Merge tag 'wireless-drivers-next-for-davem-2015-05-21' of git://git.kernel.org/pub...
[deliverable/linux.git] / net / core / sock.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134
135 #include <linux/filter.h>
136
137 #include <trace/events/sock.h>
138
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 struct proto *proto;
201 int ret = 0;
202
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
207 if (ret)
208 goto out;
209 }
210 }
211
212 mutex_unlock(&proto_list_mutex);
213 return ret;
214 out:
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
219 return ret;
220 }
221
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 struct proto *proto;
225
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233
234 /*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245
246 /*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332
333 /**
334 * sk_set_memalloc - sets %SOCK_MEMALLOC
335 * @sk: socket to set it on
336 *
337 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338 * It's the responsibility of the admin to adjust min_free_kbytes
339 * to meet the requirements
340 */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 sock_set_flag(sk, SOCK_MEMALLOC);
344 sk->sk_allocation |= __GFP_MEMALLOC;
345 static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 sock_reset_flag(sk, SOCK_MEMALLOC);
352 sk->sk_allocation &= ~__GFP_MEMALLOC;
353 static_key_slow_dec(&memalloc_socks);
354
355 /*
356 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 * it has rmem allocations there is a risk that the user of the
359 * socket cannot make forward progress due to exceeding the rmem
360 * limits. By rights, sk_clear_memalloc() should only be called
361 * on sockets being torn down but warn and reset the accounting if
362 * that assumption breaks.
363 */
364 if (WARN_ON(sk->sk_forward_alloc))
365 sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 int ret;
372 unsigned long pflags = current->flags;
373
374 /* these should have been dropped before queueing */
375 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376
377 current->flags |= PF_MEMALLOC;
378 ret = sk->sk_backlog_rcv(sk, skb);
379 tsk_restore_flags(current, pflags, PF_MEMALLOC);
380
381 return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 struct timeval tv;
388
389 if (optlen < sizeof(tv))
390 return -EINVAL;
391 if (copy_from_user(&tv, optval, sizeof(tv)))
392 return -EFAULT;
393 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 return -EDOM;
395
396 if (tv.tv_sec < 0) {
397 static int warned __read_mostly;
398
399 *timeo_p = 0;
400 if (warned < 10 && net_ratelimit()) {
401 warned++;
402 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 __func__, current->comm, task_pid_nr(current));
404 }
405 return 0;
406 }
407 *timeo_p = MAX_SCHEDULE_TIMEOUT;
408 if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 return 0;
410 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 return 0;
413 }
414
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 static int warned;
418 static char warncomm[TASK_COMM_LEN];
419 if (strcmp(warncomm, current->comm) && warned < 5) {
420 strcpy(warncomm, current->comm);
421 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 warncomm, name);
423 warned++;
424 }
425 }
426
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 if (sk->sk_flags & flags) {
432 sk->sk_flags &= ~flags;
433 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 net_disable_timestamp();
435 }
436 }
437
438
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 int err;
442 unsigned long flags;
443 struct sk_buff_head *list = &sk->sk_receive_queue;
444
445 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 atomic_inc(&sk->sk_drops);
447 trace_sock_rcvqueue_full(sk, skb);
448 return -ENOMEM;
449 }
450
451 err = sk_filter(sk, skb);
452 if (err)
453 return err;
454
455 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 atomic_inc(&sk->sk_drops);
457 return -ENOBUFS;
458 }
459
460 skb->dev = NULL;
461 skb_set_owner_r(skb, sk);
462
463 /* we escape from rcu protected region, make sure we dont leak
464 * a norefcounted dst
465 */
466 skb_dst_force(skb);
467
468 spin_lock_irqsave(&list->lock, flags);
469 sock_skb_set_dropcount(sk, skb);
470 __skb_queue_tail(list, skb);
471 spin_unlock_irqrestore(&list->lock, flags);
472
473 if (!sock_flag(sk, SOCK_DEAD))
474 sk->sk_data_ready(sk);
475 return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 int rc = NET_RX_SUCCESS;
482
483 if (sk_filter(sk, skb))
484 goto discard_and_relse;
485
486 skb->dev = NULL;
487
488 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 atomic_inc(&sk->sk_drops);
490 goto discard_and_relse;
491 }
492 if (nested)
493 bh_lock_sock_nested(sk);
494 else
495 bh_lock_sock(sk);
496 if (!sock_owned_by_user(sk)) {
497 /*
498 * trylock + unlock semantics:
499 */
500 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501
502 rc = sk_backlog_rcv(sk, skb);
503
504 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 bh_unlock_sock(sk);
507 atomic_inc(&sk->sk_drops);
508 goto discard_and_relse;
509 }
510
511 bh_unlock_sock(sk);
512 out:
513 sock_put(sk);
514 return rc;
515 discard_and_relse:
516 kfree_skb(skb);
517 goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 struct dst_entry *dst = __sk_dst_get(sk);
524
525 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 sk_tx_queue_clear(sk);
527 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 dst_release(dst);
529 return NULL;
530 }
531
532 return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 struct dst_entry *dst = sk_dst_get(sk);
539
540 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 sk_dst_reset(sk);
542 dst_release(dst);
543 return NULL;
544 }
545
546 return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 int optlen)
552 {
553 int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 struct net *net = sock_net(sk);
556 char devname[IFNAMSIZ];
557 int index;
558
559 /* Sorry... */
560 ret = -EPERM;
561 if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 goto out;
563
564 ret = -EINVAL;
565 if (optlen < 0)
566 goto out;
567
568 /* Bind this socket to a particular device like "eth0",
569 * as specified in the passed interface name. If the
570 * name is "" or the option length is zero the socket
571 * is not bound.
572 */
573 if (optlen > IFNAMSIZ - 1)
574 optlen = IFNAMSIZ - 1;
575 memset(devname, 0, sizeof(devname));
576
577 ret = -EFAULT;
578 if (copy_from_user(devname, optval, optlen))
579 goto out;
580
581 index = 0;
582 if (devname[0] != '\0') {
583 struct net_device *dev;
584
585 rcu_read_lock();
586 dev = dev_get_by_name_rcu(net, devname);
587 if (dev)
588 index = dev->ifindex;
589 rcu_read_unlock();
590 ret = -ENODEV;
591 if (!dev)
592 goto out;
593 }
594
595 lock_sock(sk);
596 sk->sk_bound_dev_if = index;
597 sk_dst_reset(sk);
598 release_sock(sk);
599
600 ret = 0;
601
602 out:
603 #endif
604
605 return ret;
606 }
607
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 int __user *optlen, int len)
610 {
611 int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 struct net *net = sock_net(sk);
614 char devname[IFNAMSIZ];
615
616 if (sk->sk_bound_dev_if == 0) {
617 len = 0;
618 goto zero;
619 }
620
621 ret = -EINVAL;
622 if (len < IFNAMSIZ)
623 goto out;
624
625 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 if (ret)
627 goto out;
628
629 len = strlen(devname) + 1;
630
631 ret = -EFAULT;
632 if (copy_to_user(optval, devname, len))
633 goto out;
634
635 zero:
636 ret = -EFAULT;
637 if (put_user(len, optlen))
638 goto out;
639
640 ret = 0;
641
642 out:
643 #endif
644
645 return ret;
646 }
647
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 if (valbool)
651 sock_set_flag(sk, bit);
652 else
653 sock_reset_flag(sk, bit);
654 }
655
656 bool sk_mc_loop(struct sock *sk)
657 {
658 if (dev_recursion_level())
659 return false;
660 if (!sk)
661 return true;
662 switch (sk->sk_family) {
663 case AF_INET:
664 return inet_sk(sk)->mc_loop;
665 #if IS_ENABLED(CONFIG_IPV6)
666 case AF_INET6:
667 return inet6_sk(sk)->mc_loop;
668 #endif
669 }
670 WARN_ON(1);
671 return true;
672 }
673 EXPORT_SYMBOL(sk_mc_loop);
674
675 /*
676 * This is meant for all protocols to use and covers goings on
677 * at the socket level. Everything here is generic.
678 */
679
680 int sock_setsockopt(struct socket *sock, int level, int optname,
681 char __user *optval, unsigned int optlen)
682 {
683 struct sock *sk = sock->sk;
684 int val;
685 int valbool;
686 struct linger ling;
687 int ret = 0;
688
689 /*
690 * Options without arguments
691 */
692
693 if (optname == SO_BINDTODEVICE)
694 return sock_setbindtodevice(sk, optval, optlen);
695
696 if (optlen < sizeof(int))
697 return -EINVAL;
698
699 if (get_user(val, (int __user *)optval))
700 return -EFAULT;
701
702 valbool = val ? 1 : 0;
703
704 lock_sock(sk);
705
706 switch (optname) {
707 case SO_DEBUG:
708 if (val && !capable(CAP_NET_ADMIN))
709 ret = -EACCES;
710 else
711 sock_valbool_flag(sk, SOCK_DBG, valbool);
712 break;
713 case SO_REUSEADDR:
714 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
715 break;
716 case SO_REUSEPORT:
717 sk->sk_reuseport = valbool;
718 break;
719 case SO_TYPE:
720 case SO_PROTOCOL:
721 case SO_DOMAIN:
722 case SO_ERROR:
723 ret = -ENOPROTOOPT;
724 break;
725 case SO_DONTROUTE:
726 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
727 break;
728 case SO_BROADCAST:
729 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
730 break;
731 case SO_SNDBUF:
732 /* Don't error on this BSD doesn't and if you think
733 * about it this is right. Otherwise apps have to
734 * play 'guess the biggest size' games. RCVBUF/SNDBUF
735 * are treated in BSD as hints
736 */
737 val = min_t(u32, val, sysctl_wmem_max);
738 set_sndbuf:
739 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
740 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
741 /* Wake up sending tasks if we upped the value. */
742 sk->sk_write_space(sk);
743 break;
744
745 case SO_SNDBUFFORCE:
746 if (!capable(CAP_NET_ADMIN)) {
747 ret = -EPERM;
748 break;
749 }
750 goto set_sndbuf;
751
752 case SO_RCVBUF:
753 /* Don't error on this BSD doesn't and if you think
754 * about it this is right. Otherwise apps have to
755 * play 'guess the biggest size' games. RCVBUF/SNDBUF
756 * are treated in BSD as hints
757 */
758 val = min_t(u32, val, sysctl_rmem_max);
759 set_rcvbuf:
760 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
761 /*
762 * We double it on the way in to account for
763 * "struct sk_buff" etc. overhead. Applications
764 * assume that the SO_RCVBUF setting they make will
765 * allow that much actual data to be received on that
766 * socket.
