net: Pass kern from net_proto_family.create to sk_alloc
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134
135 #include <linux/filter.h>
136
137 #include <trace/events/sock.h>
138
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 struct proto *proto;
201 int ret = 0;
202
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
207 if (ret)
208 goto out;
209 }
210 }
211
212 mutex_unlock(&proto_list_mutex);
213 return ret;
214 out:
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
219 return ret;
220 }
221
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 struct proto *proto;
225
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233
234 /*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245
246 /*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332
333 /**
334 * sk_set_memalloc - sets %SOCK_MEMALLOC
335 * @sk: socket to set it on
336 *
337 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338 * It's the responsibility of the admin to adjust min_free_kbytes
339 * to meet the requirements
340 */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 sock_set_flag(sk, SOCK_MEMALLOC);
344 sk->sk_allocation |= __GFP_MEMALLOC;
345 static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 sock_reset_flag(sk, SOCK_MEMALLOC);
352 sk->sk_allocation &= ~__GFP_MEMALLOC;
353 static_key_slow_dec(&memalloc_socks);
354
355 /*
356 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 * it has rmem allocations there is a risk that the user of the
359 * socket cannot make forward progress due to exceeding the rmem
360 * limits. By rights, sk_clear_memalloc() should only be called
361 * on sockets being torn down but warn and reset the accounting if
362 * that assumption breaks.
363 */
364 if (WARN_ON(sk->sk_forward_alloc))
365 sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 int ret;
372 unsigned long pflags = current->flags;
373
374 /* these should have been dropped before queueing */
375 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376
377 current->flags |= PF_MEMALLOC;
378 ret = sk->sk_backlog_rcv(sk, skb);
379 tsk_restore_flags(current, pflags, PF_MEMALLOC);
380
381 return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 struct timeval tv;
388
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_user(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 return -EDOM;
395
396 if (tv.tv_sec < 0) {
397 static int warned __read_mostly;
398
399 *timeo_p = 0;
400 if (warned < 10 && net_ratelimit()) {
401 warned++;
402 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 __func__, current->comm, task_pid_nr(current));
404 }
405 return 0;
406 }
407 *timeo_p = MAX_SCHEDULE_TIMEOUT;
408 if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 return 0;
410 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 return 0;
413 }
414
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 static int warned;
418 static char warncomm[TASK_COMM_LEN];
419 if (strcmp(warncomm, current->comm) && warned < 5) {
420 strcpy(warncomm, current->comm);
421 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 warncomm, name);
423 warned++;
424 }
425 }
426
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 if (sk->sk_flags & flags) {
432 sk->sk_flags &= ~flags;
433 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 net_disable_timestamp();
435 }
436 }
437
438
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 int err;
442 unsigned long flags;
443 struct sk_buff_head *list = &sk->sk_receive_queue;
444
445 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 atomic_inc(&sk->sk_drops);
447 trace_sock_rcvqueue_full(sk, skb);
448 return -ENOMEM;
449 }
450
451 err = sk_filter(sk, skb);
452 if (err)
453 return err;
454
455 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 atomic_inc(&sk->sk_drops);
457 return -ENOBUFS;
458 }
459
460 skb->dev = NULL;
461 skb_set_owner_r(skb, sk);
462
463 /* we escape from rcu protected region, make sure we dont leak
464 * a norefcounted dst
465 */
466 skb_dst_force(skb);
467
468 spin_lock_irqsave(&list->lock, flags);
469 sock_skb_set_dropcount(sk, skb);
470 __skb_queue_tail(list, skb);
471 spin_unlock_irqrestore(&list->lock, flags);
472
473 if (!sock_flag(sk, SOCK_DEAD))
474 sk->sk_data_ready(sk);
475 return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 int rc = NET_RX_SUCCESS;
482
483 if (sk_filter(sk, skb))
484 goto discard_and_relse;
485
486 skb->dev = NULL;
487
488 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 atomic_inc(&sk->sk_drops);
490 goto discard_and_relse;
491 }
492 if (nested)
493 bh_lock_sock_nested(sk);
494 else
495 bh_lock_sock(sk);
496 if (!sock_owned_by_user(sk)) {
497 /*
498 * trylock + unlock semantics:
499 */
500 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501
502 rc = sk_backlog_rcv(sk, skb);
503
504 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 bh_unlock_sock(sk);
507 atomic_inc(&sk->sk_drops);
508 goto discard_and_relse;
509 }
510
511 bh_unlock_sock(sk);
512 out:
513 sock_put(sk);
514 return rc;
515 discard_and_relse:
516 kfree_skb(skb);
517 goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 struct dst_entry *dst = __sk_dst_get(sk);
524
525 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 sk_tx_queue_clear(sk);
527 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 dst_release(dst);
529 return NULL;
530 }
531
532 return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 struct dst_entry *dst = sk_dst_get(sk);
539
540 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 sk_dst_reset(sk);
542 dst_release(dst);
543 return NULL;
544 }
545
546 return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 int optlen)
552 {
553 int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 struct net *net = sock_net(sk);
556 char devname[IFNAMSIZ];
557 int index;
558
559 /* Sorry... */
560 ret = -EPERM;
561 if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 goto out;
563
564 ret = -EINVAL;
565 if (optlen < 0)
566 goto out;
567
568 /* Bind this socket to a particular device like "eth0",
569 * as specified in the passed interface name. If the
570 * name is "" or the option length is zero the socket
571 * is not bound.
572 */
573 if (optlen > IFNAMSIZ - 1)
574 optlen = IFNAMSIZ - 1;
575 memset(devname, 0, sizeof(devname));
576
577 ret = -EFAULT;
578 if (copy_from_user(devname, optval, optlen))
579 goto out;
580
581 index = 0;
582 if (devname[0] != '\0') {
583 struct net_device *dev;
584
585 rcu_read_lock();
586 dev = dev_get_by_name_rcu(net, devname);
587 if (dev)
588 index = dev->ifindex;
589 rcu_read_unlock();
590 ret = -ENODEV;
591 if (!dev)
592 goto out;
593 }
594
595 lock_sock(sk);
596 sk->sk_bound_dev_if = index;
597 sk_dst_reset(sk);
598 release_sock(sk);
599
600 ret = 0;
601
602 out:
603 #endif
604
605 return ret;
606 }
607
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 int __user *optlen, int len)
610 {
611 int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 struct net *net = sock_net(sk);
614 char devname[IFNAMSIZ];
615
616 if (sk->sk_bound_dev_if == 0) {
617 len = 0;
618 goto zero;
619 }
620
621 ret = -EINVAL;
622 if (len < IFNAMSIZ)
623 goto out;
624
625 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 if (ret)
627 goto out;
628
629 len = strlen(devname) + 1;
630
631 ret = -EFAULT;
632 if (copy_to_user(optval, devname, len))
633 goto out;
634
635 zero:
636 ret = -EFAULT;
637 if (put_user(len, optlen))
638 goto out;
639
640 ret = 0;
641
642 out:
643 #endif
644
645 return ret;
646 }
647
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 if (valbool)
651 sock_set_flag(sk, bit);
652 else
653 sock_reset_flag(sk, bit);
654 }
655
656 bool sk_mc_loop(struct sock *sk)
657 {
658 if (dev_recursion_level())
659 return false;
660 if (!sk)
661 return true;
662 switch (sk->sk_family) {
663 case AF_INET:
664 return inet_sk(sk)->mc_loop;
665 #if IS_ENABLED(CONFIG_IPV6)
666 case AF_INET6:
667 return inet6_sk(sk)->mc_loop;
668 #endif
669 }
670 WARN_ON(1);
671 return true;
672 }
673 EXPORT_SYMBOL(sk_mc_loop);
674
675 /*
676 * This is meant for all protocols to use and covers goings on
677 * at the socket level. Everything here is generic.
678 */
679
680 int sock_setsockopt(struct socket *sock, int level, int optname,
681 char __user *optval, unsigned int optlen)
682 {
683 struct sock *sk = sock->sk;
684 int val;
685 int valbool;
686 struct linger ling;
687 int ret = 0;
688
689 /*
690 * Options without arguments
691 */
692
693 if (optname == SO_BINDTODEVICE)
694 return sock_setbindtodevice(sk, optval, optlen);
695
696 if (optlen < sizeof(int))
697 return -EINVAL;
698
699 if (get_user(val, (int __user *)optval))
700 return -EFAULT;
701
702 valbool = val ? 1 : 0;
703
704 lock_sock(sk);
705
706 switch (optname) {
707 case SO_DEBUG:
708 if (val && !capable(CAP_NET_ADMIN))
709 ret = -EACCES;
710 else
711 sock_valbool_flag(sk, SOCK_DBG, valbool);
712 break;
713 case SO_REUSEADDR:
714 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 break;
716 case SO_REUSEPORT:
717 sk->sk_reuseport = valbool;
718 break;
719 case SO_TYPE:
720 case SO_PROTOCOL:
721 case SO_DOMAIN:
722 case SO_ERROR:
723 ret = -ENOPROTOOPT;
724 break;
725 case SO_DONTROUTE:
726 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 break;
728 case SO_BROADCAST:
729 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 break;
731 case SO_SNDBUF:
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
736 */
737 val = min_t(u32, val, sysctl_wmem_max);
738 set_sndbuf:
739 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
740 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
741 /* Wake up sending tasks if we upped the value. */
742 sk->sk_write_space(sk);
743 break;
744
745 case SO_SNDBUFFORCE:
746 if (!capable(CAP_NET_ADMIN)) {
747 ret = -EPERM;
748 break;
749 }
750 goto set_sndbuf;
751
752 case SO_RCVBUF:
753 /* Don't error on this BSD doesn't and if you think
754 * about it this is right. Otherwise apps have to
755 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 * are treated in BSD as hints
757 */
758 val = min_t(u32, val, sysctl_rmem_max);
759 set_rcvbuf:
760 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
761 /*
762 * We double it on the way in to account for
763 * "struct sk_buff" etc. overhead. Applications
764 * assume that the SO_RCVBUF setting they make will
765 * allow that much actual data to be received on that
766 * socket.
