userns: Convert sock_i_uid to return a kuid_t
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
119
120 #include <asm/uaccess.h>
121
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
133
134 #include <linux/filter.h>
135
136 #include <trace/events/sock.h>
137
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
141
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
144
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
147 {
148 struct proto *proto;
149 int ret = 0;
150
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
157 }
158 }
159
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
168 }
169
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
171 {
172 struct proto *proto;
173
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
179 }
180 #endif
181
182 /*
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
185 */
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
188
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
191
192 /*
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
196 */
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
212 };
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
228 };
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
244 };
245
246 /*
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
249 */
250 static struct lock_class_key af_callback_keys[AF_MAX];
251
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
256 */
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
261
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
269
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
273
274 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
275 EXPORT_SYMBOL_GPL(memalloc_socks);
276
277 /**
278 * sk_set_memalloc - sets %SOCK_MEMALLOC
279 * @sk: socket to set it on
280 *
281 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
282 * It's the responsibility of the admin to adjust min_free_kbytes
283 * to meet the requirements
284 */
285 void sk_set_memalloc(struct sock *sk)
286 {
287 sock_set_flag(sk, SOCK_MEMALLOC);
288 sk->sk_allocation |= __GFP_MEMALLOC;
289 static_key_slow_inc(&memalloc_socks);
290 }
291 EXPORT_SYMBOL_GPL(sk_set_memalloc);
292
293 void sk_clear_memalloc(struct sock *sk)
294 {
295 sock_reset_flag(sk, SOCK_MEMALLOC);
296 sk->sk_allocation &= ~__GFP_MEMALLOC;
297 static_key_slow_dec(&memalloc_socks);
298
299 /*
300 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
301 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
302 * it has rmem allocations there is a risk that the user of the
303 * socket cannot make forward progress due to exceeding the rmem
304 * limits. By rights, sk_clear_memalloc() should only be called
305 * on sockets being torn down but warn and reset the accounting if
306 * that assumption breaks.
307 */
308 if (WARN_ON(sk->sk_forward_alloc))
309 sk_mem_reclaim(sk);
310 }
311 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
312
313 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
314 {
315 int ret;
316 unsigned long pflags = current->flags;
317
318 /* these should have been dropped before queueing */
319 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
320
321 current->flags |= PF_MEMALLOC;
322 ret = sk->sk_backlog_rcv(sk, skb);
323 tsk_restore_flags(current, pflags, PF_MEMALLOC);
324
325 return ret;
326 }
327 EXPORT_SYMBOL(__sk_backlog_rcv);
328
329 #if defined(CONFIG_CGROUPS)
330 #if !defined(CONFIG_NET_CLS_CGROUP)
331 int net_cls_subsys_id = -1;
332 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
333 #endif
334 #if !defined(CONFIG_NETPRIO_CGROUP)
335 int net_prio_subsys_id = -1;
336 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
337 #endif
338 #endif
339
340 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
341 {
342 struct timeval tv;
343
344 if (optlen < sizeof(tv))
345 return -EINVAL;
346 if (copy_from_user(&tv, optval, sizeof(tv)))
347 return -EFAULT;
348 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
349 return -EDOM;
350
351 if (tv.tv_sec < 0) {
352 static int warned __read_mostly;
353
354 *timeo_p = 0;
355 if (warned < 10 && net_ratelimit()) {
356 warned++;
357 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
358 __func__, current->comm, task_pid_nr(current));
359 }
360 return 0;
361 }
362 *timeo_p = MAX_SCHEDULE_TIMEOUT;
363 if (tv.tv_sec == 0 && tv.tv_usec == 0)
364 return 0;
365 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
366 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
367 return 0;
368 }
369
370 static void sock_warn_obsolete_bsdism(const char *name)
371 {
372 static int warned;
373 static char warncomm[TASK_COMM_LEN];
374 if (strcmp(warncomm, current->comm) && warned < 5) {
375 strcpy(warncomm, current->comm);
376 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
377 warncomm, name);
378 warned++;
379 }
380 }
381
382 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
383
384 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
385 {
386 if (sk->sk_flags & flags) {
387 sk->sk_flags &= ~flags;
388 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
389 net_disable_timestamp();
390 }
391 }
392
393
394 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
395 {
396 int err;
397 int skb_len;
398 unsigned long flags;
399 struct sk_buff_head *list = &sk->sk_receive_queue;
400
401 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
402 atomic_inc(&sk->sk_drops);
403 trace_sock_rcvqueue_full(sk, skb);
404 return -ENOMEM;
405 }
406
407 err = sk_filter(sk, skb);
408 if (err)
409 return err;
410
411 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
412 atomic_inc(&sk->sk_drops);
413 return -ENOBUFS;
414 }
415
416 skb->dev = NULL;
417 skb_set_owner_r(skb, sk);
418
419 /* Cache the SKB length before we tack it onto the receive
420 * queue. Once it is added it no longer belongs to us and
421 * may be freed by other threads of control pulling packets
422 * from the queue.
423 */
424 skb_len = skb->len;
425
426 /* we escape from rcu protected region, make sure we dont leak
427 * a norefcounted dst
428 */
429 skb_dst_force(skb);
430
431 spin_lock_irqsave(&list->lock, flags);
432 skb->dropcount = atomic_read(&sk->sk_drops);
433 __skb_queue_tail(list, skb);
434 spin_unlock_irqrestore(&list->lock, flags);
435
436 if (!sock_flag(sk, SOCK_DEAD))
437 sk->sk_data_ready(sk, skb_len);
438 return 0;
439 }
440 EXPORT_SYMBOL(sock_queue_rcv_skb);
441
442 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
443 {
444 int rc = NET_RX_SUCCESS;
445
446 if (sk_filter(sk, skb))
447 goto discard_and_relse;
448
449 skb->dev = NULL;
450
451 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
452 atomic_inc(&sk->sk_drops);
453 goto discard_and_relse;
454 }
455 if (nested)
456 bh_lock_sock_nested(sk);
457 else
458 bh_lock_sock(sk);
459 if (!sock_owned_by_user(sk)) {
460 /*
461 * trylock + unlock semantics:
462 */
463 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
464
465 rc = sk_backlog_rcv(sk, skb);
466
467 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
468 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
469 bh_unlock_sock(sk);
470 atomic_inc(&sk->sk_drops);
471 goto discard_and_relse;
472 }
473
474 bh_unlock_sock(sk);
475 out:
476 sock_put(sk);
477 return rc;
478 discard_and_relse:
479 kfree_skb(skb);
480 goto out;
481 }
482 EXPORT_SYMBOL(sk_receive_skb);
483
484 void sk_reset_txq(struct sock *sk)
485 {
486 sk_tx_queue_clear(sk);
487 }
488 EXPORT_SYMBOL(sk_reset_txq);
489
490 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
491 {
492 struct dst_entry *dst = __sk_dst_get(sk);
493
494 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
495 sk_tx_queue_clear(sk);
496 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
497 dst_release(dst);
498 return NULL;
499 }
500
501 return dst;
502 }
503 EXPORT_SYMBOL(__sk_dst_check);
504
505 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
506 {
507 struct dst_entry *dst = sk_dst_get(sk);
508
509 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
510 sk_dst_reset(sk);
511 dst_release(dst);
512 return NULL;
513 }
514
515 return dst;
516 }
517 EXPORT_SYMBOL(sk_dst_check);
518
519 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
520 {
521 int ret = -ENOPROTOOPT;
522 #ifdef CONFIG_NETDEVICES
523 struct net *net = sock_net(sk);
524 char devname[IFNAMSIZ];
525 int index;
526
527 /* Sorry... */
528 ret = -EPERM;
529 if (!capable(CAP_NET_RAW))
530 goto out;
531
532 ret = -EINVAL;
533 if (optlen < 0)
534 goto out;
535
536 /* Bind this socket to a particular device like "eth0",
537 * as specified in the passed interface name. If the
538 * name is "" or the option length is zero the socket
539 * is not bound.
540 */
541 if (optlen > IFNAMSIZ - 1)
542 optlen = IFNAMSIZ - 1;
543 memset(devname, 0, sizeof(devname));
544
545 ret = -EFAULT;
546 if (copy_from_user(devname, optval, optlen))
547 goto out;
548
549 index = 0;
550 if (devname[0] != '\0') {
551 struct net_device *dev;
552
553 rcu_read_lock();
554 dev = dev_get_by_name_rcu(net, devname);
555 if (dev)
556 index = dev->ifindex;
557 rcu_read_unlock();
558 ret = -ENODEV;
559 if (!dev)
560 goto out;
561 }
562
563 lock_sock(sk);
564 sk->sk_bound_dev_if = index;
565 sk_dst_reset(sk);
566 release_sock(sk);
567
568 ret = 0;
569
570 out:
571 #endif
572
573 return ret;
574 }
575
576 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
577 {
578 if (valbool)
579 sock_set_flag(sk, bit);
580 else
581 sock_reset_flag(sk, bit);
582 }
583
584 /*
585 * This is meant for all protocols to use and covers goings on
586 * at the socket level. Everything here is generic.