767 *
768 * Applications are unaware that "struct sk_buff" and
769 * other overheads allocate from the receive buffer
770 * during socket buffer allocation.
771 *
772 * And after considering the possible alternatives,
773 * returning the value we actually used in getsockopt
774 * is the most desirable behavior.
775 */
776 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
777 break;
778
779 case SO_RCVBUFFORCE:
780 if (!capable(CAP_NET_ADMIN)) {
781 ret = -EPERM;
782 break;
783 }
784 goto set_rcvbuf;
785
786 case SO_KEEPALIVE:
787 #ifdef CONFIG_INET
788 if (sk->sk_protocol == IPPROTO_TCP &&
789 sk->sk_type == SOCK_STREAM)
790 tcp_set_keepalive(sk, valbool);
791 #endif
792 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
793 break;
794
795 case SO_OOBINLINE:
796 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
797 break;
798
799 case SO_NO_CHECK:
800 sk->sk_no_check_tx = valbool;
801 break;
802
803 case SO_PRIORITY:
804 if ((val >= 0 && val <= 6) ||
805 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
806 sk->sk_priority = val;
807 else
808 ret = -EPERM;
809 break;
810
811 case SO_LINGER:
812 if (optlen < sizeof(ling)) {
813 ret = -EINVAL; /* 1003.1g */
814 break;
815 }
816 if (copy_from_user(&ling, optval, sizeof(ling))) {
817 ret = -EFAULT;
818 break;
819 }
820 if (!ling.l_onoff)
821 sock_reset_flag(sk, SOCK_LINGER);
822 else {
823 #if (BITS_PER_LONG == 32)
824 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
825 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
826 else
827 #endif
828 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
829 sock_set_flag(sk, SOCK_LINGER);
830 }
831 break;
832
833 case SO_BSDCOMPAT:
834 sock_warn_obsolete_bsdism("setsockopt");
835 break;
836
837 case SO_PASSCRED:
838 if (valbool)
839 set_bit(SOCK_PASSCRED, &sock->flags);
840 else
841 clear_bit(SOCK_PASSCRED, &sock->flags);
842 break;
843
844 case SO_TIMESTAMP:
845 case SO_TIMESTAMPNS:
846 if (valbool) {
847 if (optname == SO_TIMESTAMP)
848 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
849 else
850 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
851 sock_set_flag(sk, SOCK_RCVTSTAMP);
852 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
853 } else {
854 sock_reset_flag(sk, SOCK_RCVTSTAMP);
855 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
856 }
857 break;
858
859 case SO_TIMESTAMPING:
860 if (val & ~SOF_TIMESTAMPING_MASK) {
861 ret = -EINVAL;
862 break;
863 }
864
865 if (val & SOF_TIMESTAMPING_OPT_ID &&
866 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
867 if (sk->sk_protocol == IPPROTO_TCP) {
868 if (sk->sk_state != TCP_ESTABLISHED) {
869 ret = -EINVAL;
870 break;
871 }
872 sk->sk_tskey = tcp_sk(sk)->snd_una;
873 } else {
874 sk->sk_tskey = 0;
875 }
876 }
877 sk->sk_tsflags = val;
878 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
879 sock_enable_timestamp(sk,
880 SOCK_TIMESTAMPING_RX_SOFTWARE);
881 else
882 sock_disable_timestamp(sk,
883 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
884 break;
885
886 case SO_RCVLOWAT:
887 if (val < 0)
888 val = INT_MAX;
889 sk->sk_rcvlowat = val ? : 1;
890 break;
891
892 case SO_RCVTIMEO:
893 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
894 break;
895
896 case SO_SNDTIMEO:
897 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
898 break;
899
900 case SO_ATTACH_FILTER:
901 ret = -EINVAL;
902 if (optlen == sizeof(struct sock_fprog)) {
903 struct sock_fprog fprog;
904
905 ret = -EFAULT;
906 if (copy_from_user(&fprog, optval, sizeof(fprog)))
907 break;
908
909 ret = sk_attach_filter(&fprog, sk);
910 }
911 break;
912
913 case SO_ATTACH_BPF:
914 ret = -EINVAL;
915 if (optlen == sizeof(u32)) {
916 u32 ufd;
917
918 ret = -EFAULT;
919 if (copy_from_user(&ufd, optval, sizeof(ufd)))
920 break;
921
922 ret = sk_attach_bpf(ufd, sk);
923 }
924 break;
925
926 case SO_DETACH_FILTER:
927 ret = sk_detach_filter(sk);
928 break;
929
930 case SO_LOCK_FILTER:
931 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
932 ret = -EPERM;
933 else
934 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
935 break;
936
937 case SO_PASSSEC:
938 if (valbool)
939 set_bit(SOCK_PASSSEC, &sock->flags);
940 else
941 clear_bit(SOCK_PASSSEC, &sock->flags);
942 break;
943 case SO_MARK:
944 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
945 ret = -EPERM;
946 else
947 sk->sk_mark = val;
948 break;
949
950 case SO_RXQ_OVFL:
951 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
952 break;
953
954 case SO_WIFI_STATUS:
955 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
956 break;
957
958 case SO_PEEK_OFF:
959 if (sock->ops->set_peek_off)
960 ret = sock->ops->set_peek_off(sk, val);
961 else
962 ret = -EOPNOTSUPP;
963 break;
964
965 case SO_NOFCS:
966 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
967 break;
968
969 case SO_SELECT_ERR_QUEUE:
970 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
971 break;
972
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 case SO_BUSY_POLL:
975 /* allow unprivileged users to decrease the value */
976 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
977 ret = -EPERM;
978 else {
979 if (val < 0)
980 ret = -EINVAL;
981 else
982 sk->sk_ll_usec = val;
983 }
984 break;
985 #endif
986
987 case SO_MAX_PACING_RATE:
988 sk->sk_max_pacing_rate = val;
989 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
990 sk->sk_max_pacing_rate);
991 break;
992
993 default:
994 ret = -ENOPROTOOPT;
995 break;
996 }
997 release_sock(sk);
998 return ret;
999 }
1000 EXPORT_SYMBOL(sock_setsockopt);
1001
1002
1003 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1004 struct ucred *ucred)
1005 {
1006 ucred->pid = pid_vnr(pid);
1007 ucred->uid = ucred->gid = -1;
1008 if (cred) {
1009 struct user_namespace *current_ns = current_user_ns();
1010
1011 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1012 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1013 }
1014 }
1015
1016 int sock_getsockopt(struct socket *sock, int level, int optname,
1017 char __user *optval, int __user *optlen)
1018 {
1019 struct sock *sk = sock->sk;
1020
1021 union {
1022 int val;
1023 struct linger ling;
1024 struct timeval tm;
1025 } v;
1026
1027 int lv = sizeof(int);
1028 int len;
1029
1030 if (get_user(len, optlen))
1031 return -EFAULT;
1032 if (len < 0)
1033 return -EINVAL;
1034
1035 memset(&v, 0, sizeof(v));
1036
1037 switch (optname) {
1038 case SO_DEBUG:
1039 v.val = sock_flag(sk, SOCK_DBG);
1040 break;
1041
1042 case SO_DONTROUTE:
1043 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1044 break;
1045
1046 case SO_BROADCAST:
1047 v.val = sock_flag(sk, SOCK_BROADCAST);
1048 break;
1049
1050 case SO_SNDBUF:
1051 v.val = sk->sk_sndbuf;
1052 break;
1053
1054 case SO_RCVBUF:
1055 v.val = sk->sk_rcvbuf;
1056 break;
1057
1058 case SO_REUSEADDR:
1059 v.val = sk->sk_reuse;
1060 break;
1061
1062 case SO_REUSEPORT:
1063 v.val = sk->sk_reuseport;
1064 break;
1065
1066 case SO_KEEPALIVE:
1067 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1068 break;
1069
1070 case SO_TYPE:
1071 v.val = sk->sk_type;
1072 break;
1073
1074 case SO_PROTOCOL:
1075 v.val = sk->sk_protocol;
1076 break;
1077
1078 case SO_DOMAIN:
1079 v.val = sk->sk_family;
1080 break;
1081
1082 case SO_ERROR:
1083 v.val = -sock_error(sk);
1084 if (v.val == 0)
1085 v.val = xchg(&sk->sk_err_soft, 0);
1086 break;
1087
1088 case SO_OOBINLINE:
1089 v.val = sock_flag(sk, SOCK_URGINLINE);
1090 break;
1091
1092 case SO_NO_CHECK:
1093 v.val = sk->sk_no_check_tx;
1094 break;
1095
1096 case SO_PRIORITY:
1097 v.val = sk->sk_priority;
1098 break;
