Merge branch 'topic/usb' into for-linus
[deliverable/linux.git] / net / decnet / dn_neigh.c
1 /*
2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * DECnet Neighbour Functions (Adjacency Database and
7 * On-Ethernet Cache)
8 *
9 * Author: Steve Whitehouse <SteveW@ACM.org>
10 *
11 *
12 * Changes:
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
19 * working.
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
24 *
25 */
26
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <asm/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
44 #include <net/dst.h>
45 #include <net/flow.h>
46 #include <net/dn.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
50
51 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev);
52 static int dn_neigh_construct(struct neighbour *);
53 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
54 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
55 static int dn_long_output(struct sk_buff *);
56 static int dn_short_output(struct sk_buff *);
57 static int dn_phase3_output(struct sk_buff *);
58
59
60 /*
61 * For talking to broadcast devices: Ethernet & PPP
62 */
63 static const struct neigh_ops dn_long_ops = {
64 .family = AF_DECnet,
65 .error_report = dn_long_error_report,
66 .output = dn_long_output,
67 .connected_output = dn_long_output,
68 .hh_output = dev_queue_xmit,
69 .queue_xmit = dev_queue_xmit,
70 };
71
72 /*
73 * For talking to pointopoint and multidrop devices: DDCMP and X.25
74 */
75 static const struct neigh_ops dn_short_ops = {
76 .family = AF_DECnet,
77 .error_report = dn_short_error_report,
78 .output = dn_short_output,
79 .connected_output = dn_short_output,
80 .hh_output = dev_queue_xmit,
81 .queue_xmit = dev_queue_xmit,
82 };
83
84 /*
85 * For talking to DECnet phase III nodes
86 */
87 static const struct neigh_ops dn_phase3_ops = {
88 .family = AF_DECnet,
89 .error_report = dn_short_error_report, /* Can use short version here */
90 .output = dn_phase3_output,
91 .connected_output = dn_phase3_output,
92 .hh_output = dev_queue_xmit,
93 .queue_xmit = dev_queue_xmit
94 };
95
96 struct neigh_table dn_neigh_table = {
97 .family = PF_DECnet,
98 .entry_size = sizeof(struct dn_neigh),
99 .key_len = sizeof(__le16),
100 .hash = dn_neigh_hash,
101 .constructor = dn_neigh_construct,
102 .id = "dn_neigh_cache",
103 .parms ={
104 .tbl = &dn_neigh_table,
105 .base_reachable_time = 30 * HZ,
106 .retrans_time = 1 * HZ,
107 .gc_staletime = 60 * HZ,
108 .reachable_time = 30 * HZ,
109 .delay_probe_time = 5 * HZ,
110 .queue_len = 3,
111 .ucast_probes = 0,
112 .app_probes = 0,
113 .mcast_probes = 0,
114 .anycast_delay = 0,
115 .proxy_delay = 0,
116 .proxy_qlen = 0,
117 .locktime = 1 * HZ,
118 },
119 .gc_interval = 30 * HZ,
120 .gc_thresh1 = 128,
121 .gc_thresh2 = 512,
122 .gc_thresh3 = 1024,
123 };
124
125 static u32 dn_neigh_hash(const void *pkey, const struct net_device *dev)
126 {
127 return jhash_2words(*(__u16 *)pkey, 0, dn_neigh_table.hash_rnd);
128 }
129
130 static int dn_neigh_construct(struct neighbour *neigh)
131 {
132 struct net_device *dev = neigh->dev;
133 struct dn_neigh *dn = (struct dn_neigh *)neigh;
134 struct dn_dev *dn_db;
135 struct neigh_parms *parms;
136
137 rcu_read_lock();
138 dn_db = rcu_dereference(dev->dn_ptr);
139 if (dn_db == NULL) {
140 rcu_read_unlock();
141 return -EINVAL;
142 }
143
144 parms = dn_db->neigh_parms;
145 if (!parms) {
146 rcu_read_unlock();
147 return -EINVAL;
148 }
149
150 __neigh_parms_put(neigh->parms);
151 neigh->parms = neigh_parms_clone(parms);
152
153 if (dn_db->use_long)
154 neigh->ops = &dn_long_ops;
155 else
156 neigh->ops = &dn_short_ops;
157 rcu_read_unlock();
158
159 if (dn->flags & DN_NDFLAG_P3)
160 neigh->ops = &dn_phase3_ops;
161
162 neigh->nud_state = NUD_NOARP;
163 neigh->output = neigh->ops->connected_output;
164
165 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
166 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
167 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
168 dn_dn2eth(neigh->ha, dn->addr);
169 else {
170 if (net_ratelimit())
171 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
172 return -EINVAL;
173 }
174
175 /*
176 * Make an estimate of the remote block size by assuming that its
177 * two less then the device mtu, which it true for ethernet (and
178 * other things which support long format headers) since there is
179 * an extra length field (of 16 bits) which isn't part of the
180 * ethernet headers and which the DECnet specs won't admit is part
181 * of the DECnet routing headers either.
