net: return operator cleanup
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #include <linux/module.h>
77 #include <linux/types.h>
78 #include <linux/string.h>
79 #include <linux/kernel.h>
80 #include <linux/capability.h>
81 #include <linux/socket.h>
82 #include <linux/sockios.h>
83 #include <linux/errno.h>
84 #include <linux/in.h>
85 #include <linux/mm.h>
86 #include <linux/inet.h>
87 #include <linux/inetdevice.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/fddidevice.h>
91 #include <linux/if_arp.h>
92 #include <linux/trdevice.h>
93 #include <linux/skbuff.h>
94 #include <linux/proc_fs.h>
95 #include <linux/seq_file.h>
96 #include <linux/stat.h>
97 #include <linux/init.h>
98 #include <linux/net.h>
99 #include <linux/rcupdate.h>
100 #include <linux/jhash.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 EXPORT_SYMBOL(clip_tbl_hook);
120 #endif
121
122 #include <asm/system.h>
123 #include <linux/uaccess.h>
124
125 #include <linux/netfilter_arp.h>
126
127 /*
128 * Interface to generic neighbour cache.
129 */
130 static u32 arp_hash(const void *pkey, const struct net_device *dev);
131 static int arp_constructor(struct neighbour *neigh);
132 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
133 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
134 static void parp_redo(struct sk_buff *skb);
135
136 static const struct neigh_ops arp_generic_ops = {
137 .family = AF_INET,
138 .solicit = arp_solicit,
139 .error_report = arp_error_report,
140 .output = neigh_resolve_output,
141 .connected_output = neigh_connected_output,
142 .hh_output = dev_queue_xmit,
143 .queue_xmit = dev_queue_xmit,
144 };
145
146 static const struct neigh_ops arp_hh_ops = {
147 .family = AF_INET,
148 .solicit = arp_solicit,
149 .error_report = arp_error_report,
150 .output = neigh_resolve_output,
151 .connected_output = neigh_resolve_output,
152 .hh_output = dev_queue_xmit,
153 .queue_xmit = dev_queue_xmit,
154 };
155
156 static const struct neigh_ops arp_direct_ops = {
157 .family = AF_INET,
158 .output = dev_queue_xmit,
159 .connected_output = dev_queue_xmit,
160 .hh_output = dev_queue_xmit,
161 .queue_xmit = dev_queue_xmit,
162 };
163
164 const struct neigh_ops arp_broken_ops = {
165 .family = AF_INET,
166 .solicit = arp_solicit,
167 .error_report = arp_error_report,
168 .output = neigh_compat_output,
169 .connected_output = neigh_compat_output,
170 .hh_output = dev_queue_xmit,
171 .queue_xmit = dev_queue_xmit,
172 };
173 EXPORT_SYMBOL(arp_broken_ops);
174
175 struct neigh_table arp_tbl = {
176 .family = AF_INET,
177 .entry_size = sizeof(struct neighbour) + 4,
178 .key_len = 4,
179 .hash = arp_hash,
180 .constructor = arp_constructor,
181 .proxy_redo = parp_redo,
182 .id = "arp_cache",
183 .parms = {
184 .tbl = &arp_tbl,
185 .base_reachable_time = 30 * HZ,
186 .retrans_time = 1 * HZ,
187 .gc_staletime = 60 * HZ,
188 .reachable_time = 30 * HZ,
189 .delay_probe_time = 5 * HZ,
190 .queue_len = 3,
191 .ucast_probes = 3,
192 .mcast_probes = 3,
193 .anycast_delay = 1 * HZ,
194 .proxy_delay = (8 * HZ) / 10,
195 .proxy_qlen = 64,
196 .locktime = 1 * HZ,
197 },
198 .gc_interval = 30 * HZ,
199 .gc_thresh1 = 128,
200 .gc_thresh2 = 512,
201 .gc_thresh3 = 1024,
202 };
203 EXPORT_SYMBOL(arp_tbl);
204
205 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
206 {
207 switch (dev->type) {
208 case ARPHRD_ETHER:
209 case ARPHRD_FDDI:
210 case ARPHRD_IEEE802:
211 ip_eth_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_IEEE802_TR:
214 ip_tr_mc_map(addr, haddr);
215 return 0;
216 case ARPHRD_INFINIBAND:
217 ip_ib_mc_map(addr, dev->broadcast, haddr);
218 return 0;
219 default:
220 if (dir) {
221 memcpy(haddr, dev->broadcast, dev->addr_len);
222 return 0;
223 }
224 }
225 return -EINVAL;
226 }
227
228
229 static u32 arp_hash(const void *pkey, const struct net_device *dev)
230 {
231 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
232 }
233
234 static int arp_constructor(struct neighbour *neigh)
235 {
236 __be32 addr = *(__be32 *)neigh->primary_key;
237 struct net_device *dev = neigh->dev;
238 struct in_device *in_dev;
239 struct neigh_parms *parms;
240
241 rcu_read_lock();
242 in_dev = __in_dev_get_rcu(dev);
243 if (in_dev == NULL) {
244 rcu_read_unlock();
245 return -EINVAL;
246 }
247
248 neigh->type = inet_addr_type(dev_net(dev), addr);
249
250 parms = in_dev->arp_parms;
251 __neigh_parms_put(neigh->parms);
252 neigh->parms = neigh_parms_clone(parms);
253 rcu_read_unlock();
254
255 if (!dev->header_ops) {
256 neigh->nud_state = NUD_NOARP;
257 neigh->ops = &arp_direct_ops;
258 neigh->output = neigh->ops->queue_xmit;
259 } else {
260 /* Good devices (checked by reading texts, but only Ethernet is
261 tested)
262
263 ARPHRD_ETHER: (ethernet, apfddi)
264 ARPHRD_FDDI: (fddi)
265 ARPHRD_IEEE802: (tr)
266 ARPHRD_METRICOM: (strip)
267 ARPHRD_ARCNET:
268 etc. etc. etc.