1099
1100 case SO_LINGER:
1101 lv = sizeof(v.ling);
1102 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1103 v.ling.l_linger = sk->sk_lingertime / HZ;
1104 break;
1105
1106 case SO_BSDCOMPAT:
1107 sock_warn_obsolete_bsdism("getsockopt");
1108 break;
1109
1110 case SO_TIMESTAMP:
1111 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1112 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1113 break;
1114
1115 case SO_TIMESTAMPNS:
1116 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1117 break;
1118
1119 case SO_TIMESTAMPING:
1120 v.val = sk->sk_tsflags;
1121 break;
1122
1123 case SO_RCVTIMEO:
1124 lv = sizeof(struct timeval);
1125 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1126 v.tm.tv_sec = 0;
1127 v.tm.tv_usec = 0;
1128 } else {
1129 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1130 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1131 }
1132 break;
1133
1134 case SO_SNDTIMEO:
1135 lv = sizeof(struct timeval);
1136 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1137 v.tm.tv_sec = 0;
1138 v.tm.tv_usec = 0;
1139 } else {
1140 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1141 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1142 }
1143 break;
1144
1145 case SO_RCVLOWAT:
1146 v.val = sk->sk_rcvlowat;
1147 break;
1148
1149 case SO_SNDLOWAT:
1150 v.val = 1;
1151 break;
1152
1153 case SO_PASSCRED:
1154 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1155 break;
1156
1157 case SO_PEERCRED:
1158 {
1159 struct ucred peercred;
1160 if (len > sizeof(peercred))
1161 len = sizeof(peercred);
1162 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1163 if (copy_to_user(optval, &peercred, len))
1164 return -EFAULT;
1165 goto lenout;
1166 }
1167
1168 case SO_PEERNAME:
1169 {
1170 char address[128];
1171
1172 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1173 return -ENOTCONN;
1174 if (lv < len)
1175 return -EINVAL;
1176 if (copy_to_user(optval, address, len))
1177 return -EFAULT;
1178 goto lenout;
1179 }
1180
1181 /* Dubious BSD thing... Probably nobody even uses it, but
1182 * the UNIX standard wants it for whatever reason... -DaveM
1183 */
1184 case SO_ACCEPTCONN:
1185 v.val = sk->sk_state == TCP_LISTEN;
1186 break;
1187
1188 case SO_PASSSEC:
1189 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1190 break;
1191
1192 case SO_PEERSEC:
1193 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1194
1195 case SO_MARK:
1196 v.val = sk->sk_mark;
1197 break;
1198
1199 case SO_RXQ_OVFL:
1200 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1201 break;
1202
1203 case SO_WIFI_STATUS:
1204 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1205 break;
1206
1207 case SO_PEEK_OFF:
1208 if (!sock->ops->set_peek_off)
1209 return -EOPNOTSUPP;
1210
1211 v.val = sk->sk_peek_off;
1212 break;
1213 case SO_NOFCS:
1214 v.val = sock_flag(sk, SOCK_NOFCS);
1215 break;
1216
1217 case SO_BINDTODEVICE:
1218 return sock_getbindtodevice(sk, optval, optlen, len);
1219
1220 case SO_GET_FILTER:
1221 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1222 if (len < 0)
1223 return len;
1224
1225 goto lenout;
1226
1227 case SO_LOCK_FILTER:
1228 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1229 break;
1230
1231 case SO_BPF_EXTENSIONS:
1232 v.val = bpf_tell_extensions();
1233 break;
1234
1235 case SO_SELECT_ERR_QUEUE:
1236 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1237 break;
1238
1239 #ifdef CONFIG_NET_RX_BUSY_POLL
1240 case SO_BUSY_POLL:
1241 v.val = sk->sk_ll_usec;
1242 break;
1243 #endif
1244
1245 case SO_MAX_PACING_RATE:
1246 v.val = sk->sk_max_pacing_rate;
1247 break;
1248
1249 case SO_INCOMING_CPU:
1250 v.val = sk->sk_incoming_cpu;
1251 break;
1252
1253 default:
1254 /* We implement the SO_SNDLOWAT etc to not be settable
1255 * (1003.1g 7).
1256 */
1257 return -ENOPROTOOPT;
1258 }
1259
1260 if (len > lv)
1261 len = lv;
1262 if (copy_to_user(optval, &v, len))
1263 return -EFAULT;
1264 lenout:
1265 if (put_user(len, optlen))
1266 return -EFAULT;
1267 return 0;
1268 }
1269
1270 /*
1271 * Initialize an sk_lock.
1272 *
1273 * (We also register the sk_lock with the lock validator.)
1274 */
1275 static inline void sock_lock_init(struct sock *sk)
1276 {
1277 sock_lock_init_class_and_name(sk,
1278 af_family_slock_key_strings[sk->sk_family],
1279 af_family_slock_keys + sk->sk_family,
1280 af_family_key_strings[sk->sk_family],
1281 af_family_keys + sk->sk_family);
1282 }
1283
1284 /*
1285 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1286 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1287 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1288 */
1289 static void sock_copy(struct sock *nsk, const struct sock *osk)
1290 {
1291 #ifdef CONFIG_SECURITY_NETWORK
1292 void *sptr = nsk->sk_security;
1293 #endif
1294 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1295
1296 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1297 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1298
1299 #ifdef CONFIG_SECURITY_NETWORK
1300 nsk->sk_security = sptr;
1301 security_sk_clone(osk, nsk);
1302 #endif
1303 }
1304
1305 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1306 {
1307 unsigned long nulls1, nulls2;
1308
1309 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1310 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1311 if (nulls1 > nulls2)
1312 swap(nulls1, nulls2);
1313
1314 if (nulls1 != 0)
1315 memset((char *)sk, 0, nulls1);
1316 memset((char *)sk + nulls1 + sizeof(void *), 0,
1317 nulls2 - nulls1 - sizeof(void *));
1318 memset((char *)sk + nulls2 + sizeof(void *), 0,
1319 size - nulls2 - sizeof(void *));
1320 }
1321 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1322
1323 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1324 int family)
1325 {
1326 struct sock *sk;
1327 struct kmem_cache *slab;
1328
1329 slab = prot->slab;
1330 if (slab != NULL) {
1331 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1332 if (!sk)
1333 return sk;
1334 if (priority & __GFP_ZERO) {
1335 if (prot->clear_sk)
1336 prot->clear_sk(sk, prot->obj_size);
1337 else
1338 sk_prot_clear_nulls(sk, prot->obj_size);
1339 }
1340 } else
1341 sk = kmalloc(prot->obj_size, priority);
1342
1343 if (sk != NULL) {
1344 kmemcheck_annotate_bitfield(sk, flags);
1345
1346 if (security_sk_alloc(sk, family, priority))
1347 goto out_free;
1348
1349 if (!try_module_get(prot->owner))
1350 goto out_free_sec;
1351 sk_tx_queue_clear(sk);
1352 }
1353
1354 return sk;
1355
1356 out_free_sec:
1357 security_sk_free(sk);
1358 out_free:
1359 if (slab != NULL)
1360 kmem_cache_free(slab, sk);
1361 else
1362 kfree(sk);
1363 return NULL;
1364 }
1365
1366 static void sk_prot_free(struct proto *prot, struct sock *sk)
1367 {
1368 struct kmem_cache *slab;
1369 struct module *owner;
1370
1371 owner = prot->owner;
1372 slab = prot->slab;
1373
1374 security_sk_free(sk);
1375 if (slab != NULL)
1376 kmem_cache_free(slab, sk);
1377 else
1378 kfree(sk);
1379 module_put(owner);
1380 }
1381
1382 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1383 void sock_update_netprioidx(struct sock *sk)
1384 {
1385 if (in_interrupt())
1386 return;
1387
1388 sk->sk_cgrp_prioidx = task_netprioidx(current);
1389 }
1390 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1391 #endif
1392
1393 /**
1394 * sk_alloc - All socket objects are allocated here
1395 * @net: the applicable net namespace
1396 * @family: protocol family
1397 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1398 * @prot: struct proto associated with this new sock instance
1399 * @kern: is this to be a kernel socket?