587 */
588
589 int sock_setsockopt(struct socket *sock, int level, int optname,
590 char __user *optval, unsigned int optlen)
591 {
592 struct sock *sk = sock->sk;
593 int val;
594 int valbool;
595 struct linger ling;
596 int ret = 0;
597
598 /*
599 * Options without arguments
600 */
601
602 if (optname == SO_BINDTODEVICE)
603 return sock_bindtodevice(sk, optval, optlen);
604
605 if (optlen < sizeof(int))
606 return -EINVAL;
607
608 if (get_user(val, (int __user *)optval))
609 return -EFAULT;
610
611 valbool = val ? 1 : 0;
612
613 lock_sock(sk);
614
615 switch (optname) {
616 case SO_DEBUG:
617 if (val && !capable(CAP_NET_ADMIN))
618 ret = -EACCES;
619 else
620 sock_valbool_flag(sk, SOCK_DBG, valbool);
621 break;
622 case SO_REUSEADDR:
623 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
624 break;
625 case SO_TYPE:
626 case SO_PROTOCOL:
627 case SO_DOMAIN:
628 case SO_ERROR:
629 ret = -ENOPROTOOPT;
630 break;
631 case SO_DONTROUTE:
632 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
633 break;
634 case SO_BROADCAST:
635 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
636 break;
637 case SO_SNDBUF:
638 /* Don't error on this BSD doesn't and if you think
639 * about it this is right. Otherwise apps have to
640 * play 'guess the biggest size' games. RCVBUF/SNDBUF
641 * are treated in BSD as hints
642 */
643 val = min_t(u32, val, sysctl_wmem_max);
644 set_sndbuf:
645 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
646 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
647 /* Wake up sending tasks if we upped the value. */
648 sk->sk_write_space(sk);
649 break;
650
651 case SO_SNDBUFFORCE:
652 if (!capable(CAP_NET_ADMIN)) {
653 ret = -EPERM;
654 break;
655 }
656 goto set_sndbuf;
657
658 case SO_RCVBUF:
659 /* Don't error on this BSD doesn't and if you think
660 * about it this is right. Otherwise apps have to
661 * play 'guess the biggest size' games. RCVBUF/SNDBUF
662 * are treated in BSD as hints
663 */
664 val = min_t(u32, val, sysctl_rmem_max);
665 set_rcvbuf:
666 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
667 /*
668 * We double it on the way in to account for
669 * "struct sk_buff" etc. overhead. Applications
670 * assume that the SO_RCVBUF setting they make will
671 * allow that much actual data to be received on that
672 * socket.
673 *
674 * Applications are unaware that "struct sk_buff" and
675 * other overheads allocate from the receive buffer
676 * during socket buffer allocation.
677 *
678 * And after considering the possible alternatives,
679 * returning the value we actually used in getsockopt
680 * is the most desirable behavior.
681 */
682 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
683 break;
684
685 case SO_RCVBUFFORCE:
686 if (!capable(CAP_NET_ADMIN)) {
687 ret = -EPERM;
688 break;
689 }
690 goto set_rcvbuf;
691
692 case SO_KEEPALIVE:
693 #ifdef CONFIG_INET
694 if (sk->sk_protocol == IPPROTO_TCP)
695 tcp_set_keepalive(sk, valbool);
696 #endif
697 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
698 break;
699
700 case SO_OOBINLINE:
701 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
702 break;
703
704 case SO_NO_CHECK:
705 sk->sk_no_check = valbool;
706 break;
707
708 case SO_PRIORITY:
709 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
710 sk->sk_priority = val;
711 else
712 ret = -EPERM;
713 break;
714
715 case SO_LINGER:
716 if (optlen < sizeof(ling)) {
717 ret = -EINVAL; /* 1003.1g */
718 break;
719 }
720 if (copy_from_user(&ling, optval, sizeof(ling))) {
721 ret = -EFAULT;
722 break;
723 }
724 if (!ling.l_onoff)
725 sock_reset_flag(sk, SOCK_LINGER);
726 else {
727 #if (BITS_PER_LONG == 32)
728 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
729 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
730 else
731 #endif
732 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
733 sock_set_flag(sk, SOCK_LINGER);
734 }
735 break;
736
737 case SO_BSDCOMPAT:
738 sock_warn_obsolete_bsdism("setsockopt");
739 break;
740
741 case SO_PASSCRED:
742 if (valbool)
743 set_bit(SOCK_PASSCRED, &sock->flags);
744 else
745 clear_bit(SOCK_PASSCRED, &sock->flags);
746 break;
747
748 case SO_TIMESTAMP:
749 case SO_TIMESTAMPNS:
750 if (valbool) {
751 if (optname == SO_TIMESTAMP)
752 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
753 else
754 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
755 sock_set_flag(sk, SOCK_RCVTSTAMP);
756 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
757 } else {
758 sock_reset_flag(sk, SOCK_RCVTSTAMP);
759 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
760 }
761 break;
762
763 case SO_TIMESTAMPING:
764 if (val & ~SOF_TIMESTAMPING_MASK) {
765 ret = -EINVAL;
766 break;
767 }
768 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
769 val & SOF_TIMESTAMPING_TX_HARDWARE);
770 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
771 val & SOF_TIMESTAMPING_TX_SOFTWARE);
772 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
773 val & SOF_TIMESTAMPING_RX_HARDWARE);
774 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
775 sock_enable_timestamp(sk,
776 SOCK_TIMESTAMPING_RX_SOFTWARE);
777 else
778 sock_disable_timestamp(sk,
779 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
780 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
781 val & SOF_TIMESTAMPING_SOFTWARE);
782 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
783 val & SOF_TIMESTAMPING_SYS_HARDWARE);
784 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
785 val & SOF_TIMESTAMPING_RAW_HARDWARE);
786 break;
787
788 case SO_RCVLOWAT:
789 if (val < 0)
790 val = INT_MAX;
791 sk->sk_rcvlowat = val ? : 1;
792 break;
793
794 case SO_RCVTIMEO:
795 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
796 break;
797
798 case SO_SNDTIMEO:
799 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
800 break;
801
802 case SO_ATTACH_FILTER:
803 ret = -EINVAL;
804 if (optlen == sizeof(struct sock_fprog)) {
805 struct sock_fprog fprog;
806
807 ret = -EFAULT;
808 if (copy_from_user(&fprog, optval, sizeof(fprog)))
809 break;
810
811 ret = sk_attach_filter(&fprog, sk);
812 }
813 break;
814
815 case SO_DETACH_FILTER:
816 ret = sk_detach_filter(sk);
817 break;
818
819 case SO_PASSSEC:
820 if (valbool)
821 set_bit(SOCK_PASSSEC, &sock->flags);
822 else
823 clear_bit(SOCK_PASSSEC, &sock->flags);
824 break;
825 case SO_MARK:
826 if (!capable(CAP_NET_ADMIN))
827 ret = -EPERM;
828 else
829 sk->sk_mark = val;
830 break;
831
832 /* We implement the SO_SNDLOWAT etc to
833 not be settable (1003.1g 5.3) */
834 case SO_RXQ_OVFL:
835 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
836 break;
837
838 case SO_WIFI_STATUS:
839 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
840 break;
841
842 case SO_PEEK_OFF:
843 if (sock->ops->set_peek_off)
844 sock->ops->set_peek_off(sk, val);
845 else
846 ret = -EOPNOTSUPP;
847 break;
848
849 case SO_NOFCS:
850 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
851 break;
852
853 default:
854 ret = -ENOPROTOOPT;
855 break;
856 }
857 release_sock(sk);
858 return ret;
859 }
860 EXPORT_SYMBOL(sock_setsockopt);
861
862
863 void cred_to_ucred(struct pid *pid, const struct cred *cred,
864 struct ucred *ucred)
865 {
866 ucred->pid = pid_vnr(pid);
867 ucred->uid = ucred->gid = -1;
868 if (cred) {
869 struct user_namespace *current_ns = current_user_ns();
870
871 ucred->uid = from_kuid_munged(current_ns, cred->euid);
872 ucred->gid = from_kgid_munged(current_ns, cred->egid);
873 }
874 }
875 EXPORT_SYMBOL_GPL(cred_to_ucred);
876
877 int sock_getsockopt(struct socket *sock, int level, int optname,
878 char __user *optval, int __user *optlen)
879 {
880 struct sock *sk = sock->sk;
881
882 union {
883 int val;
884 struct linger ling;
885 struct timeval tm;
886 } v;
887
888 int lv = sizeof(int);
889 int len;
890
891 if (get_user(len, optlen))
892 return -EFAULT;
893 if (len < 0)
894 return -EINVAL;
895
896 memset(&v, 0, sizeof(v));
897
898 switch (optname) {
899 case SO_DEBUG:
900 v.val = sock_flag(sk, SOCK_DBG);
901 break;
902
903 case SO_DONTROUTE:
904 v.val = sock_flag(sk, SOCK_LOCALROUTE);
905 break;
906
907 case SO_BROADCAST:
908 v.val = sock_flag(sk, SOCK_BROADCAST);
909 break;
910
911 case SO_SNDBUF:
912 v.val = sk->sk_sndbuf;
913 break;
914
915 case SO_RCVBUF:
916 v.val = sk->sk_rcvbuf;
917 break;
918
919 case SO_REUSEADDR:
920 v.val = sk->sk_reuse;
921 break;
922
923 case SO_KEEPALIVE:
924 v.val = sock_flag(sk, SOCK_KEEPOPEN);
925 break;
926
927 case SO_TYPE:
928 v.val = sk->sk_type;
929 break;
930
931 case SO_PROTOCOL:
932 v.val = sk->sk_protocol;
933 break;
934
935 case SO_DOMAIN:
936 v.val = sk->sk_family;
937 break;
938
939 case SO_ERROR:
940 v.val = -sock_error(sk);
941 if (v.val == 0)
942 v.val = xchg(&sk->sk_err_soft, 0);
943 break;
944
945 case SO_OOBINLINE:
946 v.val = sock_flag(sk, SOCK_URGINLINE);
947 break;
948
949 case SO_NO_CHECK:
950 v.val = sk->sk_no_check;
951 break;
952
953 case SO_PRIORITY:
954 v.val = sk->sk_priority;
955 break;
956
957 case SO_LINGER:
958 lv = sizeof(v.ling);
959 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
960 v.ling.l_linger = sk->sk_lingertime / HZ;
961 break;
962
963 case SO_BSDCOMPAT:
964 sock_warn_obsolete_bsdism("getsockopt");
965 break;
966
967 case SO_TIMESTAMP:
968 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
