272
2273 void sk_send_sigurg(struct sock *sk)
2274 {
2275 if (sk->sk_socket && sk->sk_socket->file)
2276 if (send_sigurg(&sk->sk_socket->file->f_owner))
2277 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2278 }
2279 EXPORT_SYMBOL(sk_send_sigurg);
2280
2281 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2282 unsigned long expires)
2283 {
2284 if (!mod_timer(timer, expires))
2285 sock_hold(sk);
2286 }
2287 EXPORT_SYMBOL(sk_reset_timer);
2288
2289 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2290 {
2291 if (del_timer(timer))
2292 __sock_put(sk);
2293 }
2294 EXPORT_SYMBOL(sk_stop_timer);
2295
2296 void sock_init_data(struct socket *sock, struct sock *sk)
2297 {
2298 skb_queue_head_init(&sk->sk_receive_queue);
2299 skb_queue_head_init(&sk->sk_write_queue);
2300 skb_queue_head_init(&sk->sk_error_queue);
2301 #ifdef CONFIG_NET_DMA
2302 skb_queue_head_init(&sk->sk_async_wait_queue);
2303 #endif
2304
2305 sk->sk_send_head = NULL;
2306
2307 init_timer(&sk->sk_timer);
2308
2309 sk->sk_allocation = GFP_KERNEL;
2310 sk->sk_rcvbuf = sysctl_rmem_default;
2311 sk->sk_sndbuf = sysctl_wmem_default;
2312 sk->sk_state = TCP_CLOSE;
2313 sk_set_socket(sk, sock);
2314
2315 sock_set_flag(sk, SOCK_ZAPPED);
2316
2317 if (sock) {
2318 sk->sk_type = sock->type;
2319 sk->sk_wq = sock->wq;
2320 sock->sk = sk;
2321 } else
2322 sk->sk_wq = NULL;
2323
2324 spin_lock_init(&sk->sk_dst_lock);
2325 rwlock_init(&sk->sk_callback_lock);
2326 lockdep_set_class_and_name(&sk->sk_callback_lock,
2327 af_callback_keys + sk->sk_family,
2328 af_family_clock_key_strings[sk->sk_family]);
2329
2330 sk->sk_state_change = sock_def_wakeup;
2331 sk->sk_data_ready = sock_def_readable;
2332 sk->sk_write_space = sock_def_write_space;
2333 sk->sk_error_report = sock_def_error_report;
2334 sk->sk_destruct = sock_def_destruct;
2335
2336 sk->sk_frag.page = NULL;
2337 sk->sk_frag.offset = 0;
2338 sk->sk_peek_off = -1;
2339
2340 sk->sk_peer_pid = NULL;
2341 sk->sk_peer_cred = NULL;
2342 sk->sk_write_pending = 0;
2343 sk->sk_rcvlowat = 1;
2344 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2345 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2346
2347 sk->sk_stamp = ktime_set(-1L, 0);
2348
2349 #ifdef CONFIG_NET_RX_BUSY_POLL
2350 sk->sk_napi_id = 0;
2351 sk->sk_ll_usec = sysctl_net_busy_read;
2352 #endif
2353
2354 sk->sk_max_pacing_rate = ~0U;
2355 sk->sk_pacing_rate = ~0U;
2356 /*
2357 * Before updating sk_refcnt, we must commit prior changes to memory
2358 * (Documentation/RCU/rculist_nulls.txt for details)
2359 */
2360 smp_wmb();
2361 atomic_set(&sk->sk_refcnt, 1);
2362 atomic_set(&sk->sk_drops, 0);
2363 }
2364 EXPORT_SYMBOL(sock_init_data);
2365
2366 void lock_sock_nested(struct sock *sk, int subclass)
2367 {
2368 might_sleep();
2369 spin_lock_bh(&sk->sk_lock.slock);
2370 if (sk->sk_lock.owned)
2371 __lock_sock(sk);
2372 sk->sk_lock.owned = 1;
2373 spin_unlock(&sk->sk_lock.slock);
2374 /*
2375 * The sk_lock has mutex_lock() semantics here:
2376 */
2377 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2378 local_bh_enable();
2379 }
2380 EXPORT_SYMBOL(lock_sock_nested);
2381
2382 void release_sock(struct sock *sk)
2383 {
2384 /*
2385 * The sk_lock has mutex_unlock() semantics:
2386 */
2387 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2388
2389 spin_lock_bh(&sk->sk_lock.slock);
2390 if (sk->sk_backlog.tail)
2391 __release_sock(sk);
2392
2393 /* Warning : release_cb() might need to release sk ownership,
2394 * ie call sock_release_ownership(sk) before us.