1400 */
1401 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1402 struct proto *prot, int kern)
1403 {
1404 struct sock *sk;
1405
1406 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1407 if (sk) {
1408 sk->sk_family = family;
1409 /*
1410 * See comment in struct sock definition to understand
1411 * why we need sk_prot_creator -acme
1412 */
1413 sk->sk_prot = sk->sk_prot_creator = prot;
1414 sock_lock_init(sk);
1415 sk->sk_net_refcnt = kern ? 0 : 1;
1416 if (likely(sk->sk_net_refcnt))
1417 get_net(net);
1418 sock_net_set(sk, net);
1419 atomic_set(&sk->sk_wmem_alloc, 1);
1420
1421 sock_update_classid(sk);
1422 sock_update_netprioidx(sk);
1423 }
1424
1425 return sk;
1426 }
1427 EXPORT_SYMBOL(sk_alloc);
1428
1429 static void __sk_free(struct sock *sk)
1430 {
1431 struct sk_filter *filter;
1432
1433 if (sk->sk_destruct)
1434 sk->sk_destruct(sk);
1435
1436 filter = rcu_dereference_check(sk->sk_filter,
1437 atomic_read(&sk->sk_wmem_alloc) == 0);
1438 if (filter) {
1439 sk_filter_uncharge(sk, filter);
1440 RCU_INIT_POINTER(sk->sk_filter, NULL);
1441 }
1442
1443 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1444
1445 if (atomic_read(&sk->sk_omem_alloc))
1446 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1447 __func__, atomic_read(&sk->sk_omem_alloc));
1448
1449 if (sk->sk_peer_cred)
1450 put_cred(sk->sk_peer_cred);
1451 put_pid(sk->sk_peer_pid);
1452 if (likely(sk->sk_net_refcnt))
1453 put_net(sock_net(sk));
1454 sk_prot_free(sk->sk_prot_creator, sk);
1455 }
1456
1457 void sk_free(struct sock *sk)
1458 {
1459 /*
1460 * We subtract one from sk_wmem_alloc and can know if
1461 * some packets are still in some tx queue.
1462 * If not null, sock_wfree() will call __sk_free(sk) later
1463 */
1464 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1465 __sk_free(sk);
1466 }
1467 EXPORT_SYMBOL(sk_free);
1468
1469 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1470 {
1471 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1472 sock_update_memcg(newsk);
1473 }
1474
1475 /**
1476 * sk_clone_lock - clone a socket, and lock its clone
1477 * @sk: the socket to clone
1478 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1479 *
1480 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1481 */
1482 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1483 {
1484 struct sock *newsk;
1485 bool is_charged = true;
1486
1487 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1488 if (newsk != NULL) {
1489 struct sk_filter *filter;
1490
1491 sock_copy(newsk, sk);
1492
1493 /* SANITY */
1494 get_net(sock_net(newsk));
1495 sk_node_init(&newsk->sk_node);
1496 sock_lock_init(newsk);
1497 bh_lock_sock(newsk);
1498 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1499 newsk->sk_backlog.len = 0;
1500
1501 atomic_set(&newsk->sk_rmem_alloc, 0);
1502 /*
1503 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1504 */
1505 atomic_set(&newsk->sk_wmem_alloc, 1);
1506 atomic_set(&newsk->sk_omem_alloc, 0);
1507 skb_queue_head_init(&newsk->sk_receive_queue);
1508 skb_queue_head_init(&newsk->sk_write_queue);
1509
1510 spin_lock_init(&newsk->sk_dst_lock);
1511 rwlock_init(&newsk->sk_callback_lock);
1512 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1513 af_callback_keys + newsk->sk_family,
1514 af_family_clock_key_strings[newsk->sk_family]);
1515
1516 newsk->sk_dst_cache = NULL;
1517 newsk->sk_wmem_queued = 0;
1518 newsk->sk_forward_alloc = 0;
1519 newsk->sk_send_head = NULL;
1520 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1521
1522 sock_reset_flag(newsk, SOCK_DONE);
1523 skb_queue_head_init(&newsk->sk_error_queue);
1524
1525 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1526 if (filter != NULL)
1527 /* though it's an empty new sock, the charging may fail
1528 * if sysctl_optmem_max was changed between creation of
1529 * original socket and cloning
1530 */
1531 is_charged = sk_filter_charge(newsk, filter);
1532
1533 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1534 /* It is still raw copy of parent, so invalidate
1535 * destructor and make plain sk_free() */
1536 newsk->sk_destruct = NULL;
1537 bh_unlock_sock(newsk);
1538 sk_free(newsk);
1539 newsk = NULL;
1540 goto out;
1541 }
1542
1543 newsk->sk_err = 0;
1544 newsk->sk_priority = 0;
1545 newsk->sk_incoming_cpu = raw_smp_processor_id();
1546 atomic64_set(&newsk->sk_cookie, 0);
1547 /*
1548 * Before updating sk_refcnt, we must commit prior changes to memory
1549 * (Documentation/RCU/rculist_nulls.txt for details)
1550 */
1551 smp_wmb();
1552 atomic_set(&newsk->sk_refcnt, 2);
1553
1554 /*
1555 * Increment the counter in the same struct proto as the master
1556 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1557 * is the same as sk->sk_prot->socks, as this field was copied
1558 * with memcpy).
1559 *
1560 * This _changes_ the previous behaviour, where
1561 * tcp_create_openreq_child always was incrementing the
1562 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1563 * to be taken into account in all callers. -acme
1564 */
1565 sk_refcnt_debug_inc(newsk);
1566 sk_set_socket(newsk, NULL);
1567 newsk->sk_wq = NULL;
1568
1569 sk_update_clone(sk, newsk);
1570
1571 if (newsk->sk_prot->sockets_allocated)
1572 sk_sockets_allocated_inc(newsk);
1573
1574 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1575 net_enable_timestamp();
1576 }
1577 out:
1578 return newsk;
1579 }
1580 EXPORT_SYMBOL_GPL(sk_clone_lock);
1581
1582 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1583 {
1584 __sk_dst_set(sk, dst);
1585 sk->sk_route_caps = dst->dev->features;
1586 if (sk->sk_route_caps & NETIF_F_GSO)
1587 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1588 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1589 if (sk_can_gso(sk)) {
1590 if (dst->header_len) {
1591 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1592 } else {
1593 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1594 sk->sk_gso_max_size = dst->dev->gso_max_size;
1595 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1596 }
1597 }
1598 }
1599 EXPORT_SYMBOL_GPL(sk_setup_caps);
1600
1601 /*
1602 * Simple resource managers for sockets.
1603 */
1604
1605
1606 /*
1607 * Write buffer destructor automatically called from kfree_skb.
1608 */
1609 void sock_wfree(struct sk_buff *skb)
1610 {
1611 struct sock *sk = skb->sk;
1612 unsigned int len = skb->truesize;
1613
1614 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1615 /*
1616 * Keep a reference on sk_wmem_alloc, this will be released
1617 * after sk_write_space() call
1618 */
1619 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1620 sk->sk_write_space(sk);
1621 len = 1;
1622 }
1623 /*
1624 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1625 * could not do because of in-flight packets
1626 */
1627 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1628 __sk_free(sk);
1629 }
1630 EXPORT_SYMBOL(sock_wfree);
1631
1632 void skb_orphan_partial(struct sk_buff *skb)
1633 {
1634 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1635 * so we do not completely orphan skb, but transfert all
1636 * accounted bytes but one, to avoid unexpected reorders.
1637 */
1638 if (skb->destructor == sock_wfree
1639 #ifdef CONFIG_INET
1640 || skb->destructor == tcp_wfree
1641 #endif
1642 ) {
1643 atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1644 skb->truesize = 1;
1645 } else {
1646 skb_orphan(skb);
1647 }
1648 }
1649 EXPORT_SYMBOL(skb_orphan_partial);
1650
1651 /*
1652 * Read buffer destructor automatically called from kfree_skb.
1653 */
1654 void sock_rfree(struct sk_buff *skb)
1655 {
1656 struct sock *sk = skb->sk;
1657 unsigned int len = skb->truesize;
1658
1659 atomic_sub(len, &sk->sk_rmem_alloc);
1660 sk_mem_uncharge(sk, len);
1661 }
1662 EXPORT_SYMBOL(sock_rfree);
1663
1664 /*
1665 * Buffer destructor for skbs that are not used directly in read or write
1666 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1667 */
1668 void sock_efree(struct sk_buff *skb)
1669 {
1670 sock_put(skb->sk);
1671 }
1672 EXPORT_SYMBOL(sock_efree);
1673
1674 kuid_t sock_i_uid(struct sock *sk)
1675 {
1676 kuid_t uid;
1677
1678 read_lock_bh(&sk->sk_callback_lock);
1679 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1680 read_unlock_bh(&sk->sk_callback_lock);
1681 return uid;
1682 }
1683 EXPORT_SYMBOL(sock_i_uid);
1684
1685 unsigned long sock_i_ino(struct sock *sk)
1686 {
1687 unsigned long ino;
1688
1689 read_lock_bh(&sk->sk_callback_lock);
1690 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1691 read_unlock_bh(&sk->sk_callback_lock);
1692 return ino;
1693 }
1694 EXPORT_SYMBOL(sock_i_ino);
1695
1696 /*
1697 * Allocate a skb from the socket's send buffer.
1698 */
1699 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1700 gfp_t priority)
1701 {
1702 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1703 struct sk_buff *skb = alloc_skb(size, priority);
1704 if (skb) {
1705 skb_set_owner_w(skb, sk);
1706 return skb;
1707 }
1708 }
1709 return NULL;
1710 }
1711 EXPORT_SYMBOL(sock_wmalloc);
1712
1713 /*
1714 * Allocate a memory block from the socket's option memory buffer.
1715 */
1716 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1717 {
1718 if ((unsigned int)size <= sysctl_optmem_max &&
1719 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1720 void *mem;
1721 /* First do the add, to avoid the race if kmalloc
1722 * might sleep.