182 *
183 * If we over estimate here its no big deal, the NSP negotiations
184 * will prevent us from sending packets which are too large for the
185 * remote node to handle. In any case this figure is normally updated
186 * by a hello message in most cases.
187 */
188 dn->blksize = dev->mtu - 2;
189
190 return 0;
191 }
192
193 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
194 {
195 printk(KERN_DEBUG "dn_long_error_report: called\n");
196 kfree_skb(skb);
197 }
198
199
200 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
201 {
202 printk(KERN_DEBUG "dn_short_error_report: called\n");
203 kfree_skb(skb);
204 }
205
206 static int dn_neigh_output_packet(struct sk_buff *skb)
207 {
208 struct dst_entry *dst = skb_dst(skb);
209 struct dn_route *rt = (struct dn_route *)dst;
210 struct neighbour *neigh = dst->neighbour;
211 struct net_device *dev = neigh->dev;
212 char mac_addr[ETH_ALEN];
213
214 dn_dn2eth(mac_addr, rt->rt_local_src);
215 if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
216 mac_addr, skb->len) >= 0)
217 return neigh->ops->queue_xmit(skb);
218
219 if (net_ratelimit())
220 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
221
222 kfree_skb(skb);
223 return -EINVAL;
224 }
225
226 static int dn_long_output(struct sk_buff *skb)
227 {
228 struct dst_entry *dst = skb_dst(skb);
229 struct neighbour *neigh = dst->neighbour;
230 struct net_device *dev = neigh->dev;
231 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
232 unsigned char *data;
233 struct dn_long_packet *lp;
234 struct dn_skb_cb *cb = DN_SKB_CB(skb);
235
236
237 if (skb_headroom(skb) < headroom) {
238 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
239 if (skb2 == NULL) {
240 if (net_ratelimit())
241 printk(KERN_CRIT "dn_long_output: no memory\n");
242 kfree_skb(skb);
243 return -ENOBUFS;
244 }
245 kfree_skb(skb);
246 skb = skb2;
247 if (net_ratelimit())
248 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
249 }
250
251 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
252 lp = (struct dn_long_packet *)(data+3);
253
254 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
255 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
256
257 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
258 lp->d_area = lp->d_subarea = 0;
259 dn_dn2eth(lp->d_id, cb->dst);
260 lp->s_area = lp->s_subarea = 0;
261 dn_dn2eth(lp->s_id, cb->src);
262 lp->nl2 = 0;
263 lp->visit_ct = cb->hops & 0x3f;
264 lp->s_class = 0;
265 lp->pt = 0;
266
267 skb_reset_network_header(skb);
268
269 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
270 }
271
272 static int dn_short_output(struct sk_buff *skb)
273 {
274 struct dst_entry *dst = skb_dst(skb);
275 struct neighbour *neigh = dst->neighbour;
276 struct net_device *dev = neigh->dev;
277 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
278 struct dn_short_packet *sp;
279 unsigned char *data;
280 struct dn_skb_cb *cb = DN_SKB_CB(skb);
281
282
283 if (skb_headroom(skb) < headroom) {
284 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
285 if (skb2 == NULL) {
286 if (net_ratelimit())
287 printk(KERN_CRIT "dn_short_output: no memory\n");
288 kfree_skb(skb);
289 return -ENOBUFS;
290 }
291 kfree_skb(skb);
292 skb = skb2;
293 if (net_ratelimit())
294 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
295 }
296
297 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
298 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
299 sp = (struct dn_short_packet *)(data+2);
300
301 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
302 sp->dstnode = cb->dst;
303 sp->srcnode = cb->src;
304 sp->forward = cb->hops & 0x3f;
305
306 skb_reset_network_header(skb);
307
308 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
309 }
310
311 /*
312 * Phase 3 output is the same is short output, execpt that
313 * it clears the area bits before transmission.