2395 */
2396 if (sk->sk_prot->release_cb)
2397 sk->sk_prot->release_cb(sk);
2398
2399 sock_release_ownership(sk);
2400 if (waitqueue_active(&sk->sk_lock.wq))
2401 wake_up(&sk->sk_lock.wq);
2402 spin_unlock_bh(&sk->sk_lock.slock);
2403 }
2404 EXPORT_SYMBOL(release_sock);
2405
2406 /**
2407 * lock_sock_fast - fast version of lock_sock
2408 * @sk: socket
2409 *
2410 * This version should be used for very small section, where process wont block
2411 * return false if fast path is taken
2412 * sk_lock.slock locked, owned = 0, BH disabled
2413 * return true if slow path is taken
2414 * sk_lock.slock unlocked, owned = 1, BH enabled
2415 */
2416 bool lock_sock_fast(struct sock *sk)
2417 {
2418 might_sleep();
2419 spin_lock_bh(&sk->sk_lock.slock);
2420
2421 if (!sk->sk_lock.owned)
2422 /*
2423 * Note : We must disable BH
2424 */
2425 return false;
2426
2427 __lock_sock(sk);
2428 sk->sk_lock.owned = 1;
2429 spin_unlock(&sk->sk_lock.slock);
2430 /*
2431 * The sk_lock has mutex_lock() semantics here:
2432 */
2433 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2434 local_bh_enable();
2435 return true;
2436 }
2437 EXPORT_SYMBOL(lock_sock_fast);
2438
2439 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2440 {
2441 struct timeval tv;
2442 if (!sock_flag(sk, SOCK_TIMESTAMP))
2443 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2444 tv = ktime_to_timeval(sk->sk_stamp);
2445 if (tv.tv_sec == -1)
2446 return -ENOENT;
2447 if (tv.tv_sec == 0) {
2448 sk->sk_stamp = ktime_get_real();
2449 tv = ktime_to_timeval(sk->sk_stamp);
2450 }
2451 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2452 }
2453 EXPORT_SYMBOL(sock_get_timestamp);
2454
2455 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2456 {
2457 struct timespec ts;
2458 if (!sock_flag(sk, SOCK_TIMESTAMP))
2459 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2460 ts = ktime_to_timespec(sk->sk_stamp);
2461 if (ts.tv_sec == -1)
2462 return -ENOENT;
2463 if (ts.tv_sec == 0) {
2464 sk->sk_stamp = ktime_get_real();
2465 ts = ktime_to_timespec(sk->sk_stamp);
2466 }
2467 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2468 }
2469 EXPORT_SYMBOL(sock_get_timestampns);
2470
2471 void sock_enable_timestamp(struct sock *sk, int flag)
2472 {
2473 if (!sock_flag(sk, flag)) {
2474 unsigned long previous_flags = sk->sk_flags;
2475
2476 sock_set_flag(sk, flag);
2477 /*
2478 * we just set one of the two flags which require net
2479 * time stamping, but time stamping might have been on
2480 * already because of the other one
2481 */
2482 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2483 net_enable_timestamp();
2484 }
2485 }
2486
2487 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2488 int level, int type)
2489 {
2490 struct sock_exterr_skb *serr;
2491 struct sk_buff *skb, *skb2;
2492 int copied, err;
2493
2494 err = -EAGAIN;
2495 skb = skb_dequeue(&sk->sk_error_queue);
2496 if (skb == NULL)
2497 goto out;
2498
2499 copied = skb->len;
2500 if (copied > len) {
2501 msg->msg_flags |= MSG_TRUNC;
2502 copied = len;
2503 }
2504 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2505 if (err)
2506 goto out_free_skb;
2507
2508 sock_recv_timestamp(msg, sk, skb);
2509
2510 serr = SKB_EXT_ERR(skb);
2511 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2512
2513 msg->msg_flags |= MSG_ERRQUEUE;
2514 err = copied;
2515
2516 /* Reset and regenerate socket error */
2517 spin_lock_bh(&sk->sk_error_queue.lock);
2518 sk->sk_err = 0;
2519 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2520 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2521 spin_unlock_bh(&sk->sk_error_queue.lock);
2522 sk->sk_error_report(sk);
2523 } else
2524 spin_unlock_bh(&sk->sk_error_queue.lock);
2525
2526 out_free_skb:
2527 kfree_skb(skb);
2528 out:
2529 return err;
2530 }
2531 EXPORT_SYMBOL(sock_recv_errqueue);
2532
2533 /*
2534 * Get a socket option on an socket.