1723 */
1724 atomic_add(size, &sk->sk_omem_alloc);
1725 mem = kmalloc(size, priority);
1726 if (mem)
1727 return mem;
1728 atomic_sub(size, &sk->sk_omem_alloc);
1729 }
1730 return NULL;
1731 }
1732 EXPORT_SYMBOL(sock_kmalloc);
1733
1734 /* Free an option memory block. Note, we actually want the inline
1735 * here as this allows gcc to detect the nullify and fold away the
1736 * condition entirely.
1737 */
1738 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1739 const bool nullify)
1740 {
1741 if (WARN_ON_ONCE(!mem))
1742 return;
1743 if (nullify)
1744 kzfree(mem);
1745 else
1746 kfree(mem);
1747 atomic_sub(size, &sk->sk_omem_alloc);
1748 }
1749
1750 void sock_kfree_s(struct sock *sk, void *mem, int size)
1751 {
1752 __sock_kfree_s(sk, mem, size, false);
1753 }
1754 EXPORT_SYMBOL(sock_kfree_s);
1755
1756 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1757 {
1758 __sock_kfree_s(sk, mem, size, true);
1759 }
1760 EXPORT_SYMBOL(sock_kzfree_s);
1761
1762 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1763 I think, these locks should be removed for datagram sockets.
1764 */
1765 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1766 {
1767 DEFINE_WAIT(wait);
1768
1769 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1770 for (;;) {
1771 if (!timeo)
1772 break;
1773 if (signal_pending(current))
1774 break;
1775 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1776 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1777 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1778 break;
1779 if (sk->sk_shutdown & SEND_SHUTDOWN)
1780 break;
1781 if (sk->sk_err)
1782 break;
1783 timeo = schedule_timeout(timeo);
1784 }
1785 finish_wait(sk_sleep(sk), &wait);
1786 return timeo;
1787 }
1788
1789
1790 /*
1791 * Generic send/receive buffer handlers
1792 */
1793
1794 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1795 unsigned long data_len, int noblock,
1796 int *errcode, int max_page_order)
1797 {
1798 struct sk_buff *skb;
1799 long timeo;
1800 int err;
1801
1802 timeo = sock_sndtimeo(sk, noblock);
1803 for (;;) {
1804 err = sock_error(sk);
1805 if (err != 0)
1806 goto failure;
1807
1808 err = -EPIPE;
1809 if (sk->sk_shutdown & SEND_SHUTDOWN)
1810 goto failure;
1811
1812 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1813 break;
1814
1815 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1816 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1817 err = -EAGAIN;
1818 if (!timeo)
1819 goto failure;
1820 if (signal_pending(current))
1821 goto interrupted;
1822 timeo = sock_wait_for_wmem(sk, timeo);
1823 }
1824 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1825 errcode, sk->sk_allocation);
1826 if (skb)
1827 skb_set_owner_w(skb, sk);
1828 return skb;
1829
1830 interrupted:
1831 err = sock_intr_errno(timeo);
1832 failure:
1833 *errcode = err;
1834 return NULL;
1835 }
1836 EXPORT_SYMBOL(sock_alloc_send_pskb);
1837
1838 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1839 int noblock, int *errcode)
1840 {
1841 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1842 }
1843 EXPORT_SYMBOL(sock_alloc_send_skb);
1844
1845 /* On 32bit arches, an skb frag is limited to 2^15 */
1846 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1847
1848 /**
1849 * skb_page_frag_refill - check that a page_frag contains enough room
1850 * @sz: minimum size of the fragment we want to get
1851 * @pfrag: pointer to page_frag
1852 * @gfp: priority for memory allocation
1853 *
1854 * Note: While this allocator tries to use high order pages, there is
1855 * no guarantee that allocations succeed. Therefore, @sz MUST be
1856 * less or equal than PAGE_SIZE.
1857 */
1858 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1859 {
1860 if (pfrag->page) {
1861 if (atomic_read(&pfrag->page->_count) == 1) {
1862 pfrag->offset = 0;
1863 return true;
1864 }
1865 if (pfrag->offset + sz <= pfrag->size)
1866 return true;
1867 put_page(pfrag->page);
1868 }
1869
1870 pfrag->offset = 0;
1871 if (SKB_FRAG_PAGE_ORDER) {
1872 pfrag->page = alloc_pages(gfp | __GFP_COMP |
1873 __GFP_NOWARN | __GFP_NORETRY,
1874 SKB_FRAG_PAGE_ORDER);
1875 if (likely(pfrag->page)) {
1876 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1877 return true;
1878 }
1879 }
1880 pfrag->page = alloc_page(gfp);
1881 if (likely(pfrag->page)) {
1882 pfrag->size = PAGE_SIZE;
1883 return true;
1884 }
1885 return false;
1886 }
1887 EXPORT_SYMBOL(skb_page_frag_refill);
1888
1889 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1890 {
1891 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1892 return true;
1893
1894 sk_enter_memory_pressure(sk);
1895 sk_stream_moderate_sndbuf(sk);
1896 return false;
1897 }
1898 EXPORT_SYMBOL(sk_page_frag_refill);
1899
1900 static void __lock_sock(struct sock *sk)
1901 __releases(&sk->sk_lock.slock)
1902 __acquires(&sk->sk_lock.slock)
1903 {
1904 DEFINE_WAIT(wait);
1905
1906 for (;;) {
1907 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1908 TASK_UNINTERRUPTIBLE);
1909 spin_unlock_bh(&sk->sk_lock.slock);
1910 schedule();
1911 spin_lock_bh(&sk->sk_lock.slock);
1912 if (!sock_owned_by_user(sk))
1913 break;
1914 }
1915 finish_wait(&sk->sk_lock.wq, &wait);
1916 }
1917
1918 static void __release_sock(struct sock *sk)
1919 __releases(&sk->sk_lock.slock)
1920 __acquires(&sk->sk_lock.slock)
1921 {
1922 struct sk_buff *skb = sk->sk_backlog.head;
1923
1924 do {
1925 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1926 bh_unlock_sock(sk);
1927
1928 do {
1929 struct sk_buff *next = skb->next;
1930
1931 prefetch(next);
1932 WARN_ON_ONCE(skb_dst_is_noref(skb));
1933 skb->next = NULL;
1934 sk_backlog_rcv(sk, skb);
1935
1936 /*
1937 * We are in process context here with softirqs
1938 * disabled, use cond_resched_softirq() to preempt.
1939 * This is safe to do because we've taken the backlog
1940 * queue private:
1941 */
1942 cond_resched_softirq();
1943
1944 skb = next;
1945 } while (skb != NULL);
1946
1947 bh_lock_sock(sk);
1948 } while ((skb = sk->sk_backlog.head) != NULL);
1949
1950 /*
1951 * Doing the zeroing here guarantee we can not loop forever
1952 * while a wild producer attempts to flood us.
1953 */
1954 sk->sk_backlog.len = 0;
1955 }
1956
1957 /**
1958 * sk_wait_data - wait for data to arrive at sk_receive_queue
1959 * @sk: sock to wait on
1960 * @timeo: for how long
1961 *
1962 * Now socket state including sk->sk_err is changed only under lock,
1963 * hence we may omit checks after joining wait queue.
1964 * We check receive queue before schedule() only as optimization;
1965 * it is very likely that release_sock() added new data.
1966 */
1967 int sk_wait_data(struct sock *sk, long *timeo)
1968 {
1969 int rc;
1970 DEFINE_WAIT(wait);
1971
1972 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1973 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1974 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1975 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1976 finish_wait(sk_sleep(sk), &wait);
1977 return rc;
1978 }
1979 EXPORT_SYMBOL(sk_wait_data);
1980
1981 /**
1982 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1983 * @sk: socket
1984 * @size: memory size to allocate
1985 * @kind: allocation type
1986 *
1987 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1988 * rmem allocation. This function assumes that protocols which have
1989 * memory_pressure use sk_wmem_queued as write buffer accounting.
1990 */
1991 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1992 {
1993 struct proto *prot = sk->sk_prot;
1994 int amt = sk_mem_pages(size);
1995 long allocated;
1996 int parent_status = UNDER_LIMIT;
1997
1998 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1999
2000 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2001
2002 /* Under limit. */
2003 if (parent_status == UNDER_LIMIT &&
2004 allocated <= sk_prot_mem_limits(sk, 0)) {
2005 sk_leave_memory_pressure(sk);
2006 return 1;
2007 }
2008
2009 /* Under pressure. (we or our parents) */
2010 if ((parent_status > SOFT_LIMIT) ||
2011 allocated > sk_prot_mem_limits(sk, 1))
2012 sk_enter_memory_pressure(sk);
2013
2014 /* Over hard limit (we or our parents) */
2015 if ((parent_status == OVER_LIMIT) ||
2016 (allocated > sk_prot_mem_limits(sk, 2)))
2017 goto suppress_allocation;
2018
2019 /* guarantee minimum buffer size under pressure */
2020 if (kind == SK_MEM_RECV) {
2021 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2022 return 1;
2023
2024 } else { /* SK_MEM_SEND */
2025 if (sk->sk_type == SOCK_STREAM) {
2026 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2027 return 1;
2028 } else if (atomic_read(&sk->sk_wmem_alloc) <
2029 prot->sysctl_wmem[0])
2030 return 1;
2031 }
2032
2033 if (sk_has_memory_pressure(sk)) {
2034 int alloc;
2035
2036 if (!sk_under_memory_pressure(sk))
2037 return 1;
2038 alloc = sk_sockets_allocated_read_positive(sk);
2039 if (sk_prot_mem_limits(sk, 2) > alloc *
2040 sk_mem_pages(sk->sk_wmem_queued +
2041 atomic_read(&sk->sk_rmem_alloc) +
2042 sk->sk_forward_alloc))
2043 return 1;
2044 }
2045
2046 suppress_allocation:
2047
2048 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2049 sk_stream_moderate_sndbuf(sk);
2050
2051 /* Fail only if socket is _under_ its sndbuf.