969 !sock_flag(sk, SOCK_RCVTSTAMPNS);
970 break;
971
972 case SO_TIMESTAMPNS:
973 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
974 break;
975
976 case SO_TIMESTAMPING:
977 v.val = 0;
978 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
979 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
980 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
981 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
982 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
983 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
984 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
985 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
986 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
987 v.val |= SOF_TIMESTAMPING_SOFTWARE;
988 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
989 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
990 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
991 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
992 break;
993
994 case SO_RCVTIMEO:
995 lv = sizeof(struct timeval);
996 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
997 v.tm.tv_sec = 0;
998 v.tm.tv_usec = 0;
999 } else {
1000 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1001 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1002 }
1003 break;
1004
1005 case SO_SNDTIMEO:
1006 lv = sizeof(struct timeval);
1007 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1008 v.tm.tv_sec = 0;
1009 v.tm.tv_usec = 0;
1010 } else {
1011 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1012 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1013 }
1014 break;
1015
1016 case SO_RCVLOWAT:
1017 v.val = sk->sk_rcvlowat;
1018 break;
1019
1020 case SO_SNDLOWAT:
1021 v.val = 1;
1022 break;
1023
1024 case SO_PASSCRED:
1025 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1026 break;
1027
1028 case SO_PEERCRED:
1029 {
1030 struct ucred peercred;
1031 if (len > sizeof(peercred))
1032 len = sizeof(peercred);
1033 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1034 if (copy_to_user(optval, &peercred, len))
1035 return -EFAULT;
1036 goto lenout;
1037 }
1038
1039 case SO_PEERNAME:
1040 {
1041 char address[128];
1042
1043 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1044 return -ENOTCONN;
1045 if (lv < len)
1046 return -EINVAL;
1047 if (copy_to_user(optval, address, len))
1048 return -EFAULT;
1049 goto lenout;
1050 }
1051
1052 /* Dubious BSD thing... Probably nobody even uses it, but
1053 * the UNIX standard wants it for whatever reason... -DaveM
1054 */
1055 case SO_ACCEPTCONN:
1056 v.val = sk->sk_state == TCP_LISTEN;
1057 break;
1058
1059 case SO_PASSSEC:
1060 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1061 break;
1062
1063 case SO_PEERSEC:
1064 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1065
1066 case SO_MARK:
1067 v.val = sk->sk_mark;
1068 break;
1069
1070 case SO_RXQ_OVFL:
1071 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1072 break;
1073
1074 case SO_WIFI_STATUS:
1075 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1076 break;
1077
1078 case SO_PEEK_OFF:
1079 if (!sock->ops->set_peek_off)
1080 return -EOPNOTSUPP;
1081
1082 v.val = sk->sk_peek_off;
1083 break;
1084 case SO_NOFCS:
1085 v.val = sock_flag(sk, SOCK_NOFCS);
1086 break;
1087 default:
1088 return -ENOPROTOOPT;
1089 }
1090
1091 if (len > lv)
1092 len = lv;
1093 if (copy_to_user(optval, &v, len))
1094 return -EFAULT;
1095 lenout:
1096 if (put_user(len, optlen))
1097 return -EFAULT;
1098 return 0;
1099 }
1100
1101 /*
1102 * Initialize an sk_lock.
1103 *
1104 * (We also register the sk_lock with the lock validator.)
1105 */
1106 static inline void sock_lock_init(struct sock *sk)
1107 {
1108 sock_lock_init_class_and_name(sk,
1109 af_family_slock_key_strings[sk->sk_family],
1110 af_family_slock_keys + sk->sk_family,
1111 af_family_key_strings[sk->sk_family],
1112 af_family_keys + sk->sk_family);
1113 }
1114
1115 /*
1116 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1117 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1118 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1119 */
1120 static void sock_copy(struct sock *nsk, const struct sock *osk)
1121 {
1122 #ifdef CONFIG_SECURITY_NETWORK
1123 void *sptr = nsk->sk_security;
1124 #endif
1125 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1126
1127 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1128 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1129
1130 #ifdef CONFIG_SECURITY_NETWORK
1131 nsk->sk_security = sptr;
1132 security_sk_clone(osk, nsk);
1133 #endif
1134 }
1135
1136 /*
1137 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1138 * un-modified. Special care is taken when initializing object to zero.
1139 */
1140 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1141 {
1142 if (offsetof(struct sock, sk_node.next) != 0)
1143 memset(sk, 0, offsetof(struct sock, sk_node.next));
1144 memset(&sk->sk_node.pprev, 0,
1145 size - offsetof(struct sock, sk_node.pprev));
1146 }
1147
1148 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1149 {
1150 unsigned long nulls1, nulls2;
1151
1152 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1153 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1154 if (nulls1 > nulls2)
1155 swap(nulls1, nulls2);
1156
1157 if (nulls1 != 0)
1158 memset((char *)sk, 0, nulls1);
1159 memset((char *)sk + nulls1 + sizeof(void *), 0,
1160 nulls2 - nulls1 - sizeof(void *));
1161 memset((char *)sk + nulls2 + sizeof(void *), 0,
1162 size - nulls2 - sizeof(void *));
1163 }
1164 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1165
1166 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1167 int family)
1168 {
1169 struct sock *sk;
1170 struct kmem_cache *slab;
1171
1172 slab = prot->slab;
1173 if (slab != NULL) {
1174 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1175 if (!sk)
1176 return sk;
1177 if (priority & __GFP_ZERO) {
1178 if (prot->clear_sk)
1179 prot->clear_sk(sk, prot->obj_size);
1180 else
1181 sk_prot_clear_nulls(sk, prot->obj_size);
1182 }
1183 } else
1184 sk = kmalloc(prot->obj_size, priority);
1185
1186 if (sk != NULL) {
1187 kmemcheck_annotate_bitfield(sk, flags);
1188
1189 if (security_sk_alloc(sk, family, priority))
1190 goto out_free;
1191
1192 if (!try_module_get(prot->owner))
1193 goto out_free_sec;
1194 sk_tx_queue_clear(sk);
1195 }
1196
1197 return sk;
1198
1199 out_free_sec:
1200 security_sk_free(sk);
1201 out_free:
1202 if (slab != NULL)
1203 kmem_cache_free(slab, sk);
1204 else
1205 kfree(sk);
1206 return NULL;
1207 }
1208
1209 static void sk_prot_free(struct proto *prot, struct sock *sk)
1210 {
1211 struct kmem_cache *slab;
1212 struct module *owner;
1213
1214 owner = prot->owner;
1215 slab = prot->slab;
1216
1217 security_sk_free(sk);
1218 if (slab != NULL)
1219 kmem_cache_free(slab, sk);
1220 else
1221 kfree(sk);
1222 module_put(owner);
1223 }
1224
1225 #ifdef CONFIG_CGROUPS
1226 void sock_update_classid(struct sock *sk)
1227 {
1228 u32 classid;
1229
1230 rcu_read_lock(); /* doing current task, which cannot vanish. */
1231 classid = task_cls_classid(current);
1232 rcu_read_unlock();
1233 if (classid && classid != sk->sk_classid)
1234 sk->sk_classid = classid;
1235 }
1236 EXPORT_SYMBOL(sock_update_classid);
1237
1238 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1239 {
1240 if (in_interrupt())
1241 return;
1242
1243 sk->sk_cgrp_prioidx = task_netprioidx(task);
1244 }
1245 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1246 #endif
1247
1248 /**
1249 * sk_alloc - All socket objects are allocated here
1250 * @net: the applicable net namespace
1251 * @family: protocol family
1252 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1253 * @prot: struct proto associated with this new sock instance
1254 */
1255 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1256 struct proto *prot)
1257 {
1258 struct sock *sk;
1259
1260 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1261 if (sk) {
1262 sk->sk_family = family;
1263 /*
1264 * See comment in struct sock definition to understand
1265 * why we need sk_prot_creator -acme
1266 */
1267 sk->sk_prot = sk->sk_prot_creator = prot;
1268 sock_lock_init(sk);
1269 sock_net_set(sk, get_net(net));
1270 atomic_set(&sk->sk_wmem_alloc, 1);
1271
1272 sock_update_classid(sk);
1273 sock_update_netprioidx(sk, current);
1274 }
1275
1276 return sk;
1277 }
1278 EXPORT_SYMBOL(sk_alloc);
1279
1280 static void __sk_free(struct sock *sk)
1281 {
1282 struct sk_filter *filter;
1283
1284 if (sk->sk_destruct)
1285 sk->sk_destruct(sk);
1286
1287 filter = rcu_dereference_check(sk->sk_filter,
1288 atomic_read(&sk->sk_wmem_alloc) == 0);
1289 if (filter) {
1290 sk_filter_uncharge(sk, filter);
1291 RCU_INIT_POINTER(sk->sk_filter, NULL);
1292 }
1293
1294 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1295
1296 if (atomic_read(&sk->sk_omem_alloc))
1297 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1298 __func__, atomic_read(&sk->sk_omem_alloc));
1299
1300 if (sk->sk_peer_cred)
1301 put_cred(sk->sk_peer_cred);
1302 put_pid(sk->sk_peer_pid);
1303 put_net(sock_net(sk));
1304 sk_prot_free(sk->sk_prot_creator, sk);
1305 }
1306
1307 void sk_free(struct sock *sk)
1308 {
1309 /*
1310 * We subtract one from sk_wmem_alloc and can know if
1311 * some packets are still in some tx queue.
