Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276
277 /**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
298
299 /*
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
307 */
308 if (WARN_ON(sk->sk_forward_alloc))
309 sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 int ret;
316 unsigned long pflags = current->flags;
317
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328
329 #if defined(CONFIG_CGROUPS)
330 #if !defined(CONFIG_NET_CLS_CGROUP)
331 int net_cls_subsys_id = -1;
332 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333 #endif
334 #if !defined(CONFIG_NETPRIO_CGROUP)
335 int net_prio_subsys_id = -1;
336 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337 #endif
338 #endif
339
340 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341 {
342 struct timeval tv;
343
344 if (optlen < sizeof(tv))
345 return -EINVAL;
346 if (copy_from_user(&tv, optval, sizeof(tv)))
347 return -EFAULT;
348 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349 return -EDOM;
350
351 if (tv.tv_sec < 0) {
352 static int warned __read_mostly;
353
354 *timeo_p = 0;
355 if (warned < 10 && net_ratelimit()) {
356 warned++;
357 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358 __func__, current->comm, task_pid_nr(current));
359 }
360 return 0;
361 }
362 *timeo_p = MAX_SCHEDULE_TIMEOUT;
363 if (tv.tv_sec == 0 && tv.tv_usec == 0)
364 return 0;
365 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367 return 0;
368 }
369
370 static void sock_warn_obsolete_bsdism(const char *name)
371 {
372 static int warned;
373 static char warncomm[TASK_COMM_LEN];
374 if (strcmp(warncomm, current->comm) && warned < 5) {
375 strcpy(warncomm, current->comm);
376 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377 warncomm, name);
378 warned++;
379 }
380 }
381
382 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385 {
386 if (sk->sk_flags & flags) {
387 sk->sk_flags &= ~flags;
388 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389 net_disable_timestamp();
390 }
391 }
392
393
394 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395 {
396 int err;
397 int skb_len;
398 unsigned long flags;
399 struct sk_buff_head *list = &sk->sk_receive_queue;
400
401 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402 atomic_inc(&sk->sk_drops);
403 trace_sock_rcvqueue_full(sk, skb);
404 return -ENOMEM;
405 }
406
407 err = sk_filter(sk, skb);
408 if (err)
409 return err;
410
411 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412 atomic_inc(&sk->sk_drops);
413 return -ENOBUFS;
414 }
415
416 skb->dev = NULL;
417 skb_set_owner_r(skb, sk);
418
419 /* Cache the SKB length before we tack it onto the receive
420 * queue. Once it is added it no longer belongs to us and
421 * may be freed by other threads of control pulling packets
422 * from the queue.
423 */
424 skb_len = skb->len;
425
426 /* we escape from rcu protected region, make sure we dont leak
427 * a norefcounted dst
428 */
429 skb_dst_force(skb);
430
431 spin_lock_irqsave(&list->lock, flags);
432 skb->dropcount = atomic_read(&sk->sk_drops);
433 __skb_queue_tail(list, skb);
434 spin_unlock_irqrestore(&list->lock, flags);
435
436 if (!sock_flag(sk, SOCK_DEAD))
437 sk->sk_data_ready(sk, skb_len);
438 return 0;
439 }
440 EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443 {
444 int rc = NET_RX_SUCCESS;
445
446 if (sk_filter(sk, skb))
447 goto discard_and_relse;
448
449 skb->dev = NULL;
450
451 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452 atomic_inc(&sk->sk_drops);
453 goto discard_and_relse;
454 }
455 if (nested)
456 bh_lock_sock_nested(sk);
457 else
458 bh_lock_sock(sk);
459 if (!sock_owned_by_user(sk)) {
460 /*
461 * trylock + unlock semantics:
462 */
463 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465 rc = sk_backlog_rcv(sk, skb);
466
467 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469 bh_unlock_sock(sk);
470 atomic_inc(&sk->sk_drops);
471 goto discard_and_relse;
472 }
473
474 bh_unlock_sock(sk);
475 out:
476 sock_put(sk);
477 return rc;
478 discard_and_relse:
479 kfree_skb(skb);
480 goto out;
481 }
482 EXPORT_SYMBOL(sk_receive_skb);
483
484 void sk_reset_txq(struct sock *sk)
485 {
486 sk_tx_queue_clear(sk);
487 }
488 EXPORT_SYMBOL(sk_reset_txq);
489
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 struct dst_entry *dst = __sk_dst_get(sk);
493
494 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 sk_tx_queue_clear(sk);
496 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 dst_release(dst);
498 return NULL;
499 }
500
501 return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 struct dst_entry *dst = sk_dst_get(sk);
508
509 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 sk_dst_reset(sk);
511 dst_release(dst);
512 return NULL;
513 }
514
515 return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518
519 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520 {
521 int ret = -ENOPROTOOPT;
522 #ifdef CONFIG_NETDEVICES
523 struct net *net = sock_net(sk);
524 char devname[IFNAMSIZ];
525 int index;
526
527 /* Sorry... */
528 ret = -EPERM;
529 if (!capable(CAP_NET_RAW))
530 goto out;
531
532 ret = -EINVAL;
533 if (optlen < 0)
534 goto out;
535
536 /* Bind this socket to a particular device like "eth0",
537 * as specified in the passed interface name. If the
538 * name is "" or the option length is zero the socket
539 * is not bound.
540 */
541 if (optlen > IFNAMSIZ - 1)
542 optlen = IFNAMSIZ - 1;
543 memset(devname, 0, sizeof(devname));
544
545 ret = -EFAULT;
546 if (copy_from_user(devname, optval, optlen))
547 goto out;
548
549 index = 0;
550 if (devname[0] != '\0') {
551 struct net_device *dev;
552
553 rcu_read_lock();
554 dev = dev_get_by_name_rcu(net, devname);
555 if (dev)
556 index = dev->ifindex;
557 rcu_read_unlock();
558 ret = -ENODEV;
559 if (!dev)
560 goto out;
561 }
562
563 lock_sock(sk);
564 sk->sk_bound_dev_if = index;
565 sk_dst_reset(sk);
566 release_sock(sk);
567
568 ret = 0;
569
570 out:
571 #endif
572
573 return ret;
574 }
575
576 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577 {
578 if (valbool)
579 sock_set_flag(sk, bit);
580 else
581 sock_reset_flag(sk, bit);
582 }
583
584 /*
585 * This is meant for all protocols to use and covers goings on
586 * at the socket level. Everything here is generic.
587 */
588
589 int sock_setsockopt(struct socket *sock, int level, int optname,
590 char __user *optval, unsigned int optlen)
591 {
592 struct sock *sk = sock->sk;
593 int val;
594 int valbool;
595 struct linger ling;
596 int ret = 0;
597
598 /*
599 * Options without arguments
600 */
601
602 if (optname == SO_BINDTODEVICE)
603 return sock_bindtodevice(sk, optval, optlen);
604
605 if (optlen < sizeof(int))
606 return -EINVAL;
607
608 if (get_user(val, (int __user *)optval))
609 return -EFAULT;
610
611 valbool = val ? 1 : 0;
612
613 lock_sock(sk);
614
615 switch (optname) {
616 case SO_DEBUG:
617 if (val && !capable(CAP_NET_ADMIN))
618 ret = -EACCES;
619 else
620 sock_valbool_flag(sk, SOCK_DBG, valbool);
621 break;
622 case SO_REUSEADDR:
623 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624 break;
625 case SO_TYPE:
626 case SO_PROTOCOL:
627 case SO_DOMAIN:
628 case SO_ERROR:
629 ret = -ENOPROTOOPT;
630 break;
631 case SO_DONTROUTE:
632 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633 break;
634 case SO_BROADCAST:
635 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636 break;
637 case SO_SNDBUF:
638 /* Don't error on this BSD doesn't and if you think
639 * about it this is right. Otherwise apps have to
640 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641 * are treated in BSD as hints
642 */
643 val = min_t(u32, val, sysctl_wmem_max);
644 set_sndbuf:
645 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647 /* Wake up sending tasks if we upped the value. */
648 sk->sk_write_space(sk);
649 break;
650
651 case SO_SNDBUFFORCE:
652 if (!capable(CAP_NET_ADMIN)) {
653 ret = -EPERM;
654 break;
655 }
656 goto set_sndbuf;
657
658 case SO_RCVBUF:
659 /* Don't error on this BSD doesn't and if you think
660 * about it this is right. Otherwise apps have to
661 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662 * are treated in BSD as hints
663 */
664 val = min_t(u32, val, sysctl_rmem_max);
665 set_rcvbuf:
666 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667 /*
668 * We double it on the way in to account for
669 * "struct sk_buff" etc. overhead. Applications
670 * assume that the SO_RCVBUF setting they make will
671 * allow that much actual data to be received on that
672 * socket.
