x86: move kstat_irqs from kstat to irq_desc
[deliverable/linux.git] / net / ipv4 / Kconfig
1 #
2 # IP configuration
3 #
4 config IP_MULTICAST
5 bool "IP: multicasting"
6 help
7 This is code for addressing several networked computers at once,
8 enlarging your kernel by about 2 KB. You need multicasting if you
9 intend to participate in the MBONE, a high bandwidth network on top
10 of the Internet which carries audio and video broadcasts. More
11 information about the MBONE is on the WWW at
12 <http://www.savetz.com/mbone/>. Information about the multicast
13 capabilities of the various network cards is contained in
14 <file:Documentation/networking/multicast.txt>. For most people, it's
15 safe to say N.
16
17 config IP_ADVANCED_ROUTER
18 bool "IP: advanced router"
19 ---help---
20 If you intend to run your Linux box mostly as a router, i.e. as a
21 computer that forwards and redistributes network packets, say Y; you
22 will then be presented with several options that allow more precise
23 control about the routing process.
24
25 The answer to this question won't directly affect the kernel:
26 answering N will just cause the configurator to skip all the
27 questions about advanced routing.
28
29 Note that your box can only act as a router if you enable IP
30 forwarding in your kernel; you can do that by saying Y to "/proc
31 file system support" and "Sysctl support" below and executing the
32 line
33
34 echo "1" > /proc/sys/net/ipv4/ip_forward
35
36 at boot time after the /proc file system has been mounted.
37
38 If you turn on IP forwarding, you will also get the rp_filter, which
39 automatically rejects incoming packets if the routing table entry
40 for their source address doesn't match the network interface they're
41 arriving on. This has security advantages because it prevents the
42 so-called IP spoofing, however it can pose problems if you use
43 asymmetric routing (packets from you to a host take a different path
44 than packets from that host to you) or if you operate a non-routing
45 host which has several IP addresses on different interfaces. To turn
46 rp_filter on use:
47
48 echo 1 > /proc/sys/net/ipv4/conf/<device>/rp_filter
49 or
50 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
51
52 If unsure, say N here.
53
54 choice
55 prompt "Choose IP: FIB lookup algorithm (choose FIB_HASH if unsure)"
56 depends on IP_ADVANCED_ROUTER
57 default ASK_IP_FIB_HASH
58
59 config ASK_IP_FIB_HASH
60 bool "FIB_HASH"
61 ---help---
62 Current FIB is very proven and good enough for most users.
63
64 config IP_FIB_TRIE
65 bool "FIB_TRIE"
66 ---help---
67 Use new experimental LC-trie as FIB lookup algorithm.
68 This improves lookup performance if you have a large
69 number of routes.
70
71 LC-trie is a longest matching prefix lookup algorithm which
72 performs better than FIB_HASH for large routing tables.
73 But, it consumes more memory and is more complex.
74
75 LC-trie is described in:
76
77 IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
78 IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
79 An experimental study of compression methods for dynamic tries
80 Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
81 http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
82
83 endchoice
84
85 config IP_FIB_HASH
86 def_bool ASK_IP_FIB_HASH || !IP_ADVANCED_ROUTER
87
88 config IP_FIB_TRIE_STATS
89 bool "FIB TRIE statistics"
90 depends on IP_FIB_TRIE
91 ---help---
92 Keep track of statistics on structure of FIB TRIE table.
93 Useful for testing and measuring TRIE performance.
94
95 config IP_MULTIPLE_TABLES
96 bool "IP: policy routing"
97 depends on IP_ADVANCED_ROUTER
98 select FIB_RULES
99 ---help---
100 Normally, a router decides what to do with a received packet based
101 solely on the packet's final destination address. If you say Y here,
102 the Linux router will also be able to take the packet's source
103 address into account. Furthermore, the TOS (Type-Of-Service) field
104 of the packet can be used for routing decisions as well.
105
106 If you are interested in this, please see the preliminary
107 documentation at <http://www.compendium.com.ar/policy-routing.txt>
108 and <ftp://post.tepkom.ru/pub/vol2/Linux/docs/advanced-routing.tex>.