314 */
315 static int dn_phase3_output(struct sk_buff *skb)
316 {
317 struct dst_entry *dst = skb_dst(skb);
318 struct neighbour *neigh = dst->neighbour;
319 struct net_device *dev = neigh->dev;
320 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
321 struct dn_short_packet *sp;
322 unsigned char *data;
323 struct dn_skb_cb *cb = DN_SKB_CB(skb);
324
325 if (skb_headroom(skb) < headroom) {
326 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
327 if (skb2 == NULL) {
328 if (net_ratelimit())
329 printk(KERN_CRIT "dn_phase3_output: no memory\n");
330 kfree_skb(skb);
331 return -ENOBUFS;
332 }
333 kfree_skb(skb);
334 skb = skb2;
335 if (net_ratelimit())
336 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
337 }
338
339 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
340 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
341 sp = (struct dn_short_packet *)(data + 2);
342
343 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
344 sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
345 sp->srcnode = cb->src & cpu_to_le16(0x03ff);
346 sp->forward = cb->hops & 0x3f;
347
348 skb_reset_network_header(skb);
349
350 return NF_HOOK(PF_DECnet, NF_DN_POST_ROUTING, skb, NULL, neigh->dev, dn_neigh_output_packet);
351 }
352
353 /*
354 * Unfortunately, the neighbour code uses the device in its hash
355 * function, so we don't get any advantage from it. This function
356 * basically does a neigh_lookup(), but without comparing the device
357 * field. This is required for the On-Ethernet cache
358 */
359
360 /*
361 * Pointopoint link receives a hello message
362 */
363 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
364 {
365 kfree_skb(skb);
366 }
367
368 /*
369 * Ethernet router hello message received
370 */
371 int dn_neigh_router_hello(struct sk_buff *skb)
372 {
373 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
374
375 struct neighbour *neigh;
376 struct dn_neigh *dn;
377 struct dn_dev *dn_db;
378 __le16 src;
379
380 src = dn_eth2dn(msg->id);
381
382 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
383
384 dn = (struct dn_neigh *)neigh;
385
386 if (neigh) {
387 write_lock(&neigh->lock);
388
389 neigh->used = jiffies;
390 dn_db = (struct dn_dev *)neigh->dev->dn_ptr;
391
392 if (!(neigh->nud_state & NUD_PERMANENT)) {
393 neigh->updated = jiffies;
394
395 if (neigh->dev->type == ARPHRD_ETHER)
396 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
397
398 dn->blksize = le16_to_cpu(msg->blksize);
399 dn->priority = msg->priority;
400
401 dn->flags &= ~DN_NDFLAG_P3;
402
403 switch(msg->iinfo & DN_RT_INFO_TYPE) {
404 case DN_RT_INFO_L1RT:
405 dn->flags &=~DN_NDFLAG_R2;
406 dn->flags |= DN_NDFLAG_R1;
407 break;
408 case DN_RT_INFO_L2RT:
409 dn->flags |= DN_NDFLAG_R2;
410 }
411 }
412
413 /* Only use routers in our area */
414 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
415 if (!dn_db->router) {
416 dn_db->router = neigh_clone(neigh);
417 } else {
418 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
419 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
420 }
421 }
422 write_unlock(&neigh->lock);
423 neigh_release(neigh);
424 }
425
426 kfree_skb(skb);
427 return 0;
428 }
429
430 /*
431 * Endnode hello message received
432 */
433 int dn_neigh_endnode_hello(struct sk_buff *skb)
434 {
435 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
436 struct neighbour *neigh;
437 struct dn_neigh *dn;
438 __le16 src;
439
440 src = dn_eth2dn(msg->id);
441
442 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
443
444 dn = (struct dn_neigh *)neigh;
445
446 if (neigh) {
447 write_lock(&neigh->lock);
448
449 neigh->used = jiffies;
450
451 if (!(neigh->nud_state & NUD_PERMANENT)) {
452 neigh->updated = jiffies;
453