269
270 ARPHRD_IPDDP will also work, if author repairs it.
271 I did not it, because this driver does not work even
272 in old paradigm.
273 */
274
275 #if 1
276 /* So... these "amateur" devices are hopeless.
277 The only thing, that I can say now:
278 It is very sad that we need to keep ugly obsolete
279 code to make them happy.
280
281 They should be moved to more reasonable state, now
282 they use rebuild_header INSTEAD OF hard_start_xmit!!!
283 Besides that, they are sort of out of date
284 (a lot of redundant clones/copies, useless in 2.1),
285 I wonder why people believe that they work.
286 */
287 switch (dev->type) {
288 default:
289 break;
290 case ARPHRD_ROSE:
291 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
292 case ARPHRD_AX25:
293 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
294 case ARPHRD_NETROM:
295 #endif
296 neigh->ops = &arp_broken_ops;
297 neigh->output = neigh->ops->output;
298 return 0;
299 #else
300 break;
301 #endif
302 }
303 #endif
304 if (neigh->type == RTN_MULTICAST) {
305 neigh->nud_state = NUD_NOARP;
306 arp_mc_map(addr, neigh->ha, dev, 1);
307 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
308 neigh->nud_state = NUD_NOARP;
309 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
310 } else if (neigh->type == RTN_BROADCAST ||
311 (dev->flags & IFF_POINTOPOINT)) {
312 neigh->nud_state = NUD_NOARP;
313 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
314 }
315
316 if (dev->header_ops->cache)
317 neigh->ops = &arp_hh_ops;
318 else
319 neigh->ops = &arp_generic_ops;
320
321 if (neigh->nud_state & NUD_VALID)
322 neigh->output = neigh->ops->connected_output;
323 else
324 neigh->output = neigh->ops->output;
325 }
326 return 0;
327 }
328
329 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 dst_link_failure(skb);
332 kfree_skb(skb);
333 }
334
335 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
336 {
337 __be32 saddr = 0;
338 u8 *dst_ha = NULL;
339 struct net_device *dev = neigh->dev;
340 __be32 target = *(__be32 *)neigh->primary_key;
341 int probes = atomic_read(&neigh->probes);
342 struct in_device *in_dev;
343
344 rcu_read_lock();
345 in_dev = __in_dev_get_rcu(dev);
346 if (!in_dev) {
347 rcu_read_unlock();
348 return;
349 }
350 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
351 default:
352 case 0: /* By default announce any local IP */
353 if (skb && inet_addr_type(dev_net(dev),
354 ip_hdr(skb)->saddr) == RTN_LOCAL)
355 saddr = ip_hdr(skb)->saddr;
356 break;
357 case 1: /* Restrict announcements of saddr in same subnet */
358 if (!skb)
359 break;
360 saddr = ip_hdr(skb)->saddr;
361 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
362 /* saddr should be known to target */
363 if (inet_addr_onlink(in_dev, target, saddr))
364 break;
365 }
366 saddr = 0;
367 break;
368 case 2: /* Avoid secondary IPs, get a primary/preferred one */
369 break;
370 }
371 rcu_read_unlock();
372
373 if (!saddr)
374 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
375
376 probes -= neigh->parms->ucast_probes;
377 if (probes < 0) {
378 if (!(neigh->nud_state & NUD_VALID))
379 printk(KERN_DEBUG
380 "trying to ucast probe in NUD_INVALID\n");
381 dst_ha = neigh->ha;
382 read_lock_bh(&neigh->lock);
383 } else {
384 probes -= neigh->parms->app_probes;
385 if (probes < 0) {
386 #ifdef CONFIG_ARPD
387 neigh_app_ns(neigh);
388 #endif
389 return;
390 }
391 }
392
393 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
394 dst_ha, dev->dev_addr, NULL);
395 if (dst_ha)
396 read_unlock_bh(&neigh->lock);
397 }
398
399 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
400 {
401 int scope;
402
403 switch (IN_DEV_ARP_IGNORE(in_dev)) {
404 case 0: /* Reply, the tip is already validated */
405 return 0;
406 case 1: /* Reply only if tip is configured on the incoming interface */
407 sip = 0;
408 scope = RT_SCOPE_HOST;
409 break;
410 case 2: /*
411 * Reply only if tip is configured on the incoming interface
412 * and is in same subnet as sip
413 */
414 scope = RT_SCOPE_HOST;
415 break;
416 case 3: /* Do not reply for scope host addresses */
417 sip = 0;
418 scope = RT_SCOPE_LINK;
419 break;
420 case 4: /* Reserved */
421 case 5:
422 case 6:
423 case 7:
424 return 0;
425 case 8: /* Do not reply */
426 return 1;
427 default:
428 return 0;
429 }
430 return !inet_confirm_addr(in_dev, sip, tip, scope);
431 }
432
433 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
434 {
435 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
436 .saddr = tip } } };
437 struct rtable *rt;
438 int flag = 0;
439 /*unsigned long now; */
440 struct net *net = dev_net(dev);
441
442 if (ip_route_output_key(net, &rt, &fl) < 0)
443 return 1;
444 if (rt->dst.dev != dev) {
445 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
446 flag = 1;
447 }
448 ip_rt_put(rt);
449 return flag;
450 }
451
452 /* OBSOLETE FUNCTIONS */
453
454 /*
455 * Find an arp mapping in the cache. If not found, post a request.