109 You will need supporting software from
110 <ftp://ftp.tux.org/pub/net/ip-routing/>.
111
112 If unsure, say N.
113
114 config IP_ROUTE_MULTIPATH
115 bool "IP: equal cost multipath"
116 depends on IP_ADVANCED_ROUTER
117 help
118 Normally, the routing tables specify a single action to be taken in
119 a deterministic manner for a given packet. If you say Y here
120 however, it becomes possible to attach several actions to a packet
121 pattern, in effect specifying several alternative paths to travel
122 for those packets. The router considers all these paths to be of
123 equal "cost" and chooses one of them in a non-deterministic fashion
124 if a matching packet arrives.
125
126 config IP_ROUTE_VERBOSE
127 bool "IP: verbose route monitoring"
128 depends on IP_ADVANCED_ROUTER
129 help
130 If you say Y here, which is recommended, then the kernel will print
131 verbose messages regarding the routing, for example warnings about
132 received packets which look strange and could be evidence of an
133 attack or a misconfigured system somewhere. The information is
134 handled by the klogd daemon which is responsible for kernel messages
135 ("man klogd").
136
137 config IP_PNP
138 bool "IP: kernel level autoconfiguration"
139 help
140 This enables automatic configuration of IP addresses of devices and
141 of the routing table during kernel boot, based on either information
142 supplied on the kernel command line or by BOOTP or RARP protocols.
143 You need to say Y only for diskless machines requiring network
144 access to boot (in which case you want to say Y to "Root file system
145 on NFS" as well), because all other machines configure the network
146 in their startup scripts.
147
148 config IP_PNP_DHCP
149 bool "IP: DHCP support"
150 depends on IP_PNP
151 ---help---
152 If you want your Linux box to mount its whole root file system (the
153 one containing the directory /) from some other computer over the
154 net via NFS and you want the IP address of your computer to be
155 discovered automatically at boot time using the DHCP protocol (a
156 special protocol designed for doing this job), say Y here. In case
157 the boot ROM of your network card was designed for booting Linux and
158 does DHCP itself, providing all necessary information on the kernel
159 command line, you can say N here.
160
161 If unsure, say Y. Note that if you want to use DHCP, a DHCP server
162 must be operating on your network. Read
163 <file:Documentation/filesystems/nfsroot.txt> for details.
164
165 config IP_PNP_BOOTP
166 bool "IP: BOOTP support"
167 depends on IP_PNP
168 ---help---
169 If you want your Linux box to mount its whole root file system (the
170 one containing the directory /) from some other computer over the
171 net via NFS and you want the IP address of your computer to be
172 discovered automatically at boot time using the BOOTP protocol (a
173 special protocol designed for doing this job), say Y here. In case
174 the boot ROM of your network card was designed for booting Linux and
175 does BOOTP itself, providing all necessary information on the kernel
176 command line, you can say N here. If unsure, say Y. Note that if you
177 want to use BOOTP, a BOOTP server must be operating on your network.
178 Read <file:Documentation/filesystems/nfsroot.txt> for details.
179
180 config IP_PNP_RARP
181 bool "IP: RARP support"
182 depends on IP_PNP
183 help
184 If you want your Linux box to mount its whole root file system (the
185 one containing the directory /) from some other computer over the
186 net via NFS and you want the IP address of your computer to be
187 discovered automatically at boot time using the RARP protocol (an
188 older protocol which is being obsoleted by BOOTP and DHCP), say Y
189 here. Note that if you want to use RARP, a RARP server must be
190 operating on your network. Read
191 <file:Documentation/filesystems/nfsroot.txt> for details.
192
193 # not yet ready..