767 *
768 * Applications are unaware that "struct sk_buff" and
769 * other overheads allocate from the receive buffer
770 * during socket buffer allocation.
771 *
772 * And after considering the possible alternatives,
773 * returning the value we actually used in getsockopt
774 * is the most desirable behavior.
775 */
776 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
777 break;
778
779 case SO_RCVBUFFORCE:
780 if (!capable(CAP_NET_ADMIN)) {
781 ret = -EPERM;
782 break;
783 }
784 goto set_rcvbuf;
785
786 case SO_KEEPALIVE:
787 #ifdef CONFIG_INET
788 if (sk->sk_protocol == IPPROTO_TCP &&
789 sk->sk_type == SOCK_STREAM)
790 tcp_set_keepalive(sk, valbool);
791 #endif
792 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
793 break;
794
795 case SO_OOBINLINE:
796 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
797 break;
798
799 case SO_NO_CHECK:
800 sk->sk_no_check_tx = valbool;
801 break;
802
803 case SO_PRIORITY:
804 if ((val >= 0 && val <= 6) ||
805 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
806 sk->sk_priority = val;
807 else
808 ret = -EPERM;
809 break;
810
811 case SO_LINGER:
812 if (optlen < sizeof(ling)) {
813 ret = -EINVAL; /* 1003.1g */
814 break;
815 }
816 if (copy_from_user(&ling, optval, sizeof(ling))) {
817 ret = -EFAULT;
818 break;
819 }
820 if (!ling.l_onoff)
821 sock_reset_flag(sk, SOCK_LINGER);
822 else {
823 #if (BITS_PER_LONG == 32)
824 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
825 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 else
827 #endif
828 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
829 sock_set_flag(sk, SOCK_LINGER);
830 }
831 break;
832
833 case SO_BSDCOMPAT:
834 sock_warn_obsolete_bsdism("setsockopt");
835 break;
836
837 case SO_PASSCRED:
838 if (valbool)
839 set_bit(SOCK_PASSCRED, &sock->flags);
840 else
841 clear_bit(SOCK_PASSCRED, &sock->flags);
842 break;
843
844 case SO_TIMESTAMP:
845 case SO_TIMESTAMPNS:
846 if (valbool) {
847 if (optname == SO_TIMESTAMP)
848 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
849 else
850 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
851 sock_set_flag(sk, SOCK_RCVTSTAMP);
852 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
853 } else {
854 sock_reset_flag(sk, SOCK_RCVTSTAMP);
855 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
856 }
857 break;
858
859 case SO_TIMESTAMPING:
860 if (val & ~SOF_TIMESTAMPING_MASK) {
861 ret = -EINVAL;
862 break;
863 }
864
865 if (val & SOF_TIMESTAMPING_OPT_ID &&
866 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
867 if (sk->sk_protocol == IPPROTO_TCP) {
868 if (sk->sk_state != TCP_ESTABLISHED) {
869 ret = -EINVAL;
870 break;
871 }
872 sk->sk_tskey = tcp_sk(sk)->snd_una;
873 } else {
874 sk->sk_tskey = 0;
875 }
876 }
877 sk->sk_tsflags = val;
878 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
879 sock_enable_timestamp(sk,
880 SOCK_TIMESTAMPING_RX_SOFTWARE);
881 else
882 sock_disable_timestamp(sk,
883 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
884 break;
885
886 case SO_RCVLOWAT:
887 if (val < 0)
888 val = INT_MAX;
889 sk->sk_rcvlowat = val ? : 1;
890 break;
891
892 case SO_RCVTIMEO:
893 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
894 break;
895
896 case SO_SNDTIMEO:
897 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 break;
899
900 case SO_ATTACH_FILTER:
901 ret = -EINVAL;
902 if (optlen == sizeof(struct sock_fprog)) {
903 struct sock_fprog fprog;
904
905 ret = -EFAULT;
906 if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 break;
908
909 ret = sk_attach_filter(&fprog, sk);
910 }
911 break;
912
913 case SO_ATTACH_BPF:
914 ret = -EINVAL;
915 if (optlen == sizeof(u32)) {
916 u32 ufd;
917
918 ret = -EFAULT;
919 if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 break;
921
922 ret = sk_attach_bpf(ufd, sk);
923 }
924 break;
925
926 case SO_DETACH_FILTER:
927 ret = sk_detach_filter(sk);
928 break;
929
930 case SO_LOCK_FILTER:
931 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 ret = -EPERM;
933 else
934 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
935 break;
936
937 case SO_PASSSEC:
938 if (valbool)
939 set_bit(SOCK_PASSSEC, &sock->flags);
940 else
941 clear_bit(SOCK_PASSSEC, &sock->flags);
942 break;
943 case SO_MARK:
944 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
945 ret = -EPERM;
946 else
947 sk->sk_mark = val;
948 break;
949
950 case SO_RXQ_OVFL:
951 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
952 break;
953
954 case SO_WIFI_STATUS:
955 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
956 break;
957
958 case SO_PEEK_OFF:
959 if (sock->ops->set_peek_off)
960 ret = sock->ops->set_peek_off(sk, val);
961 else
962 ret = -EOPNOTSUPP;
963 break;
964
965 case SO_NOFCS:
966 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
967 break;
968
969 case SO_SELECT_ERR_QUEUE:
970 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
971 break;
972
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 case SO_BUSY_POLL:
975 /* allow unprivileged users to decrease the value */
976 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
977 ret = -EPERM;
978 else {
979 if (val < 0)
980 ret = -EINVAL;
981 else
982 sk->sk_ll_usec = val;
983 }
984 break;
985 #endif
986
987 case SO_MAX_PACING_RATE:
988 sk->sk_max_pacing_rate = val;
989 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
990 sk->sk_max_pacing_rate);
991 break;
992
993 default:
994 ret = -ENOPROTOOPT;
995 break;
996 }
997 release_sock(sk);
998 return ret;
999 }
1000 EXPORT_SYMBOL(sock_setsockopt);
1001
1002
1003 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1004 struct ucred *ucred)
1005 {
1006 ucred->pid = pid_vnr(pid);
1007 ucred->uid = ucred->gid = -1;
1008 if (cred) {
1009 struct user_namespace *current_ns = current_user_ns();
1010
1011 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1012 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1013 }
1014 }
1015
1016 int sock_getsockopt(struct socket *sock, int level, int optname,
1017 char __user *optval, int __user *optlen)
1018 {
1019 struct sock *sk = sock->sk;
1020
1021 union {
1022 int val;
1023 struct linger ling;
1024 struct timeval tm;
1025 } v;
1026
1027 int lv = sizeof(int);
1028 int len;
1029
1030 if (get_user(len, optlen))
1031 return -EFAULT;
1032 if (len < 0)
1033 return -EINVAL;
1034
1035 memset(&v, 0, sizeof(v));
1036
1037 switch (optname) {
1038 case SO_DEBUG:
1039 v.val = sock_flag(sk, SOCK_DBG);
1040 break;
1041
1042 case SO_DONTROUTE:
1043 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1044 break;
1045
1046 case SO_BROADCAST:
1047 v.val = sock_flag(sk, SOCK_BROADCAST);
1048 break;
1049
1050 case SO_SNDBUF:
1051 v.val = sk->sk_sndbuf;
1052 break;
1053
1054 case SO_RCVBUF:
1055 v.val = sk->sk_rcvbuf;
1056 break;
1057
1058 case SO_REUSEADDR:
1059 v.val = sk->sk_reuse;
1060 break;
1061
1062 case SO_REUSEPORT:
1063 v.val = sk->sk_reuseport;
1064 break;
1065
1066 case SO_KEEPALIVE:
1067 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1068 break;
1069
1070 case SO_TYPE:
1071 v.val = sk->sk_type;
1072 break;
1073
1074 case SO_PROTOCOL:
1075 v.val = sk->sk_protocol;
1076 break;
1077
1078 case SO_DOMAIN:
1079 v.val = sk->sk_family;
1080 break;
1081
1082 case SO_ERROR:
1083 v.val = -sock_error(sk);
1084 if (v.val == 0)
1085 v.val = xchg(&sk->sk_err_soft, 0);
1086 break;
1087
1088 case SO_OOBINLINE:
1089 v.val = sock_flag(sk, SOCK_URGINLINE);
1090 break;
1091
1092 case SO_NO_CHECK:
1093 v.val = sk->sk_no_check_tx;
1094 break;
1095
1096 case SO_PRIORITY:
1097 v.val = sk->sk_priority;
1098 break;
1099
1100 case SO_LINGER:
1101 lv = sizeof(v.ling);
1102 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1103 v.ling.l_linger = sk->sk_lingertime / HZ;
1104 break;
1105
1106 case SO_BSDCOMPAT:
1107 sock_warn_obsolete_bsdism("getsockopt");
1108 break;
1109
1110 case SO_TIMESTAMP:
1111 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1112 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 break;
1114
1115 case SO_TIMESTAMPNS:
1116 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 break;
1118
1119 case SO_TIMESTAMPING:
1120 v.val = sk->sk_tsflags;
1121 break;
1122
1123 case SO_RCVTIMEO:
1124 lv = sizeof(struct timeval);
1125 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1126 v.tm.tv_sec = 0;
1127 v.tm.tv_usec = 0;
1128 } else {