456 *
457 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
458 * even if it exists. It is supposed that skb->dev was mangled
459 * by a virtual device (eql, shaper). Nobody but broken devices
460 * is allowed to use this function, it is scheduled to be removed. --ANK
461 */
462
463 static int arp_set_predefined(int addr_hint, unsigned char *haddr,
464 __be32 paddr, struct net_device *dev)
465 {
466 switch (addr_hint) {
467 case RTN_LOCAL:
468 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
469 memcpy(haddr, dev->dev_addr, dev->addr_len);
470 return 1;
471 case RTN_MULTICAST:
472 arp_mc_map(paddr, haddr, dev, 1);
473 return 1;
474 case RTN_BROADCAST:
475 memcpy(haddr, dev->broadcast, dev->addr_len);
476 return 1;
477 }
478 return 0;
479 }
480
481
482 int arp_find(unsigned char *haddr, struct sk_buff *skb)
483 {
484 struct net_device *dev = skb->dev;
485 __be32 paddr;
486 struct neighbour *n;
487
488 if (!skb_dst(skb)) {
489 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
490 kfree_skb(skb);
491 return 1;
492 }
493
494 paddr = skb_rtable(skb)->rt_gateway;
495
496 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
497 paddr, dev))
498 return 0;
499
500 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
501
502 if (n) {
503 n->used = jiffies;
504 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
505 read_lock_bh(&n->lock);
506 memcpy(haddr, n->ha, dev->addr_len);
507 read_unlock_bh(&n->lock);
508 neigh_release(n);
509 return 0;
510 }
511 neigh_release(n);
512 } else
513 kfree_skb(skb);
514 return 1;
515 }
516 EXPORT_SYMBOL(arp_find);
517
518 /* END OF OBSOLETE FUNCTIONS */
519
520 int arp_bind_neighbour(struct dst_entry *dst)
521 {
522 struct net_device *dev = dst->dev;
523 struct neighbour *n = dst->neighbour;
524
525 if (dev == NULL)
526 return -EINVAL;
527 if (n == NULL) {
528 __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
529 if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
530 nexthop = 0;
531 n = __neigh_lookup_errno(
532 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
533 dev->type == ARPHRD_ATM ?
534 clip_tbl_hook :
535 #endif
536 &arp_tbl, &nexthop, dev);
537 if (IS_ERR(n))
538 return PTR_ERR(n);
539 dst->neighbour = n;
540 }
541 return 0;
542 }
543
544 /*
545 * Check if we can use proxy ARP for this path
546 */
547 static inline int arp_fwd_proxy(struct in_device *in_dev,
548 struct net_device *dev, struct rtable *rt)
549 {
550 struct in_device *out_dev;
551 int imi, omi = -1;
552
553 if (rt->dst.dev == dev)
554 return 0;
555
556 if (!IN_DEV_PROXY_ARP(in_dev))
557 return 0;
558 imi = IN_DEV_MEDIUM_ID(in_dev);
559 if (imi == 0)
560 return 1;
561 if (imi == -1)
562 return 0;
563
564 /* place to check for proxy_arp for routes */
565
566 out_dev = __in_dev_get_rcu(rt->dst.dev);
567 if (out_dev)
568 omi = IN_DEV_MEDIUM_ID(out_dev);
569
570 return omi != imi && omi != -1;
571 }
572
573 /*
574 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
575 *
576 * RFC3069 supports proxy arp replies back to the same interface. This
577 * is done to support (ethernet) switch features, like RFC 3069, where
578 * the individual ports are not allowed to communicate with each
579 * other, BUT they are allowed to talk to the upstream router. As
580 * described in RFC 3069, it is possible to allow these hosts to
581 * communicate through the upstream router, by proxy_arp'ing.
582 *
583 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
584 *
585 * This technology is known by different names:
586 * In RFC 3069 it is called VLAN Aggregation.
587 * Cisco and Allied Telesyn call it Private VLAN.
588 * Hewlett-Packard call it Source-Port filtering or port-isolation.