1312 * If not null, sock_wfree() will call __sk_free(sk) later
1313 */
1314 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1315 __sk_free(sk);
1316 }
1317 EXPORT_SYMBOL(sk_free);
1318
1319 /*
1320 * Last sock_put should drop reference to sk->sk_net. It has already
1321 * been dropped in sk_change_net. Taking reference to stopping namespace
1322 * is not an option.
1323 * Take reference to a socket to remove it from hash _alive_ and after that
1324 * destroy it in the context of init_net.
1325 */
1326 void sk_release_kernel(struct sock *sk)
1327 {
1328 if (sk == NULL || sk->sk_socket == NULL)
1329 return;
1330
1331 sock_hold(sk);
1332 sock_release(sk->sk_socket);
1333 release_net(sock_net(sk));
1334 sock_net_set(sk, get_net(&init_net));
1335 sock_put(sk);
1336 }
1337 EXPORT_SYMBOL(sk_release_kernel);
1338
1339 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1340 {
1341 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1342 sock_update_memcg(newsk);
1343 }
1344
1345 /**
1346 * sk_clone_lock - clone a socket, and lock its clone
1347 * @sk: the socket to clone
1348 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1349 *
1350 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1351 */
1352 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1353 {
1354 struct sock *newsk;
1355
1356 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1357 if (newsk != NULL) {
1358 struct sk_filter *filter;
1359
1360 sock_copy(newsk, sk);
1361
1362 /* SANITY */
1363 get_net(sock_net(newsk));
1364 sk_node_init(&newsk->sk_node);
1365 sock_lock_init(newsk);
1366 bh_lock_sock(newsk);
1367 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1368 newsk->sk_backlog.len = 0;
1369
1370 atomic_set(&newsk->sk_rmem_alloc, 0);
1371 /*
1372 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1373 */
1374 atomic_set(&newsk->sk_wmem_alloc, 1);
1375 atomic_set(&newsk->sk_omem_alloc, 0);
1376 skb_queue_head_init(&newsk->sk_receive_queue);
1377 skb_queue_head_init(&newsk->sk_write_queue);
1378 #ifdef CONFIG_NET_DMA
1379 skb_queue_head_init(&newsk->sk_async_wait_queue);
1380 #endif
1381
1382 spin_lock_init(&newsk->sk_dst_lock);
1383 rwlock_init(&newsk->sk_callback_lock);
1384 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1385 af_callback_keys + newsk->sk_family,
1386 af_family_clock_key_strings[newsk->sk_family]);
1387
1388 newsk->sk_dst_cache = NULL;
1389 newsk->sk_wmem_queued = 0;
1390 newsk->sk_forward_alloc = 0;
1391 newsk->sk_send_head = NULL;
1392 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1393
1394 sock_reset_flag(newsk, SOCK_DONE);
1395 skb_queue_head_init(&newsk->sk_error_queue);
1396
1397 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1398 if (filter != NULL)
1399 sk_filter_charge(newsk, filter);
1400
1401 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1402 /* It is still raw copy of parent, so invalidate
1403 * destructor and make plain sk_free() */
1404 newsk->sk_destruct = NULL;
1405 bh_unlock_sock(newsk);
1406 sk_free(newsk);
1407 newsk = NULL;
1408 goto out;
1409 }
1410
1411 newsk->sk_err = 0;
1412 newsk->sk_priority = 0;
1413 /*
1414 * Before updating sk_refcnt, we must commit prior changes to memory
1415 * (Documentation/RCU/rculist_nulls.txt for details)
1416 */
1417 smp_wmb();
1418 atomic_set(&newsk->sk_refcnt, 2);
1419
1420 /*
1421 * Increment the counter in the same struct proto as the master
1422 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1423 * is the same as sk->sk_prot->socks, as this field was copied
1424 * with memcpy).
1425 *
1426 * This _changes_ the previous behaviour, where
1427 * tcp_create_openreq_child always was incrementing the
1428 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1429 * to be taken into account in all callers. -acme
1430 */
1431 sk_refcnt_debug_inc(newsk);
1432 sk_set_socket(newsk, NULL);
1433 newsk->sk_wq = NULL;
1434
1435 sk_update_clone(sk, newsk);
1436
1437 if (newsk->sk_prot->sockets_allocated)
1438 sk_sockets_allocated_inc(newsk);
1439
1440 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1441 net_enable_timestamp();
1442 }
1443 out:
1444 return newsk;
1445 }
1446 EXPORT_SYMBOL_GPL(sk_clone_lock);
1447
1448 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1449 {
1450 __sk_dst_set(sk, dst);
1451 sk->sk_route_caps = dst->dev->features;
1452 if (sk->sk_route_caps & NETIF_F_GSO)
1453 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1454 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1455 if (sk_can_gso(sk)) {
1456 if (dst->header_len) {
1457 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1458 } else {
1459 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1460 sk->sk_gso_max_size = dst->dev->gso_max_size;
1461 }
1462 }
1463 }
1464 EXPORT_SYMBOL_GPL(sk_setup_caps);
1465
1466 void __init sk_init(void)
1467 {
1468 if (totalram_pages <= 4096) {
1469 sysctl_wmem_max = 32767;
1470 sysctl_rmem_max = 32767;
1471 sysctl_wmem_default = 32767;
1472 sysctl_rmem_default = 32767;
1473 } else if (totalram_pages >= 131072) {
1474 sysctl_wmem_max = 131071;
1475 sysctl_rmem_max = 131071;
1476 }
1477 }
1478
1479 /*
1480 * Simple resource managers for sockets.
1481 */
1482
1483
1484 /*
1485 * Write buffer destructor automatically called from kfree_skb.
1486 */
1487 void sock_wfree(struct sk_buff *skb)
1488 {
1489 struct sock *sk = skb->sk;
1490 unsigned int len = skb->truesize;
1491
1492 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1493 /*
1494 * Keep a reference on sk_wmem_alloc, this will be released
1495 * after sk_write_space() call
1496 */
1497 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1498 sk->sk_write_space(sk);
1499 len = 1;
1500 }
1501 /*
1502 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1503 * could not do because of in-flight packets
1504 */
1505 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1506 __sk_free(sk);
1507 }
1508 EXPORT_SYMBOL(sock_wfree);
1509
1510 /*
1511 * Read buffer destructor automatically called from kfree_skb.
1512 */
1513 void sock_rfree(struct sk_buff *skb)
1514 {
1515 struct sock *sk = skb->sk;
1516 unsigned int len = skb->truesize;
1517
1518 atomic_sub(len, &sk->sk_rmem_alloc);
1519 sk_mem_uncharge(sk, len);
1520 }
1521 EXPORT_SYMBOL(sock_rfree);
1522
1523 void sock_edemux(struct sk_buff *skb)
1524 {
1525 sock_put(skb->sk);
1526 }
1527 EXPORT_SYMBOL(sock_edemux);
1528
1529 kuid_t sock_i_uid(struct sock *sk)
1530 {
1531 kuid_t uid;
1532
1533 read_lock_bh(&sk->sk_callback_lock);
1534 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1535 read_unlock_bh(&sk->sk_callback_lock);
1536 return uid;
1537 }
1538 EXPORT_SYMBOL(sock_i_uid);
1539
1540 unsigned long sock_i_ino(struct sock *sk)
1541 {
1542 unsigned long ino;
1543
1544 read_lock_bh(&sk->sk_callback_lock);
1545 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1546 read_unlock_bh(&sk->sk_callback_lock);
1547 return ino;
1548 }
1549 EXPORT_SYMBOL(sock_i_ino);
1550
1551 /*
1552 * Allocate a skb from the socket's send buffer.