2535 *
2536 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2537 * asynchronous errors should be reported by getsockopt. We assume
2538 * this means if you specify SO_ERROR (otherwise whats the point of it).
2539 */
2540 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2541 char __user *optval, int __user *optlen)
2542 {
2543 struct sock *sk = sock->sk;
2544
2545 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2546 }
2547 EXPORT_SYMBOL(sock_common_getsockopt);
2548
2549 #ifdef CONFIG_COMPAT
2550 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2551 char __user *optval, int __user *optlen)
2552 {
2553 struct sock *sk = sock->sk;
2554
2555 if (sk->sk_prot->compat_getsockopt != NULL)
2556 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2557 optval, optlen);
2558 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2559 }
2560 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2561 #endif
2562
2563 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2564 struct msghdr *msg, size_t size, int flags)
2565 {
2566 struct sock *sk = sock->sk;
2567 int addr_len = 0;
2568 int err;
2569
2570 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2571 flags & ~MSG_DONTWAIT, &addr_len);
2572 if (err >= 0)
2573 msg->msg_namelen = addr_len;
2574 return err;
2575 }
2576 EXPORT_SYMBOL(sock_common_recvmsg);
2577
2578 /*
2579 * Set socket options on an inet socket.
2580 */
2581 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2582 char __user *optval, unsigned int optlen)
2583 {
2584 struct sock *sk = sock->sk;
2585
2586 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2587 }
2588 EXPORT_SYMBOL(sock_common_setsockopt);
2589
2590 #ifdef CONFIG_COMPAT
2591 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2592 char __user *optval, unsigned int optlen)
2593 {
2594 struct sock *sk = sock->sk;
2595
2596 if (sk->sk_prot->compat_setsockopt != NULL)
2597 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2598 optval, optlen);
2599 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2600 }
2601 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2602 #endif
2603
2604 void sk_common_release(struct sock *sk)
2605 {
2606 if (sk->sk_prot->destroy)
2607 sk->sk_prot->destroy(sk);
2608
2609 /*
2610 * Observation: when sock_common_release is called, processes have
2611 * no access to socket. But net still has.
2612 * Step one, detach it from networking:
2613 *
2614 * A. Remove from hash tables.
2615 */
2616
2617 sk->sk_prot->unhash(sk);
2618
2619 /*
2620 * In this point socket cannot receive new packets, but it is possible
2621 * that some packets are in flight because some CPU runs receiver and
2622 * did hash table lookup before we unhashed socket. They will achieve
2623 * receive queue and will be purged by socket destructor.
2624 *
2625 * Also we still have packets pending on receive queue and probably,
2626 * our own packets waiting in device queues. sock_destroy will drain
2627 * receive queue, but transmitted packets will delay socket destruction
2628 * until the last reference will be released.
2629 */
2630
2631 sock_orphan(sk);
2632
2633 xfrm_sk_free_policy(sk);
2634
2635 sk_refcnt_debug_release(sk);
2636
2637 if (sk->sk_frag.page) {
2638 put_page(sk->sk_frag.page);
2639 sk->sk_frag.page = NULL;
2640 }
2641
2642 sock_put(sk);
2643 }
2644 EXPORT_SYMBOL(sk_common_release);
2645
2646 #ifdef CONFIG_PROC_FS
2647 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2648 struct prot_inuse {
2649 int val[PROTO_INUSE_NR];
2650 };
2651
2652 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2653
2654 #ifdef CONFIG_NET_NS
2655 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2656 {
2657 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2658 }
2659 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2660
2661 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2662 {
2663 int cpu, idx = prot->inuse_idx;
2664 int res = 0;
2665
2666 for_each_possible_cpu(cpu)
2667 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2668
2669 return res >= 0 ? res : 0;
2670 }
2671 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2672
2673 static int __net_init sock_inuse_init_net(struct net *net)
2674 {
2675 net->core.inuse = alloc_percpu(struct prot_inuse);
2676 return net->core.inuse ? 0 : -ENOMEM;
2677 }
2678
2679 static void __net_exit sock_inuse_exit_net(struct net *net)
2680 {
2681 free_percpu(net->core.inuse);
2682 }
2683
2684 static struct pernet_operations net_inuse_ops = {
2685 .init = sock_inuse_init_net,
2686 .exit = sock_inuse_exit_net,
2687 };
2688
2689 static __init int net_inuse_init(void)
2690 {
2691 if (register_pernet_subsys(&net_inuse_ops))
2692 panic("Cannot initialize net inuse counters");
2693
2694 return 0;
2695 }
2696
2697 core_initcall(net_inuse_init);
2698 #else
2699 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2700