2052 * In this case we cannot block, so that we have to fail.
2053 */
2054 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2055 return 1;
2056 }
2057
2058 trace_sock_exceed_buf_limit(sk, prot, allocated);
2059
2060 /* Alas. Undo changes. */
2061 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2062
2063 sk_memory_allocated_sub(sk, amt);
2064
2065 return 0;
2066 }
2067 EXPORT_SYMBOL(__sk_mem_schedule);
2068
2069 /**
2070 * __sk_reclaim - reclaim memory_allocated
2071 * @sk: socket
2072 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2073 */
2074 void __sk_mem_reclaim(struct sock *sk, int amount)
2075 {
2076 amount >>= SK_MEM_QUANTUM_SHIFT;
2077 sk_memory_allocated_sub(sk, amount);
2078 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2079
2080 if (sk_under_memory_pressure(sk) &&
2081 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2082 sk_leave_memory_pressure(sk);
2083 }
2084 EXPORT_SYMBOL(__sk_mem_reclaim);
2085
2086
2087 /*
2088 * Set of default routines for initialising struct proto_ops when
2089 * the protocol does not support a particular function. In certain
2090 * cases where it makes no sense for a protocol to have a "do nothing"
2091 * function, some default processing is provided.
2092 */
2093
2094 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2095 {
2096 return -EOPNOTSUPP;
2097 }
2098 EXPORT_SYMBOL(sock_no_bind);
2099
2100 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2101 int len, int flags)
2102 {
2103 return -EOPNOTSUPP;
2104 }
2105 EXPORT_SYMBOL(sock_no_connect);
2106
2107 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2108 {
2109 return -EOPNOTSUPP;
2110 }
2111 EXPORT_SYMBOL(sock_no_socketpair);
2112
2113 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2114 {
2115 return -EOPNOTSUPP;
2116 }
2117 EXPORT_SYMBOL(sock_no_accept);
2118
2119 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2120 int *len, int peer)
2121 {
2122 return -EOPNOTSUPP;
2123 }
2124 EXPORT_SYMBOL(sock_no_getname);
2125
2126 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2127 {
2128 return 0;
2129 }
2130 EXPORT_SYMBOL(sock_no_poll);
2131
2132 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2133 {
2134 return -EOPNOTSUPP;
2135 }
2136 EXPORT_SYMBOL(sock_no_ioctl);
2137
2138 int sock_no_listen(struct socket *sock, int backlog)
2139 {
2140 return -EOPNOTSUPP;
2141 }
2142 EXPORT_SYMBOL(sock_no_listen);
2143
2144 int sock_no_shutdown(struct socket *sock, int how)
2145 {
2146 return -EOPNOTSUPP;
2147 }
2148 EXPORT_SYMBOL(sock_no_shutdown);
2149
2150 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2151 char __user *optval, unsigned int optlen)
2152 {
2153 return -EOPNOTSUPP;
2154 }
2155 EXPORT_SYMBOL(sock_no_setsockopt);
2156
2157 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2158 char __user *optval, int __user *optlen)
2159 {
2160 return -EOPNOTSUPP;
2161 }
2162 EXPORT_SYMBOL(sock_no_getsockopt);
2163
2164 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2165 {
2166 return -EOPNOTSUPP;
2167 }
2168 EXPORT_SYMBOL(sock_no_sendmsg);
2169
2170 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2171 int flags)
2172 {
2173 return -EOPNOTSUPP;
2174 }
2175 EXPORT_SYMBOL(sock_no_recvmsg);
2176
2177 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2178 {
2179 /* Mirror missing mmap method error code */
2180 return -ENODEV;
2181 }
2182 EXPORT_SYMBOL(sock_no_mmap);
2183
2184 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2185 {
2186 ssize_t res;
2187 struct msghdr msg = {.msg_flags = flags};
2188 struct kvec iov;
2189 char *kaddr = kmap(page);
2190 iov.iov_base = kaddr + offset;
2191 iov.iov_len = size;
2192 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2193 kunmap(page);
2194 return res;
2195 }
2196 EXPORT_SYMBOL(sock_no_sendpage);
2197
2198 /*
2199 * Default Socket Callbacks
2200 */
2201
2202 static void sock_def_wakeup(struct sock *sk)
2203 {
2204 struct socket_wq *wq;
2205
2206 rcu_read_lock();
2207 wq = rcu_dereference(sk->sk_wq);
2208 if (wq_has_sleeper(wq))
2209 wake_up_interruptible_all(&wq->wait);
2210 rcu_read_unlock();
2211 }
2212
2213 static void sock_def_error_report(struct sock *sk)
2214 {
2215 struct socket_wq *wq;
2216
2217 rcu_read_lock();
2218 wq = rcu_dereference(sk->sk_wq);
2219 if (wq_has_sleeper(wq))
2220 wake_up_interruptible_poll(&wq->wait, POLLERR);
2221 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2222 rcu_read_unlock();
2223 }
2224
2225 static void sock_def_readable(struct sock *sk)
2226 {
2227 struct socket_wq *wq;
2228
2229 rcu_read_lock();
2230 wq = rcu_dereference(sk->sk_wq);
2231 if (wq_has_sleeper(wq))
2232 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2233 POLLRDNORM | POLLRDBAND);
2234 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2235 rcu_read_unlock();
2236 }
2237
2238 static void sock_def_write_space(struct sock *sk)
2239 {
2240 struct socket_wq *wq;
2241
2242 rcu_read_lock();
2243
2244 /* Do not wake up a writer until he can make "significant"
2245 * progress. --DaveM
2246 */
2247 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2248 wq = rcu_dereference(sk->sk_wq);
2249 if (wq_has_sleeper(wq))
2250 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2251 POLLWRNORM | POLLWRBAND);
2252
2253 /* Should agree with poll, otherwise some programs break */
2254 if (sock_writeable(sk))
2255 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2256 }
2257
2258 rcu_read_unlock();
2259 }
2260
2261 static void sock_def_destruct(struct sock *sk)
2262 {
2263 kfree(sk->sk_protinfo);
2264 }
2265
2266 void sk_send_sigurg(struct sock *sk)
2267 {
2268 if (sk->sk_socket && sk->sk_socket->file)
2269 if (send_sigurg(&sk->sk_socket->file->f_owner))
2270 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2271 }
2272 EXPORT_SYMBOL(sk_send_sigurg);
2273
2274 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2275 unsigned long expires)
2276 {
2277 if (!mod_timer(timer, expires))
2278 sock_hold(sk);
2279 }
2280 EXPORT_SYMBOL(sk_reset_timer);
2281
2282 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2283 {
2284 if (del_timer(timer))
2285 __sock_put(sk);
2286 }
2287 EXPORT_SYMBOL(sk_stop_timer);
2288
2289 void sock_init_data(struct socket *sock, struct sock *sk)
2290 {
2291 skb_queue_head_init(&sk->sk_receive_queue);
2292 skb_queue_head_init(&sk->sk_write_queue);
2293 skb_queue_head_init(&sk->sk_error_queue);
2294
2295 sk->sk_send_head = NULL;
2296
2297 init_timer(&sk->sk_timer);
2298
2299 sk->sk_allocation = GFP_KERNEL;
2300 sk->sk_rcvbuf = sysctl_rmem_default;
2301 sk->sk_sndbuf = sysctl_wmem_default;
2302 sk->sk_state = TCP_CLOSE;
2303 sk_set_socket(sk, sock);
2304
2305 sock_set_flag(sk, SOCK_ZAPPED);
2306
2307 if (sock) {
2308 sk->sk_type = sock->type;
2309 sk->sk_wq = sock->wq;
2310 sock->sk = sk;
2311 } else
2312 sk->sk_wq = NULL;
2313
2314 spin_lock_init(&sk->sk_dst_lock);
2315 rwlock_init(&sk->sk_callback_lock);
2316 lockdep_set_class_and_name(&sk->sk_callback_lock,
2317 af_callback_keys + sk->sk_family,
2318 af_family_clock_key_strings[sk->sk_family]);
2319
2320 sk->sk_state_change = sock_def_wakeup;
2321 sk->sk_data_ready = sock_def_readable;
2322 sk->sk_write_space = sock_def_write_space;
2323 sk->sk_error_report = sock_def_error_report;
2324 sk->sk_destruct = sock_def_destruct;
2325
2326 sk->sk_frag.page = NULL;
2327 sk->sk_frag.offset = 0;
2328 sk->sk_peek_off = -1;
2329
2330 sk->sk_peer_pid = NULL;
2331 sk->sk_peer_cred = NULL;
2332 sk->sk_write_pending = 0;
2333 sk->sk_rcvlowat = 1;
2334 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2335 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2336
2337 sk->sk_stamp = ktime_set(-1L, 0);
2338
2339 #ifdef CONFIG_NET_RX_BUSY_POLL
2340 sk->sk_napi_id = 0;
2341 sk->sk_ll_usec = sysctl_net_busy_read;
2342 #endif
2343
2344 sk->sk_max_pacing_rate = ~0U;
2345 sk->sk_pacing_rate = ~0U;
2346 /*
2347 * Before updating sk_refcnt, we must commit prior changes to memory
2348 * (Documentation/RCU/rculist_nulls.txt for details)
2349 */
2350 smp_wmb();
2351 atomic_set(&sk->sk_refcnt, 1);
2352 atomic_set(&sk->sk_drops, 0);
2353 }
2354 EXPORT_SYMBOL(sock_init_data);
2355
2356 void lock_sock_nested(struct sock *sk, int subclass)
2357 {
2358 might_sleep();
2359 spin_lock_bh(&sk->sk_lock.slock);
2360 if (sk->sk_lock.owned)
2361 __lock_sock(sk);
2362 sk->sk_lock.owned = 1;
2363 spin_unlock(&sk->sk_lock.slock);
2364 /*
2365 * The sk_lock has mutex_lock() semantics here:
2366 */
2367 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2368 local_bh_enable();
2369 }
2370 EXPORT_SYMBOL(lock_sock_nested);
2371
2372 void release_sock(struct sock *sk)
2373 {
2374 /*
2375 * The sk_lock has mutex_unlock() semantics:
2376 */
2377 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2378
2379 spin_lock_bh(&sk->sk_lock.slock);
2380 if (sk->sk_backlog.tail)
2381 __release_sock(sk);
2382
2383 /* Warning : release_cb() might need to release sk ownership,
2384 * ie call sock_release_ownership(sk) before us.