1553 */
1554 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1555 gfp_t priority)
1556 {
1557 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1558 struct sk_buff *skb = alloc_skb(size, priority);
1559 if (skb) {
1560 skb_set_owner_w(skb, sk);
1561 return skb;
1562 }
1563 }
1564 return NULL;
1565 }
1566 EXPORT_SYMBOL(sock_wmalloc);
1567
1568 /*
1569 * Allocate a skb from the socket's receive buffer.
1570 */
1571 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1572 gfp_t priority)
1573 {
1574 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1575 struct sk_buff *skb = alloc_skb(size, priority);
1576 if (skb) {
1577 skb_set_owner_r(skb, sk);
1578 return skb;
1579 }
1580 }
1581 return NULL;
1582 }
1583
1584 /*
1585 * Allocate a memory block from the socket's option memory buffer.
1586 */
1587 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1588 {
1589 if ((unsigned int)size <= sysctl_optmem_max &&
1590 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1591 void *mem;
1592 /* First do the add, to avoid the race if kmalloc
1593 * might sleep.
1594 */
1595 atomic_add(size, &sk->sk_omem_alloc);
1596 mem = kmalloc(size, priority);
1597 if (mem)
1598 return mem;
1599 atomic_sub(size, &sk->sk_omem_alloc);
1600 }
1601 return NULL;
1602 }
1603 EXPORT_SYMBOL(sock_kmalloc);
1604
1605 /*
1606 * Free an option memory block.
1607 */
1608 void sock_kfree_s(struct sock *sk, void *mem, int size)
1609 {
1610 kfree(mem);
1611 atomic_sub(size, &sk->sk_omem_alloc);
1612 }
1613 EXPORT_SYMBOL(sock_kfree_s);
1614
1615 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1616 I think, these locks should be removed for datagram sockets.
1617 */
1618 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1619 {
1620 DEFINE_WAIT(wait);
1621
1622 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1623 for (;;) {
1624 if (!timeo)
1625 break;
1626 if (signal_pending(current))
1627 break;
1628 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1629 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1630 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1631 break;
1632 if (sk->sk_shutdown & SEND_SHUTDOWN)
1633 break;
1634 if (sk->sk_err)
1635 break;
1636 timeo = schedule_timeout(timeo);
1637 }
1638 finish_wait(sk_sleep(sk), &wait);
1639 return timeo;
1640 }
1641
1642
1643 /*
1644 * Generic send/receive buffer handlers
1645 */
1646
1647 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1648 unsigned long data_len, int noblock,
1649 int *errcode)
1650 {
1651 struct sk_buff *skb;
1652 gfp_t gfp_mask;
1653 long timeo;
1654 int err;
1655 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1656
1657 err = -EMSGSIZE;
1658 if (npages > MAX_SKB_FRAGS)
1659 goto failure;
1660
1661 gfp_mask = sk->sk_allocation;
1662 if (gfp_mask & __GFP_WAIT)
1663 gfp_mask |= __GFP_REPEAT;
1664
1665 timeo = sock_sndtimeo(sk, noblock);
1666 while (1) {
1667 err = sock_error(sk);
1668 if (err != 0)
1669 goto failure;
1670
1671 err = -EPIPE;
1672 if (sk->sk_shutdown & SEND_SHUTDOWN)
1673 goto failure;
1674
1675 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1676 skb = alloc_skb(header_len, gfp_mask);
1677 if (skb) {
1678 int i;
1679
1680 /* No pages, we're done... */
1681 if (!data_len)
1682 break;
1683
1684 skb->truesize += data_len;
1685 skb_shinfo(skb)->nr_frags = npages;
1686 for (i = 0; i < npages; i++) {
1687 struct page *page;
1688
1689 page = alloc_pages(sk->sk_allocation, 0);
1690 if (!page) {
1691 err = -ENOBUFS;
1692 skb_shinfo(skb)->nr_frags = i;
1693 kfree_skb(skb);
1694 goto failure;
1695 }
1696
1697 __skb_fill_page_desc(skb, i,
1698 page, 0,
1699 (data_len >= PAGE_SIZE ?
1700 PAGE_SIZE :
1701 data_len));
1702 data_len -= PAGE_SIZE;
1703 }
1704
1705 /* Full success... */
1706 break;
1707 }
1708 err = -ENOBUFS;
1709 goto failure;
1710 }
1711 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1712 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1713 err = -EAGAIN;
1714 if (!timeo)
1715 goto failure;
1716 if (signal_pending(current))
1717 goto interrupted;
1718 timeo = sock_wait_for_wmem(sk, timeo);
1719 }
1720
1721 skb_set_owner_w(skb, sk);
1722 return skb;
1723
1724 interrupted:
1725 err = sock_intr_errno(timeo);
1726 failure:
1727 *errcode = err;
1728 return NULL;
1729 }
1730 EXPORT_SYMBOL(sock_alloc_send_pskb);
1731
1732 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1733 int noblock, int *errcode)
1734 {
1735 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1736 }
1737 EXPORT_SYMBOL(sock_alloc_send_skb);
1738
1739 static void __lock_sock(struct sock *sk)
1740 __releases(&sk->sk_lock.slock)
1741 __acquires(&sk->sk_lock.slock)
1742 {
1743 DEFINE_WAIT(wait);
1744
1745 for (;;) {
1746 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1747 TASK_UNINTERRUPTIBLE);
1748 spin_unlock_bh(&sk->sk_lock.slock);
1749 schedule();
1750 spin_lock_bh(&sk->sk_lock.slock);
1751 if (!sock_owned_by_user(sk))
1752 break;
1753 }
1754 finish_wait(&sk->sk_lock.wq, &wait);
1755 }
1756
1757 static void __release_sock(struct sock *sk)
1758 __releases(&sk->sk_lock.slock)
1759 __acquires(&sk->sk_lock.slock)
1760 {
1761 struct sk_buff *skb = sk->sk_backlog.head;
1762
1763 do {
1764 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1765 bh_unlock_sock(sk);
1766
1767 do {
1768 struct sk_buff *next = skb->next;
1769
1770 prefetch(next);
1771 WARN_ON_ONCE(skb_dst_is_noref(skb));
1772 skb->next = NULL;
1773 sk_backlog_rcv(sk, skb);
1774
1775 /*
1776 * We are in process context here with softirqs
1777 * disabled, use cond_resched_softirq() to preempt.
1778 * This is safe to do because we've taken the backlog
1779 * queue private:
1780 */
1781 cond_resched_softirq();
1782
1783 skb = next;
1784 } while (skb != NULL);
1785
1786 bh_lock_sock(sk);
1787 } while ((skb = sk->sk_backlog.head) != NULL);
1788
1789 /*
1790 * Doing the zeroing here guarantee we can not loop forever
1791 * while a wild producer attempts to flood us.
1792 */
1793 sk->sk_backlog.len = 0;
1794 }
1795
1796 /**
1797 * sk_wait_data - wait for data to arrive at sk_receive_queue
1798 * @sk: sock to wait on
1799 * @timeo: for how long
1800 *
1801 * Now socket state including sk->sk_err is changed only under lock,
1802 * hence we may omit checks after joining wait queue.
1803 * We check receive queue before schedule() only as optimization;
1804 * it is very likely that release_sock() added new data.
1805 */
1806 int sk_wait_data(struct sock *sk, long *timeo)
1807 {
1808 int rc;
1809 DEFINE_WAIT(wait);
1810
1811 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1812 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1813 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1814 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1815 finish_wait(sk_sleep(sk), &wait);
1816 return rc;
1817 }
1818 EXPORT_SYMBOL(sk_wait_data);
1819
1820 /**
1821 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1822 * @sk: socket
1823 * @size: memory size to allocate
1824 * @kind: allocation type
1825 *
1826 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1827 * rmem allocation. This function assumes that protocols which have
1828 * memory_pressure use sk_wmem_queued as write buffer accounting.