194 # bool ' IP: ARP support' CONFIG_IP_PNP_ARP
195 config NET_IPIP
196 tristate "IP: tunneling"
197 select INET_TUNNEL
198 ---help---
199 Tunneling means encapsulating data of one protocol type within
200 another protocol and sending it over a channel that understands the
201 encapsulating protocol. This particular tunneling driver implements
202 encapsulation of IP within IP, which sounds kind of pointless, but
203 can be useful if you want to make your (or some other) machine
204 appear on a different network than it physically is, or to use
205 mobile-IP facilities (allowing laptops to seamlessly move between
206 networks without changing their IP addresses).
207
208 Saying Y to this option will produce two modules ( = code which can
209 be inserted in and removed from the running kernel whenever you
210 want). Most people won't need this and can say N.
211
212 config NET_IPGRE
213 tristate "IP: GRE tunnels over IP"
214 help
215 Tunneling means encapsulating data of one protocol type within
216 another protocol and sending it over a channel that understands the
217 encapsulating protocol. This particular tunneling driver implements
218 GRE (Generic Routing Encapsulation) and at this time allows
219 encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure.
220 This driver is useful if the other endpoint is a Cisco router: Cisco
221 likes GRE much better than the other Linux tunneling driver ("IP
222 tunneling" above). In addition, GRE allows multicast redistribution
223 through the tunnel.
224
225 config NET_IPGRE_BROADCAST
226 bool "IP: broadcast GRE over IP"
227 depends on IP_MULTICAST && NET_IPGRE
228 help
229 One application of GRE/IP is to construct a broadcast WAN (Wide Area
230 Network), which looks like a normal Ethernet LAN (Local Area
231 Network), but can be distributed all over the Internet. If you want
232 to do that, say Y here and to "IP multicast routing" below.
233
234 config IP_MROUTE
235 bool "IP: multicast routing"
236 depends on IP_MULTICAST
237 help
238 This is used if you want your machine to act as a router for IP
239 packets that have several destination addresses. It is needed on the
240 MBONE, a high bandwidth network on top of the Internet which carries
241 audio and video broadcasts. In order to do that, you would most
242 likely run the program mrouted. Information about the multicast
243 capabilities of the various network cards is contained in
244 <file:Documentation/networking/multicast.txt>. If you haven't heard
245 about it, you don't need it.
246
247 config IP_PIMSM_V1
248 bool "IP: PIM-SM version 1 support"
249 depends on IP_MROUTE
250 help
251 Kernel side support for Sparse Mode PIM (Protocol Independent
252 Multicast) version 1. This multicast routing protocol is used widely
253 because Cisco supports it. You need special software to use it
254 (pimd-v1). Please see <http://netweb.usc.edu/pim/> for more
255 information about PIM.
256
257 Say Y if you want to use PIM-SM v1. Note that you can say N here if
258 you just want to use Dense Mode PIM.
259
260 config IP_PIMSM_V2
261 bool "IP: PIM-SM version 2 support"
262 depends on IP_MROUTE
263 help
264 Kernel side support for Sparse Mode PIM version 2. In order to use
265 this, you need an experimental routing daemon supporting it (pimd or
266 gated-5). This routing protocol is not used widely, so say N unless
267 you want to play with it.
268
269 config ARPD
270 bool "IP: ARP daemon support (EXPERIMENTAL)"
271 depends on EXPERIMENTAL
272 ---help---
273 Normally, the kernel maintains an internal cache which maps IP
274 addresses to hardware addresses on the local network, so that
275 Ethernet/Token Ring/ etc. frames are sent to the proper address on
276 the physical networking layer. For small networks having a few
277 hundred directly connected hosts or less, keeping this address
278 resolution (ARP) cache inside the kernel works well. However,
279 maintaining an internal ARP cache does not work well for very large
280 switched networks, and will use a lot of kernel memory if TCP/IP
281 connections are made to many machines on the network.
282
283 If you say Y here, the kernel's internal ARP cache will never grow
284 to more than 256 entries (the oldest entries are expired in a LIFO
285 manner) and communication will be attempted with the user space ARP
286 daemon arpd. Arpd then answers the address resolution request either
287 from its own cache or by asking the net.