2385 */
2386 if (sk->sk_prot->release_cb)
2387 sk->sk_prot->release_cb(sk);
2388
2389 sock_release_ownership(sk);
2390 if (waitqueue_active(&sk->sk_lock.wq))
2391 wake_up(&sk->sk_lock.wq);
2392 spin_unlock_bh(&sk->sk_lock.slock);
2393 }
2394 EXPORT_SYMBOL(release_sock);
2395
2396 /**
2397 * lock_sock_fast - fast version of lock_sock
2398 * @sk: socket
2399 *
2400 * This version should be used for very small section, where process wont block
2401 * return false if fast path is taken
2402 * sk_lock.slock locked, owned = 0, BH disabled
2403 * return true if slow path is taken
2404 * sk_lock.slock unlocked, owned = 1, BH enabled
2405 */
2406 bool lock_sock_fast(struct sock *sk)
2407 {
2408 might_sleep();
2409 spin_lock_bh(&sk->sk_lock.slock);
2410
2411 if (!sk->sk_lock.owned)
2412 /*
2413 * Note : We must disable BH
2414 */
2415 return false;
2416
2417 __lock_sock(sk);
2418 sk->sk_lock.owned = 1;
2419 spin_unlock(&sk->sk_lock.slock);
2420 /*
2421 * The sk_lock has mutex_lock() semantics here:
2422 */
2423 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2424 local_bh_enable();
2425 return true;
2426 }
2427 EXPORT_SYMBOL(lock_sock_fast);
2428
2429 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2430 {
2431 struct timeval tv;
2432 if (!sock_flag(sk, SOCK_TIMESTAMP))
2433 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2434 tv = ktime_to_timeval(sk->sk_stamp);
2435 if (tv.tv_sec == -1)
2436 return -ENOENT;
2437 if (tv.tv_sec == 0) {
2438 sk->sk_stamp = ktime_get_real();
2439 tv = ktime_to_timeval(sk->sk_stamp);
2440 }
2441 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2442 }
2443 EXPORT_SYMBOL(sock_get_timestamp);
2444
2445 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2446 {
2447 struct timespec ts;
2448 if (!sock_flag(sk, SOCK_TIMESTAMP))
2449 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2450 ts = ktime_to_timespec(sk->sk_stamp);
2451 if (ts.tv_sec == -1)
2452 return -ENOENT;
2453 if (ts.tv_sec == 0) {
2454 sk->sk_stamp = ktime_get_real();
2455 ts = ktime_to_timespec(sk->sk_stamp);
2456 }
2457 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2458 }
2459 EXPORT_SYMBOL(sock_get_timestampns);
2460
2461 void sock_enable_timestamp(struct sock *sk, int flag)
2462 {
2463 if (!sock_flag(sk, flag)) {
2464 unsigned long previous_flags = sk->sk_flags;
2465
2466 sock_set_flag(sk, flag);
2467 /*
2468 * we just set one of the two flags which require net
2469 * time stamping, but time stamping might have been on
2470 * already because of the other one
2471 */
2472 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2473 net_enable_timestamp();
2474 }
2475 }
2476
2477 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2478 int level, int type)
2479 {
2480 struct sock_exterr_skb *serr;
2481 struct sk_buff *skb;
2482 int copied, err;
2483
2484 err = -EAGAIN;
2485 skb = sock_dequeue_err_skb(sk);
2486 if (skb == NULL)
2487 goto out;
2488
2489 copied = skb->len;
2490 if (copied > len) {
2491 msg->msg_flags |= MSG_TRUNC;
2492 copied = len;
2493 }
2494 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2495 if (err)
2496 goto out_free_skb;
2497
2498 sock_recv_timestamp(msg, sk, skb);
2499
2500 serr = SKB_EXT_ERR(skb);
2501 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2502
2503 msg->msg_flags |= MSG_ERRQUEUE;
2504 err = copied;
2505
2506 out_free_skb:
2507 kfree_skb(skb);
2508 out:
2509 return err;
2510 }
2511 EXPORT_SYMBOL(sock_recv_errqueue);
2512
2513 /*
2514 * Get a socket option on an socket.
2515 *
2516 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2517 * asynchronous errors should be reported by getsockopt. We assume
2518 * this means if you specify SO_ERROR (otherwise whats the point of it).
2519 */
2520 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2521 char __user *optval, int __user *optlen)
2522 {
2523 struct sock *sk = sock->sk;
2524
2525 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2526 }
2527 EXPORT_SYMBOL(sock_common_getsockopt);
2528
2529 #ifdef CONFIG_COMPAT
2530 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2531 char __user *optval, int __user *optlen)
2532 {
2533 struct sock *sk = sock->sk;
2534
2535 if (sk->sk_prot->compat_getsockopt != NULL)
2536 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2537 optval, optlen);
2538 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2539 }
2540 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2541 #endif
2542
2543 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2544 int flags)
2545 {
2546 struct sock *sk = sock->sk;
2547 int addr_len = 0;
2548 int err;
2549
2550 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2551 flags & ~MSG_DONTWAIT, &addr_len);
2552 if (err >= 0)
2553 msg->msg_namelen = addr_len;
2554 return err;
2555 }
2556 EXPORT_SYMBOL(sock_common_recvmsg);
2557
2558 /*
2559 * Set socket options on an inet socket.
2560 */
2561 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2562 char __user *optval, unsigned int optlen)
2563 {
2564 struct sock *sk = sock->sk;
2565
2566 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2567 }
2568 EXPORT_SYMBOL(sock_common_setsockopt);
2569
2570 #ifdef CONFIG_COMPAT
2571 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2572 char __user *optval, unsigned int optlen)
2573 {
2574 struct sock *sk = sock->sk;
2575
2576 if (sk->sk_prot->compat_setsockopt != NULL)
2577 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2578 optval, optlen);
2579 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2580 }
2581 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2582 #endif
2583
2584 void sk_common_release(struct sock *sk)
2585 {
2586 if (sk->sk_prot->destroy)
2587 sk->sk_prot->destroy(sk);
2588
2589 /*
2590 * Observation: when sock_common_release is called, processes have
2591 * no access to socket. But net still has.
2592 * Step one, detach it from networking:
2593 *
2594 * A. Remove from hash tables.
2595 */
2596
2597 sk->sk_prot->unhash(sk);
2598
2599 /*
2600 * In this point socket cannot receive new packets, but it is possible
2601 * that some packets are in flight because some CPU runs receiver and
2602 * did hash table lookup before we unhashed socket. They will achieve
2603 * receive queue and will be purged by socket destructor.
2604 *
2605 * Also we still have packets pending on receive queue and probably,
2606 * our own packets waiting in device queues. sock_destroy will drain
2607 * receive queue, but transmitted packets will delay socket destruction
2608 * until the last reference will be released.