1829 */
1830 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1831 {
1832 struct proto *prot = sk->sk_prot;
1833 int amt = sk_mem_pages(size);
1834 long allocated;
1835 int parent_status = UNDER_LIMIT;
1836
1837 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1838
1839 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1840
1841 /* Under limit. */
1842 if (parent_status == UNDER_LIMIT &&
1843 allocated <= sk_prot_mem_limits(sk, 0)) {
1844 sk_leave_memory_pressure(sk);
1845 return 1;
1846 }
1847
1848 /* Under pressure. (we or our parents) */
1849 if ((parent_status > SOFT_LIMIT) ||
1850 allocated > sk_prot_mem_limits(sk, 1))
1851 sk_enter_memory_pressure(sk);
1852
1853 /* Over hard limit (we or our parents) */
1854 if ((parent_status == OVER_LIMIT) ||
1855 (allocated > sk_prot_mem_limits(sk, 2)))
1856 goto suppress_allocation;
1857
1858 /* guarantee minimum buffer size under pressure */
1859 if (kind == SK_MEM_RECV) {
1860 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1861 return 1;
1862
1863 } else { /* SK_MEM_SEND */
1864 if (sk->sk_type == SOCK_STREAM) {
1865 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1866 return 1;
1867 } else if (atomic_read(&sk->sk_wmem_alloc) <
1868 prot->sysctl_wmem[0])
1869 return 1;
1870 }
1871
1872 if (sk_has_memory_pressure(sk)) {
1873 int alloc;
1874
1875 if (!sk_under_memory_pressure(sk))
1876 return 1;
1877 alloc = sk_sockets_allocated_read_positive(sk);
1878 if (sk_prot_mem_limits(sk, 2) > alloc *
1879 sk_mem_pages(sk->sk_wmem_queued +
1880 atomic_read(&sk->sk_rmem_alloc) +
1881 sk->sk_forward_alloc))
1882 return 1;
1883 }
1884
1885 suppress_allocation:
1886
1887 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1888 sk_stream_moderate_sndbuf(sk);
1889
1890 /* Fail only if socket is _under_ its sndbuf.
1891 * In this case we cannot block, so that we have to fail.
1892 */
1893 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1894 return 1;
1895 }
1896
1897 trace_sock_exceed_buf_limit(sk, prot, allocated);
1898
1899 /* Alas. Undo changes. */
1900 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1901
1902 sk_memory_allocated_sub(sk, amt);
1903
1904 return 0;
1905 }
1906 EXPORT_SYMBOL(__sk_mem_schedule);
1907
1908 /**
1909 * __sk_reclaim - reclaim memory_allocated
1910 * @sk: socket
1911 */
1912 void __sk_mem_reclaim(struct sock *sk)
1913 {
1914 sk_memory_allocated_sub(sk,
1915 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1916 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1917
1918 if (sk_under_memory_pressure(sk) &&
1919 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1920 sk_leave_memory_pressure(sk);
1921 }
1922 EXPORT_SYMBOL(__sk_mem_reclaim);
1923
1924
1925 /*
1926 * Set of default routines for initialising struct proto_ops when
1927 * the protocol does not support a particular function. In certain
1928 * cases where it makes no sense for a protocol to have a "do nothing"
1929 * function, some default processing is provided.
1930 */
1931
1932 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1933 {
1934 return -EOPNOTSUPP;
1935 }
1936 EXPORT_SYMBOL(sock_no_bind);
1937
1938 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1939 int len, int flags)
1940 {
1941 return -EOPNOTSUPP;
1942 }
1943 EXPORT_SYMBOL(sock_no_connect);
1944
1945 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1946 {
1947 return -EOPNOTSUPP;
1948 }
1949 EXPORT_SYMBOL(sock_no_socketpair);
1950
1951 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1952 {
1953 return -EOPNOTSUPP;
1954 }
1955 EXPORT_SYMBOL(sock_no_accept);
1956
1957 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1958 int *len, int peer)
1959 {
1960 return -EOPNOTSUPP;
1961 }
1962 EXPORT_SYMBOL(sock_no_getname);
1963
1964 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1965 {
1966 return 0;
1967 }
1968 EXPORT_SYMBOL(sock_no_poll);
1969
1970 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1971 {
1972 return -EOPNOTSUPP;
1973 }
1974 EXPORT_SYMBOL(sock_no_ioctl);
1975
1976 int sock_no_listen(struct socket *sock, int backlog)
1977 {
1978 return -EOPNOTSUPP;
1979 }
1980 EXPORT_SYMBOL(sock_no_listen);
1981
1982 int sock_no_shutdown(struct socket *sock, int how)
1983 {
1984 return -EOPNOTSUPP;
1985 }
1986 EXPORT_SYMBOL(sock_no_shutdown);
1987
1988 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1989 char __user *optval, unsigned int optlen)
1990 {
1991 return -EOPNOTSUPP;
1992 }
1993 EXPORT_SYMBOL(sock_no_setsockopt);
1994
1995 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1996 char __user *optval, int __user *optlen)
1997 {
1998 return -EOPNOTSUPP;
1999 }
2000 EXPORT_SYMBOL(sock_no_getsockopt);
2001
2002 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2003 size_t len)
2004 {
2005 return -EOPNOTSUPP;
2006 }
2007 EXPORT_SYMBOL(sock_no_sendmsg);
2008
2009 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2010 size_t len, int flags)
2011 {
2012 return -EOPNOTSUPP;
2013 }
2014 EXPORT_SYMBOL(sock_no_recvmsg);
2015
2016 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2017 {
2018 /* Mirror missing mmap method error code */
2019 return -ENODEV;
2020 }
2021 EXPORT_SYMBOL(sock_no_mmap);
2022
2023 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2024 {
2025 ssize_t res;
2026 struct msghdr msg = {.msg_flags = flags};
2027 struct kvec iov;
2028 char *kaddr = kmap(page);
2029 iov.iov_base = kaddr + offset;
2030 iov.iov_len = size;
2031 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2032 kunmap(page);
2033 return res;
2034 }
2035 EXPORT_SYMBOL(sock_no_sendpage);
2036
2037 /*
2038 * Default Socket Callbacks
2039 */
2040
2041 static void sock_def_wakeup(struct sock *sk)
2042 {
2043 struct socket_wq *wq;
2044
2045 rcu_read_lock();
2046 wq = rcu_dereference(sk->sk_wq);
2047 if (wq_has_sleeper(wq))
2048 wake_up_interruptible_all(&wq->wait);
2049 rcu_read_unlock();
2050 }
2051
2052 static void sock_def_error_report(struct sock *sk)
2053 {
2054 struct socket_wq *wq;
2055
2056 rcu_read_lock();
2057 wq = rcu_dereference(sk->sk_wq);
2058 if (wq_has_sleeper(wq))
2059 wake_up_interruptible_poll(&wq->wait, POLLERR);
2060 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2061 rcu_read_unlock();
2062 }
2063
2064 static void sock_def_readable(struct sock *sk, int len)
2065 {
2066 struct socket_wq *wq;
2067
2068 rcu_read_lock();
2069 wq = rcu_dereference(sk->sk_wq);
2070 if (wq_has_sleeper(wq))
2071 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2072 POLLRDNORM | POLLRDBAND);
2073 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2074 rcu_read_unlock();
2075 }
2076
2077 static void sock_def_write_space(struct sock *sk)
2078 {
2079 struct socket_wq *wq;
2080
2081 rcu_read_lock();
2082
2083 /* Do not wake up a writer until he can make "significant"
2084 * progress. --DaveM
2085 */
2086 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2087 wq = rcu_dereference(sk->sk_wq);
2088 if (wq_has_sleeper(wq))
2089 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2090 POLLWRNORM | POLLWRBAND);
2091
2092 /* Should agree with poll, otherwise some programs break */
2093 if (sock_writeable(sk))
2094 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2095 }
2096
2097 rcu_read_unlock();
2098 }
2099
2100 static void sock_def_destruct(struct sock *sk)
2101 {
2102 kfree(sk->sk_protinfo);
2103 }
2104
2105 void sk_send_sigurg(struct sock *sk)
2106 {
2107 if (sk->sk_socket && sk->sk_socket->file)
2108 if (send_sigurg(&sk->sk_socket->file->f_owner))
2109 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2110 }
2111 EXPORT_SYMBOL(sk_send_sigurg);
2112
2113 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2114 unsigned long expires)
2115 {
2116 if (!mod_timer(timer, expires))
2117 sock_hold(sk);
2118 }
2119 EXPORT_SYMBOL(sk_reset_timer);
2120
2121 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2122 {
2123 if (timer_pending(timer) && del_timer(timer))
2124 __sock_put(sk);
2125 }
2126 EXPORT_SYMBOL(sk_stop_timer);
2127
2128 void sock_init_data(struct socket *sock, struct sock *sk)
2129 {
2130 skb_queue_head_init(&sk->sk_receive_queue);
2131 skb_queue_head_init(&sk->sk_write_queue);