1129 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1130 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1131 }
1132 break;
1133
1134 case SO_SNDTIMEO:
1135 lv = sizeof(struct timeval);
1136 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1137 v.tm.tv_sec = 0;
1138 v.tm.tv_usec = 0;
1139 } else {
1140 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1141 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1142 }
1143 break;
1144
1145 case SO_RCVLOWAT:
1146 v.val = sk->sk_rcvlowat;
1147 break;
1148
1149 case SO_SNDLOWAT:
1150 v.val = 1;
1151 break;
1152
1153 case SO_PASSCRED:
1154 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1155 break;
1156
1157 case SO_PEERCRED:
1158 {
1159 struct ucred peercred;
1160 if (len > sizeof(peercred))
1161 len = sizeof(peercred);
1162 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1163 if (copy_to_user(optval, &peercred, len))
1164 return -EFAULT;
1165 goto lenout;
1166 }
1167
1168 case SO_PEERNAME:
1169 {
1170 char address[128];
1171
1172 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1173 return -ENOTCONN;
1174 if (lv < len)
1175 return -EINVAL;
1176 if (copy_to_user(optval, address, len))
1177 return -EFAULT;
1178 goto lenout;
1179 }
1180
1181 /* Dubious BSD thing... Probably nobody even uses it, but
1182 * the UNIX standard wants it for whatever reason... -DaveM
1183 */
1184 case SO_ACCEPTCONN:
1185 v.val = sk->sk_state == TCP_LISTEN;
1186 break;
1187
1188 case SO_PASSSEC:
1189 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1190 break;
1191
1192 case SO_PEERSEC:
1193 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1194
1195 case SO_MARK:
1196 v.val = sk->sk_mark;
1197 break;
1198
1199 case SO_RXQ_OVFL:
1200 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1201 break;
1202
1203 case SO_WIFI_STATUS:
1204 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1205 break;
1206
1207 case SO_PEEK_OFF:
1208 if (!sock->ops->set_peek_off)
1209 return -EOPNOTSUPP;
1210
1211 v.val = sk->sk_peek_off;
1212 break;
1213 case SO_NOFCS:
1214 v.val = sock_flag(sk, SOCK_NOFCS);
1215 break;
1216
1217 case SO_BINDTODEVICE:
1218 return sock_getbindtodevice(sk, optval, optlen, len);
1219
1220 case SO_GET_FILTER:
1221 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1222 if (len < 0)
1223 return len;
1224
1225 goto lenout;
1226
1227 case SO_LOCK_FILTER:
1228 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1229 break;
1230
1231 case SO_BPF_EXTENSIONS:
1232 v.val = bpf_tell_extensions();
1233 break;
1234
1235 case SO_SELECT_ERR_QUEUE:
1236 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1237 break;
1238
1239 #ifdef CONFIG_NET_RX_BUSY_POLL
1240 case SO_BUSY_POLL:
1241 v.val = sk->sk_ll_usec;
1242 break;
1243 #endif
1244
1245 case SO_MAX_PACING_RATE:
1246 v.val = sk->sk_max_pacing_rate;
1247 break;
1248
1249 case SO_INCOMING_CPU:
1250 v.val = sk->sk_incoming_cpu;
1251 break;
1252
1253 default:
1254 /* We implement the SO_SNDLOWAT etc to not be settable
1255 * (1003.1g 7).
1256 */
1257 return -ENOPROTOOPT;
1258 }
1259
1260 if (len > lv)
1261 len = lv;
1262 if (copy_to_user(optval, &v, len))
1263 return -EFAULT;
1264 lenout:
1265 if (put_user(len, optlen))
1266 return -EFAULT;
1267 return 0;
1268 }
1269
1270 /*
1271 * Initialize an sk_lock.
1272 *
1273 * (We also register the sk_lock with the lock validator.)
1274 */
1275 static inline void sock_lock_init(struct sock *sk)
1276 {
1277 sock_lock_init_class_and_name(sk,
1278 af_family_slock_key_strings[sk->sk_family],
1279 af_family_slock_keys + sk->sk_family,
1280 af_family_key_strings[sk->sk_family],
1281 af_family_keys + sk->sk_family);
1282 }
1283
1284 /*
1285 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1286 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1287 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1288 */
1289 static void sock_copy(struct sock *nsk, const struct sock *osk)
1290 {
1291 #ifdef CONFIG_SECURITY_NETWORK
1292 void *sptr = nsk->sk_security;
1293 #endif
1294 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1295
1296 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1297 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1298
1299 #ifdef CONFIG_SECURITY_NETWORK
1300 nsk->sk_security = sptr;
1301 security_sk_clone(osk, nsk);
1302 #endif
1303 }
1304
1305 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1306 {
1307 unsigned long nulls1, nulls2;
1308
1309 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1310 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1311 if (nulls1 > nulls2)
1312 swap(nulls1, nulls2);
1313
1314 if (nulls1 != 0)
1315 memset((char *)sk, 0, nulls1);
1316 memset((char *)sk + nulls1 + sizeof(void *), 0,
1317 nulls2 - nulls1 - sizeof(void *));
1318 memset((char *)sk + nulls2 + sizeof(void *), 0,
1319 size - nulls2 - sizeof(void *));
1320 }
1321 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1322
1323 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1324 int family)
1325 {
1326 struct sock *sk;
1327 struct kmem_cache *slab;
1328
1329 slab = prot->slab;
1330 if (slab != NULL) {
1331 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1332 if (!sk)
1333 return sk;
1334 if (priority & __GFP_ZERO) {
1335 if (prot->clear_sk)
1336 prot->clear_sk(sk, prot->obj_size);
1337 else
1338 sk_prot_clear_nulls(sk, prot->obj_size);
1339 }
1340 } else
1341 sk = kmalloc(prot->obj_size, priority);
1342
1343 if (sk != NULL) {
1344 kmemcheck_annotate_bitfield(sk, flags);
1345
1346 if (security_sk_alloc(sk, family, priority))
1347 goto out_free;
1348
1349 if (!try_module_get(prot->owner))
1350 goto out_free_sec;
1351 sk_tx_queue_clear(sk);
1352 }
1353
1354 return sk;
1355
1356 out_free_sec:
1357 security_sk_free(sk);
1358 out_free:
1359 if (slab != NULL)
1360 kmem_cache_free(slab, sk);
1361 else
1362 kfree(sk);
1363 return NULL;
1364 }
1365
1366 static void sk_prot_free(struct proto *prot, struct sock *sk)
1367 {
1368 struct kmem_cache *slab;
1369 struct module *owner;
1370
1371 owner = prot->owner;
1372 slab = prot->slab;
1373
1374 security_sk_free(sk);
1375 if (slab != NULL)
1376 kmem_cache_free(slab, sk);
1377 else
1378 kfree(sk);
1379 module_put(owner);
1380 }
1381
1382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1383 void sock_update_netprioidx(struct sock *sk)
1384 {
1385 if (in_interrupt())
1386 return;
1387
1388 sk->sk_cgrp_prioidx = task_netprioidx(current);
1389 }
1390 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1391 #endif
1392
1393 /**
1394 * sk_alloc - All socket objects are allocated here
1395 * @net: the applicable net namespace
1396 * @family: protocol family
1397 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1398 * @prot: struct proto associated with this new sock instance
1399 * @kern: is this to be a kernel socket?
1400 */
1401 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1402 struct proto *prot, int kern)
1403 {
1404 struct sock *sk;
1405
1406 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1407 if (sk) {
1408 sk->sk_family = family;
1409 /*
1410 * See comment in struct sock definition to understand
1411 * why we need sk_prot_creator -acme
1412 */
1413 sk->sk_prot = sk->sk_prot_creator = prot;
1414 sock_lock_init(sk);
1415 sock_net_set(sk, get_net(net));
1416 atomic_set(&sk->sk_wmem_alloc, 1);
1417
1418 sock_update_classid(sk);
1419 sock_update_netprioidx(sk);
1420 }
1421
1422 return sk;
1423 }
1424 EXPORT_SYMBOL(sk_alloc);
1425
1426 static void __sk_free(struct sock *sk)
1427 {
1428 struct sk_filter *filter;
1429
1430 if (sk->sk_destruct)
1431 sk->sk_destruct(sk);
1432
1433 filter = rcu_dereference_check(sk->sk_filter,
1434 atomic_read(&sk->sk_wmem_alloc) == 0);
1435 if (filter) {
1436 sk_filter_uncharge(sk, filter);
1437 RCU_INIT_POINTER(sk->sk_filter, NULL);
1438 }
1439
1440 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1441
1442 if (atomic_read(&sk->sk_omem_alloc))
1443 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1444 __func__, atomic_read(&sk->sk_omem_alloc));
1445
1446 if (sk->sk_peer_cred)
1447 put_cred(sk->sk_peer_cred);
1448 put_pid(sk->sk_peer_pid);
1449 put_net(sock_net(sk));
1450 sk_prot_free(sk->sk_prot_creator, sk);
1451 }
1452
1453 void sk_free(struct sock *sk)
1454 {
1455 /*
1456 * We subtract one from sk_wmem_alloc and can know if
1457 * some packets are still in some tx queue.