673 *
674 * Applications are unaware that "struct sk_buff" and
675 * other overheads allocate from the receive buffer
676 * during socket buffer allocation.
677 *
678 * And after considering the possible alternatives,
679 * returning the value we actually used in getsockopt
680 * is the most desirable behavior.
681 */
682 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683 break;
684
685 case SO_RCVBUFFORCE:
686 if (!capable(CAP_NET_ADMIN)) {
687 ret = -EPERM;
688 break;
689 }
690 goto set_rcvbuf;
691
692 case SO_KEEPALIVE:
693 #ifdef CONFIG_INET
694 if (sk->sk_protocol == IPPROTO_TCP)
695 tcp_set_keepalive(sk, valbool);
696 #endif
697 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
698 break;
699
700 case SO_OOBINLINE:
701 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
702 break;
703
704 case SO_NO_CHECK:
705 sk->sk_no_check = valbool;
706 break;
707
708 case SO_PRIORITY:
709 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
710 sk->sk_priority = val;
711 else
712 ret = -EPERM;
713 break;
714
715 case SO_LINGER:
716 if (optlen < sizeof(ling)) {
717 ret = -EINVAL; /* 1003.1g */
718 break;
719 }
720 if (copy_from_user(&ling, optval, sizeof(ling))) {
721 ret = -EFAULT;
722 break;
723 }
724 if (!ling.l_onoff)
725 sock_reset_flag(sk, SOCK_LINGER);
726 else {
727 #if (BITS_PER_LONG == 32)
728 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
729 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
730 else
731 #endif
732 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
733 sock_set_flag(sk, SOCK_LINGER);
734 }
735 break;
736
737 case SO_BSDCOMPAT:
738 sock_warn_obsolete_bsdism("setsockopt");
739 break;
740
741 case SO_PASSCRED:
742 if (valbool)
743 set_bit(SOCK_PASSCRED, &sock->flags);
744 else
745 clear_bit(SOCK_PASSCRED, &sock->flags);
746 break;
747
748 case SO_TIMESTAMP:
749 case SO_TIMESTAMPNS:
750 if (valbool) {
751 if (optname == SO_TIMESTAMP)
752 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
753 else
754 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 break;
762
763 case SO_TIMESTAMPING:
764 if (val & ~SOF_TIMESTAMPING_MASK) {
765 ret = -EINVAL;
766 break;
767 }
768 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
769 val & SOF_TIMESTAMPING_TX_HARDWARE);
770 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
771 val & SOF_TIMESTAMPING_TX_SOFTWARE);
772 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
773 val & SOF_TIMESTAMPING_RX_HARDWARE);
774 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
775 sock_enable_timestamp(sk,
776 SOCK_TIMESTAMPING_RX_SOFTWARE);
777 else
778 sock_disable_timestamp(sk,
779 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
780 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
781 val & SOF_TIMESTAMPING_SOFTWARE);
782 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
783 val & SOF_TIMESTAMPING_SYS_HARDWARE);
784 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
785 val & SOF_TIMESTAMPING_RAW_HARDWARE);
786 break;
787
788 case SO_RCVLOWAT:
789 if (val < 0)
790 val = INT_MAX;
791 sk->sk_rcvlowat = val ? : 1;
792 break;
793
794 case SO_RCVTIMEO:
795 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
796 break;
797
798 case SO_SNDTIMEO:
799 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
800 break;
801
802 case SO_ATTACH_FILTER:
803 ret = -EINVAL;
804 if (optlen == sizeof(struct sock_fprog)) {
805 struct sock_fprog fprog;
806
807 ret = -EFAULT;
808 if (copy_from_user(&fprog, optval, sizeof(fprog)))
809 break;
810
811 ret = sk_attach_filter(&fprog, sk);
812 }
813 break;
814
815 case SO_DETACH_FILTER:
816 ret = sk_detach_filter(sk);
817 break;
818
819 case SO_PASSSEC:
820 if (valbool)
821 set_bit(SOCK_PASSSEC, &sock->flags);
822 else
823 clear_bit(SOCK_PASSSEC, &sock->flags);
824 break;
825 case SO_MARK:
826 if (!capable(CAP_NET_ADMIN))
827 ret = -EPERM;
828 else
829 sk->sk_mark = val;
830 break;
831
832 /* We implement the SO_SNDLOWAT etc to
833 not be settable (1003.1g 5.3) */
834 case SO_RXQ_OVFL:
835 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
836 break;
837
838 case SO_WIFI_STATUS:
839 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
840 break;
841
842 case SO_PEEK_OFF:
843 if (sock->ops->set_peek_off)
844 sock->ops->set_peek_off(sk, val);
845 else
846 ret = -EOPNOTSUPP;
847 break;
848
849 case SO_NOFCS:
850 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
851 break;
852
853 default:
854 ret = -ENOPROTOOPT;
855 break;
856 }
857 release_sock(sk);
858 return ret;
859 }
860 EXPORT_SYMBOL(sock_setsockopt);
861
862
863 void cred_to_ucred(struct pid *pid, const struct cred *cred,
864 struct ucred *ucred)
865 {
866 ucred->pid = pid_vnr(pid);
867 ucred->uid = ucred->gid = -1;
868 if (cred) {
869 struct user_namespace *current_ns = current_user_ns();
870
871 ucred->uid = from_kuid(current_ns, cred->euid);
872 ucred->gid = from_kgid(current_ns, cred->egid);
873 }
874 }
875 EXPORT_SYMBOL_GPL(cred_to_ucred);
876
877 int sock_getsockopt(struct socket *sock, int level, int optname,
878 char __user *optval, int __user *optlen)
879 {
880 struct sock *sk = sock->sk;
881
882 union {
883 int val;
884 struct linger ling;
885 struct timeval tm;
886 } v;
887
888 int lv = sizeof(int);
889 int len;
890
891 if (get_user(len, optlen))
892 return -EFAULT;
893 if (len < 0)
894 return -EINVAL;
895
896 memset(&v, 0, sizeof(v));
897
898 switch (optname) {
899 case SO_DEBUG:
900 v.val = sock_flag(sk, SOCK_DBG);
901 break;
902
903 case SO_DONTROUTE:
904 v.val = sock_flag(sk, SOCK_LOCALROUTE);
905 break;
906
907 case SO_BROADCAST:
908 v.val = sock_flag(sk, SOCK_BROADCAST);
909 break;
910
911 case SO_SNDBUF:
912 v.val = sk->sk_sndbuf;
913 break;
914
915 case SO_RCVBUF:
916 v.val = sk->sk_rcvbuf;
917 break;
918
919 case SO_REUSEADDR:
920 v.val = sk->sk_reuse;
921 break;
922
923 case SO_KEEPALIVE:
924 v.val = sock_flag(sk, SOCK_KEEPOPEN);
925 break;
926
927 case SO_TYPE:
928 v.val = sk->sk_type;
929 break;
930
931 case SO_PROTOCOL:
932 v.val = sk->sk_protocol;
933 break;
934
935 case SO_DOMAIN:
936 v.val = sk->sk_family;
937 break;
938
939 case SO_ERROR:
940 v.val = -sock_error(sk);
941 if (v.val == 0)
942 v.val = xchg(&sk->sk_err_soft, 0);
943 break;
944
945 case SO_OOBINLINE:
946 v.val = sock_flag(sk, SOCK_URGINLINE);
947 break;
948
949 case SO_NO_CHECK:
950 v.val = sk->sk_no_check;
951 break;
952
953 case SO_PRIORITY:
954 v.val = sk->sk_priority;
955 break;
956
957 case SO_LINGER:
958 lv = sizeof(v.ling);
959 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
960 v.ling.l_linger = sk->sk_lingertime / HZ;
961 break;
962
963 case SO_BSDCOMPAT:
964 sock_warn_obsolete_bsdism("getsockopt");
965 break;
966
967 case SO_TIMESTAMP:
968 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
969 !sock_flag(sk, SOCK_RCVTSTAMPNS);
970 break;
971
972 case SO_TIMESTAMPNS:
973 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
974 break;
975
976 case SO_TIMESTAMPING:
977 v.val = 0;
978 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
979 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
980 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
981 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
982 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
983 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
984 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
985 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
986 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
987 v.val |= SOF_TIMESTAMPING_SOFTWARE;
988 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
989 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
990 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
991 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
992 break;
993
994 case SO_RCVTIMEO:
995 lv = sizeof(struct timeval);
996 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
997 v.tm.tv_sec = 0;
998 v.tm.tv_usec = 0;
999 } else {
1000 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1001 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1002 }
1003 break;
1004
1005 case SO_SNDTIMEO:
1006 lv = sizeof(struct timeval);
1007 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1008 v.tm.tv_sec = 0;
1009 v.tm.tv_usec = 0;
1010 } else {
1011 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1012 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1013 }
1014 break;
1015
1016 case SO_RCVLOWAT:
1017 v.val = sk->sk_rcvlowat;
1018 break;
1019
1020 case SO_SNDLOWAT:
1021 v.val = 1;
1022 break;
1023
1024 case SO_PASSCRED:
1025 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1026 break;
1027
1028 case SO_PEERCRED:
1029 {
1030 struct ucred peercred;
1031 if (len > sizeof(peercred))
1032 len = sizeof(peercred);
1033 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1034 if (copy_to_user(optval, &peercred, len))
1035 return -EFAULT;
1036 goto lenout;
1037 }
1038
1039 case SO_PEERNAME:
1040 {
1041 char address[128];
1042
1043 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1044 return -ENOTCONN;
1045 if (lv < len)
1046 return -EINVAL;
1047 if (copy_to_user(optval, address, len))
1048 return -EFAULT;
1049 goto lenout;
1050 }
1051
1052 /* Dubious BSD thing... Probably nobody even uses it, but
1053 * the UNIX standard wants it for whatever reason... -DaveM
1054 */
1055 case SO_ACCEPTCONN:
1056 v.val = sk->sk_state == TCP_LISTEN;
1057 break;
1058
1059 case SO_PASSSEC:
1060 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1061 break;
1062
1063 case SO_PEERSEC:
1064 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1065
1066 case SO_MARK:
1067 v.val = sk->sk_mark;
1068 break;
1069
1070 case SO_RXQ_OVFL:
1071 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1072 break;
1073
1074 case SO_WIFI_STATUS:
1075 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1076 break;
1077
1078 case SO_PEEK_OFF:
1079 if (!sock->ops->set_peek_off)
1080 return -EOPNOTSUPP;
1081
1082 v.val = sk->sk_peek_off;
1083 break;
1084 case SO_NOFCS:
1085 v.val = sock_flag(sk, SOCK_NOFCS);
1086 break;
1087 default:
1088 return -ENOPROTOOPT;
1089 }
1090
1091 if (len > lv)
1092 len = lv;
1093 if (copy_to_user(optval, &v, len))
1094 return -EFAULT;
1095 lenout:
1096 if (put_user(len, optlen))
1097 return -EFAULT;
1098 return 0;
1099 }
1100
1101 /*
1102 * Initialize an sk_lock.