2132 skb_queue_head_init(&sk->sk_error_queue);
2133 #ifdef CONFIG_NET_DMA
2134 skb_queue_head_init(&sk->sk_async_wait_queue);
2135 #endif
2136
2137 sk->sk_send_head = NULL;
2138
2139 init_timer(&sk->sk_timer);
2140
2141 sk->sk_allocation = GFP_KERNEL;
2142 sk->sk_rcvbuf = sysctl_rmem_default;
2143 sk->sk_sndbuf = sysctl_wmem_default;
2144 sk->sk_state = TCP_CLOSE;
2145 sk_set_socket(sk, sock);
2146
2147 sock_set_flag(sk, SOCK_ZAPPED);
2148
2149 if (sock) {
2150 sk->sk_type = sock->type;
2151 sk->sk_wq = sock->wq;
2152 sock->sk = sk;
2153 } else
2154 sk->sk_wq = NULL;
2155
2156 spin_lock_init(&sk->sk_dst_lock);
2157 rwlock_init(&sk->sk_callback_lock);
2158 lockdep_set_class_and_name(&sk->sk_callback_lock,
2159 af_callback_keys + sk->sk_family,
2160 af_family_clock_key_strings[sk->sk_family]);
2161
2162 sk->sk_state_change = sock_def_wakeup;
2163 sk->sk_data_ready = sock_def_readable;
2164 sk->sk_write_space = sock_def_write_space;
2165 sk->sk_error_report = sock_def_error_report;
2166 sk->sk_destruct = sock_def_destruct;
2167
2168 sk->sk_sndmsg_page = NULL;
2169 sk->sk_sndmsg_off = 0;
2170 sk->sk_peek_off = -1;
2171
2172 sk->sk_peer_pid = NULL;
2173 sk->sk_peer_cred = NULL;
2174 sk->sk_write_pending = 0;
2175 sk->sk_rcvlowat = 1;
2176 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2177 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2178
2179 sk->sk_stamp = ktime_set(-1L, 0);
2180
2181 /*
2182 * Before updating sk_refcnt, we must commit prior changes to memory
2183 * (Documentation/RCU/rculist_nulls.txt for details)
2184 */
2185 smp_wmb();
2186 atomic_set(&sk->sk_refcnt, 1);
2187 atomic_set(&sk->sk_drops, 0);
2188 }
2189 EXPORT_SYMBOL(sock_init_data);
2190
2191 void lock_sock_nested(struct sock *sk, int subclass)
2192 {
2193 might_sleep();
2194 spin_lock_bh(&sk->sk_lock.slock);
2195 if (sk->sk_lock.owned)
2196 __lock_sock(sk);
2197 sk->sk_lock.owned = 1;
2198 spin_unlock(&sk->sk_lock.slock);
2199 /*
2200 * The sk_lock has mutex_lock() semantics here:
2201 */
2202 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2203 local_bh_enable();
2204 }
2205 EXPORT_SYMBOL(lock_sock_nested);
2206
2207 void release_sock(struct sock *sk)
2208 {
2209 /*
2210 * The sk_lock has mutex_unlock() semantics:
2211 */
2212 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2213
2214 spin_lock_bh(&sk->sk_lock.slock);
2215 if (sk->sk_backlog.tail)
2216 __release_sock(sk);
2217
2218 if (sk->sk_prot->release_cb)
2219 sk->sk_prot->release_cb(sk);
2220
2221 sk->sk_lock.owned = 0;
2222 if (waitqueue_active(&sk->sk_lock.wq))
2223 wake_up(&sk->sk_lock.wq);
2224 spin_unlock_bh(&sk->sk_lock.slock);
2225 }
2226 EXPORT_SYMBOL(release_sock);
2227
2228 /**
2229 * lock_sock_fast - fast version of lock_sock
2230 * @sk: socket
2231 *
2232 * This version should be used for very small section, where process wont block
2233 * return false if fast path is taken
2234 * sk_lock.slock locked, owned = 0, BH disabled
2235 * return true if slow path is taken
2236 * sk_lock.slock unlocked, owned = 1, BH enabled
2237 */
2238 bool lock_sock_fast(struct sock *sk)
2239 {
2240 might_sleep();
2241 spin_lock_bh(&sk->sk_lock.slock);
2242
2243 if (!sk->sk_lock.owned)
2244 /*
2245 * Note : We must disable BH
2246 */
2247 return false;
2248
2249 __lock_sock(sk);
2250 sk->sk_lock.owned = 1;
2251 spin_unlock(&sk->sk_lock.slock);
2252 /*
2253 * The sk_lock has mutex_lock() semantics here:
2254 */
2255 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2256 local_bh_enable();
2257 return true;
2258 }
2259 EXPORT_SYMBOL(lock_sock_fast);
2260
2261 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2262 {
2263 struct timeval tv;
2264 if (!sock_flag(sk, SOCK_TIMESTAMP))
2265 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2266 tv = ktime_to_timeval(sk->sk_stamp);
2267 if (tv.tv_sec == -1)
2268 return -ENOENT;
2269 if (tv.tv_sec == 0) {
2270 sk->sk_stamp = ktime_get_real();
2271 tv = ktime_to_timeval(sk->sk_stamp);
2272 }
2273 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2274 }
2275 EXPORT_SYMBOL(sock_get_timestamp);
2276
2277 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2278 {
2279 struct timespec ts;
2280 if (!sock_flag(sk, SOCK_TIMESTAMP))
2281 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2282 ts = ktime_to_timespec(sk->sk_stamp);
2283 if (ts.tv_sec == -1)
2284 return -ENOENT;
2285 if (ts.tv_sec == 0) {
2286 sk->sk_stamp = ktime_get_real();
2287 ts = ktime_to_timespec(sk->sk_stamp);
2288 }
2289 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2290 }
2291 EXPORT_SYMBOL(sock_get_timestampns);
2292
2293 void sock_enable_timestamp(struct sock *sk, int flag)
2294 {
2295 if (!sock_flag(sk, flag)) {
2296 unsigned long previous_flags = sk->sk_flags;
2297
2298 sock_set_flag(sk, flag);
2299 /*
2300 * we just set one of the two flags which require net
2301 * time stamping, but time stamping might have been on
2302 * already because of the other one
2303 */
2304 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2305 net_enable_timestamp();
2306 }
2307 }
2308
2309 /*
2310 * Get a socket option on an socket.
2311 *
2312 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2313 * asynchronous errors should be reported by getsockopt. We assume
2314 * this means if you specify SO_ERROR (otherwise whats the point of it).
2315 */
2316 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2317 char __user *optval, int __user *optlen)
2318 {
2319 struct sock *sk = sock->sk;
2320
2321 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2322 }
2323 EXPORT_SYMBOL(sock_common_getsockopt);
2324
2325 #ifdef CONFIG_COMPAT
2326 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2327 char __user *optval, int __user *optlen)
2328 {
2329 struct sock *sk = sock->sk;
2330
2331 if (sk->sk_prot->compat_getsockopt != NULL)
2332 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2333 optval, optlen);
2334 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2335 }
2336 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2337 #endif
2338
2339 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2340 struct msghdr *msg, size_t size, int flags)
2341 {
2342 struct sock *sk = sock->sk;
2343 int addr_len = 0;
2344 int err;
2345
2346 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2347 flags & ~MSG_DONTWAIT, &addr_len);
2348 if (err >= 0)
2349 msg->msg_namelen = addr_len;
2350 return err;
2351 }
2352 EXPORT_SYMBOL(sock_common_recvmsg);
2353
2354 /*
2355 * Set socket options on an inet socket.
2356 */
2357 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2358 char __user *optval, unsigned int optlen)
2359 {
2360 struct sock *sk = sock->sk;
2361
2362 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2363 }
2364 EXPORT_SYMBOL(sock_common_setsockopt);
2365
2366 #ifdef CONFIG_COMPAT
2367 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2368 char __user *optval, unsigned int optlen)
2369 {
2370 struct sock *sk = sock->sk;
2371
2372 if (sk->sk_prot->compat_setsockopt != NULL)
2373 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2374 optval, optlen);
2375 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2376 }
2377 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2378 #endif
2379
2380 void sk_common_release(struct sock *sk)
2381 {
2382 if (sk->sk_prot->destroy)
2383 sk->sk_prot->destroy(sk);
2384
2385 /*
2386 * Observation: when sock_common_release is called, processes have
2387 * no access to socket. But net still has.
2388 * Step one, detach it from networking:
2389 *
2390 * A. Remove from hash tables.
2391 */
2392
2393 sk->sk_prot->unhash(sk);
2394
2395 /*
2396 * In this point socket cannot receive new packets, but it is possible
2397 * that some packets are in flight because some CPU runs receiver and
2398 * did hash table lookup before we unhashed socket. They will achieve
2399 * receive queue and will be purged by socket destructor.
2400 *
2401 * Also we still have packets pending on receive queue and probably,
2402 * our own packets waiting in device queues. sock_destroy will drain
2403 * receive queue, but transmitted packets will delay socket destruction
2404 * until the last reference will be released.