454 if (neigh->dev->type == ARPHRD_ETHER)
455 memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
456 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
457 dn->blksize = le16_to_cpu(msg->blksize);
458 dn->priority = 0;
459 }
460
461 write_unlock(&neigh->lock);
462 neigh_release(neigh);
463 }
464
465 kfree_skb(skb);
466 return 0;
467 }
468
469 static char *dn_find_slot(char *base, int max, int priority)
470 {
471 int i;
472 unsigned char *min = NULL;
473
474 base += 6; /* skip first id */
475
476 for(i = 0; i < max; i++) {
477 if (!min || (*base < *min))
478 min = base;
479 base += 7; /* find next priority */
480 }
481
482 if (!min)
483 return NULL;
484
485 return (*min < priority) ? (min - 6) : NULL;
486 }
487
488 struct elist_cb_state {
489 struct net_device *dev;
490 unsigned char *ptr;
491 unsigned char *rs;
492 int t, n;
493 };
494
495 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
496 {
497 struct elist_cb_state *s = _info;
498 struct dn_neigh *dn;
499
500 if (neigh->dev != s->dev)
501 return;
502
503 dn = (struct dn_neigh *) neigh;
504 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
505 return;
506
507 if (s->t == s->n)
508 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
509 else
510 s->t++;
511 if (s->rs == NULL)
512 return;
513
514 dn_dn2eth(s->rs, dn->addr);
515 s->rs += 6;
516 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
517 *(s->rs) |= dn->priority;
518 s->rs++;
519 }
520
521 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
522 {
523 struct elist_cb_state state;
524
525 state.dev = dev;
526 state.t = 0;
527 state.n = n;
528 state.ptr = ptr;
529 state.rs = ptr;
530
531 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
532
533 return state.t;
534 }
535
536
537 #ifdef CONFIG_PROC_FS
538
539 static inline void dn_neigh_format_entry(struct seq_file *seq,
540 struct neighbour *n)
541 {
542 struct dn_neigh *dn = (struct dn_neigh *) n;
543 char buf[DN_ASCBUF_LEN];
544
545 read_lock(&n->lock);
546 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
547 dn_addr2asc(le16_to_cpu(dn->addr), buf),
548 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
549 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
550 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
551 dn->n.nud_state,
552 atomic_read(&dn->n.refcnt),
553 dn->blksize,
554 (dn->n.dev) ? dn->n.dev->name : "?");
555 read_unlock(&n->lock);
556 }
557
558 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
559 {
560 if (v == SEQ_START_TOKEN) {
561 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
562 } else {
563 dn_neigh_format_entry(seq, v);
564 }
565
566 return 0;
567 }
568
569 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
570 {
571 return neigh_seq_start(seq, pos, &dn_neigh_table,
572 NEIGH_SEQ_NEIGH_ONLY);
573 }
574
575 static const struct seq_operations dn_neigh_seq_ops = {
576 .start = dn_neigh_seq_start,
577 .next = neigh_seq_next,
578 .stop = neigh_seq_stop,
579 .show = dn_neigh_seq_show,
580 };
581
582 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
583 {
584 return seq_open_net(inode, file, &dn_neigh_seq_ops,
585 sizeof(struct neigh_seq_state));
586 }
587
588 static const struct file_operations dn_neigh_seq_fops = {
589 .owner = THIS_MODULE,
590 .open = dn_neigh_seq_open,
591 .read = seq_read,
592 .llseek = seq_lseek,
593 .release = seq_release_net,
594 };
595
596 #endif
597
598 void __init dn_neigh_init(void)
599 {
600 neigh_table_init(&dn_neigh_table);
601 proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
602 }
603
604 void __exit dn_neigh_cleanup(void)
605 {
606 proc_net_remove(&init_net, "decnet_neigh");
607 neigh_table_clear(&dn_neigh_table);
608 }
This page took 0.057145 seconds and 5 git commands to generate.