1103 *
1104 * (We also register the sk_lock with the lock validator.)
1105 */
1106 static inline void sock_lock_init(struct sock *sk)
1107 {
1108 sock_lock_init_class_and_name(sk,
1109 af_family_slock_key_strings[sk->sk_family],
1110 af_family_slock_keys + sk->sk_family,
1111 af_family_key_strings[sk->sk_family],
1112 af_family_keys + sk->sk_family);
1113 }
1114
1115 /*
1116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1117 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1119 */
1120 static void sock_copy(struct sock *nsk, const struct sock *osk)
1121 {
1122 #ifdef CONFIG_SECURITY_NETWORK
1123 void *sptr = nsk->sk_security;
1124 #endif
1125 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1126
1127 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1128 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1129
1130 #ifdef CONFIG_SECURITY_NETWORK
1131 nsk->sk_security = sptr;
1132 security_sk_clone(osk, nsk);
1133 #endif
1134 }
1135
1136 /*
1137 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1138 * un-modified. Special care is taken when initializing object to zero.
1139 */
1140 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1141 {
1142 if (offsetof(struct sock, sk_node.next) != 0)
1143 memset(sk, 0, offsetof(struct sock, sk_node.next));
1144 memset(&sk->sk_node.pprev, 0,
1145 size - offsetof(struct sock, sk_node.pprev));
1146 }
1147
1148 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1149 {
1150 unsigned long nulls1, nulls2;
1151
1152 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1153 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1154 if (nulls1 > nulls2)
1155 swap(nulls1, nulls2);
1156
1157 if (nulls1 != 0)
1158 memset((char *)sk, 0, nulls1);
1159 memset((char *)sk + nulls1 + sizeof(void *), 0,
1160 nulls2 - nulls1 - sizeof(void *));
1161 memset((char *)sk + nulls2 + sizeof(void *), 0,
1162 size - nulls2 - sizeof(void *));
1163 }
1164 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1165
1166 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1167 int family)
1168 {
1169 struct sock *sk;
1170 struct kmem_cache *slab;
1171
1172 slab = prot->slab;
1173 if (slab != NULL) {
1174 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1175 if (!sk)
1176 return sk;
1177 if (priority & __GFP_ZERO) {
1178 if (prot->clear_sk)
1179 prot->clear_sk(sk, prot->obj_size);
1180 else
1181 sk_prot_clear_nulls(sk, prot->obj_size);
1182 }
1183 } else
1184 sk = kmalloc(prot->obj_size, priority);
1185
1186 if (sk != NULL) {
1187 kmemcheck_annotate_bitfield(sk, flags);
1188
1189 if (security_sk_alloc(sk, family, priority))
1190 goto out_free;
1191
1192 if (!try_module_get(prot->owner))
1193 goto out_free_sec;
1194 sk_tx_queue_clear(sk);
1195 }
1196
1197 return sk;
1198
1199 out_free_sec:
1200 security_sk_free(sk);
1201 out_free:
1202 if (slab != NULL)
1203 kmem_cache_free(slab, sk);
1204 else
1205 kfree(sk);
1206 return NULL;
1207 }
1208
1209 static void sk_prot_free(struct proto *prot, struct sock *sk)
1210 {
1211 struct kmem_cache *slab;
1212 struct module *owner;
1213
1214 owner = prot->owner;
1215 slab = prot->slab;
1216
1217 security_sk_free(sk);
1218 if (slab != NULL)
1219 kmem_cache_free(slab, sk);
1220 else
1221 kfree(sk);
1222 module_put(owner);
1223 }
1224
1225 #ifdef CONFIG_CGROUPS
1226 void sock_update_classid(struct sock *sk)
1227 {
1228 u32 classid;
1229
1230 rcu_read_lock(); /* doing current task, which cannot vanish. */
1231 classid = task_cls_classid(current);
1232 rcu_read_unlock();
1233 if (classid && classid != sk->sk_classid)
1234 sk->sk_classid = classid;
1235 }
1236 EXPORT_SYMBOL(sock_update_classid);
1237
1238 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1239 {
1240 if (in_interrupt())
1241 return;
1242
1243 sk->sk_cgrp_prioidx = task_netprioidx(task);
1244 }
1245 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1246 #endif
1247
1248 /**
1249 * sk_alloc - All socket objects are allocated here
1250 * @net: the applicable net namespace
1251 * @family: protocol family
1252 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1253 * @prot: struct proto associated with this new sock instance
1254 */
1255 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1256 struct proto *prot)
1257 {
1258 struct sock *sk;
1259
1260 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1261 if (sk) {
1262 sk->sk_family = family;
1263 /*
1264 * See comment in struct sock definition to understand
1265 * why we need sk_prot_creator -acme
1266 */
1267 sk->sk_prot = sk->sk_prot_creator = prot;
1268 sock_lock_init(sk);
1269 sock_net_set(sk, get_net(net));
1270 atomic_set(&sk->sk_wmem_alloc, 1);
1271
1272 sock_update_classid(sk);
1273 sock_update_netprioidx(sk, current);
1274 }
1275
1276 return sk;
1277 }
1278 EXPORT_SYMBOL(sk_alloc);
1279
1280 static void __sk_free(struct sock *sk)
1281 {
1282 struct sk_filter *filter;
1283
1284 if (sk->sk_destruct)
1285 sk->sk_destruct(sk);
1286
1287 filter = rcu_dereference_check(sk->sk_filter,
1288 atomic_read(&sk->sk_wmem_alloc) == 0);
1289 if (filter) {
1290 sk_filter_uncharge(sk, filter);
1291 RCU_INIT_POINTER(sk->sk_filter, NULL);
1292 }
1293
1294 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1295
1296 if (atomic_read(&sk->sk_omem_alloc))
1297 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1298 __func__, atomic_read(&sk->sk_omem_alloc));
1299
1300 if (sk->sk_peer_cred)
1301 put_cred(sk->sk_peer_cred);
1302 put_pid(sk->sk_peer_pid);
1303 put_net(sock_net(sk));
1304 sk_prot_free(sk->sk_prot_creator, sk);
1305 }
1306
1307 void sk_free(struct sock *sk)
1308 {
1309 /*
1310 * We subtract one from sk_wmem_alloc and can know if
1311 * some packets are still in some tx queue.
1312 * If not null, sock_wfree() will call __sk_free(sk) later
1313 */
1314 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1315 __sk_free(sk);
1316 }
1317 EXPORT_SYMBOL(sk_free);
1318
1319 /*
1320 * Last sock_put should drop reference to sk->sk_net. It has already
1321 * been dropped in sk_change_net. Taking reference to stopping namespace
1322 * is not an option.