288
289 This code is experimental and also obsolete. If you want to use it,
290 you need to find a version of the daemon arpd on the net somewhere,
291 and you should also say Y to "Kernel/User network link driver",
292 below. If unsure, say N.
293
294 config SYN_COOKIES
295 bool "IP: TCP syncookie support (disabled per default)"
296 ---help---
297 Normal TCP/IP networking is open to an attack known as "SYN
298 flooding". This denial-of-service attack prevents legitimate remote
299 users from being able to connect to your computer during an ongoing
300 attack and requires very little work from the attacker, who can
301 operate from anywhere on the Internet.
302
303 SYN cookies provide protection against this type of attack. If you
304 say Y here, the TCP/IP stack will use a cryptographic challenge
305 protocol known as "SYN cookies" to enable legitimate users to
306 continue to connect, even when your machine is under attack. There
307 is no need for the legitimate users to change their TCP/IP software;
308 SYN cookies work transparently to them. For technical information
309 about SYN cookies, check out <http://cr.yp.to/syncookies.html>.
310
311 If you are SYN flooded, the source address reported by the kernel is
312 likely to have been forged by the attacker; it is only reported as
313 an aid in tracing the packets to their actual source and should not
314 be taken as absolute truth.
315
316 SYN cookies may prevent correct error reporting on clients when the
317 server is really overloaded. If this happens frequently better turn
318 them off.
319
320 If you say Y here, note that SYN cookies aren't enabled by default;
321 you can enable them by saying Y to "/proc file system support" and
322 "Sysctl support" below and executing the command
323
324 echo 1 >/proc/sys/net/ipv4/tcp_syncookies
325
326 at boot time after the /proc file system has been mounted.
327
328 If unsure, say N.
329
330 config INET_AH
331 tristate "IP: AH transformation"
332 select XFRM
333 select CRYPTO
334 select CRYPTO_HMAC
335 select CRYPTO_MD5
336 select CRYPTO_SHA1
337 ---help---
338 Support for IPsec AH.
339
340 If unsure, say Y.
341
342 config INET_ESP
343 tristate "IP: ESP transformation"
344 select XFRM
345 select CRYPTO
346 select CRYPTO_AUTHENC
347 select CRYPTO_HMAC
348 select CRYPTO_MD5
349 select CRYPTO_CBC
350 select CRYPTO_SHA1
351 select CRYPTO_DES
352 ---help---
353 Support for IPsec ESP.
354
355 If unsure, say Y.
356
357 config INET_IPCOMP
358 tristate "IP: IPComp transformation"
359 select INET_XFRM_TUNNEL
360 select XFRM_IPCOMP
361 ---help---
362 Support for IP Payload Compression Protocol (IPComp) (RFC3173),
363 typically needed for IPsec.
364
365 If unsure, say Y.
366
367 config INET_XFRM_TUNNEL
368 tristate
369 select INET_TUNNEL
370 default n
371
372 config INET_TUNNEL
373 tristate
374 default n
375
376 config INET_XFRM_MODE_TRANSPORT
377 tristate "IP: IPsec transport mode"
378 default y
379 select XFRM
380 ---help---
381 Support for IPsec transport mode.
382
383 If unsure, say Y.
384
385 config INET_XFRM_MODE_TUNNEL
386 tristate "IP: IPsec tunnel mode"
387 default y
388 select XFRM
389 ---help---
390 Support for IPsec tunnel mode.
391
392 If unsure, say Y.
393
394 config INET_XFRM_MODE_BEET
395 tristate "IP: IPsec BEET mode"
396 default y
397 select XFRM
398 ---help---
399 Support for IPsec BEET mode.
400
401 If unsure, say Y.
402
403 config INET_LRO
404 tristate "Large Receive Offload (ipv4/tcp)"
405
406 ---help---
407 Support for Large Receive Offload (ipv4/tcp).
408
409 If unsure, say Y.
410
411 config INET_DIAG
412 tristate "INET: socket monitoring interface"
413 default y
414 ---help---
415 Support for INET (TCP, DCCP, etc) socket monitoring interface used by
416 native Linux tools such as ss. ss is included in iproute2, currently
417 downloadable at <http://linux-net.osdl.org/index.php/Iproute2>.
