dccp tfrc: Perform early loss detection
[deliverable/linux.git] / net / dccp / ccids / lib / packet_history.c
1 /*
2 * net/dccp/packet_history.c
3 *
4 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
5 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
6 *
7 * An implementation of the DCCP protocol
8 *
9 * This code has been developed by the University of Waikato WAND
10 * research group. For further information please see http://www.wand.net.nz/
11 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
12 *
13 * This code also uses code from Lulea University, rereleased as GPL by its
14 * authors:
15 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
16 *
17 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18 * and to make it work as a loadable module in the DCCP stack written by
19 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
20 *
21 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 *
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
36 */
37
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
42
43 /*
44 * Transmitter History Routines
45 */
46 static struct kmem_cache *tfrc_tx_hist_slab;
47
48 int __init tfrc_tx_packet_history_init(void)
49 {
50 tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
51 sizeof(struct tfrc_tx_hist_entry),
52 0, SLAB_HWCACHE_ALIGN, NULL);
53 return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
54 }
55
56 void tfrc_tx_packet_history_exit(void)
57 {
58 if (tfrc_tx_hist_slab != NULL) {
59 kmem_cache_destroy(tfrc_tx_hist_slab);
60 tfrc_tx_hist_slab = NULL;
61 }
62 }
63
64 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
65 {
66 struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
67
68 if (entry == NULL)
69 return -ENOBUFS;
70 entry->seqno = seqno;
71 entry->stamp = ktime_get_real();
72 entry->next = *headp;
73 *headp = entry;
74 return 0;
75 }
76 EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
77
78 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
79 {
80 struct tfrc_tx_hist_entry *head = *headp;
81
82 while (head != NULL) {
83 struct tfrc_tx_hist_entry *next = head->next;
84
85 kmem_cache_free(tfrc_tx_hist_slab, head);
86 head = next;
87 }
88
89 *headp = NULL;
90 }
91 EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
92
93 /*
94 * Receiver History Routines
95 */
96 static struct kmem_cache *tfrc_rx_hist_slab;
97
98 int __init tfrc_rx_packet_history_init(void)
99 {
100 tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
101 sizeof(struct tfrc_rx_hist_entry),
102 0, SLAB_HWCACHE_ALIGN, NULL);
103 return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
104 }
105
106 void tfrc_rx_packet_history_exit(void)
107 {
108 if (tfrc_rx_hist_slab != NULL) {
109 kmem_cache_destroy(tfrc_rx_hist_slab);
110 tfrc_rx_hist_slab = NULL;
111 }
112 }
113
114 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
115 const struct sk_buff *skb,
116 const u64 ndp)
117 {
118 const struct dccp_hdr *dh = dccp_hdr(skb);
119
120 entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
121 entry->tfrchrx_ccval = dh->dccph_ccval;
122 entry->tfrchrx_type = dh->dccph_type;
123 entry->tfrchrx_ndp = ndp;
124 entry->tfrchrx_tstamp = ktime_get_real();
125 }
126
127 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
128 const struct sk_buff *skb,
129 const u64 ndp)
130 {
131 struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
132
133 tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
134 }
135 EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
136
137 /* has the packet contained in skb been seen before? */
138 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
139 {
140 const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
141 int i;
142
143 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
144 return 1;
145
146 for (i = 1; i <= h->loss_count; i++)
147 if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
148 return 1;
149
150 return 0;
151 }
152 EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
153
154 static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
155 {
156 const u8 idx_a = tfrc_rx_hist_index(h, a),
157 idx_b = tfrc_rx_hist_index(h, b);
158 struct tfrc_rx_hist_entry *tmp = h->ring[idx_a];
159
160 h->ring[idx_a] = h->ring[idx_b];
161 h->ring[idx_b] = tmp;
162 }
163
164 /*
165 * Private helper functions for loss detection.
166 *
167 * In the descriptions, `Si' refers to the sequence number of entry number i,
168 * whose NDP count is `Ni' (lower case is used for variables).
169 * Note: All __xxx_loss functions expect that a test against duplicates has been
170 * performed already: the seqno of the skb must not be less than the seqno
171 * of loss_prev; and it must not equal that of any valid history entry.