1323 * Take reference to a socket to remove it from hash _alive_ and after that
1324 * destroy it in the context of init_net.
1325 */
1326 void sk_release_kernel(struct sock *sk)
1327 {
1328 if (sk == NULL || sk->sk_socket == NULL)
1329 return;
1330
1331 sock_hold(sk);
1332 sock_release(sk->sk_socket);
1333 release_net(sock_net(sk));
1334 sock_net_set(sk, get_net(&init_net));
1335 sock_put(sk);
1336 }
1337 EXPORT_SYMBOL(sk_release_kernel);
1338
1339 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1340 {
1341 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1342 sock_update_memcg(newsk);
1343 }
1344
1345 /**
1346 * sk_clone_lock - clone a socket, and lock its clone
1347 * @sk: the socket to clone
1348 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1349 *
1350 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1351 */
1352 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1353 {
1354 struct sock *newsk;
1355
1356 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1357 if (newsk != NULL) {
1358 struct sk_filter *filter;
1359
1360 sock_copy(newsk, sk);
1361
1362 /* SANITY */
1363 get_net(sock_net(newsk));
1364 sk_node_init(&newsk->sk_node);
1365 sock_lock_init(newsk);
1366 bh_lock_sock(newsk);
1367 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1368 newsk->sk_backlog.len = 0;
1369
1370 atomic_set(&newsk->sk_rmem_alloc, 0);
1371 /*
1372 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1373 */
1374 atomic_set(&newsk->sk_wmem_alloc, 1);
1375 atomic_set(&newsk->sk_omem_alloc, 0);
1376 skb_queue_head_init(&newsk->sk_receive_queue);
1377 skb_queue_head_init(&newsk->sk_write_queue);
1378 #ifdef CONFIG_NET_DMA
1379 skb_queue_head_init(&newsk->sk_async_wait_queue);
1380 #endif
1381
1382 spin_lock_init(&newsk->sk_dst_lock);
1383 rwlock_init(&newsk->sk_callback_lock);
1384 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1385 af_callback_keys + newsk->sk_family,
1386 af_family_clock_key_strings[newsk->sk_family]);
1387
1388 newsk->sk_dst_cache = NULL;
1389 newsk->sk_wmem_queued = 0;
1390 newsk->sk_forward_alloc = 0;
1391 newsk->sk_send_head = NULL;
1392 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1393
1394 sock_reset_flag(newsk, SOCK_DONE);
1395 skb_queue_head_init(&newsk->sk_error_queue);
1396
1397 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1398 if (filter != NULL)
1399 sk_filter_charge(newsk, filter);
1400
1401 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1402 /* It is still raw copy of parent, so invalidate
1403 * destructor and make plain sk_free() */
1404 newsk->sk_destruct = NULL;
1405 bh_unlock_sock(newsk);
1406 sk_free(newsk);
1407 newsk = NULL;
1408 goto out;
1409 }
1410
1411 newsk->sk_err = 0;
1412 newsk->sk_priority = 0;
1413 /*
1414 * Before updating sk_refcnt, we must commit prior changes to memory
1415 * (Documentation/RCU/rculist_nulls.txt for details)
1416 */
1417 smp_wmb();
1418 atomic_set(&newsk->sk_refcnt, 2);
1419
1420 /*
1421 * Increment the counter in the same struct proto as the master
1422 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1423 * is the same as sk->sk_prot->socks, as this field was copied
1424 * with memcpy).
1425 *
1426 * This _changes_ the previous behaviour, where
1427 * tcp_create_openreq_child always was incrementing the
1428 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1429 * to be taken into account in all callers. -acme
1430 */
1431 sk_refcnt_debug_inc(newsk);
1432 sk_set_socket(newsk, NULL);
1433 newsk->sk_wq = NULL;
1434
1435 sk_update_clone(sk, newsk);
1436
1437 if (newsk->sk_prot->sockets_allocated)
1438 sk_sockets_allocated_inc(newsk);
1439
1440 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1441 net_enable_timestamp();
1442 }
1443 out:
1444 return newsk;
1445 }
1446 EXPORT_SYMBOL_GPL(sk_clone_lock);
1447
1448 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1449 {
1450 __sk_dst_set(sk, dst);
1451 sk->sk_route_caps = dst->dev->features;
1452 if (sk->sk_route_caps & NETIF_F_GSO)
1453 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1454 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1455 if (sk_can_gso(sk)) {
1456 if (dst->header_len) {
1457 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1458 } else {
1459 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1460 sk->sk_gso_max_size = dst->dev->gso_max_size;
1461 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1462 }
1463 }
1464 }
1465 EXPORT_SYMBOL_GPL(sk_setup_caps);
1466
1467 void __init sk_init(void)
1468 {
1469 if (totalram_pages <= 4096) {
1470 sysctl_wmem_max = 32767;
1471 sysctl_rmem_max = 32767;
1472 sysctl_wmem_default = 32767;
1473 sysctl_rmem_default = 32767;
1474 } else if (totalram_pages >= 131072) {
1475 sysctl_wmem_max = 131071;
1476 sysctl_rmem_max = 131071;
1477 }
1478 }
1479
1480 /*
1481 * Simple resource managers for sockets.
1482 */
1483
1484
1485 /*
1486 * Write buffer destructor automatically called from kfree_skb.
1487 */
1488 void sock_wfree(struct sk_buff *skb)
1489 {
1490 struct sock *sk = skb->sk;
1491 unsigned int len = skb->truesize;
1492
1493 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1494 /*
1495 * Keep a reference on sk_wmem_alloc, this will be released
1496 * after sk_write_space() call
1497 */
1498 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1499 sk->sk_write_space(sk);
1500 len = 1;
1501 }
1502 /*
1503 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1504 * could not do because of in-flight packets
1505 */
1506 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1507 __sk_free(sk);
1508 }
1509 EXPORT_SYMBOL(sock_wfree);
1510
1511 /*
1512 * Read buffer destructor automatically called from kfree_skb.
1513 */
1514 void sock_rfree(struct sk_buff *skb)
1515 {
1516 struct sock *sk = skb->sk;
1517 unsigned int len = skb->truesize;
1518
1519 atomic_sub(len, &sk->sk_rmem_alloc);
1520 sk_mem_uncharge(sk, len);
1521 }
1522 EXPORT_SYMBOL(sock_rfree);
1523
1524 void sock_edemux(struct sk_buff *skb)
1525 {
1526 struct sock *sk = skb->sk;
1527
1528 #ifdef CONFIG_INET
1529 if (sk->sk_state == TCP_TIME_WAIT)
1530 inet_twsk_put(inet_twsk(sk));
1531 else
1532 #endif
1533 sock_put(sk);
1534 }
1535 EXPORT_SYMBOL(sock_edemux);
1536
1537 int sock_i_uid(struct sock *sk)
1538 {
1539 int uid;
1540
1541 read_lock_bh(&sk->sk_callback_lock);
1542 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1543 read_unlock_bh(&sk->sk_callback_lock);
1544 return uid;
1545 }
1546 EXPORT_SYMBOL(sock_i_uid);
1547
1548 unsigned long sock_i_ino(struct sock *sk)
1549 {
1550 unsigned long ino;
1551
1552 read_lock_bh(&sk->sk_callback_lock);
1553 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1554 read_unlock_bh(&sk->sk_callback_lock);
1555 return ino;
1556 }
1557 EXPORT_SYMBOL(sock_i_ino);
1558
1559 /*
1560 * Allocate a skb from the socket's send buffer.
1561 */
1562 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1563 gfp_t priority)
1564 {
1565 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1566 struct sk_buff *skb = alloc_skb(size, priority);
1567 if (skb) {
1568 skb_set_owner_w(skb, sk);
1569 return skb;
1570 }
1571 }
1572 return NULL;
1573 }
1574 EXPORT_SYMBOL(sock_wmalloc);
1575
1576 /*
1577 * Allocate a skb from the socket's receive buffer.
1578 */
1579 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1580 gfp_t priority)
1581 {
1582 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1583 struct sk_buff *skb = alloc_skb(size, priority);
1584 if (skb) {
1585 skb_set_owner_r(skb, sk);
1586 return skb;
1587 }
1588 }
1589 return NULL;
1590 }
1591
1592 /*
1593 * Allocate a memory block from the socket's option memory buffer.
1594 */
1595 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1596 {
1597 if ((unsigned int)size <= sysctl_optmem_max &&
1598 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1599 void *mem;
1600 /* First do the add, to avoid the race if kmalloc
1601 * might sleep.