1458 * If not null, sock_wfree() will call __sk_free(sk) later
1459 */
1460 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1461 __sk_free(sk);
1462 }
1463 EXPORT_SYMBOL(sk_free);
1464
1465 /*
1466 * Last sock_put should drop reference to sk->sk_net. It has already
1467 * been dropped in sk_change_net. Taking reference to stopping namespace
1468 * is not an option.
1469 * Take reference to a socket to remove it from hash _alive_ and after that
1470 * destroy it in the context of init_net.
1471 */
1472 void sk_release_kernel(struct sock *sk)
1473 {
1474 if (sk == NULL || sk->sk_socket == NULL)
1475 return;
1476
1477 sock_hold(sk);
1478 sock_net_set(sk, get_net(&init_net));
1479 sock_release(sk->sk_socket);
1480 sock_put(sk);
1481 }
1482 EXPORT_SYMBOL(sk_release_kernel);
1483
1484 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1485 {
1486 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1487 sock_update_memcg(newsk);
1488 }
1489
1490 /**
1491 * sk_clone_lock - clone a socket, and lock its clone
1492 * @sk: the socket to clone
1493 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1494 *
1495 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1496 */
1497 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1498 {
1499 struct sock *newsk;
1500 bool is_charged = true;
1501
1502 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1503 if (newsk != NULL) {
1504 struct sk_filter *filter;
1505
1506 sock_copy(newsk, sk);
1507
1508 /* SANITY */
1509 get_net(sock_net(newsk));
1510 sk_node_init(&newsk->sk_node);
1511 sock_lock_init(newsk);
1512 bh_lock_sock(newsk);
1513 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1514 newsk->sk_backlog.len = 0;
1515
1516 atomic_set(&newsk->sk_rmem_alloc, 0);
1517 /*
1518 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1519 */
1520 atomic_set(&newsk->sk_wmem_alloc, 1);
1521 atomic_set(&newsk->sk_omem_alloc, 0);
1522 skb_queue_head_init(&newsk->sk_receive_queue);
1523 skb_queue_head_init(&newsk->sk_write_queue);
1524
1525 spin_lock_init(&newsk->sk_dst_lock);
1526 rwlock_init(&newsk->sk_callback_lock);
1527 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1528 af_callback_keys + newsk->sk_family,
1529 af_family_clock_key_strings[newsk->sk_family]);
1530
1531 newsk->sk_dst_cache = NULL;
1532 newsk->sk_wmem_queued = 0;
1533 newsk->sk_forward_alloc = 0;
1534 newsk->sk_send_head = NULL;
1535 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1536
1537 sock_reset_flag(newsk, SOCK_DONE);
1538 skb_queue_head_init(&newsk->sk_error_queue);
1539
1540 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1541 if (filter != NULL)
1542 /* though it's an empty new sock, the charging may fail
1543 * if sysctl_optmem_max was changed between creation of
1544 * original socket and cloning
1545 */
1546 is_charged = sk_filter_charge(newsk, filter);
1547
1548 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1549 /* It is still raw copy of parent, so invalidate
1550 * destructor and make plain sk_free() */
1551 newsk->sk_destruct = NULL;
1552 bh_unlock_sock(newsk);
1553 sk_free(newsk);
1554 newsk = NULL;
1555 goto out;
1556 }
1557
1558 newsk->sk_err = 0;
1559 newsk->sk_priority = 0;
1560 newsk->sk_incoming_cpu = raw_smp_processor_id();
1561 atomic64_set(&newsk->sk_cookie, 0);
1562 /*
1563 * Before updating sk_refcnt, we must commit prior changes to memory
1564 * (Documentation/RCU/rculist_nulls.txt for details)
1565 */
1566 smp_wmb();
1567 atomic_set(&newsk->sk_refcnt, 2);
1568
1569 /*
1570 * Increment the counter in the same struct proto as the master
1571 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1572 * is the same as sk->sk_prot->socks, as this field was copied
1573 * with memcpy).
1574 *
1575 * This _changes_ the previous behaviour, where
1576 * tcp_create_openreq_child always was incrementing the
1577 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1578 * to be taken into account in all callers. -acme
1579 */
1580 sk_refcnt_debug_inc(newsk);
1581 sk_set_socket(newsk, NULL);
1582 newsk->sk_wq = NULL;
1583
1584 sk_update_clone(sk, newsk);
1585
1586 if (newsk->sk_prot->sockets_allocated)
1587 sk_sockets_allocated_inc(newsk);
1588
1589 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1590 net_enable_timestamp();
1591 }
1592 out:
1593 return newsk;
1594 }
1595 EXPORT_SYMBOL_GPL(sk_clone_lock);
1596
1597 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1598 {
1599 __sk_dst_set(sk, dst);
1600 sk->sk_route_caps = dst->dev->features;
1601 if (sk->sk_route_caps & NETIF_F_GSO)
1602 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1603 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1604 if (sk_can_gso(sk)) {
1605 if (dst->header_len) {
1606 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1607 } else {
1608 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1609 sk->sk_gso_max_size = dst->dev->gso_max_size;
1610 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1611 }
1612 }
1613 }
1614 EXPORT_SYMBOL_GPL(sk_setup_caps);
1615
1616 /*
1617 * Simple resource managers for sockets.
1618 */
1619
1620
1621 /*
1622 * Write buffer destructor automatically called from kfree_skb.
1623 */
1624 void sock_wfree(struct sk_buff *skb)
1625 {
1626 struct sock *sk = skb->sk;
1627 unsigned int len = skb->truesize;
1628
1629 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1630 /*
1631 * Keep a reference on sk_wmem_alloc, this will be released
1632 * after sk_write_space() call
1633 */
1634 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1635 sk->sk_write_space(sk);
1636 len = 1;
1637 }
1638 /*
1639 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1640 * could not do because of in-flight packets
1641 */
1642 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1643 __sk_free(sk);
1644 }
1645 EXPORT_SYMBOL(sock_wfree);
1646
1647 void skb_orphan_partial(struct sk_buff *skb)
1648 {
1649 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1650 * so we do not completely orphan skb, but transfert all
1651 * accounted bytes but one, to avoid unexpected reorders.
1652 */
1653 if (skb->destructor == sock_wfree
1654 #ifdef CONFIG_INET
1655 || skb->destructor == tcp_wfree
1656 #endif
1657 ) {
1658 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1659 skb->truesize = 1;
1660 } else {
1661 skb_orphan(skb);
1662 }
1663 }
1664 EXPORT_SYMBOL(skb_orphan_partial);
1665
1666 /*
1667 * Read buffer destructor automatically called from kfree_skb.
1668 */
1669 void sock_rfree(struct sk_buff *skb)
1670 {
1671 struct sock *sk = skb->sk;
1672 unsigned int len = skb->truesize;
1673
1674 atomic_sub(len, &sk->sk_rmem_alloc);
1675 sk_mem_uncharge(sk, len);
1676 }
1677 EXPORT_SYMBOL(sock_rfree);
1678
1679 /*
1680 * Buffer destructor for skbs that are not used directly in read or write
1681 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1682 */
1683 void sock_efree(struct sk_buff *skb)
1684 {
1685 sock_put(skb->sk);
1686 }
1687 EXPORT_SYMBOL(sock_efree);
1688
1689 kuid_t sock_i_uid(struct sock *sk)
1690 {
1691 kuid_t uid;
1692
1693 read_lock_bh(&sk->sk_callback_lock);
1694 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1695 read_unlock_bh(&sk->sk_callback_lock);
1696 return uid;
1697 }
1698 EXPORT_SYMBOL(sock_i_uid);
1699
1700 unsigned long sock_i_ino(struct sock *sk)
1701 {
1702 unsigned long ino;
1703
1704 read_lock_bh(&sk->sk_callback_lock);
1705 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1706 read_unlock_bh(&sk->sk_callback_lock);
1707 return ino;
1708 }
1709 EXPORT_SYMBOL(sock_i_ino);
1710
1711 /*
1712 * Allocate a skb from the socket's send buffer.
1713 */
1714 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1715 gfp_t priority)
1716 {
1717 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1718 struct sk_buff *skb = alloc_skb(size, priority);
1719 if (skb) {
1720 skb_set_owner_w(skb, sk);
1721 return skb;
1722 }
1723 }
1724 return NULL;
1725 }
1726 EXPORT_SYMBOL(sock_wmalloc);
1727
1728 /*
1729 * Allocate a memory block from the socket's option memory buffer.
1730 */
1731 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1732 {
1733 if ((unsigned int)size <= sysctl_optmem_max &&
1734 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1735 void *mem;
1736 /* First do the add, to avoid the race if kmalloc
1737 * might sleep.