589 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
590 *
591 */
592 static inline int arp_fwd_pvlan(struct in_device *in_dev,
593 struct net_device *dev, struct rtable *rt,
594 __be32 sip, __be32 tip)
595 {
596 /* Private VLAN is only concerned about the same ethernet segment */
597 if (rt->dst.dev != dev)
598 return 0;
599
600 /* Don't reply on self probes (often done by windowz boxes)*/
601 if (sip == tip)
602 return 0;
603
604 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
605 return 1;
606 else
607 return 0;
608 }
609
610 /*
611 * Interface to link layer: send routine and receive handler.
612 */
613
614 /*
615 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
616 * message.
617 */
618 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
619 struct net_device *dev, __be32 src_ip,
620 const unsigned char *dest_hw,
621 const unsigned char *src_hw,
622 const unsigned char *target_hw)
623 {
624 struct sk_buff *skb;
625 struct arphdr *arp;
626 unsigned char *arp_ptr;
627
628 /*
629 * Allocate a buffer
630 */
631
632 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
633 if (skb == NULL)
634 return NULL;
635
636 skb_reserve(skb, LL_RESERVED_SPACE(dev));
637 skb_reset_network_header(skb);
638 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
639 skb->dev = dev;
640 skb->protocol = htons(ETH_P_ARP);
641 if (src_hw == NULL)
642 src_hw = dev->dev_addr;
643 if (dest_hw == NULL)
644 dest_hw = dev->broadcast;
645
646 /*
647 * Fill the device header for the ARP frame
648 */
649 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
650 goto out;
651
652 /*
653 * Fill out the arp protocol part.
654 *
655 * The arp hardware type should match the device type, except for FDDI,
656 * which (according to RFC 1390) should always equal 1 (Ethernet).
657 */
658 /*
659 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
660 * DIX code for the protocol. Make these device structure fields.
661 */
662 switch (dev->type) {
663 default:
664 arp->ar_hrd = htons(dev->type);
665 arp->ar_pro = htons(ETH_P_IP);
666 break;
667
668 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
669 case ARPHRD_AX25:
670 arp->ar_hrd = htons(ARPHRD_AX25);
671 arp->ar_pro = htons(AX25_P_IP);
672 break;
673
674 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
675 case ARPHRD_NETROM:
676 arp->ar_hrd = htons(ARPHRD_NETROM);
677 arp->ar_pro = htons(AX25_P_IP);
678 break;
679 #endif
680 #endif
681
682 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
683 case ARPHRD_FDDI:
684 arp->ar_hrd = htons(ARPHRD_ETHER);
685 arp->ar_pro = htons(ETH_P_IP);
686 break;
687 #endif
688 #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
689 case ARPHRD_IEEE802_TR:
690 arp->ar_hrd = htons(ARPHRD_IEEE802);
691 arp->ar_pro = htons(ETH_P_IP);
692 break;
693 #endif
694 }
695
696 arp->ar_hln = dev->addr_len;
697 arp->ar_pln = 4;
698 arp->ar_op = htons(type);
699
700 arp_ptr = (unsigned char *)(arp + 1);
701
702 memcpy(arp_ptr, src_hw, dev->addr_len);
703 arp_ptr += dev->addr_len;
704 memcpy(arp_ptr, &src_ip, 4);
705 arp_ptr += 4;
706 if (target_hw != NULL)
707 memcpy(arp_ptr, target_hw, dev->addr_len);
708 else
709 memset(arp_ptr, 0, dev->addr_len);
710 arp_ptr += dev->addr_len;
711 memcpy(arp_ptr, &dest_ip, 4);
712
713 return skb;
714
715 out:
716 kfree_skb(skb);
717 return NULL;
718 }
719 EXPORT_SYMBOL(arp_create);
720
721 /*
722 * Send an arp packet.
723 */
724 void arp_xmit(struct sk_buff *skb)
725 {
726 /* Send it off, maybe filter it using firewalling first. */
727 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
728 }
729 EXPORT_SYMBOL(arp_xmit);
730
731 /*
732 * Create and send an arp packet.
733 */
734 void arp_send(int type, int ptype, __be32 dest_ip,
735 struct net_device *dev, __be32 src_ip,
736 const unsigned char *dest_hw, const unsigned char *src_hw,
737 const unsigned char *target_hw)
738 {
739 struct sk_buff *skb;
740
741 /*
742 * No arp on this interface.
743 */
744
745 if (dev->flags&IFF_NOARP)
746 return;
747
748 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
749 dest_hw, src_hw, target_hw);
750 if (skb == NULL)
751 return;
752
753 arp_xmit(skb);
754 }
755 EXPORT_SYMBOL(arp_send);
756
757 /*
758 * Process an arp request.
759 */
760
761 static int arp_process(struct sk_buff *skb)
762 {
763 struct net_device *dev = skb->dev;
764 struct in_device *in_dev = __in_dev_get_rcu(dev);
765 struct arphdr *arp;
766 unsigned char *arp_ptr;
767 struct rtable *rt;
768 unsigned char *sha;
769 __be32 sip, tip;
770 u16 dev_type = dev->type;
771 int addr_type;
772 struct neighbour *n;
773 struct net *net = dev_net(dev);
774
775 /* arp_rcv below verifies the ARP header and verifies the device
776 * is ARP'able.