1602 */
1603 atomic_add(size, &sk->sk_omem_alloc);
1604 mem = kmalloc(size, priority);
1605 if (mem)
1606 return mem;
1607 atomic_sub(size, &sk->sk_omem_alloc);
1608 }
1609 return NULL;
1610 }
1611 EXPORT_SYMBOL(sock_kmalloc);
1612
1613 /*
1614 * Free an option memory block.
1615 */
1616 void sock_kfree_s(struct sock *sk, void *mem, int size)
1617 {
1618 kfree(mem);
1619 atomic_sub(size, &sk->sk_omem_alloc);
1620 }
1621 EXPORT_SYMBOL(sock_kfree_s);
1622
1623 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1624 I think, these locks should be removed for datagram sockets.
1625 */
1626 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1627 {
1628 DEFINE_WAIT(wait);
1629
1630 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1631 for (;;) {
1632 if (!timeo)
1633 break;
1634 if (signal_pending(current))
1635 break;
1636 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1637 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1638 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1639 break;
1640 if (sk->sk_shutdown & SEND_SHUTDOWN)
1641 break;
1642 if (sk->sk_err)
1643 break;
1644 timeo = schedule_timeout(timeo);
1645 }
1646 finish_wait(sk_sleep(sk), &wait);
1647 return timeo;
1648 }
1649
1650
1651 /*
1652 * Generic send/receive buffer handlers
1653 */
1654
1655 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1656 unsigned long data_len, int noblock,
1657 int *errcode)
1658 {
1659 struct sk_buff *skb;
1660 gfp_t gfp_mask;
1661 long timeo;
1662 int err;
1663 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1664
1665 err = -EMSGSIZE;
1666 if (npages > MAX_SKB_FRAGS)
1667 goto failure;
1668
1669 gfp_mask = sk->sk_allocation;
1670 if (gfp_mask & __GFP_WAIT)
1671 gfp_mask |= __GFP_REPEAT;
1672
1673 timeo = sock_sndtimeo(sk, noblock);
1674 while (1) {
1675 err = sock_error(sk);
1676 if (err != 0)
1677 goto failure;
1678
1679 err = -EPIPE;
1680 if (sk->sk_shutdown & SEND_SHUTDOWN)
1681 goto failure;
1682
1683 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1684 skb = alloc_skb(header_len, gfp_mask);
1685 if (skb) {
1686 int i;
1687
1688 /* No pages, we're done... */
1689 if (!data_len)
1690 break;
1691
1692 skb->truesize += data_len;
1693 skb_shinfo(skb)->nr_frags = npages;
1694 for (i = 0; i < npages; i++) {
1695 struct page *page;
1696
1697 page = alloc_pages(sk->sk_allocation, 0);
1698 if (!page) {
1699 err = -ENOBUFS;
1700 skb_shinfo(skb)->nr_frags = i;
1701 kfree_skb(skb);
1702 goto failure;
1703 }
1704
1705 __skb_fill_page_desc(skb, i,
1706 page, 0,
1707 (data_len >= PAGE_SIZE ?
1708 PAGE_SIZE :
1709 data_len));
1710 data_len -= PAGE_SIZE;
1711 }
1712
1713 /* Full success... */
1714 break;
1715 }
1716 err = -ENOBUFS;
1717 goto failure;
1718 }
1719 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1720 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1721 err = -EAGAIN;
1722 if (!timeo)
1723 goto failure;
1724 if (signal_pending(current))
1725 goto interrupted;
1726 timeo = sock_wait_for_wmem(sk, timeo);
1727 }
1728
1729 skb_set_owner_w(skb, sk);
1730 return skb;
1731
1732 interrupted:
1733 err = sock_intr_errno(timeo);
1734 failure:
1735 *errcode = err;
1736 return NULL;
1737 }
1738 EXPORT_SYMBOL(sock_alloc_send_pskb);
1739
1740 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1741 int noblock, int *errcode)
1742 {
1743 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1744 }
1745 EXPORT_SYMBOL(sock_alloc_send_skb);
1746
1747 static void __lock_sock(struct sock *sk)
1748 __releases(&sk->sk_lock.slock)
1749 __acquires(&sk->sk_lock.slock)
1750 {
1751 DEFINE_WAIT(wait);
1752
1753 for (;;) {
1754 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1755 TASK_UNINTERRUPTIBLE);
1756 spin_unlock_bh(&sk->sk_lock.slock);
1757 schedule();
1758 spin_lock_bh(&sk->sk_lock.slock);
1759 if (!sock_owned_by_user(sk))
1760 break;
1761 }
1762 finish_wait(&sk->sk_lock.wq, &wait);
1763 }
1764
1765 static void __release_sock(struct sock *sk)
1766 __releases(&sk->sk_lock.slock)
1767 __acquires(&sk->sk_lock.slock)
1768 {
1769 struct sk_buff *skb = sk->sk_backlog.head;
1770
1771 do {
1772 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1773 bh_unlock_sock(sk);
1774
1775 do {
1776 struct sk_buff *next = skb->next;
1777
1778 prefetch(next);
1779 WARN_ON_ONCE(skb_dst_is_noref(skb));
1780 skb->next = NULL;
1781 sk_backlog_rcv(sk, skb);
1782
1783 /*
1784 * We are in process context here with softirqs
1785 * disabled, use cond_resched_softirq() to preempt.
1786 * This is safe to do because we've taken the backlog
1787 * queue private:
1788 */
1789 cond_resched_softirq();
1790
1791 skb = next;
1792 } while (skb != NULL);
1793
1794 bh_lock_sock(sk);
1795 } while ((skb = sk->sk_backlog.head) != NULL);
1796
1797 /*
1798 * Doing the zeroing here guarantee we can not loop forever
1799 * while a wild producer attempts to flood us.
1800 */
1801 sk->sk_backlog.len = 0;
1802 }
1803
1804 /**
1805 * sk_wait_data - wait for data to arrive at sk_receive_queue
1806 * @sk: sock to wait on
1807 * @timeo: for how long
1808 *
1809 * Now socket state including sk->sk_err is changed only under lock,
1810 * hence we may omit checks after joining wait queue.
1811 * We check receive queue before schedule() only as optimization;
1812 * it is very likely that release_sock() added new data.
1813 */
1814 int sk_wait_data(struct sock *sk, long *timeo)
1815 {
1816 int rc;
1817 DEFINE_WAIT(wait);
1818
1819 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1820 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1821 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1822 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1823 finish_wait(sk_sleep(sk), &wait);
1824 return rc;
1825 }
1826 EXPORT_SYMBOL(sk_wait_data);
1827
1828 /**
1829 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1830 * @sk: socket
1831 * @size: memory size to allocate
1832 * @kind: allocation type
1833 *
1834 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1835 * rmem allocation. This function assumes that protocols which have
1836 * memory_pressure use sk_wmem_queued as write buffer accounting.
1837 */
1838 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1839 {
1840 struct proto *prot = sk->sk_prot;
1841 int amt = sk_mem_pages(size);
1842 long allocated;
1843 int parent_status = UNDER_LIMIT;
1844
1845 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1846
1847 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1848
1849 /* Under limit. */
1850 if (parent_status == UNDER_LIMIT &&
1851 allocated <= sk_prot_mem_limits(sk, 0)) {
1852 sk_leave_memory_pressure(sk);
1853 return 1;
1854 }
1855
1856 /* Under pressure. (we or our parents) */
1857 if ((parent_status > SOFT_LIMIT) ||
1858 allocated > sk_prot_mem_limits(sk, 1))
1859 sk_enter_memory_pressure(sk);
1860
1861 /* Over hard limit (we or our parents) */
1862 if ((parent_status == OVER_LIMIT) ||
1863 (allocated > sk_prot_mem_limits(sk, 2)))
1864 goto suppress_allocation;
1865
1866 /* guarantee minimum buffer size under pressure */
1867 if (kind == SK_MEM_RECV) {
1868 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1869 return 1;
1870
1871 } else { /* SK_MEM_SEND */
1872 if (sk->sk_type == SOCK_STREAM) {
1873 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1874 return 1;
1875 } else if (atomic_read(&sk->sk_wmem_alloc) <
1876 prot->sysctl_wmem[0])
1877 return 1;
1878 }
1879
1880 if (sk_has_memory_pressure(sk)) {
1881 int alloc;
1882
1883 if (!sk_under_memory_pressure(sk))
1884 return 1;
1885 alloc = sk_sockets_allocated_read_positive(sk);
1886 if (sk_prot_mem_limits(sk, 2) > alloc *
1887 sk_mem_pages(sk->sk_wmem_queued +
1888 atomic_read(&sk->sk_rmem_alloc) +
1889 sk->sk_forward_alloc))
1890 return 1;
1891 }
1892
1893 suppress_allocation:
1894
1895 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1896 sk_stream_moderate_sndbuf(sk);
1897
1898 /* Fail only if socket is _under_ its sndbuf.