1738 */
1739 atomic_add(size, &sk->sk_omem_alloc);
1740 mem = kmalloc(size, priority);
1741 if (mem)
1742 return mem;
1743 atomic_sub(size, &sk->sk_omem_alloc);
1744 }
1745 return NULL;
1746 }
1747 EXPORT_SYMBOL(sock_kmalloc);
1748
1749 /* Free an option memory block. Note, we actually want the inline
1750 * here as this allows gcc to detect the nullify and fold away the
1751 * condition entirely.
1752 */
1753 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1754 const bool nullify)
1755 {
1756 if (WARN_ON_ONCE(!mem))
1757 return;
1758 if (nullify)
1759 kzfree(mem);
1760 else
1761 kfree(mem);
1762 atomic_sub(size, &sk->sk_omem_alloc);
1763 }
1764
1765 void sock_kfree_s(struct sock *sk, void *mem, int size)
1766 {
1767 __sock_kfree_s(sk, mem, size, false);
1768 }
1769 EXPORT_SYMBOL(sock_kfree_s);
1770
1771 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1772 {
1773 __sock_kfree_s(sk, mem, size, true);
1774 }
1775 EXPORT_SYMBOL(sock_kzfree_s);
1776
1777 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1778 I think, these locks should be removed for datagram sockets.
1779 */
1780 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1781 {
1782 DEFINE_WAIT(wait);
1783
1784 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1785 for (;;) {
1786 if (!timeo)
1787 break;
1788 if (signal_pending(current))
1789 break;
1790 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1791 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1792 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1793 break;
1794 if (sk->sk_shutdown & SEND_SHUTDOWN)
1795 break;
1796 if (sk->sk_err)
1797 break;
1798 timeo = schedule_timeout(timeo);
1799 }
1800 finish_wait(sk_sleep(sk), &wait);
1801 return timeo;
1802 }
1803
1804
1805 /*
1806 * Generic send/receive buffer handlers
1807 */
1808
1809 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1810 unsigned long data_len, int noblock,
1811 int *errcode, int max_page_order)
1812 {
1813 struct sk_buff *skb;
1814 long timeo;
1815 int err;
1816
1817 timeo = sock_sndtimeo(sk, noblock);
1818 for (;;) {
1819 err = sock_error(sk);
1820 if (err != 0)
1821 goto failure;
1822
1823 err = -EPIPE;
1824 if (sk->sk_shutdown & SEND_SHUTDOWN)
1825 goto failure;
1826
1827 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1828 break;
1829
1830 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1831 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1832 err = -EAGAIN;
1833 if (!timeo)
1834 goto failure;
1835 if (signal_pending(current))
1836 goto interrupted;
1837 timeo = sock_wait_for_wmem(sk, timeo);
1838 }
1839 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1840 errcode, sk->sk_allocation);
1841 if (skb)
1842 skb_set_owner_w(skb, sk);
1843 return skb;
1844
1845 interrupted:
1846 err = sock_intr_errno(timeo);
1847 failure:
1848 *errcode = err;
1849 return NULL;
1850 }
1851 EXPORT_SYMBOL(sock_alloc_send_pskb);
1852
1853 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1854 int noblock, int *errcode)
1855 {
1856 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1857 }
1858 EXPORT_SYMBOL(sock_alloc_send_skb);
1859
1860 /* On 32bit arches, an skb frag is limited to 2^15 */
1861 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1862
1863 /**
1864 * skb_page_frag_refill - check that a page_frag contains enough room
1865 * @sz: minimum size of the fragment we want to get
1866 * @pfrag: pointer to page_frag
1867 * @gfp: priority for memory allocation
1868 *
1869 * Note: While this allocator tries to use high order pages, there is
1870 * no guarantee that allocations succeed. Therefore, @sz MUST be
1871 * less or equal than PAGE_SIZE.
1872 */
1873 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1874 {
1875 if (pfrag->page) {
1876 if (atomic_read(&pfrag->page->_count) == 1) {
1877 pfrag->offset = 0;
1878 return true;
1879 }
1880 if (pfrag->offset + sz <= pfrag->size)
1881 return true;
1882 put_page(pfrag->page);
1883 }
1884
1885 pfrag->offset = 0;
1886 if (SKB_FRAG_PAGE_ORDER) {
1887 pfrag->page = alloc_pages(gfp | __GFP_COMP |
1888 __GFP_NOWARN | __GFP_NORETRY,
1889 SKB_FRAG_PAGE_ORDER);
1890 if (likely(pfrag->page)) {
1891 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1892 return true;
1893 }
1894 }
1895 pfrag->page = alloc_page(gfp);
1896 if (likely(pfrag->page)) {
1897 pfrag->size = PAGE_SIZE;
1898 return true;
1899 }
1900 return false;
1901 }
1902 EXPORT_SYMBOL(skb_page_frag_refill);
1903
1904 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1905 {
1906 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1907 return true;
1908
1909 sk_enter_memory_pressure(sk);
1910 sk_stream_moderate_sndbuf(sk);
1911 return false;
1912 }
1913 EXPORT_SYMBOL(sk_page_frag_refill);
1914
1915 static void __lock_sock(struct sock *sk)
1916 __releases(&sk->sk_lock.slock)
1917 __acquires(&sk->sk_lock.slock)
1918 {
1919 DEFINE_WAIT(wait);
1920
1921 for (;;) {
1922 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1923 TASK_UNINTERRUPTIBLE);
1924 spin_unlock_bh(&sk->sk_lock.slock);
1925 schedule();
1926 spin_lock_bh(&sk->sk_lock.slock);
1927 if (!sock_owned_by_user(sk))
1928 break;
1929 }
1930 finish_wait(&sk->sk_lock.wq, &wait);
1931 }
1932
1933 static void __release_sock(struct sock *sk)
1934 __releases(&sk->sk_lock.slock)
1935 __acquires(&sk->sk_lock.slock)
1936 {
1937 struct sk_buff *skb = sk->sk_backlog.head;
1938
1939 do {
1940 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1941 bh_unlock_sock(sk);
1942
1943 do {
1944 struct sk_buff *next = skb->next;
1945
1946 prefetch(next);
1947 WARN_ON_ONCE(skb_dst_is_noref(skb));
1948 skb->next = NULL;
1949 sk_backlog_rcv(sk, skb);
1950
1951 /*
1952 * We are in process context here with softirqs
1953 * disabled, use cond_resched_softirq() to preempt.
1954 * This is safe to do because we've taken the backlog
1955 * queue private:
1956 */
1957 cond_resched_softirq();
1958
1959 skb = next;
1960 } while (skb != NULL);
1961
1962 bh_lock_sock(sk);
1963 } while ((skb = sk->sk_backlog.head) != NULL);
1964
1965 /*
1966 * Doing the zeroing here guarantee we can not loop forever
1967 * while a wild producer attempts to flood us.
1968 */
1969 sk->sk_backlog.len = 0;
1970 }
1971
1972 /**
1973 * sk_wait_data - wait for data to arrive at sk_receive_queue
1974 * @sk: sock to wait on
1975 * @timeo: for how long
1976 *
1977 * Now socket state including sk->sk_err is changed only under lock,
1978 * hence we may omit checks after joining wait queue.
1979 * We check receive queue before schedule() only as optimization;
1980 * it is very likely that release_sock() added new data.
1981 */
1982 int sk_wait_data(struct sock *sk, long *timeo)
1983 {
1984 int rc;
1985 DEFINE_WAIT(wait);
1986
1987 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1988 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1989 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1990 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1991 finish_wait(sk_sleep(sk), &wait);
1992 return rc;
1993 }
1994 EXPORT_SYMBOL(sk_wait_data);
1995
1996 /**
1997 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1998 * @sk: socket
1999 * @size: memory size to allocate
2000 * @kind: allocation type
2001 *
2002 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2003 * rmem allocation. This function assumes that protocols which have
2004 * memory_pressure use sk_wmem_queued as write buffer accounting.
2005 */
2006 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2007 {
2008 struct proto *prot = sk->sk_prot;
2009 int amt = sk_mem_pages(size);
2010 long allocated;
2011 int parent_status = UNDER_LIMIT;
2012
2013 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2014
2015 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2016
2017 /* Under limit. */
2018 if (parent_status == UNDER_LIMIT &&
2019 allocated <= sk_prot_mem_limits(sk, 0)) {
2020 sk_leave_memory_pressure(sk);
2021 return 1;
2022 }
2023
2024 /* Under pressure. (we or our parents) */
2025 if ((parent_status > SOFT_LIMIT) ||
2026 allocated > sk_prot_mem_limits(sk, 1))
2027 sk_enter_memory_pressure(sk);
2028
2029 /* Over hard limit (we or our parents) */
2030 if ((parent_status == OVER_LIMIT) ||
2031 (allocated > sk_prot_mem_limits(sk, 2)))
2032 goto suppress_allocation;
2033
2034 /* guarantee minimum buffer size under pressure */
2035 if (kind == SK_MEM_RECV) {
2036 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2037 return 1;
2038
2039 } else { /* SK_MEM_SEND */
2040 if (sk->sk_type == SOCK_STREAM) {
2041 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2042 return 1;
2043 } else if (atomic_read(&sk->sk_wmem_alloc) <
2044 prot->sysctl_wmem[0])
2045 return 1;
2046 }
2047
2048 if (sk_has_memory_pressure(sk)) {
2049 int alloc;
2050
2051 if (!sk_under_memory_pressure(sk))
2052 return 1;
2053 alloc = sk_sockets_allocated_read_positive(sk);
2054 if (sk_prot_mem_limits(sk, 2) > alloc *
2055 sk_mem_pages(sk->sk_wmem_queued +
2056 atomic_read(&sk->sk_rmem_alloc) +
2057 sk->sk_forward_alloc))
2058 return 1;
2059 }
2060
2061 suppress_allocation:
2062
2063 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2064 sk_stream_moderate_sndbuf(sk);
2065
2066 /* Fail only if socket is _under_ its sndbuf.