2701 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2702 {
2703 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2704 }
2705 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2706
2707 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2708 {
2709 int cpu, idx = prot->inuse_idx;
2710 int res = 0;
2711
2712 for_each_possible_cpu(cpu)
2713 res += per_cpu(prot_inuse, cpu).val[idx];
2714
2715 return res >= 0 ? res : 0;
2716 }
2717 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2718 #endif
2719
2720 static void assign_proto_idx(struct proto *prot)
2721 {
2722 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2723
2724 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2725 pr_err("PROTO_INUSE_NR exhausted\n");
2726 return;
2727 }
2728
2729 set_bit(prot->inuse_idx, proto_inuse_idx);
2730 }
2731
2732 static void release_proto_idx(struct proto *prot)
2733 {
2734 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2735 clear_bit(prot->inuse_idx, proto_inuse_idx);
2736 }
2737 #else
2738 static inline void assign_proto_idx(struct proto *prot)
2739 {
2740 }
2741
2742 static inline void release_proto_idx(struct proto *prot)
2743 {
2744 }
2745 #endif
2746
2747 int proto_register(struct proto *prot, int alloc_slab)
2748 {
2749 if (alloc_slab) {
2750 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2751 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2752 NULL);
2753
2754 if (prot->slab == NULL) {
2755 pr_crit("%s: Can't create sock SLAB cache!\n",
2756 prot->name);
2757 goto out;
2758 }
2759
2760 if (prot->rsk_prot != NULL) {
2761 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2762 if (prot->rsk_prot->slab_name == NULL)
2763 goto out_free_sock_slab;
2764
2765 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2766 prot->rsk_prot->obj_size, 0,
2767 SLAB_HWCACHE_ALIGN, NULL);
2768
2769 if (prot->rsk_prot->slab == NULL) {
2770 pr_crit("%s: Can't create request sock SLAB cache!\n",
2771 prot->name);
2772 goto out_free_request_sock_slab_name;
2773 }
2774 }
2775
2776 if (prot->twsk_prot != NULL) {
2777 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2778
2779 if (prot->twsk_prot->twsk_slab_name == NULL)
2780 goto out_free_request_sock_slab;
2781
2782 prot->twsk_prot->twsk_slab =
2783 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2784 prot->twsk_prot->twsk_obj_size,
2785 0,
2786 SLAB_HWCACHE_ALIGN |
2787 prot->slab_flags,
2788 NULL);
2789 if (prot->twsk_prot->twsk_slab == NULL)
2790 goto out_free_timewait_sock_slab_name;
2791 }
2792 }
2793
2794 mutex_lock(&proto_list_mutex);
2795 list_add(&prot->node, &proto_list);
2796 assign_proto_idx(prot);
2797 mutex_unlock(&proto_list_mutex);
2798 return 0;
2799
2800 out_free_timewait_sock_slab_name:
2801 kfree(prot->twsk_prot->twsk_slab_name);
2802 out_free_request_sock_slab:
2803 if (prot->rsk_prot && prot->rsk_prot->slab) {
2804 kmem_cache_destroy(prot->rsk_prot->slab);
2805 prot->rsk_prot->slab = NULL;
2806 }
2807 out_free_request_sock_slab_name:
2808 if (prot->rsk_prot)
2809 kfree(prot->rsk_prot->slab_name);
2810 out_free_sock_slab:
2811 kmem_cache_destroy(prot->slab);
2812 prot->slab = NULL;
2813 out:
2814 return -ENOBUFS;
2815 }
2816 EXPORT_SYMBOL(proto_register);
2817
2818 void proto_unregister(struct proto *prot)
2819 {
2820 mutex_lock(&proto_list_mutex);
2821 release_proto_idx(prot);
2822 list_del(&prot->node);
2823 mutex_unlock(&proto_list_mutex);
2824
2825 if (prot->slab != NULL) {
2826 kmem_cache_destroy(prot->slab);
2827 prot->slab = NULL;
2828 }
2829
2830 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2831 kmem_cache_destroy(prot->rsk_prot->slab);
2832 kfree(prot->rsk_prot->slab_name);
2833 prot->rsk_prot->slab = NULL;
2834 }
2835
2836 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2837 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2838 kfree(prot->twsk_prot->twsk_slab_name);
2839 prot->twsk_prot->twsk_slab = NULL;
2840 }
2841 }
2842 EXPORT_SYMBOL(proto_unregister);
2843
2844 #ifdef CONFIG_PROC_FS
2845 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2846 __acquires(proto_list_mutex)
2847 {
2848 mutex_lock(&proto_list_mutex);
2849 return seq_list_start_head(&proto_list, *pos);
2850 }
2851
2852 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2853 {
2854 return seq_list_next(v, &proto_list, pos);
2855 }
2856
2857 static void proto_seq_stop(struct seq_file *seq, void *v)
2858 __releases(proto_list_mutex)
2859 {
2860 mutex_unlock(&proto_list_mutex);
2861 }
2862
2863 static char proto_method_implemented(const void *method)
2864 {
2865 return method == NULL ? 'n' : 'y';
2866 }
2867 static long sock_prot_memory_allocated(struct proto *proto)
2868 {
2869 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2870 }
2871
2872 static char *sock_prot_memory_pressure(struct proto *proto)
2873 {
2874 return proto->memory_pressure != NULL ?