1899 * In this case we cannot block, so that we have to fail.
1900 */
1901 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1902 return 1;
1903 }
1904
1905 trace_sock_exceed_buf_limit(sk, prot, allocated);
1906
1907 /* Alas. Undo changes. */
1908 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1909
1910 sk_memory_allocated_sub(sk, amt);
1911
1912 return 0;
1913 }
1914 EXPORT_SYMBOL(__sk_mem_schedule);
1915
1916 /**
1917 * __sk_reclaim - reclaim memory_allocated
1918 * @sk: socket
1919 */
1920 void __sk_mem_reclaim(struct sock *sk)
1921 {
1922 sk_memory_allocated_sub(sk,
1923 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1924 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1925
1926 if (sk_under_memory_pressure(sk) &&
1927 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1928 sk_leave_memory_pressure(sk);
1929 }
1930 EXPORT_SYMBOL(__sk_mem_reclaim);
1931
1932
1933 /*
1934 * Set of default routines for initialising struct proto_ops when
1935 * the protocol does not support a particular function. In certain
1936 * cases where it makes no sense for a protocol to have a "do nothing"
1937 * function, some default processing is provided.
1938 */
1939
1940 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1941 {
1942 return -EOPNOTSUPP;
1943 }
1944 EXPORT_SYMBOL(sock_no_bind);
1945
1946 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1947 int len, int flags)
1948 {
1949 return -EOPNOTSUPP;
1950 }
1951 EXPORT_SYMBOL(sock_no_connect);
1952
1953 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1954 {
1955 return -EOPNOTSUPP;
1956 }
1957 EXPORT_SYMBOL(sock_no_socketpair);
1958
1959 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1960 {
1961 return -EOPNOTSUPP;
1962 }
1963 EXPORT_SYMBOL(sock_no_accept);
1964
1965 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1966 int *len, int peer)
1967 {
1968 return -EOPNOTSUPP;
1969 }
1970 EXPORT_SYMBOL(sock_no_getname);
1971
1972 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1973 {
1974 return 0;
1975 }
1976 EXPORT_SYMBOL(sock_no_poll);
1977
1978 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1979 {
1980 return -EOPNOTSUPP;
1981 }
1982 EXPORT_SYMBOL(sock_no_ioctl);
1983
1984 int sock_no_listen(struct socket *sock, int backlog)
1985 {
1986 return -EOPNOTSUPP;
1987 }
1988 EXPORT_SYMBOL(sock_no_listen);
1989
1990 int sock_no_shutdown(struct socket *sock, int how)
1991 {
1992 return -EOPNOTSUPP;
1993 }
1994 EXPORT_SYMBOL(sock_no_shutdown);
1995
1996 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1997 char __user *optval, unsigned int optlen)
1998 {
1999 return -EOPNOTSUPP;
2000 }
2001 EXPORT_SYMBOL(sock_no_setsockopt);
2002
2003 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2004 char __user *optval, int __user *optlen)
2005 {
2006 return -EOPNOTSUPP;
2007 }
2008 EXPORT_SYMBOL(sock_no_getsockopt);
2009
2010 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2011 size_t len)
2012 {
2013 return -EOPNOTSUPP;
2014 }
2015 EXPORT_SYMBOL(sock_no_sendmsg);
2016
2017 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2018 size_t len, int flags)
2019 {
2020 return -EOPNOTSUPP;
2021 }
2022 EXPORT_SYMBOL(sock_no_recvmsg);
2023
2024 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2025 {
2026 /* Mirror missing mmap method error code */
2027 return -ENODEV;
2028 }
2029 EXPORT_SYMBOL(sock_no_mmap);
2030
2031 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2032 {
2033 ssize_t res;
2034 struct msghdr msg = {.msg_flags = flags};
2035 struct kvec iov;
2036 char *kaddr = kmap(page);
2037 iov.iov_base = kaddr + offset;
2038 iov.iov_len = size;
2039 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2040 kunmap(page);
2041 return res;
2042 }
2043 EXPORT_SYMBOL(sock_no_sendpage);
2044
2045 /*
2046 * Default Socket Callbacks
2047 */
2048
2049 static void sock_def_wakeup(struct sock *sk)
2050 {
2051 struct socket_wq *wq;
2052
2053 rcu_read_lock();
2054 wq = rcu_dereference(sk->sk_wq);
2055 if (wq_has_sleeper(wq))
2056 wake_up_interruptible_all(&wq->wait);
2057 rcu_read_unlock();
2058 }
2059
2060 static void sock_def_error_report(struct sock *sk)
2061 {
2062 struct socket_wq *wq;
2063
2064 rcu_read_lock();
2065 wq = rcu_dereference(sk->sk_wq);
2066 if (wq_has_sleeper(wq))
2067 wake_up_interruptible_poll(&wq->wait, POLLERR);
2068 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2069 rcu_read_unlock();
2070 }
2071
2072 static void sock_def_readable(struct sock *sk, int len)
2073 {
2074 struct socket_wq *wq;
2075
2076 rcu_read_lock();
2077 wq = rcu_dereference(sk->sk_wq);
2078 if (wq_has_sleeper(wq))
2079 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2080 POLLRDNORM | POLLRDBAND);
2081 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2082 rcu_read_unlock();
2083 }
2084
2085 static void sock_def_write_space(struct sock *sk)
2086 {
2087 struct socket_wq *wq;
2088
2089 rcu_read_lock();
2090
2091 /* Do not wake up a writer until he can make "significant"
2092 * progress. --DaveM
2093 */
2094 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2095 wq = rcu_dereference(sk->sk_wq);
2096 if (wq_has_sleeper(wq))
2097 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2098 POLLWRNORM | POLLWRBAND);
2099
2100 /* Should agree with poll, otherwise some programs break */
2101 if (sock_writeable(sk))
2102 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2103 }
2104
2105 rcu_read_unlock();
2106 }
2107
2108 static void sock_def_destruct(struct sock *sk)
2109 {
2110 kfree(sk->sk_protinfo);
2111 }
2112
2113 void sk_send_sigurg(struct sock *sk)
2114 {
2115 if (sk->sk_socket && sk->sk_socket->file)
2116 if (send_sigurg(&sk->sk_socket->file->f_owner))
2117 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2118 }
2119 EXPORT_SYMBOL(sk_send_sigurg);
2120
2121 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2122 unsigned long expires)
2123 {
2124 if (!mod_timer(timer, expires))
2125 sock_hold(sk);
2126 }
2127 EXPORT_SYMBOL(sk_reset_timer);
2128
2129 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2130 {
2131 if (timer_pending(timer) && del_timer(timer))
2132 __sock_put(sk);
2133 }
2134 EXPORT_SYMBOL(sk_stop_timer);
2135
2136 void sock_init_data(struct socket *sock, struct sock *sk)
2137 {
2138 skb_queue_head_init(&sk->sk_receive_queue);
2139 skb_queue_head_init(&sk->sk_write_queue);
2140 skb_queue_head_init(&sk->sk_error_queue);
2141 #ifdef CONFIG_NET_DMA
2142 skb_queue_head_init(&sk->sk_async_wait_queue);
2143 #endif
2144
2145 sk->sk_send_head = NULL;
2146
2147 init_timer(&sk->sk_timer);
2148
2149 sk->sk_allocation = GFP_KERNEL;
2150 sk->sk_rcvbuf = sysctl_rmem_default;
2151 sk->sk_sndbuf = sysctl_wmem_default;
2152 sk->sk_state = TCP_CLOSE;
2153 sk_set_socket(sk, sock);
2154
2155 sock_set_flag(sk, SOCK_ZAPPED);
2156
2157 if (sock) {
2158 sk->sk_type = sock->type;
2159 sk->sk_wq = sock->wq;
2160 sock->sk = sk;
2161 } else
2162 sk->sk_wq = NULL;
2163
2164 spin_lock_init(&sk->sk_dst_lock);
2165 rwlock_init(&sk->sk_callback_lock);
2166 lockdep_set_class_and_name(&sk->sk_callback_lock,
2167 af_callback_keys + sk->sk_family,
2168 af_family_clock_key_strings[sk->sk_family]);
2169
2170 sk->sk_state_change = sock_def_wakeup;
2171 sk->sk_data_ready = sock_def_readable;
2172 sk->sk_write_space = sock_def_write_space;