2609 */
2610
2611 sock_orphan(sk);
2612
2613 xfrm_sk_free_policy(sk);
2614
2615 sk_refcnt_debug_release(sk);
2616
2617 if (sk->sk_frag.page) {
2618 put_page(sk->sk_frag.page);
2619 sk->sk_frag.page = NULL;
2620 }
2621
2622 sock_put(sk);
2623 }
2624 EXPORT_SYMBOL(sk_common_release);
2625
2626 #ifdef CONFIG_PROC_FS
2627 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2628 struct prot_inuse {
2629 int val[PROTO_INUSE_NR];
2630 };
2631
2632 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2633
2634 #ifdef CONFIG_NET_NS
2635 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2636 {
2637 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2638 }
2639 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2640
2641 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2642 {
2643 int cpu, idx = prot->inuse_idx;
2644 int res = 0;
2645
2646 for_each_possible_cpu(cpu)
2647 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2648
2649 return res >= 0 ? res : 0;
2650 }
2651 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2652
2653 static int __net_init sock_inuse_init_net(struct net *net)
2654 {
2655 net->core.inuse = alloc_percpu(struct prot_inuse);
2656 return net->core.inuse ? 0 : -ENOMEM;
2657 }
2658
2659 static void __net_exit sock_inuse_exit_net(struct net *net)
2660 {
2661 free_percpu(net->core.inuse);
2662 }
2663
2664 static struct pernet_operations net_inuse_ops = {
2665 .init = sock_inuse_init_net,
2666 .exit = sock_inuse_exit_net,
2667 };
2668
2669 static __init int net_inuse_init(void)
2670 {
2671 if (register_pernet_subsys(&net_inuse_ops))
2672 panic("Cannot initialize net inuse counters");
2673
2674 return 0;
2675 }
2676
2677 core_initcall(net_inuse_init);
2678 #else
2679 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2680
2681 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2682 {
2683 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2684 }
2685 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2686
2687 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2688 {
2689 int cpu, idx = prot->inuse_idx;
2690 int res = 0;
2691
2692 for_each_possible_cpu(cpu)
2693 res += per_cpu(prot_inuse, cpu).val[idx];
2694
2695 return res >= 0 ? res : 0;
2696 }
2697 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2698 #endif
2699
2700 static void assign_proto_idx(struct proto *prot)
2701 {
2702 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2703
2704 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2705 pr_err("PROTO_INUSE_NR exhausted\n");
2706 return;
2707 }
2708
2709 set_bit(prot->inuse_idx, proto_inuse_idx);
2710 }
2711
2712 static void release_proto_idx(struct proto *prot)
2713 {
2714 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2715 clear_bit(prot->inuse_idx, proto_inuse_idx);
2716 }
2717 #else
2718 static inline void assign_proto_idx(struct proto *prot)
2719 {
2720 }
2721
2722 static inline void release_proto_idx(struct proto *prot)
2723 {
2724 }
2725 #endif
2726
2727 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2728 {
2729 if (!rsk_prot)
2730 return;
2731 kfree(rsk_prot->slab_name);
2732 rsk_prot->slab_name = NULL;
2733 if (rsk_prot->slab) {
2734 kmem_cache_destroy(rsk_prot->slab);
2735 rsk_prot->slab = NULL;
2736 }
2737 }
2738
2739 static int req_prot_init(const struct proto *prot)
2740 {
2741 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2742
2743 if (!rsk_prot)
2744 return 0;
2745
2746 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2747 prot->name);
2748 if (!rsk_prot->slab_name)
2749 return -ENOMEM;
2750
2751 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2752 rsk_prot->obj_size, 0,
2753 0, NULL);
2754
2755 if (!rsk_prot->slab) {
2756 pr_crit("%s: Can't create request sock SLAB cache!\n",
2757 prot->name);
2758 return -ENOMEM;
2759 }
2760 return 0;
2761 }
2762
2763 int proto_register(struct proto *prot, int alloc_slab)
2764 {
2765 if (alloc_slab) {
2766 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2767 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2768 NULL);
2769
2770 if (prot->slab == NULL) {
2771 pr_crit("%s: Can't create sock SLAB cache!\n",
2772 prot->name);
2773 goto out;
2774 }
2775
2776 if (req_prot_init(prot))
2777 goto out_free_request_sock_slab;
2778
2779 if (prot->twsk_prot != NULL) {
2780 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2781
2782 if (prot->twsk_prot->twsk_slab_name == NULL)
2783 goto out_free_request_sock_slab;
2784
2785 prot->twsk_prot->twsk_slab =
2786 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2787 prot->twsk_prot->twsk_obj_size,
2788 0,
2789 prot->slab_flags,
2790 NULL);
2791 if (prot->twsk_prot->twsk_slab == NULL)
2792 goto out_free_timewait_sock_slab_name;
2793 }
2794 }
2795
2796 mutex_lock(&proto_list_mutex);
2797 list_add(&prot->node, &proto_list);
2798 assign_proto_idx(prot);
2799 mutex_unlock(&proto_list_mutex);
2800 return 0;
2801
2802 out_free_timewait_sock_slab_name:
2803 kfree(prot->twsk_prot->twsk_slab_name);
2804 out_free_request_sock_slab:
2805 req_prot_cleanup(prot->rsk_prot);
2806
2807 kmem_cache_destroy(prot->slab);
2808 prot->slab = NULL;
2809 out:
2810 return -ENOBUFS;
2811 }
2812 EXPORT_SYMBOL(proto_register);
2813
2814 void proto_unregister(struct proto *prot)
2815 {
2816 mutex_lock(&proto_list_mutex);
2817 release_proto_idx(prot);
2818 list_del(&prot->node);
2819 mutex_unlock(&proto_list_mutex);
2820
2821 if (prot->slab != NULL) {
2822 kmem_cache_destroy(prot->slab);
2823 prot->slab = NULL;
2824 }
2825
2826 req_prot_cleanup(prot->rsk_prot);
2827
2828 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2829 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2830 kfree(prot->twsk_prot->twsk_slab_name);
2831 prot->twsk_prot->twsk_slab = NULL;
2832 }
2833 }
2834 EXPORT_SYMBOL(proto_unregister);
2835
2836 #ifdef CONFIG_PROC_FS
2837 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2838 __acquires(proto_list_mutex)
2839 {
2840 mutex_lock(&proto_list_mutex);
2841 return seq_list_start_head(&proto_list, *pos);
2842 }
2843
2844 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2845 {
2846 return seq_list_next(v, &proto_list, pos);
2847 }
2848
2849 static void proto_seq_stop(struct seq_file *seq, void *v)
2850 __releases(proto_list_mutex)
2851 {
2852 mutex_unlock(&proto_list_mutex);
2853 }
2854
2855 static char proto_method_implemented(const void *method)
2856 {
2857 return method == NULL ? 'n' : 'y';
2858 }
2859 static long sock_prot_memory_allocated(struct proto *proto)
2860 {
2861 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2862 }
2863
2864 static char *sock_prot_memory_pressure(struct proto *proto)
2865 {
2866 return proto->memory_pressure != NULL ?
2867 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2868 }
2869
2870 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2871 {
2872
2873 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2874 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2875 proto->name,
2876 proto->obj_size,
2877 sock_prot_inuse_get(seq_file_net(seq), proto),
2878 sock_prot_memory_allocated(proto),
2879 sock_prot_memory_pressure(proto),
2880 proto->max_header,
2881 proto->slab == NULL ? "no" : "yes",
2882 module_name(proto->owner),
2883 proto_method_implemented(proto->close),
2884 proto_method_implemented(proto->connect),
2885 proto_method_implemented(proto->disconnect),
2886 proto_method_implemented(proto->accept),
2887 proto_method_implemented(proto->ioctl),
2888 proto_method_implemented(proto->init),
2889 proto_method_implemented(proto->destroy),
2890 proto_method_implemented(proto->shutdown),
2891 proto_method_implemented(proto->setsockopt),
2892 proto_method_implemented(proto->getsockopt),
2893 proto_method_implemented(proto->sendmsg),
2894 proto_method_implemented(proto->recvmsg),
2895 proto_method_implemented(proto->sendpage),
2896 proto_method_implemented(proto->bind),
2897 proto_method_implemented(proto->backlog_rcv),
2898 proto_method_implemented(proto->hash),
2899 proto_method_implemented(proto->unhash),
2900 proto_method_implemented(proto->get_port),
2901 proto_method_implemented(proto->enter_memory_pressure));
2902 }
2903
2904 static int proto_seq_show(struct seq_file *seq, void *v)
2905 {
2906 if (v == &proto_list)
2907 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2908 "protocol",
2909 "size",
2910 "sockets",
2911 "memory",
2912 "press",
2913 "maxhdr",
2914 "slab",
2915 "module",
2916 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2917 else
2918 proto_seq_printf(seq, list_entry(v, struct proto, node));
2919 return 0;
2920 }
2921
2922 static const struct seq_operations proto_seq_ops = {
2923 .start = proto_seq_start,
2924 .next = proto_seq_next,
2925 .stop = proto_seq_stop,
2926 .show = proto_seq_show,
2927 };
2928
2929 static int proto_seq_open(struct inode *inode, struct file *file)
2930 {
2931 return seq_open_net(inode, file, &proto_seq_ops,
2932 sizeof(struct seq_net_private));
2933 }
2934
2935 static const struct file_operations proto_seq_fops = {
2936 .owner = THIS_MODULE,
2937 .open = proto_seq_open,
2938 .read = seq_read,
2939 .llseek = seq_lseek,
2940 .release = seq_release_net,
2941 };
2942
2943 static __net_init int proto_init_net(struct net *net)
2944 {
2945 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2946 return -ENOMEM;
2947
2948 return 0;
2949 }
2950
2951 static __net_exit void proto_exit_net(struct net *net)
2952 {
2953 remove_proc_entry("protocols", net->proc_net);
2954 }
2955
2956
2957 static __net_initdata struct pernet_operations proto_net_ops = {
2958 .init = proto_init_net,
2959 .exit = proto_exit_net,
2960 };
2961
2962 static int __init proto_init(void)
2963 {
2964 return register_pernet_subsys(&proto_net_ops);
2965 }
2966
2967 subsys_initcall(proto_init);
2968
2969 #endif /* PROC_FS */
This page took 0.090742 seconds and 6 git commands to generate.