2405 */
2406
2407 sock_orphan(sk);
2408
2409 xfrm_sk_free_policy(sk);
2410
2411 sk_refcnt_debug_release(sk);
2412 sock_put(sk);
2413 }
2414 EXPORT_SYMBOL(sk_common_release);
2415
2416 #ifdef CONFIG_PROC_FS
2417 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2418 struct prot_inuse {
2419 int val[PROTO_INUSE_NR];
2420 };
2421
2422 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2423
2424 #ifdef CONFIG_NET_NS
2425 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2426 {
2427 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2428 }
2429 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2430
2431 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2432 {
2433 int cpu, idx = prot->inuse_idx;
2434 int res = 0;
2435
2436 for_each_possible_cpu(cpu)
2437 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2438
2439 return res >= 0 ? res : 0;
2440 }
2441 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2442
2443 static int __net_init sock_inuse_init_net(struct net *net)
2444 {
2445 net->core.inuse = alloc_percpu(struct prot_inuse);
2446 return net->core.inuse ? 0 : -ENOMEM;
2447 }
2448
2449 static void __net_exit sock_inuse_exit_net(struct net *net)
2450 {
2451 free_percpu(net->core.inuse);
2452 }
2453
2454 static struct pernet_operations net_inuse_ops = {
2455 .init = sock_inuse_init_net,
2456 .exit = sock_inuse_exit_net,
2457 };
2458
2459 static __init int net_inuse_init(void)
2460 {
2461 if (register_pernet_subsys(&net_inuse_ops))
2462 panic("Cannot initialize net inuse counters");
2463
2464 return 0;
2465 }
2466
2467 core_initcall(net_inuse_init);
2468 #else
2469 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2470
2471 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2472 {
2473 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2474 }
2475 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2476
2477 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2478 {
2479 int cpu, idx = prot->inuse_idx;
2480 int res = 0;
2481
2482 for_each_possible_cpu(cpu)
2483 res += per_cpu(prot_inuse, cpu).val[idx];
2484
2485 return res >= 0 ? res : 0;
2486 }
2487 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2488 #endif
2489
2490 static void assign_proto_idx(struct proto *prot)
2491 {
2492 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2493
2494 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2495 pr_err("PROTO_INUSE_NR exhausted\n");
2496 return;
2497 }
2498
2499 set_bit(prot->inuse_idx, proto_inuse_idx);
2500 }
2501
2502 static void release_proto_idx(struct proto *prot)
2503 {
2504 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2505 clear_bit(prot->inuse_idx, proto_inuse_idx);
2506 }
2507 #else
2508 static inline void assign_proto_idx(struct proto *prot)
2509 {
2510 }
2511
2512 static inline void release_proto_idx(struct proto *prot)
2513 {
2514 }
2515 #endif
2516
2517 int proto_register(struct proto *prot, int alloc_slab)
2518 {
2519 if (alloc_slab) {
2520 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2521 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2522 NULL);
2523
2524 if (prot->slab == NULL) {
2525 pr_crit("%s: Can't create sock SLAB cache!\n",
2526 prot->name);
2527 goto out;
2528 }
2529
2530 if (prot->rsk_prot != NULL) {
2531 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2532 if (prot->rsk_prot->slab_name == NULL)
2533 goto out_free_sock_slab;
2534
2535 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2536 prot->rsk_prot->obj_size, 0,
2537 SLAB_HWCACHE_ALIGN, NULL);
2538
2539 if (prot->rsk_prot->slab == NULL) {
2540 pr_crit("%s: Can't create request sock SLAB cache!\n",
2541 prot->name);
2542 goto out_free_request_sock_slab_name;
2543 }
2544 }
2545
2546 if (prot->twsk_prot != NULL) {
2547 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2548
2549 if (prot->twsk_prot->twsk_slab_name == NULL)
2550 goto out_free_request_sock_slab;
2551
2552 prot->twsk_prot->twsk_slab =
2553 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2554 prot->twsk_prot->twsk_obj_size,
2555 0,
2556 SLAB_HWCACHE_ALIGN |
2557 prot->slab_flags,
2558 NULL);
2559 if (prot->twsk_prot->twsk_slab == NULL)
2560 goto out_free_timewait_sock_slab_name;
2561 }
2562 }
2563
2564 mutex_lock(&proto_list_mutex);
2565 list_add(&prot->node, &proto_list);
2566 assign_proto_idx(prot);
2567 mutex_unlock(&proto_list_mutex);
2568 return 0;
2569
2570 out_free_timewait_sock_slab_name:
2571 kfree(prot->twsk_prot->twsk_slab_name);
2572 out_free_request_sock_slab:
2573 if (prot->rsk_prot && prot->rsk_prot->slab) {
2574 kmem_cache_destroy(prot->rsk_prot->slab);
2575 prot->rsk_prot->slab = NULL;
2576 }
2577 out_free_request_sock_slab_name:
2578 if (prot->rsk_prot)
2579 kfree(prot->rsk_prot->slab_name);
2580 out_free_sock_slab:
2581 kmem_cache_destroy(prot->slab);
2582 prot->slab = NULL;
2583 out:
2584 return -ENOBUFS;
2585 }
2586 EXPORT_SYMBOL(proto_register);
2587
2588 void proto_unregister(struct proto *prot)
2589 {
2590 mutex_lock(&proto_list_mutex);
2591 release_proto_idx(prot);
2592 list_del(&prot->node);
2593 mutex_unlock(&proto_list_mutex);
2594
2595 if (prot->slab != NULL) {
2596 kmem_cache_destroy(prot->slab);
2597 prot->slab = NULL;
2598 }
2599
2600 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2601 kmem_cache_destroy(prot->rsk_prot->slab);
2602 kfree(prot->rsk_prot->slab_name);
2603 prot->rsk_prot->slab = NULL;
2604 }
2605
2606 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2607 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2608 kfree(prot->twsk_prot->twsk_slab_name);
2609 prot->twsk_prot->twsk_slab = NULL;
2610 }
2611 }
2612 EXPORT_SYMBOL(proto_unregister);
2613
2614 #ifdef CONFIG_PROC_FS
2615 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2616 __acquires(proto_list_mutex)
2617 {
2618 mutex_lock(&proto_list_mutex);
2619 return seq_list_start_head(&proto_list, *pos);
2620 }
2621
2622 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2623 {
2624 return seq_list_next(v, &proto_list, pos);
2625 }
2626
2627 static void proto_seq_stop(struct seq_file *seq, void *v)
2628 __releases(proto_list_mutex)
2629 {
2630 mutex_unlock(&proto_list_mutex);
2631 }
2632
2633 static char proto_method_implemented(const void *method)
2634 {
2635 return method == NULL ? 'n' : 'y';
2636 }
2637 static long sock_prot_memory_allocated(struct proto *proto)
2638 {
2639 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2640 }
2641
2642 static char *sock_prot_memory_pressure(struct proto *proto)
2643 {
2644 return proto->memory_pressure != NULL ?
2645 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2646 }
2647
2648 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2649 {
2650
2651 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2652 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2653 proto->name,
2654 proto->obj_size,
2655 sock_prot_inuse_get(seq_file_net(seq), proto),
2656 sock_prot_memory_allocated(proto),
2657 sock_prot_memory_pressure(proto),
2658 proto->max_header,
2659 proto->slab == NULL ? "no" : "yes",
2660 module_name(proto->owner),
2661 proto_method_implemented(proto->close),
2662 proto_method_implemented(proto->connect),
2663 proto_method_implemented(proto->disconnect),
2664 proto_method_implemented(proto->accept),
2665 proto_method_implemented(proto->ioctl),
2666 proto_method_implemented(proto->init),
2667 proto_method_implemented(proto->destroy),
2668 proto_method_implemented(proto->shutdown),
2669 proto_method_implemented(proto->setsockopt),
2670 proto_method_implemented(proto->getsockopt),
2671 proto_method_implemented(proto->sendmsg),
2672 proto_method_implemented(proto->recvmsg),
2673 proto_method_implemented(proto->sendpage),
2674 proto_method_implemented(proto->bind),
2675 proto_method_implemented(proto->backlog_rcv),
2676 proto_method_implemented(proto->hash),
2677 proto_method_implemented(proto->unhash),
2678 proto_method_implemented(proto->get_port),
2679 proto_method_implemented(proto->enter_memory_pressure));
2680 }
2681
2682 static int proto_seq_show(struct seq_file *seq, void *v)
2683 {
2684 if (v == &proto_list)
2685 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2686 "protocol",
2687 "size",
2688 "sockets",
2689 "memory",
2690 "press",
2691 "maxhdr",
2692 "slab",
2693 "module",
2694 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2695 else
2696 proto_seq_printf(seq, list_entry(v, struct proto, node));
2697 return 0;
2698 }
2699
2700 static const struct seq_operations proto_seq_ops = {
2701 .start = proto_seq_start,
2702 .next = proto_seq_next,
2703 .stop = proto_seq_stop,
2704 .show = proto_seq_show,
2705 };
2706
2707 static int proto_seq_open(struct inode *inode, struct file *file)
2708 {
2709 return seq_open_net(inode, file, &proto_seq_ops,
2710 sizeof(struct seq_net_private));
2711 }
2712
2713 static const struct file_operations proto_seq_fops = {
2714 .owner = THIS_MODULE,
2715 .open = proto_seq_open,
2716 .read = seq_read,
2717 .llseek = seq_lseek,
2718 .release = seq_release_net,
2719 };
2720
2721 static __net_init int proto_init_net(struct net *net)
2722 {
2723 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2724 return -ENOMEM;
2725
2726 return 0;
2727 }
2728
2729 static __net_exit void proto_exit_net(struct net *net)
2730 {
2731 proc_net_remove(net, "protocols");
2732 }
2733
2734
2735 static __net_initdata struct pernet_operations proto_net_ops = {
2736 .init = proto_init_net,
2737 .exit = proto_exit_net,
2738 };
2739
2740 static int __init proto_init(void)
2741 {
2742 return register_pernet_subsys(&proto_net_ops);
2743 }
2744
2745 subsys_initcall(proto_init);
2746
2747 #endif /* PROC_FS */
This page took 0.098515 seconds and 6 git commands to generate.