418
419 If unsure, say Y.
420
421 config INET_TCP_DIAG
422 depends on INET_DIAG
423 def_tristate INET_DIAG
424
425 menuconfig TCP_CONG_ADVANCED
426 bool "TCP: advanced congestion control"
427 ---help---
428 Support for selection of various TCP congestion control
429 modules.
430
431 Nearly all users can safely say no here, and a safe default
432 selection will be made (CUBIC with new Reno as a fallback).
433
434 If unsure, say N.
435
436 if TCP_CONG_ADVANCED
437
438 config TCP_CONG_BIC
439 tristate "Binary Increase Congestion (BIC) control"
440 default m
441 ---help---
442 BIC-TCP is a sender-side only change that ensures a linear RTT
443 fairness under large windows while offering both scalability and
444 bounded TCP-friendliness. The protocol combines two schemes
445 called additive increase and binary search increase. When the
446 congestion window is large, additive increase with a large
447 increment ensures linear RTT fairness as well as good
448 scalability. Under small congestion windows, binary search
449 increase provides TCP friendliness.
450 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
451
452 config TCP_CONG_CUBIC
453 tristate "CUBIC TCP"
454 default y
455 ---help---
456 This is version 2.0 of BIC-TCP which uses a cubic growth function
457 among other techniques.
458 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
459
460 config TCP_CONG_WESTWOOD
461 tristate "TCP Westwood+"
462 default m
463 ---help---
464 TCP Westwood+ is a sender-side only modification of the TCP Reno
465 protocol stack that optimizes the performance of TCP congestion
466 control. It is based on end-to-end bandwidth estimation to set
467 congestion window and slow start threshold after a congestion
468 episode. Using this estimation, TCP Westwood+ adaptively sets a
469 slow start threshold and a congestion window which takes into
470 account the bandwidth used at the time congestion is experienced.
471 TCP Westwood+ significantly increases fairness wrt TCP Reno in
472 wired networks and throughput over wireless links.
473
474 config TCP_CONG_HTCP
475 tristate "H-TCP"
476 default m
477 ---help---
478 H-TCP is a send-side only modifications of the TCP Reno
479 protocol stack that optimizes the performance of TCP
480 congestion control for high speed network links. It uses a
481 modeswitch to change the alpha and beta parameters of TCP Reno
482 based on network conditions and in a way so as to be fair with
483 other Reno and H-TCP flows.
484
485 config TCP_CONG_HSTCP
486 tristate "High Speed TCP"
487 depends on EXPERIMENTAL
488 default n
489 ---help---
490 Sally Floyd's High Speed TCP (RFC 3649) congestion control.
491 A modification to TCP's congestion control mechanism for use
492 with large congestion windows. A table indicates how much to
493 increase the congestion window by when an ACK is received.
494 For more detail see http://www.icir.org/floyd/hstcp.html
495
496 config TCP_CONG_HYBLA
497 tristate "TCP-Hybla congestion control algorithm"
498 depends on EXPERIMENTAL
499 default n
500 ---help---
501 TCP-Hybla is a sender-side only change that eliminates penalization of
502 long-RTT, large-bandwidth connections, like when satellite legs are
503 involved, especially when sharing a common bottleneck with normal
504 terrestrial connections.
505
506 config TCP_CONG_VEGAS
507 tristate "TCP Vegas"
508 depends on EXPERIMENTAL
509 default n
510 ---help---
511 TCP Vegas is a sender-side only change to TCP that anticipates
512 the onset of congestion by estimating the bandwidth. TCP Vegas
513 adjusts the sending rate by modifying the congestion
514 window. TCP Vegas should provide less packet loss, but it is
515 not as aggressive as TCP Reno.