2173 sk->sk_error_report = sock_def_error_report;
2174 sk->sk_destruct = sock_def_destruct;
2175
2176 sk->sk_sndmsg_page = NULL;
2177 sk->sk_sndmsg_off = 0;
2178 sk->sk_peek_off = -1;
2179
2180 sk->sk_peer_pid = NULL;
2181 sk->sk_peer_cred = NULL;
2182 sk->sk_write_pending = 0;
2183 sk->sk_rcvlowat = 1;
2184 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2185 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2186
2187 sk->sk_stamp = ktime_set(-1L, 0);
2188
2189 /*
2190 * Before updating sk_refcnt, we must commit prior changes to memory
2191 * (Documentation/RCU/rculist_nulls.txt for details)
2192 */
2193 smp_wmb();
2194 atomic_set(&sk->sk_refcnt, 1);
2195 atomic_set(&sk->sk_drops, 0);
2196 }
2197 EXPORT_SYMBOL(sock_init_data);
2198
2199 void lock_sock_nested(struct sock *sk, int subclass)
2200 {
2201 might_sleep();
2202 spin_lock_bh(&sk->sk_lock.slock);
2203 if (sk->sk_lock.owned)
2204 __lock_sock(sk);
2205 sk->sk_lock.owned = 1;
2206 spin_unlock(&sk->sk_lock.slock);
2207 /*
2208 * The sk_lock has mutex_lock() semantics here:
2209 */
2210 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2211 local_bh_enable();
2212 }
2213 EXPORT_SYMBOL(lock_sock_nested);
2214
2215 void release_sock(struct sock *sk)
2216 {
2217 /*
2218 * The sk_lock has mutex_unlock() semantics:
2219 */
2220 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2221
2222 spin_lock_bh(&sk->sk_lock.slock);
2223 if (sk->sk_backlog.tail)
2224 __release_sock(sk);
2225
2226 if (sk->sk_prot->release_cb)
2227 sk->sk_prot->release_cb(sk);
2228
2229 sk->sk_lock.owned = 0;
2230 if (waitqueue_active(&sk->sk_lock.wq))
2231 wake_up(&sk->sk_lock.wq);
2232 spin_unlock_bh(&sk->sk_lock.slock);
2233 }
2234 EXPORT_SYMBOL(release_sock);
2235
2236 /**
2237 * lock_sock_fast - fast version of lock_sock
2238 * @sk: socket
2239 *
2240 * This version should be used for very small section, where process wont block
2241 * return false if fast path is taken
2242 * sk_lock.slock locked, owned = 0, BH disabled
2243 * return true if slow path is taken
2244 * sk_lock.slock unlocked, owned = 1, BH enabled
2245 */
2246 bool lock_sock_fast(struct sock *sk)
2247 {
2248 might_sleep();
2249 spin_lock_bh(&sk->sk_lock.slock);
2250
2251 if (!sk->sk_lock.owned)
2252 /*
2253 * Note : We must disable BH
2254 */
2255 return false;
2256
2257 __lock_sock(sk);
2258 sk->sk_lock.owned = 1;
2259 spin_unlock(&sk->sk_lock.slock);
2260 /*
2261 * The sk_lock has mutex_lock() semantics here:
2262 */
2263 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2264 local_bh_enable();
2265 return true;
2266 }
2267 EXPORT_SYMBOL(lock_sock_fast);
2268
2269 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2270 {
2271 struct timeval tv;
2272 if (!sock_flag(sk, SOCK_TIMESTAMP))
2273 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2274 tv = ktime_to_timeval(sk->sk_stamp);
2275 if (tv.tv_sec == -1)
2276 return -ENOENT;
2277 if (tv.tv_sec == 0) {
2278 sk->sk_stamp = ktime_get_real();
2279 tv = ktime_to_timeval(sk->sk_stamp);
2280 }
2281 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2282 }
2283 EXPORT_SYMBOL(sock_get_timestamp);
2284
2285 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2286 {
2287 struct timespec ts;
2288 if (!sock_flag(sk, SOCK_TIMESTAMP))
2289 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2290 ts = ktime_to_timespec(sk->sk_stamp);
2291 if (ts.tv_sec == -1)
2292 return -ENOENT;
2293 if (ts.tv_sec == 0) {
2294 sk->sk_stamp = ktime_get_real();
2295 ts = ktime_to_timespec(sk->sk_stamp);
2296 }
2297 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2298 }
2299 EXPORT_SYMBOL(sock_get_timestampns);
2300
2301 void sock_enable_timestamp(struct sock *sk, int flag)
2302 {
2303 if (!sock_flag(sk, flag)) {
2304 unsigned long previous_flags = sk->sk_flags;
2305
2306 sock_set_flag(sk, flag);
2307 /*
2308 * we just set one of the two flags which require net
2309 * time stamping, but time stamping might have been on
2310 * already because of the other one
2311 */
2312 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2313 net_enable_timestamp();
2314 }
2315 }
2316
2317 /*
2318 * Get a socket option on an socket.
2319 *
2320 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2321 * asynchronous errors should be reported by getsockopt. We assume
2322 * this means if you specify SO_ERROR (otherwise whats the point of it).
2323 */
2324 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2325 char __user *optval, int __user *optlen)
2326 {
2327 struct sock *sk = sock->sk;
2328
2329 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2330 }
2331 EXPORT_SYMBOL(sock_common_getsockopt);
2332
2333 #ifdef CONFIG_COMPAT
2334 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2335 char __user *optval, int __user *optlen)
2336 {
2337 struct sock *sk = sock->sk;
2338
2339 if (sk->sk_prot->compat_getsockopt != NULL)
2340 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2341 optval, optlen);
2342 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2343 }
2344 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2345 #endif
2346
2347 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2348 struct msghdr *msg, size_t size, int flags)
2349 {
2350 struct sock *sk = sock->sk;
2351 int addr_len = 0;
2352 int err;
2353
2354 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2355 flags & ~MSG_DONTWAIT, &addr_len);
2356 if (err >= 0)
2357 msg->msg_namelen = addr_len;
2358 return err;
2359 }
2360 EXPORT_SYMBOL(sock_common_recvmsg);
2361
2362 /*
2363 * Set socket options on an inet socket.
2364 */
2365 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2366 char __user *optval, unsigned int optlen)
2367 {
2368 struct sock *sk = sock->sk;
2369
2370 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2371 }
2372 EXPORT_SYMBOL(sock_common_setsockopt);
2373
2374 #ifdef CONFIG_COMPAT
2375 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2376 char __user *optval, unsigned int optlen)
2377 {
2378 struct sock *sk = sock->sk;
2379
2380 if (sk->sk_prot->compat_setsockopt != NULL)
2381 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2382 optval, optlen);
2383 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2384 }
2385 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2386 #endif
2387
2388 void sk_common_release(struct sock *sk)
2389 {
2390 if (sk->sk_prot->destroy)
2391 sk->sk_prot->destroy(sk);
2392
2393 /*
2394 * Observation: when sock_common_release is called, processes have
2395 * no access to socket. But net still has.
2396 * Step one, detach it from networking:
2397 *
2398 * A. Remove from hash tables.
2399 */
2400
2401 sk->sk_prot->unhash(sk);
2402
2403 /*
2404 * In this point socket cannot receive new packets, but it is possible
2405 * that some packets are in flight because some CPU runs receiver and
2406 * did hash table lookup before we unhashed socket. They will achieve
2407 * receive queue and will be purged by socket destructor.
2408 *
2409 * Also we still have packets pending on receive queue and probably,
2410 * our own packets waiting in device queues. sock_destroy will drain
2411 * receive queue, but transmitted packets will delay socket destruction
2412 * until the last reference will be released.