2067 * In this case we cannot block, so that we have to fail.
2068 */
2069 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2070 return 1;
2071 }
2072
2073 trace_sock_exceed_buf_limit(sk, prot, allocated);
2074
2075 /* Alas. Undo changes. */
2076 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2077
2078 sk_memory_allocated_sub(sk, amt);
2079
2080 return 0;
2081 }
2082 EXPORT_SYMBOL(__sk_mem_schedule);
2083
2084 /**
2085 * __sk_reclaim - reclaim memory_allocated
2086 * @sk: socket
2087 */
2088 void __sk_mem_reclaim(struct sock *sk)
2089 {
2090 sk_memory_allocated_sub(sk,
2091 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2092 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2093
2094 if (sk_under_memory_pressure(sk) &&
2095 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2096 sk_leave_memory_pressure(sk);
2097 }
2098 EXPORT_SYMBOL(__sk_mem_reclaim);
2099
2100
2101 /*
2102 * Set of default routines for initialising struct proto_ops when
2103 * the protocol does not support a particular function. In certain
2104 * cases where it makes no sense for a protocol to have a "do nothing"
2105 * function, some default processing is provided.
2106 */
2107
2108 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2109 {
2110 return -EOPNOTSUPP;
2111 }
2112 EXPORT_SYMBOL(sock_no_bind);
2113
2114 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2115 int len, int flags)
2116 {
2117 return -EOPNOTSUPP;
2118 }
2119 EXPORT_SYMBOL(sock_no_connect);
2120
2121 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2122 {
2123 return -EOPNOTSUPP;
2124 }
2125 EXPORT_SYMBOL(sock_no_socketpair);
2126
2127 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2128 {
2129 return -EOPNOTSUPP;
2130 }
2131 EXPORT_SYMBOL(sock_no_accept);
2132
2133 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2134 int *len, int peer)
2135 {
2136 return -EOPNOTSUPP;
2137 }
2138 EXPORT_SYMBOL(sock_no_getname);
2139
2140 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2141 {
2142 return 0;
2143 }
2144 EXPORT_SYMBOL(sock_no_poll);
2145
2146 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2147 {
2148 return -EOPNOTSUPP;
2149 }
2150 EXPORT_SYMBOL(sock_no_ioctl);
2151
2152 int sock_no_listen(struct socket *sock, int backlog)
2153 {
2154 return -EOPNOTSUPP;
2155 }
2156 EXPORT_SYMBOL(sock_no_listen);
2157
2158 int sock_no_shutdown(struct socket *sock, int how)
2159 {
2160 return -EOPNOTSUPP;
2161 }
2162 EXPORT_SYMBOL(sock_no_shutdown);
2163
2164 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2165 char __user *optval, unsigned int optlen)
2166 {
2167 return -EOPNOTSUPP;
2168 }
2169 EXPORT_SYMBOL(sock_no_setsockopt);
2170
2171 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2172 char __user *optval, int __user *optlen)
2173 {
2174 return -EOPNOTSUPP;
2175 }
2176 EXPORT_SYMBOL(sock_no_getsockopt);
2177
2178 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2179 {
2180 return -EOPNOTSUPP;
2181 }
2182 EXPORT_SYMBOL(sock_no_sendmsg);
2183
2184 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2185 int flags)
2186 {
2187 return -EOPNOTSUPP;
2188 }
2189 EXPORT_SYMBOL(sock_no_recvmsg);
2190
2191 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2192 {
2193 /* Mirror missing mmap method error code */
2194 return -ENODEV;
2195 }
2196 EXPORT_SYMBOL(sock_no_mmap);
2197
2198 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2199 {
2200 ssize_t res;
2201 struct msghdr msg = {.msg_flags = flags};
2202 struct kvec iov;
2203 char *kaddr = kmap(page);
2204 iov.iov_base = kaddr + offset;
2205 iov.iov_len = size;
2206 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2207 kunmap(page);
2208 return res;
2209 }
2210 EXPORT_SYMBOL(sock_no_sendpage);
2211
2212 /*
2213 * Default Socket Callbacks
2214 */
2215
2216 static void sock_def_wakeup(struct sock *sk)
2217 {
2218 struct socket_wq *wq;
2219
2220 rcu_read_lock();
2221 wq = rcu_dereference(sk->sk_wq);
2222 if (wq_has_sleeper(wq))
2223 wake_up_interruptible_all(&wq->wait);
2224 rcu_read_unlock();
2225 }
2226
2227 static void sock_def_error_report(struct sock *sk)
2228 {
2229 struct socket_wq *wq;
2230
2231 rcu_read_lock();
2232 wq = rcu_dereference(sk->sk_wq);
2233 if (wq_has_sleeper(wq))
2234 wake_up_interruptible_poll(&wq->wait, POLLERR);
2235 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2236 rcu_read_unlock();
2237 }
2238
2239 static void sock_def_readable(struct sock *sk)
2240 {
2241 struct socket_wq *wq;
2242
2243 rcu_read_lock();
2244 wq = rcu_dereference(sk->sk_wq);
2245 if (wq_has_sleeper(wq))
2246 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2247 POLLRDNORM | POLLRDBAND);
2248 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2249 rcu_read_unlock();
2250 }
2251
2252 static void sock_def_write_space(struct sock *sk)
2253 {
2254 struct socket_wq *wq;
2255
2256 rcu_read_lock();
2257
2258 /* Do not wake up a writer until he can make "significant"
2259 * progress. --DaveM
2260 */
2261 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2262 wq = rcu_dereference(sk->sk_wq);
2263 if (wq_has_sleeper(wq))
2264 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2265 POLLWRNORM | POLLWRBAND);
2266
2267 /* Should agree with poll, otherwise some programs break */
2268 if (sock_writeable(sk))
2269 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2270 }
2271
2272 rcu_read_unlock();
2273 }
2274
2275 static void sock_def_destruct(struct sock *sk)
2276 {
2277 kfree(sk->sk_protinfo);
2278 }
2279
2280 void sk_send_sigurg(struct sock *sk)
2281 {
2282 if (sk->sk_socket && sk->sk_socket->file)
2283 if (send_sigurg(&sk->sk_socket->file->f_owner))
2284 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2285 }
2286 EXPORT_SYMBOL(sk_send_sigurg);
2287
2288 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2289 unsigned long expires)
2290 {
2291 if (!mod_timer(timer, expires))
2292 sock_hold(sk);
2293 }
2294 EXPORT_SYMBOL(sk_reset_timer);
2295
2296 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2297 {
2298 if (del_timer(timer))
2299 __sock_put(sk);
2300 }
2301 EXPORT_SYMBOL(sk_stop_timer);
2302
2303 void sock_init_data(struct socket *sock, struct sock *sk)
2304 {
2305 skb_queue_head_init(&sk->sk_receive_queue);
2306 skb_queue_head_init(&sk->sk_write_queue);
2307 skb_queue_head_init(&sk->sk_error_queue);
2308
2309 sk->sk_send_head = NULL;
2310
2311 init_timer(&sk->sk_timer);
2312
2313 sk->sk_allocation = GFP_KERNEL;
2314 sk->sk_rcvbuf = sysctl_rmem_default;
2315 sk->sk_sndbuf = sysctl_wmem_default;
2316 sk->sk_state = TCP_CLOSE;
2317 sk_set_socket(sk, sock);
2318
2319 sock_set_flag(sk, SOCK_ZAPPED);
2320
2321 if (sock) {
2322 sk->sk_type = sock->type;
2323 sk->sk_wq = sock->wq;
2324 sock->sk = sk;
2325 } else
2326 sk->sk_wq = NULL;
2327
2328 spin_lock_init(&sk->sk_dst_lock);
2329 rwlock_init(&sk->sk_callback_lock);
2330 lockdep_set_class_and_name(&sk->sk_callback_lock,
2331 af_callback_keys + sk->sk_family,
2332 af_family_clock_key_strings[sk->sk_family]);
2333
2334 sk->sk_state_change = sock_def_wakeup;
2335 sk->sk_data_ready = sock_def_readable;
2336 sk->sk_write_space = sock_def_write_space;
2337 sk->sk_error_report = sock_def_error_report;
2338 sk->sk_destruct = sock_def_destruct;
2339
2340 sk->sk_frag.page = NULL;
2341 sk->sk_frag.offset = 0;
2342 sk->sk_peek_off = -1;
2343
2344 sk->sk_peer_pid = NULL;
2345 sk->sk_peer_cred = NULL;
2346 sk->sk_write_pending = 0;
2347 sk->sk_rcvlowat = 1;
2348 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2349 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2350
2351 sk->sk_stamp = ktime_set(-1L, 0);
2352
2353 #ifdef CONFIG_NET_RX_BUSY_POLL
2354 sk->sk_napi_id = 0;
2355 sk->sk_ll_usec = sysctl_net_busy_read;
2356 #endif
2357
2358 sk->sk_max_pacing_rate = ~0U;
2359 sk->sk_pacing_rate = ~0U;
2360 /*
2361 * Before updating sk_refcnt, we must commit prior changes to memory
2362 * (Documentation/RCU/rculist_nulls.txt for details)
2363 */
2364 smp_wmb();
2365 atomic_set(&sk->sk_refcnt, 1);
2366 atomic_set(&sk->sk_drops, 0);
2367 }
2368 EXPORT_SYMBOL(sock_init_data);
2369
2370 void lock_sock_nested(struct sock *sk, int subclass)
2371 {
2372 might_sleep();
2373 spin_lock_bh(&sk->sk_lock.slock);
2374 if (sk->sk_lock.owned)
2375 __lock_sock(sk);
2376 sk->sk_lock.owned = 1;
2377 spin_unlock(&sk->sk_lock.slock);
2378 /*
2379 * The sk_lock has mutex_lock() semantics here:
2380 */
2381 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2382 local_bh_enable();
2383 }
2384 EXPORT_SYMBOL(lock_sock_nested);
2385
2386 void release_sock(struct sock *sk)
2387 {
2388 /*
2389 * The sk_lock has mutex_unlock() semantics:
2390 */
2391 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2392
2393 spin_lock_bh(&sk->sk_lock.slock);
2394 if (sk->sk_backlog.tail)
2395 __release_sock(sk);
2396
2397 /* Warning : release_cb() might need to release sk ownership,
2398 * ie call sock_release_ownership(sk) before us.