516
517 config TCP_CONG_SCALABLE
518 tristate "Scalable TCP"
519 depends on EXPERIMENTAL
520 default n
521 ---help---
522 Scalable TCP is a sender-side only change to TCP which uses a
523 MIMD congestion control algorithm which has some nice scaling
524 properties, though is known to have fairness issues.
525 See http://www.deneholme.net/tom/scalable/
526
527 config TCP_CONG_LP
528 tristate "TCP Low Priority"
529 depends on EXPERIMENTAL
530 default n
531 ---help---
532 TCP Low Priority (TCP-LP), a distributed algorithm whose goal is
533 to utilize only the excess network bandwidth as compared to the
534 ``fair share`` of bandwidth as targeted by TCP.
535 See http://www-ece.rice.edu/networks/TCP-LP/
536
537 config TCP_CONG_VENO
538 tristate "TCP Veno"
539 depends on EXPERIMENTAL
540 default n
541 ---help---
542 TCP Veno is a sender-side only enhancement of TCP to obtain better
543 throughput over wireless networks. TCP Veno makes use of state
544 distinguishing to circumvent the difficult judgment of the packet loss
545 type. TCP Veno cuts down less congestion window in response to random
546 loss packets.
547 See http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf
548
549 config TCP_CONG_YEAH
550 tristate "YeAH TCP"
551 depends on EXPERIMENTAL
552 select TCP_CONG_VEGAS
553 default n
554 ---help---
555 YeAH-TCP is a sender-side high-speed enabled TCP congestion control
556 algorithm, which uses a mixed loss/delay approach to compute the
557 congestion window. It's design goals target high efficiency,
558 internal, RTT and Reno fairness, resilience to link loss while
559 keeping network elements load as low as possible.
560
561 For further details look here:
562 http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
563
564 config TCP_CONG_ILLINOIS
565 tristate "TCP Illinois"
566 depends on EXPERIMENTAL
567 default n
568 ---help---
569 TCP-Illinois is a sender-side modification of TCP Reno for
570 high speed long delay links. It uses round-trip-time to
571 adjust the alpha and beta parameters to achieve a higher average
572 throughput and maintain fairness.
573
574 For further details see:
575 http://www.ews.uiuc.edu/~shaoliu/tcpillinois/index.html
576
577 choice
578 prompt "Default TCP congestion control"
579 default DEFAULT_CUBIC
580 help
581 Select the TCP congestion control that will be used by default
582 for all connections.
583
584 config DEFAULT_BIC
585 bool "Bic" if TCP_CONG_BIC=y
586
587 config DEFAULT_CUBIC
588 bool "Cubic" if TCP_CONG_CUBIC=y
589
590 config DEFAULT_HTCP
591 bool "Htcp" if TCP_CONG_HTCP=y
592
593 config DEFAULT_VEGAS
594 bool "Vegas" if TCP_CONG_VEGAS=y
595
596 config DEFAULT_WESTWOOD
597 bool "Westwood" if TCP_CONG_WESTWOOD=y
598
599 config DEFAULT_RENO
600 bool "Reno"
601
602 endchoice
603
604 endif
605
606 config TCP_CONG_CUBIC
607 tristate
608 depends on !TCP_CONG_ADVANCED
609 default y
610
611 config DEFAULT_TCP_CONG
612 string
613 default "bic" if DEFAULT_BIC
614 default "cubic" if DEFAULT_CUBIC
615 default "htcp" if DEFAULT_HTCP
616 default "vegas" if DEFAULT_VEGAS
617 default "westwood" if DEFAULT_WESTWOOD
618 default "reno" if DEFAULT_RENO
619 default "cubic"
620
621 config TCP_MD5SIG
622 bool "TCP: MD5 Signature Option support (RFC2385) (EXPERIMENTAL)"
623 depends on EXPERIMENTAL
624 select CRYPTO
625 select CRYPTO_MD5
626 ---help---
627 RFC2385 specifies a method of giving MD5 protection to TCP sessions.
628 Its main (only?) use is to protect BGP sessions between core routers
629 on the Internet.
630
631 If unsure, say N.
632
This page took 0.21691 seconds and 5 git commands to generate.