2875 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2876 }
2877
2878 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2879 {
2880
2881 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2882 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2883 proto->name,
2884 proto->obj_size,
2885 sock_prot_inuse_get(seq_file_net(seq), proto),
2886 sock_prot_memory_allocated(proto),
2887 sock_prot_memory_pressure(proto),
2888 proto->max_header,
2889 proto->slab == NULL ? "no" : "yes",
2890 module_name(proto->owner),
2891 proto_method_implemented(proto->close),
2892 proto_method_implemented(proto->connect),
2893 proto_method_implemented(proto->disconnect),
2894 proto_method_implemented(proto->accept),
2895 proto_method_implemented(proto->ioctl),
2896 proto_method_implemented(proto->init),
2897 proto_method_implemented(proto->destroy),
2898 proto_method_implemented(proto->shutdown),
2899 proto_method_implemented(proto->setsockopt),
2900 proto_method_implemented(proto->getsockopt),
2901 proto_method_implemented(proto->sendmsg),
2902 proto_method_implemented(proto->recvmsg),
2903 proto_method_implemented(proto->sendpage),
2904 proto_method_implemented(proto->bind),
2905 proto_method_implemented(proto->backlog_rcv),
2906 proto_method_implemented(proto->hash),
2907 proto_method_implemented(proto->unhash),
2908 proto_method_implemented(proto->get_port),
2909 proto_method_implemented(proto->enter_memory_pressure));
2910 }
2911
2912 static int proto_seq_show(struct seq_file *seq, void *v)
2913 {
2914 if (v == &proto_list)
2915 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2916 "protocol",
2917 "size",
2918 "sockets",
2919 "memory",
2920 "press",
2921 "maxhdr",
2922 "slab",
2923 "module",
2924 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2925 else
2926 proto_seq_printf(seq, list_entry(v, struct proto, node));
2927 return 0;
2928 }
2929
2930 static const struct seq_operations proto_seq_ops = {
2931 .start = proto_seq_start,
2932 .next = proto_seq_next,
2933 .stop = proto_seq_stop,
2934 .show = proto_seq_show,
2935 };
2936
2937 static int proto_seq_open(struct inode *inode, struct file *file)
2938 {
2939 return seq_open_net(inode, file, &proto_seq_ops,
2940 sizeof(struct seq_net_private));
2941 }
2942
2943 static const struct file_operations proto_seq_fops = {
2944 .owner = THIS_MODULE,
2945 .open = proto_seq_open,
2946 .read = seq_read,
2947 .llseek = seq_lseek,
2948 .release = seq_release_net,
2949 };
2950
2951 static __net_init int proto_init_net(struct net *net)
2952 {
2953 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2954 return -ENOMEM;
2955
2956 return 0;
2957 }
2958
2959 static __net_exit void proto_exit_net(struct net *net)
2960 {
2961 remove_proc_entry("protocols", net->proc_net);
2962 }
2963
2964
2965 static __net_initdata struct pernet_operations proto_net_ops = {
2966 .init = proto_init_net,
2967 .exit = proto_exit_net,
2968 };
2969
2970 static int __init proto_init(void)
2971 {
2972 return register_pernet_subsys(&proto_net_ops);
2973 }
2974
2975 subsys_initcall(proto_init);
2976
2977 #endif /* PROC_FS */
This page took 0.090488 seconds and 5 git commands to generate.