2399 */
2400 if (sk->sk_prot->release_cb)
2401 sk->sk_prot->release_cb(sk);
2402
2403 sock_release_ownership(sk);
2404 if (waitqueue_active(&sk->sk_lock.wq))
2405 wake_up(&sk->sk_lock.wq);
2406 spin_unlock_bh(&sk->sk_lock.slock);
2407 }
2408 EXPORT_SYMBOL(release_sock);
2409
2410 /**
2411 * lock_sock_fast - fast version of lock_sock
2412 * @sk: socket
2413 *
2414 * This version should be used for very small section, where process wont block
2415 * return false if fast path is taken
2416 * sk_lock.slock locked, owned = 0, BH disabled
2417 * return true if slow path is taken
2418 * sk_lock.slock unlocked, owned = 1, BH enabled
2419 */
2420 bool lock_sock_fast(struct sock *sk)
2421 {
2422 might_sleep();
2423 spin_lock_bh(&sk->sk_lock.slock);
2424
2425 if (!sk->sk_lock.owned)
2426 /*
2427 * Note : We must disable BH
2428 */
2429 return false;
2430
2431 __lock_sock(sk);
2432 sk->sk_lock.owned = 1;
2433 spin_unlock(&sk->sk_lock.slock);
2434 /*
2435 * The sk_lock has mutex_lock() semantics here:
2436 */
2437 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2438 local_bh_enable();
2439 return true;
2440 }
2441 EXPORT_SYMBOL(lock_sock_fast);
2442
2443 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2444 {
2445 struct timeval tv;
2446 if (!sock_flag(sk, SOCK_TIMESTAMP))
2447 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2448 tv = ktime_to_timeval(sk->sk_stamp);
2449 if (tv.tv_sec == -1)
2450 return -ENOENT;
2451 if (tv.tv_sec == 0) {
2452 sk->sk_stamp = ktime_get_real();
2453 tv = ktime_to_timeval(sk->sk_stamp);
2454 }
2455 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2456 }
2457 EXPORT_SYMBOL(sock_get_timestamp);
2458
2459 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2460 {
2461 struct timespec ts;
2462 if (!sock_flag(sk, SOCK_TIMESTAMP))
2463 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2464 ts = ktime_to_timespec(sk->sk_stamp);
2465 if (ts.tv_sec == -1)
2466 return -ENOENT;
2467 if (ts.tv_sec == 0) {
2468 sk->sk_stamp = ktime_get_real();
2469 ts = ktime_to_timespec(sk->sk_stamp);
2470 }
2471 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2472 }
2473 EXPORT_SYMBOL(sock_get_timestampns);
2474
2475 void sock_enable_timestamp(struct sock *sk, int flag)
2476 {
2477 if (!sock_flag(sk, flag)) {
2478 unsigned long previous_flags = sk->sk_flags;
2479
2480 sock_set_flag(sk, flag);
2481 /*
2482 * we just set one of the two flags which require net
2483 * time stamping, but time stamping might have been on
2484 * already because of the other one
2485 */
2486 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2487 net_enable_timestamp();
2488 }
2489 }
2490
2491 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2492 int level, int type)
2493 {
2494 struct sock_exterr_skb *serr;
2495 struct sk_buff *skb;
2496 int copied, err;
2497
2498 err = -EAGAIN;
2499 skb = sock_dequeue_err_skb(sk);
2500 if (skb == NULL)
2501 goto out;
2502
2503 copied = skb->len;
2504 if (copied > len) {
2505 msg->msg_flags |= MSG_TRUNC;
2506 copied = len;
2507 }
2508 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2509 if (err)
2510 goto out_free_skb;
2511
2512 sock_recv_timestamp(msg, sk, skb);
2513
2514 serr = SKB_EXT_ERR(skb);
2515 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2516
2517 msg->msg_flags |= MSG_ERRQUEUE;
2518 err = copied;
2519
2520 out_free_skb:
2521 kfree_skb(skb);
2522 out:
2523 return err;
2524 }
2525 EXPORT_SYMBOL(sock_recv_errqueue);
2526
2527 /*
2528 * Get a socket option on an socket.
2529 *
2530 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2531 * asynchronous errors should be reported by getsockopt. We assume
2532 * this means if you specify SO_ERROR (otherwise whats the point of it).
2533 */
2534 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2535 char __user *optval, int __user *optlen)
2536 {
2537 struct sock *sk = sock->sk;
2538
2539 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2540 }
2541 EXPORT_SYMBOL(sock_common_getsockopt);
2542
2543 #ifdef CONFIG_COMPAT
2544 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2545 char __user *optval, int __user *optlen)
2546 {
2547 struct sock *sk = sock->sk;
2548
2549 if (sk->sk_prot->compat_getsockopt != NULL)
2550 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2551 optval, optlen);
2552 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2553 }
2554 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2555 #endif
2556
2557 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2558 int flags)
2559 {
2560 struct sock *sk = sock->sk;
2561 int addr_len = 0;
2562 int err;
2563
2564 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2565 flags & ~MSG_DONTWAIT, &addr_len);
2566 if (err >= 0)
2567 msg->msg_namelen = addr_len;
2568 return err;
2569 }
2570 EXPORT_SYMBOL(sock_common_recvmsg);
2571
2572 /*
2573 * Set socket options on an inet socket.
2574 */
2575 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2576 char __user *optval, unsigned int optlen)
2577 {
2578 struct sock *sk = sock->sk;
2579
2580 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2581 }
2582 EXPORT_SYMBOL(sock_common_setsockopt);
2583
2584 #ifdef CONFIG_COMPAT
2585 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2586 char __user *optval, unsigned int optlen)
2587 {
2588 struct sock *sk = sock->sk;
2589
2590 if (sk->sk_prot->compat_setsockopt != NULL)
2591 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2592 optval, optlen);
2593 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2594 }
2595 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2596 #endif
2597
2598 void sk_common_release(struct sock *sk)
2599 {
2600 if (sk->sk_prot->destroy)
2601 sk->sk_prot->destroy(sk);
2602
2603 /*
2604 * Observation: when sock_common_release is called, processes have
2605 * no access to socket. But net still has.
2606 * Step one, detach it from networking:
2607 *
2608 * A. Remove from hash tables.
2609 */
2610
2611 sk->sk_prot->unhash(sk);
2612
2613 /*
2614 * In this point socket cannot receive new packets, but it is possible
2615 * that some packets are in flight because some CPU runs receiver and
2616 * did hash table lookup before we unhashed socket. They will achieve
2617 * receive queue and will be purged by socket destructor.
2618 *
2619 * Also we still have packets pending on receive queue and probably,
2620 * our own packets waiting in device queues. sock_destroy will drain
2621 * receive queue, but transmitted packets will delay socket destruction
2622 * until the last reference will be released.