777 */
778
779 if (in_dev == NULL)
780 goto out;
781
782 arp = arp_hdr(skb);
783
784 switch (dev_type) {
785 default:
786 if (arp->ar_pro != htons(ETH_P_IP) ||
787 htons(dev_type) != arp->ar_hrd)
788 goto out;
789 break;
790 case ARPHRD_ETHER:
791 case ARPHRD_IEEE802_TR:
792 case ARPHRD_FDDI:
793 case ARPHRD_IEEE802:
794 /*
795 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
796 * devices, according to RFC 2625) devices will accept ARP
797 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
798 * This is the case also of FDDI, where the RFC 1390 says that
799 * FDDI devices should accept ARP hardware of (1) Ethernet,
800 * however, to be more robust, we'll accept both 1 (Ethernet)
801 * or 6 (IEEE 802.2)
802 */
803 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
804 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
805 arp->ar_pro != htons(ETH_P_IP))
806 goto out;
807 break;
808 case ARPHRD_AX25:
809 if (arp->ar_pro != htons(AX25_P_IP) ||
810 arp->ar_hrd != htons(ARPHRD_AX25))
811 goto out;
812 break;
813 case ARPHRD_NETROM:
814 if (arp->ar_pro != htons(AX25_P_IP) ||
815 arp->ar_hrd != htons(ARPHRD_NETROM))
816 goto out;
817 break;
818 }
819
820 /* Understand only these message types */
821
822 if (arp->ar_op != htons(ARPOP_REPLY) &&
823 arp->ar_op != htons(ARPOP_REQUEST))
824 goto out;
825
826 /*
827 * Extract fields
828 */
829 arp_ptr = (unsigned char *)(arp + 1);
830 sha = arp_ptr;
831 arp_ptr += dev->addr_len;
832 memcpy(&sip, arp_ptr, 4);
833 arp_ptr += 4;
834 arp_ptr += dev->addr_len;
835 memcpy(&tip, arp_ptr, 4);
836 /*
837 * Check for bad requests for 127.x.x.x and requests for multicast
838 * addresses. If this is one such, delete it.
839 */
840 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
841 goto out;
842
843 /*
844 * Special case: We must set Frame Relay source Q.922 address
845 */
846 if (dev_type == ARPHRD_DLCI)
847 sha = dev->broadcast;
848
849 /*
850 * Process entry. The idea here is we want to send a reply if it is a
851 * request for us or if it is a request for someone else that we hold
852 * a proxy for. We want to add an entry to our cache if it is a reply
853 * to us or if it is a request for our address.
854 * (The assumption for this last is that if someone is requesting our
855 * address, they are probably intending to talk to us, so it saves time
856 * if we cache their address. Their address is also probably not in
857 * our cache, since ours is not in their cache.)
858 *
859 * Putting this another way, we only care about replies if they are to
860 * us, in which case we add them to the cache. For requests, we care
861 * about those for us and those for our proxies. We reply to both,
862 * and in the case of requests for us we add the requester to the arp
863 * cache.
864 */
865
866 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
867 if (sip == 0) {
868 if (arp->ar_op == htons(ARPOP_REQUEST) &&
869 inet_addr_type(net, tip) == RTN_LOCAL &&
870 !arp_ignore(in_dev, sip, tip))
871 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
872 dev->dev_addr, sha);
873 goto out;
874 }
875
876 if (arp->ar_op == htons(ARPOP_REQUEST) &&
877 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
878
879 rt = skb_rtable(skb);
880 addr_type = rt->rt_type;
881
882 if (addr_type == RTN_LOCAL) {
883 int dont_send;
884
885 dont_send = arp_ignore(in_dev, sip, tip);
886 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
887 dont_send |= arp_filter(sip, tip, dev);
888 if (!dont_send) {
889 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
890 if (n) {
891 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
892 dev, tip, sha, dev->dev_addr,
893 sha);
894 neigh_release(n);
895 }
896 }
897 goto out;
898 } else if (IN_DEV_FORWARD(in_dev)) {
899 if (addr_type == RTN_UNICAST &&
900 (arp_fwd_proxy(in_dev, dev, rt) ||
901 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
902 pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
903 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
904 if (n)
905 neigh_release(n);
906
907 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
908 skb->pkt_type == PACKET_HOST ||
909 in_dev->arp_parms->proxy_delay == 0) {
910 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
911 dev, tip, sha, dev->dev_addr,
912 sha);
913 } else {
914 pneigh_enqueue(&arp_tbl,
915 in_dev->arp_parms, skb);
916 return 0;
917 }
918 goto out;
919 }
920 }
921 }
922
923 /* Update our ARP tables */
924
925 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
926
927 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
928 /* Unsolicited ARP is not accepted by default.
929 It is possible, that this option should be enabled for some
930 devices (strip is candidate)
931 */
932 if (n == NULL &&
933 (arp->ar_op == htons(ARPOP_REPLY) ||
934 (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
935 inet_addr_type(net, sip) == RTN_UNICAST)
936 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
937 }
938
939 if (n) {
940 int state = NUD_REACHABLE;
941 int override;
942
943 /* If several different ARP replies follows back-to-back,
944 use the FIRST one. It is possible, if several proxy
945 agents are active. Taking the first reply prevents
946 arp trashing and chooses the fastest router.