172 */
173 static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
174 {
175 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
176 s1 = DCCP_SKB_CB(skb)->dccpd_seq;
177
178 if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
179 h->loss_count = 1;
180 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
181 }
182 }
183
184 static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
185 {
186 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
187 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
188 s2 = DCCP_SKB_CB(skb)->dccpd_seq;
189
190 if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
191 h->loss_count = 2;
192 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
193 return;
194 }
195
196 /* S0 < S2 < S1 */
197
198 if (dccp_loss_free(s0, s2, n2)) {
199 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
200
201 if (dccp_loss_free(s2, s1, n1)) {
202 /* hole is filled: S0, S2, and S1 are consecutive */
203 h->loss_count = 0;
204 h->loss_start = tfrc_rx_hist_index(h, 1);
205 } else
206 /* gap between S2 and S1: just update loss_prev */
207 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
208
209 } else { /* gap between S0 and S2 */
210 /*
211 * Reorder history to insert S2 between S0 and S1
212 */
213 tfrc_rx_hist_swap(h, 0, 3);
214 h->loss_start = tfrc_rx_hist_index(h, 3);
215 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
216 h->loss_count = 2;
217 }
218 }
219
220 /* return 1 if a new loss event has been identified */
221 static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
222 {
223 u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
224 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
225 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
226 s3 = DCCP_SKB_CB(skb)->dccpd_seq;
227
228 if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
229 h->loss_count = 3;
230 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
231 return 1;
232 }
233
234 /* S3 < S2 */
235
236 if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
237 /*
238 * Reorder history to insert S3 between S1 and S2
239 */
240 tfrc_rx_hist_swap(h, 2, 3);
241 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
242 h->loss_count = 3;
243 return 1;
244 }
245
246 /* S0 < S3 < S1 */
247
248 if (dccp_loss_free(s0, s3, n3)) {
249 u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
250
251 if (dccp_loss_free(s3, s1, n1)) {
252 /* hole between S0 and S1 filled by S3 */
253 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
254
255 if (dccp_loss_free(s1, s2, n2)) {
256 /* entire hole filled by S0, S3, S1, S2 */
257 h->loss_start = tfrc_rx_hist_index(h, 2);
258 h->loss_count = 0;
259 } else {
260 /* gap remains between S1 and S2 */
261 h->loss_start = tfrc_rx_hist_index(h, 1);
262 h->loss_count = 1;
263 }
264
265 } else /* gap exists between S3 and S1, loss_count stays at 2 */
266 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
267
268 return 0;
269 }
270
271 /*
272 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
273 * Reorder history to insert S3 between S0 and S1.
274 */
275 tfrc_rx_hist_swap(h, 0, 3);
276 h->loss_start = tfrc_rx_hist_index(h, 3);
277 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
278 h->loss_count = 3;
279
280 return 1;
281 }
282
283 /* recycle RX history records to continue loss detection if necessary */
284 static void __three_after_loss(struct tfrc_rx_hist *h)
285 {
286 /*
287 * At this stage we know already that there is a gap between S0 and S1
288 * (since S0 was the highest sequence number received before detecting
289 * the loss). To recycle the loss record, it is thus only necessary to
290 * check for other possible gaps between S1/S2 and between S2/S3.
291 */
292 u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
293 s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
294 s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
295 u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
296 n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
297
298 if (dccp_loss_free(s1, s2, n2)) {
299
300 if (dccp_loss_free(s2, s3, n3)) {
301 /* no gap between S2 and S3: entire hole is filled */
302 h->loss_start = tfrc_rx_hist_index(h, 3);
303 h->loss_count = 0;
304 } else {
305 /* gap between S2 and S3 */
306 h->loss_start = tfrc_rx_hist_index(h, 2);
307 h->loss_count = 1;
308 }
309
310 } else { /* gap between S1 and S2 */
311 h->loss_start = tfrc_rx_hist_index(h, 1);
312 h->loss_count = 2;
313 }
314 }
315
316 /**
317 * tfrc_rx_handle_loss - Loss detection and further processing
318 * @h: The non-empty RX history object
319 * @lh: Loss Intervals database to update
320 * @skb: Currently received packet
321 * @ndp: The NDP count belonging to @skb
322 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
323 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
324 * Chooses action according to pending loss, updates LI database when a new
325 * loss was detected, and does required post-processing. Returns 1 when caller
326 * should send feedback, 0 otherwise.