2623 */
2624
2625 sock_orphan(sk);
2626
2627 xfrm_sk_free_policy(sk);
2628
2629 sk_refcnt_debug_release(sk);
2630
2631 if (sk->sk_frag.page) {
2632 put_page(sk->sk_frag.page);
2633 sk->sk_frag.page = NULL;
2634 }
2635
2636 sock_put(sk);
2637 }
2638 EXPORT_SYMBOL(sk_common_release);
2639
2640 #ifdef CONFIG_PROC_FS
2641 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2642 struct prot_inuse {
2643 int val[PROTO_INUSE_NR];
2644 };
2645
2646 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2647
2648 #ifdef CONFIG_NET_NS
2649 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2650 {
2651 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2652 }
2653 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2654
2655 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2656 {
2657 int cpu, idx = prot->inuse_idx;
2658 int res = 0;
2659
2660 for_each_possible_cpu(cpu)
2661 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2662
2663 return res >= 0 ? res : 0;
2664 }
2665 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2666
2667 static int __net_init sock_inuse_init_net(struct net *net)
2668 {
2669 net->core.inuse = alloc_percpu(struct prot_inuse);
2670 return net->core.inuse ? 0 : -ENOMEM;
2671 }
2672
2673 static void __net_exit sock_inuse_exit_net(struct net *net)
2674 {
2675 free_percpu(net->core.inuse);
2676 }
2677
2678 static struct pernet_operations net_inuse_ops = {
2679 .init = sock_inuse_init_net,
2680 .exit = sock_inuse_exit_net,
2681 };
2682
2683 static __init int net_inuse_init(void)
2684 {
2685 if (register_pernet_subsys(&net_inuse_ops))
2686 panic("Cannot initialize net inuse counters");
2687
2688 return 0;
2689 }
2690
2691 core_initcall(net_inuse_init);
2692 #else
2693 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2694
2695 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2696 {
2697 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2698 }
2699 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2700
2701 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2702 {
2703 int cpu, idx = prot->inuse_idx;
2704 int res = 0;
2705
2706 for_each_possible_cpu(cpu)
2707 res += per_cpu(prot_inuse, cpu).val[idx];
2708
2709 return res >= 0 ? res : 0;
2710 }
2711 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2712 #endif
2713
2714 static void assign_proto_idx(struct proto *prot)
2715 {
2716 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2717
2718 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2719 pr_err("PROTO_INUSE_NR exhausted\n");
2720 return;
2721 }
2722
2723 set_bit(prot->inuse_idx, proto_inuse_idx);
2724 }
2725
2726 static void release_proto_idx(struct proto *prot)
2727 {
2728 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2729 clear_bit(prot->inuse_idx, proto_inuse_idx);
2730 }
2731 #else
2732 static inline void assign_proto_idx(struct proto *prot)
2733 {
2734 }
2735
2736 static inline void release_proto_idx(struct proto *prot)
2737 {
2738 }
2739 #endif
2740
2741 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2742 {
2743 if (!rsk_prot)
2744 return;
2745 kfree(rsk_prot->slab_name);
2746 rsk_prot->slab_name = NULL;
2747 if (rsk_prot->slab) {
2748 kmem_cache_destroy(rsk_prot->slab);
2749 rsk_prot->slab = NULL;
2750 }
2751 }
2752
2753 static int req_prot_init(const struct proto *prot)
2754 {
2755 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2756
2757 if (!rsk_prot)
2758 return 0;
2759
2760 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2761 prot->name);
2762 if (!rsk_prot->slab_name)
2763 return -ENOMEM;
2764
2765 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2766 rsk_prot->obj_size, 0,
2767 0, NULL);
2768
2769 if (!rsk_prot->slab) {
2770 pr_crit("%s: Can't create request sock SLAB cache!\n",
2771 prot->name);
2772 return -ENOMEM;
2773 }
2774 return 0;
2775 }
2776
2777 int proto_register(struct proto *prot, int alloc_slab)
2778 {
2779 if (alloc_slab) {
2780 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2781 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2782 NULL);
2783
2784 if (prot->slab == NULL) {
2785 pr_crit("%s: Can't create sock SLAB cache!\n",
2786 prot->name);
2787 goto out;
2788 }
2789
2790 if (req_prot_init(prot))
2791 goto out_free_request_sock_slab;
2792
2793 if (prot->twsk_prot != NULL) {
2794 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2795
2796 if (prot->twsk_prot->twsk_slab_name == NULL)
2797 goto out_free_request_sock_slab;
2798
2799 prot->twsk_prot->twsk_slab =
2800 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2801 prot->twsk_prot->twsk_obj_size,
2802 0,
2803 prot->slab_flags,
2804 NULL);
2805 if (prot->twsk_prot->twsk_slab == NULL)
2806 goto out_free_timewait_sock_slab_name;
2807 }
2808 }
2809
2810 mutex_lock(&proto_list_mutex);
2811 list_add(&prot->node, &proto_list);
2812 assign_proto_idx(prot);
2813 mutex_unlock(&proto_list_mutex);
2814 return 0;
2815
2816 out_free_timewait_sock_slab_name:
2817 kfree(prot->twsk_prot->twsk_slab_name);
2818 out_free_request_sock_slab:
2819 req_prot_cleanup(prot->rsk_prot);
2820
2821 kmem_cache_destroy(prot->slab);
2822 prot->slab = NULL;
2823 out:
2824 return -ENOBUFS;
2825 }
2826 EXPORT_SYMBOL(proto_register);
2827
2828 void proto_unregister(struct proto *prot)
2829 {
2830 mutex_lock(&proto_list_mutex);
2831 release_proto_idx(prot);
2832 list_del(&prot->node);
2833 mutex_unlock(&proto_list_mutex);
2834
2835 if (prot->slab != NULL) {
2836 kmem_cache_destroy(prot->slab);
2837 prot->slab = NULL;
2838 }
2839
2840 req_prot_cleanup(prot->rsk_prot);
2841
2842 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2843 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2844 kfree(prot->twsk_prot->twsk_slab_name);
2845 prot->twsk_prot->twsk_slab = NULL;
2846 }
2847 }
2848 EXPORT_SYMBOL(proto_unregister);
2849
2850 #ifdef CONFIG_PROC_FS
2851 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2852 __acquires(proto_list_mutex)
2853 {
2854 mutex_lock(&proto_list_mutex);
2855 return seq_list_start_head(&proto_list, *pos);
2856 }
2857
2858 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2859 {
2860 return seq_list_next(v, &proto_list, pos);
2861 }
2862
2863 static void proto_seq_stop(struct seq_file *seq, void *v)
2864 __releases(proto_list_mutex)
2865 {
2866 mutex_unlock(&proto_list_mutex);
2867 }
2868
2869 static char proto_method_implemented(const void *method)
2870 {
2871 return method == NULL ? 'n' : 'y';
2872 }
2873 static long sock_prot_memory_allocated(struct proto *proto)
2874 {
2875 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2876 }
2877
2878 static char *sock_prot_memory_pressure(struct proto *proto)
2879 {
2880 return proto->memory_pressure != NULL ?
2881 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2882 }
2883
2884 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2885 {
2886
2887 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2888 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2889 proto->name,
2890 proto->obj_size,
2891 sock_prot_inuse_get(seq_file_net(seq), proto),
2892 sock_prot_memory_allocated(proto),
2893 sock_prot_memory_pressure(proto),
2894 proto->max_header,
2895 proto->slab == NULL ? "no" : "yes",
2896 module_name(proto->owner),
2897 proto_method_implemented(proto->close),
2898 proto_method_implemented(proto->connect),
2899 proto_method_implemented(proto->disconnect),
2900 proto_method_implemented(proto->accept),
2901 proto_method_implemented(proto->ioctl),
2902 proto_method_implemented(proto->init),
2903 proto_method_implemented(proto->destroy),
2904 proto_method_implemented(proto->shutdown),
2905 proto_method_implemented(proto->setsockopt),
2906 proto_method_implemented(proto->getsockopt),
2907 proto_method_implemented(proto->sendmsg),
2908 proto_method_implemented(proto->recvmsg),
2909 proto_method_implemented(proto->sendpage),
2910 proto_method_implemented(proto->bind),
2911 proto_method_implemented(proto->backlog_rcv),
2912 proto_method_implemented(proto->hash),
2913 proto_method_implemented(proto->unhash),
2914 proto_method_implemented(proto->get_port),
2915 proto_method_implemented(proto->enter_memory_pressure));
2916 }
2917
2918 static int proto_seq_show(struct seq_file *seq, void *v)
2919 {
2920 if (v == &proto_list)
2921 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2922 "protocol",
2923 "size",
2924 "sockets",
2925 "memory",
2926 "press",
2927 "maxhdr",
2928 "slab",
2929 "module",
2930 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2931 else
2932 proto_seq_printf(seq, list_entry(v, struct proto, node));
2933 return 0;
2934 }
2935
2936 static const struct seq_operations proto_seq_ops = {
2937 .start = proto_seq_start,
2938 .next = proto_seq_next,
2939 .stop = proto_seq_stop,
2940 .show = proto_seq_show,
2941 };
2942
2943 static int proto_seq_open(struct inode *inode, struct file *file)
2944 {
2945 return seq_open_net(inode, file, &proto_seq_ops,
2946 sizeof(struct seq_net_private));
2947 }
2948
2949 static const struct file_operations proto_seq_fops = {
2950 .owner = THIS_MODULE,
2951 .open = proto_seq_open,
2952 .read = seq_read,
2953 .llseek = seq_lseek,
2954 .release = seq_release_net,
2955 };
2956
2957 static __net_init int proto_init_net(struct net *net)
2958 {
2959 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2960 return -ENOMEM;
2961
2962 return 0;
2963 }
2964
2965 static __net_exit void proto_exit_net(struct net *net)
2966 {
2967 remove_proc_entry("protocols", net->proc_net);
2968 }
2969
2970
2971 static __net_initdata struct pernet_operations proto_net_ops = {
2972 .init = proto_init_net,
2973 .exit = proto_exit_net,
2974 };
2975
2976 static int __init proto_init(void)
2977 {
2978 return register_pernet_subsys(&proto_net_ops);
2979 }
2980
2981 subsys_initcall(proto_init);
2982
2983 #endif /* PROC_FS */
This page took 0.122928 seconds and 6 git commands to generate.