947 */
948 override = time_after(jiffies, n->updated + n->parms->locktime);
949
950 /* Broadcast replies and request packets
951 do not assert neighbour reachability.
952 */
953 if (arp->ar_op != htons(ARPOP_REPLY) ||
954 skb->pkt_type != PACKET_HOST)
955 state = NUD_STALE;
956 neigh_update(n, sha, state,
957 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
958 neigh_release(n);
959 }
960
961 out:
962 consume_skb(skb);
963 return 0;
964 }
965
966 static void parp_redo(struct sk_buff *skb)
967 {
968 arp_process(skb);
969 }
970
971
972 /*
973 * Receive an arp request from the device layer.
974 */
975
976 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
977 struct packet_type *pt, struct net_device *orig_dev)
978 {
979 struct arphdr *arp;
980
981 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
982 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
983 goto freeskb;
984
985 arp = arp_hdr(skb);
986 if (arp->ar_hln != dev->addr_len ||
987 dev->flags & IFF_NOARP ||
988 skb->pkt_type == PACKET_OTHERHOST ||
989 skb->pkt_type == PACKET_LOOPBACK ||
990 arp->ar_pln != 4)
991 goto freeskb;
992
993 skb = skb_share_check(skb, GFP_ATOMIC);
994 if (skb == NULL)
995 goto out_of_mem;
996
997 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
998
999 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
1000
1001 freeskb:
1002 kfree_skb(skb);
1003 out_of_mem:
1004 return 0;
1005 }
1006
1007 /*
1008 * User level interface (ioctl)
1009 */
1010
1011 /*
1012 * Set (create) an ARP cache entry.
1013 */
1014
1015 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1016 {
1017 if (dev == NULL) {
1018 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1019 return 0;
1020 }
1021 if (__in_dev_get_rtnl(dev)) {
1022 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
1023 return 0;
1024 }
1025 return -ENXIO;
1026 }
1027
1028 static int arp_req_set_public(struct net *net, struct arpreq *r,
1029 struct net_device *dev)
1030 {
1031 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1032 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1033
1034 if (mask && mask != htonl(0xFFFFFFFF))
1035 return -EINVAL;
1036 if (!dev && (r->arp_flags & ATF_COM)) {
1037 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1038 r->arp_ha.sa_data);
1039 if (!dev)
1040 return -ENODEV;
1041 }
1042 if (mask) {
1043 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1044 return -ENOBUFS;
1045 return 0;
1046 }
1047
1048 return arp_req_set_proxy(net, dev, 1);
1049 }
1050
1051 static int arp_req_set(struct net *net, struct arpreq *r,
1052 struct net_device *dev)
1053 {
1054 __be32 ip;
1055 struct neighbour *neigh;
1056 int err;
1057
1058 if (r->arp_flags & ATF_PUBL)
1059 return arp_req_set_public(net, r, dev);
1060
1061 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1062 if (r->arp_flags & ATF_PERM)
1063 r->arp_flags |= ATF_COM;
1064 if (dev == NULL) {
1065 struct flowi fl = { .nl_u.ip4_u = { .daddr = ip,
1066 .tos = RTO_ONLINK } };
1067 struct rtable *rt;
1068 err = ip_route_output_key(net, &rt, &fl);
1069 if (err != 0)
1070 return err;
1071 dev = rt->dst.dev;
1072 ip_rt_put(rt);
1073 if (!dev)
1074 return -EINVAL;
1075 }
1076 switch (dev->type) {
1077 #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1078 case ARPHRD_FDDI:
1079 /*
1080 * According to RFC 1390, FDDI devices should accept ARP
1081 * hardware types of 1 (Ethernet). However, to be more
1082 * robust, we'll accept hardware types of either 1 (Ethernet)
1083 * or 6 (IEEE 802.2).
1084 */
1085 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1086 r->arp_ha.sa_family != ARPHRD_ETHER &&
1087 r->arp_ha.sa_family != ARPHRD_IEEE802)
1088 return -EINVAL;
1089 break;
1090 #endif
1091 default:
1092 if (r->arp_ha.sa_family != dev->type)
1093 return -EINVAL;
1094 break;
1095 }
1096
1097 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1098 err = PTR_ERR(neigh);
1099 if (!IS_ERR(neigh)) {
1100 unsigned state = NUD_STALE;
1101 if (r->arp_flags & ATF_PERM)
1102 state = NUD_PERMANENT;
1103 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1104 r->arp_ha.sa_data : NULL, state,
1105 NEIGH_UPDATE_F_OVERRIDE |
1106 NEIGH_UPDATE_F_ADMIN);
1107 neigh_release(neigh);
1108 }
1109 return err;
1110 }
1111
1112 static unsigned arp_state_to_flags(struct neighbour *neigh)
1113 {
1114 if (neigh->nud_state&NUD_PERMANENT)
1115 return ATF_PERM | ATF_COM;
1116 else if (neigh->nud_state&NUD_VALID)
1117 return ATF_COM;
1118 else
1119 return 0;
1120 }
1121
1122 /*
1123 * Get an ARP cache entry.