327 * Since it also takes care of reordering during loss detection and updates the
328 * records accordingly, the caller should not perform any more RX history
329 * operations when loss_count is greater than 0 after calling this function.
330 */
331 int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
332 struct tfrc_loss_hist *lh,
333 struct sk_buff *skb, const u64 ndp,
334 u32 (*calc_first_li)(struct sock *), struct sock *sk)
335 {
336 int is_new_loss = 0;
337
338 if (tfrc_rx_hist_duplicate(h, skb))
339 return 0;
340
341 if (h->loss_count == 0) {
342 __do_track_loss(h, skb, ndp);
343 } else if (h->loss_count == 1) {
344 __one_after_loss(h, skb, ndp);
345 } else if (h->loss_count != 2) {
346 DCCP_BUG("invalid loss_count %d", h->loss_count);
347 } else if (__two_after_loss(h, skb, ndp)) {
348 /*
349 * Update Loss Interval database and recycle RX records
350 */
351 is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
352 __three_after_loss(h);
353 }
354 return is_new_loss;
355 }
356 EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
357
358 void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
359 {
360 int i;
361
362 for (i = 0; i <= TFRC_NDUPACK; ++i)
363 if (h->ring[i] != NULL) {
364 kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
365 h->ring[i] = NULL;
366 }
367 }
368 EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
369
370 static int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
371 {
372 int i;
373
374 memset(h, 0, sizeof(*h));
375
376 for (i = 0; i <= TFRC_NDUPACK; i++) {
377 h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
378 if (h->ring[i] == NULL) {
379 tfrc_rx_hist_purge(h);
380 return -ENOBUFS;
381 }
382 }
383 return 0;
384 }
385
386 int tfrc_rx_hist_init(struct tfrc_rx_hist *h, struct sock *sk)
387 {
388 if (tfrc_rx_hist_alloc(h))
389 return -ENOBUFS;
390 /*
391 * Initialise first entry with GSR to start loss detection as early as
392 * possible. Code using this must not use any other fields. The entry
393 * will be overwritten once the CCID updates its received packets.
394 */
395 tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno = dccp_sk(sk)->dccps_gsr;
396 return 0;
397 }
398 EXPORT_SYMBOL_GPL(tfrc_rx_hist_init);
399
400 /**
401 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
402 */
403 static inline struct tfrc_rx_hist_entry *
404 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
405 {
406 return h->ring[0];
407 }
408
409 /**
410 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
411 */
412 static inline struct tfrc_rx_hist_entry *
413 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
414 {
415 return h->ring[h->rtt_sample_prev];
416 }
417
418 /**
419 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
420 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
421 * to compute a sample with given data - calling function should check this.
422 */
423 u32 tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
424 {
425 u32 sample = 0,
426 delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
427 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
428
429 if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
430 if (h->rtt_sample_prev == 2) { /* previous candidate stored */
431 sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
432 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
433 if (sample)
434 sample = 4 / sample *
435 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
436 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
437 else /*
438 * FIXME: This condition is in principle not
439 * possible but occurs when CCID is used for
440 * two-way data traffic. I have tried to trace
441 * it, but the cause does not seem to be here.
442 */
443 DCCP_BUG("please report to dccp@vger.kernel.org"
444 " => prev = %u, last = %u",
445 tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
446 tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
447 } else if (delta_v < 1) {
448 h->rtt_sample_prev = 1;
449 goto keep_ref_for_next_time;
450 }
451
452 } else if (delta_v == 4) /* optimal match */
453 sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
454 else { /* suboptimal match */
455 h->rtt_sample_prev = 2;
456 goto keep_ref_for_next_time;
457 }
458
459 if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
460 DCCP_WARN("RTT sample %u too large, using max\n", sample);
461 sample = DCCP_SANE_RTT_MAX;
462 }
463
464 h->rtt_sample_prev = 0; /* use current entry as next reference */
465 keep_ref_for_next_time:
466
467 return sample;
468 }
469 EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);
This page took 0.040781 seconds and 5 git commands to generate.