2413 */
2414
2415 sock_orphan(sk);
2416
2417 xfrm_sk_free_policy(sk);
2418
2419 sk_refcnt_debug_release(sk);
2420 sock_put(sk);
2421 }
2422 EXPORT_SYMBOL(sk_common_release);
2423
2424 #ifdef CONFIG_PROC_FS
2425 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2426 struct prot_inuse {
2427 int val[PROTO_INUSE_NR];
2428 };
2429
2430 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2431
2432 #ifdef CONFIG_NET_NS
2433 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2434 {
2435 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2436 }
2437 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2438
2439 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2440 {
2441 int cpu, idx = prot->inuse_idx;
2442 int res = 0;
2443
2444 for_each_possible_cpu(cpu)
2445 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2446
2447 return res >= 0 ? res : 0;
2448 }
2449 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2450
2451 static int __net_init sock_inuse_init_net(struct net *net)
2452 {
2453 net->core.inuse = alloc_percpu(struct prot_inuse);
2454 return net->core.inuse ? 0 : -ENOMEM;
2455 }
2456
2457 static void __net_exit sock_inuse_exit_net(struct net *net)
2458 {
2459 free_percpu(net->core.inuse);
2460 }
2461
2462 static struct pernet_operations net_inuse_ops = {
2463 .init = sock_inuse_init_net,
2464 .exit = sock_inuse_exit_net,
2465 };
2466
2467 static __init int net_inuse_init(void)
2468 {
2469 if (register_pernet_subsys(&net_inuse_ops))
2470 panic("Cannot initialize net inuse counters");
2471
2472 return 0;
2473 }
2474
2475 core_initcall(net_inuse_init);
2476 #else
2477 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2478
2479 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2480 {
2481 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2482 }
2483 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2484
2485 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2486 {
2487 int cpu, idx = prot->inuse_idx;
2488 int res = 0;
2489
2490 for_each_possible_cpu(cpu)
2491 res += per_cpu(prot_inuse, cpu).val[idx];
2492
2493 return res >= 0 ? res : 0;
2494 }
2495 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2496 #endif
2497
2498 static void assign_proto_idx(struct proto *prot)
2499 {
2500 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2501
2502 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2503 pr_err("PROTO_INUSE_NR exhausted\n");
2504 return;
2505 }
2506
2507 set_bit(prot->inuse_idx, proto_inuse_idx);
2508 }
2509
2510 static void release_proto_idx(struct proto *prot)
2511 {
2512 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2513 clear_bit(prot->inuse_idx, proto_inuse_idx);
2514 }
2515 #else
2516 static inline void assign_proto_idx(struct proto *prot)
2517 {
2518 }
2519
2520 static inline void release_proto_idx(struct proto *prot)
2521 {
2522 }
2523 #endif
2524
2525 int proto_register(struct proto *prot, int alloc_slab)
2526 {
2527 if (alloc_slab) {
2528 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2529 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2530 NULL);
2531
2532 if (prot->slab == NULL) {
2533 pr_crit("%s: Can't create sock SLAB cache!\n",
2534 prot->name);
2535 goto out;
2536 }
2537
2538 if (prot->rsk_prot != NULL) {
2539 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2540 if (prot->rsk_prot->slab_name == NULL)
2541 goto out_free_sock_slab;
2542
2543 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2544 prot->rsk_prot->obj_size, 0,
2545 SLAB_HWCACHE_ALIGN, NULL);
2546
2547 if (prot->rsk_prot->slab == NULL) {
2548 pr_crit("%s: Can't create request sock SLAB cache!\n",
2549 prot->name);
2550 goto out_free_request_sock_slab_name;
2551 }
2552 }
2553
2554 if (prot->twsk_prot != NULL) {
2555 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2556
2557 if (prot->twsk_prot->twsk_slab_name == NULL)
2558 goto out_free_request_sock_slab;
2559
2560 prot->twsk_prot->twsk_slab =
2561 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2562 prot->twsk_prot->twsk_obj_size,
2563 0,
2564 SLAB_HWCACHE_ALIGN |
2565 prot->slab_flags,
2566 NULL);
2567 if (prot->twsk_prot->twsk_slab == NULL)
2568 goto out_free_timewait_sock_slab_name;
2569 }
2570 }
2571
2572 mutex_lock(&proto_list_mutex);
2573 list_add(&prot->node, &proto_list);
2574 assign_proto_idx(prot);
2575 mutex_unlock(&proto_list_mutex);
2576 return 0;
2577
2578 out_free_timewait_sock_slab_name:
2579 kfree(prot->twsk_prot->twsk_slab_name);
2580 out_free_request_sock_slab:
2581 if (prot->rsk_prot && prot->rsk_prot->slab) {
2582 kmem_cache_destroy(prot->rsk_prot->slab);
2583 prot->rsk_prot->slab = NULL;
2584 }
2585 out_free_request_sock_slab_name:
2586 if (prot->rsk_prot)
2587 kfree(prot->rsk_prot->slab_name);
2588 out_free_sock_slab:
2589 kmem_cache_destroy(prot->slab);
2590 prot->slab = NULL;
2591 out:
2592 return -ENOBUFS;
2593 }
2594 EXPORT_SYMBOL(proto_register);
2595
2596 void proto_unregister(struct proto *prot)
2597 {
2598 mutex_lock(&proto_list_mutex);
2599 release_proto_idx(prot);
2600 list_del(&prot->node);
2601 mutex_unlock(&proto_list_mutex);
2602
2603 if (prot->slab != NULL) {
2604 kmem_cache_destroy(prot->slab);
2605 prot->slab = NULL;
2606 }
2607
2608 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2609 kmem_cache_destroy(prot->rsk_prot->slab);
2610 kfree(prot->rsk_prot->slab_name);
2611 prot->rsk_prot->slab = NULL;
2612 }
2613
2614 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2615 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2616 kfree(prot->twsk_prot->twsk_slab_name);
2617 prot->twsk_prot->twsk_slab = NULL;
2618 }
2619 }
2620 EXPORT_SYMBOL(proto_unregister);
2621
2622 #ifdef CONFIG_PROC_FS
2623 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2624 __acquires(proto_list_mutex)
2625 {
2626 mutex_lock(&proto_list_mutex);
2627 return seq_list_start_head(&proto_list, *pos);
2628 }
2629
2630 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2631 {
2632 return seq_list_next(v, &proto_list, pos);
2633 }
2634
2635 static void proto_seq_stop(struct seq_file *seq, void *v)
2636 __releases(proto_list_mutex)
2637 {
2638 mutex_unlock(&proto_list_mutex);
2639 }
2640
2641 static char proto_method_implemented(const void *method)
2642 {
2643 return method == NULL ? 'n' : 'y';
2644 }
2645 static long sock_prot_memory_allocated(struct proto *proto)
2646 {
2647 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2648 }
2649
2650 static char *sock_prot_memory_pressure(struct proto *proto)
2651 {
2652 return proto->memory_pressure != NULL ?
2653 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2654 }
2655
2656 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2657 {
2658
2659 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2660 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2661 proto->name,
2662 proto->obj_size,
2663 sock_prot_inuse_get(seq_file_net(seq), proto),
2664 sock_prot_memory_allocated(proto),
2665 sock_prot_memory_pressure(proto),
2666 proto->max_header,
2667 proto->slab == NULL ? "no" : "yes",
2668 module_name(proto->owner),
2669 proto_method_implemented(proto->close),
2670 proto_method_implemented(proto->connect),
2671 proto_method_implemented(proto->disconnect),
2672 proto_method_implemented(proto->accept),
2673 proto_method_implemented(proto->ioctl),
2674 proto_method_implemented(proto->init),
2675 proto_method_implemented(proto->destroy),
2676 proto_method_implemented(proto->shutdown),
2677 proto_method_implemented(proto->setsockopt),
2678 proto_method_implemented(proto->getsockopt),
2679 proto_method_implemented(proto->sendmsg),
2680 proto_method_implemented(proto->recvmsg),
2681 proto_method_implemented(proto->sendpage),
2682 proto_method_implemented(proto->bind),
2683 proto_method_implemented(proto->backlog_rcv),
2684 proto_method_implemented(proto->hash),
2685 proto_method_implemented(proto->unhash),
2686 proto_method_implemented(proto->get_port),
2687 proto_method_implemented(proto->enter_memory_pressure));
2688 }
2689
2690 static int proto_seq_show(struct seq_file *seq, void *v)
2691 {
2692 if (v == &proto_list)
2693 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2694 "protocol",
2695 "size",
2696 "sockets",
2697 "memory",
2698 "press",
2699 "maxhdr",
2700 "slab",
2701 "module",
2702 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2703 else
2704 proto_seq_printf(seq, list_entry(v, struct proto, node));
2705 return 0;
2706 }
2707
2708 static const struct seq_operations proto_seq_ops = {
2709 .start = proto_seq_start,
2710 .next = proto_seq_next,
2711 .stop = proto_seq_stop,
2712 .show = proto_seq_show,
2713 };
2714
2715 static int proto_seq_open(struct inode *inode, struct file *file)
2716 {
2717 return seq_open_net(inode, file, &proto_seq_ops,
2718 sizeof(struct seq_net_private));
2719 }
2720
2721 static const struct file_operations proto_seq_fops = {
2722 .owner = THIS_MODULE,
2723 .open = proto_seq_open,
2724 .read = seq_read,
2725 .llseek = seq_lseek,
2726 .release = seq_release_net,
2727 };
2728
2729 static __net_init int proto_init_net(struct net *net)
2730 {
2731 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2732 return -ENOMEM;
2733
2734 return 0;
2735 }
2736
2737 static __net_exit void proto_exit_net(struct net *net)
2738 {
2739 proc_net_remove(net, "protocols");
2740 }
2741
2742
2743 static __net_initdata struct pernet_operations proto_net_ops = {
2744 .init = proto_init_net,
2745 .exit = proto_exit_net,
2746 };
2747
2748 static int __init proto_init(void)
2749 {
2750 return register_pernet_subsys(&proto_net_ops);
2751 }
2752
2753 subsys_initcall(proto_init);
2754
2755 #endif /* PROC_FS */
This page took 0.166182 seconds and 6 git commands to generate.