1124 */
1125
1126 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1127 {
1128 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1129 struct neighbour *neigh;
1130 int err = -ENXIO;
1131
1132 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1133 if (neigh) {
1134 read_lock_bh(&neigh->lock);
1135 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1136 r->arp_flags = arp_state_to_flags(neigh);
1137 read_unlock_bh(&neigh->lock);
1138 r->arp_ha.sa_family = dev->type;
1139 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1140 neigh_release(neigh);
1141 err = 0;
1142 }
1143 return err;
1144 }
1145
1146 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1147 struct net_device *dev)
1148 {
1149 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1150 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1151
1152 if (mask == htonl(0xFFFFFFFF))
1153 return pneigh_delete(&arp_tbl, net, &ip, dev);
1154
1155 if (mask)
1156 return -EINVAL;
1157
1158 return arp_req_set_proxy(net, dev, 0);
1159 }
1160
1161 static int arp_req_delete(struct net *net, struct arpreq *r,
1162 struct net_device *dev)
1163 {
1164 int err;
1165 __be32 ip;
1166 struct neighbour *neigh;
1167
1168 if (r->arp_flags & ATF_PUBL)
1169 return arp_req_delete_public(net, r, dev);
1170
1171 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1172 if (dev == NULL) {
1173 struct flowi fl = { .nl_u.ip4_u = { .daddr = ip,
1174 .tos = RTO_ONLINK } };
1175 struct rtable *rt;
1176 err = ip_route_output_key(net, &rt, &fl);
1177 if (err != 0)
1178 return err;
1179 dev = rt->dst.dev;
1180 ip_rt_put(rt);
1181 if (!dev)
1182 return -EINVAL;
1183 }
1184 err = -ENXIO;
1185 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1186 if (neigh) {
1187 if (neigh->nud_state & ~NUD_NOARP)
1188 err = neigh_update(neigh, NULL, NUD_FAILED,
1189 NEIGH_UPDATE_F_OVERRIDE|
1190 NEIGH_UPDATE_F_ADMIN);
1191 neigh_release(neigh);
1192 }
1193 return err;
1194 }
1195
1196 /*
1197 * Handle an ARP layer I/O control request.
1198 */
1199
1200 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1201 {
1202 int err;
1203 struct arpreq r;
1204 struct net_device *dev = NULL;
1205
1206 switch (cmd) {
1207 case SIOCDARP:
1208 case SIOCSARP:
1209 if (!capable(CAP_NET_ADMIN))
1210 return -EPERM;
1211 case SIOCGARP:
1212 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1213 if (err)
1214 return -EFAULT;
1215 break;
1216 default:
1217 return -EINVAL;
1218 }
1219
1220 if (r.arp_pa.sa_family != AF_INET)
1221 return -EPFNOSUPPORT;
1222
1223 if (!(r.arp_flags & ATF_PUBL) &&
1224 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1225 return -EINVAL;
1226 if (!(r.arp_flags & ATF_NETMASK))
1227 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1228 htonl(0xFFFFFFFFUL);
1229 rtnl_lock();
1230 if (r.arp_dev[0]) {
1231 err = -ENODEV;
1232 dev = __dev_get_by_name(net, r.arp_dev);
1233 if (dev == NULL)
1234 goto out;
1235
1236 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1237 if (!r.arp_ha.sa_family)
1238 r.arp_ha.sa_family = dev->type;
1239 err = -EINVAL;
1240 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1241 goto out;
1242 } else if (cmd == SIOCGARP) {
1243 err = -ENODEV;
1244 goto out;
1245 }
1246
1247 switch (cmd) {
1248 case SIOCDARP:
1249 err = arp_req_delete(net, &r, dev);
1250 break;
1251 case SIOCSARP:
1252 err = arp_req_set(net, &r, dev);
1253 break;
1254 case SIOCGARP:
1255 err = arp_req_get(&r, dev);
1256 if (!err && copy_to_user(arg, &r, sizeof(r)))
1257 err = -EFAULT;
1258 break;
1259 }
1260 out:
1261 rtnl_unlock();
1262 return err;
1263 }
1264
1265 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1266 void *ptr)
1267 {
1268 struct net_device *dev = ptr;
1269
1270 switch (event) {
1271 case NETDEV_CHANGEADDR:
1272 neigh_changeaddr(&arp_tbl, dev);
1273 rt_cache_flush(dev_net(dev), 0);
1274 break;
1275 default:
1276 break;
1277 }
1278
1279 return NOTIFY_DONE;
1280 }
1281
1282 static struct notifier_block arp_netdev_notifier = {
1283 .notifier_call = arp_netdev_event,
1284 };
1285
1286 /* Note, that it is not on notifier chain.
1287 It is necessary, that this routine was called after route cache will be
1288 flushed.
1289 */
1290 void arp_ifdown(struct net_device *dev)
1291 {
1292 neigh_ifdown(&arp_tbl, dev);
1293 }
1294
1295
1296 /*
1297 * Called once on startup.
1298 */
1299
1300 static struct packet_type arp_packet_type __read_mostly = {
1301 .type = cpu_to_be16(ETH_P_ARP),
1302 .func = arp_rcv,
1303 };
1304
1305 static int arp_proc_init(void);
1306
1307 void __init arp_init(void)
1308 {
1309 neigh_table_init(&arp_tbl);
1310
1311 dev_add_pack(&arp_packet_type);
1312 arp_proc_init();
1313 #ifdef CONFIG_SYSCTL
1314 neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1315 #endif
1316 register_netdevice_notifier(&arp_netdev_notifier);
1317 }
1318
1319 #ifdef CONFIG_PROC_FS
1320 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1321
1322 /* ------------------------------------------------------------------------ */
1323 /*
1324 * ax25 -> ASCII conversion
1325 */
1326 static char *ax2asc2(ax25_address *a, char *buf)
1327 {
1328 char c, *s;
1329 int n;
1330
1331 for (n = 0, s = buf; n < 6; n++) {
1332 c = (a->ax25_call[n] >> 1) & 0x7F;
1333
1334 if (c != ' ')
1335 *s++ = c;
1336 }
1337
1338 *s++ = '-';
1339 n = (a->ax25_call[6] >> 1) & 0x0F;
1340 if (n > 9) {
1341 *s++ = '1';
1342 n -= 10;
1343 }
1344
1345 *s++ = n + '0';
1346 *s++ = '\0';
1347
1348 if (*buf == '\0' || *buf == '-')
1349 return "*";
1350
1351 return buf;
1352 }
1353 #endif /* CONFIG_AX25 */
1354
1355 #define HBUFFERLEN 30
1356
1357 static void arp_format_neigh_entry(struct seq_file *seq,
1358 struct neighbour *n)
1359 {
1360 char hbuffer[HBUFFERLEN];
1361 int k, j;
1362 char tbuf[16];
1363 struct net_device *dev = n->dev;
1364 int hatype = dev->type;
1365
1366 read_lock(&n->lock);
1367 /* Convert hardware address to XX:XX:XX:XX ... form. */
1368 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1369 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1370 ax2asc2((ax25_address *)n->ha, hbuffer);
1371 else {
1372 #endif
1373 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1374 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1375 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1376 hbuffer[k++] = ':';
1377 }
1378 if (k != 0)
1379 --k;
1380 hbuffer[k] = 0;
1381 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1382 }
1383 #endif
1384 sprintf(tbuf, "%pI4", n->primary_key);
1385 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1386 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1387 read_unlock(&n->lock);
1388 }
1389
1390 static void arp_format_pneigh_entry(struct seq_file *seq,
1391 struct pneigh_entry *n)
1392 {
1393 struct net_device *dev = n->dev;
1394 int hatype = dev ? dev->type : 0;
1395 char tbuf[16];
1396
1397 sprintf(tbuf, "%pI4", n->key);
1398 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1399 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1400 dev ? dev->name : "*");
1401 }
1402
1403 static int arp_seq_show(struct seq_file *seq, void *v)
1404 {
1405 if (v == SEQ_START_TOKEN) {
1406 seq_puts(seq, "IP address HW type Flags "
1407 "HW address Mask Device\n");
1408 } else {
1409 struct neigh_seq_state *state = seq->private;
1410
1411 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1412 arp_format_pneigh_entry(seq, v);
1413 else
1414 arp_format_neigh_entry(seq, v);
1415 }
1416
1417 return 0;
1418 }
1419
1420 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1421 {
1422 /* Don't want to confuse "arp -a" w/ magic entries,
1423 * so we tell the generic iterator to skip NUD_NOARP.
1424 */
1425 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1426 }
1427
1428 /* ------------------------------------------------------------------------ */
1429
1430 static const struct seq_operations arp_seq_ops = {
1431 .start = arp_seq_start,
1432 .next = neigh_seq_next,
1433 .stop = neigh_seq_stop,
1434 .show = arp_seq_show,
1435 };
1436
1437 static int arp_seq_open(struct inode *inode, struct file *file)
1438 {
1439 return seq_open_net(inode, file, &arp_seq_ops,
1440 sizeof(struct neigh_seq_state));
1441 }
1442
1443 static const struct file_operations arp_seq_fops = {
1444 .owner = THIS_MODULE,
1445 .open = arp_seq_open,
1446 .read = seq_read,
1447 .llseek = seq_lseek,
1448 .release = seq_release_net,
1449 };
1450
1451
1452 static int __net_init arp_net_init(struct net *net)
1453 {
1454 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1455 return -ENOMEM;
1456 return 0;
1457 }
1458
1459 static void __net_exit arp_net_exit(struct net *net)
1460 {
1461 proc_net_remove(net, "arp");
1462 }
1463
1464 static struct pernet_operations arp_net_ops = {
1465 .init = arp_net_init,
1466 .exit = arp_net_exit,
1467 };
1468
1469 static int __init arp_proc_init(void)
1470 {
1471 return register_pernet_subsys(&arp_net_ops);
1472 }
1473
1474 #else /* CONFIG_PROC_FS */
1475
1476 static int __init arp_proc_init(void)
1477 {
1478 return 0;
1479 }
1480
1481 #endif /* CONFIG_PROC_FS */
This page took 0.080135 seconds and 5 git commands to generate.