net: constify sock_diag_check_cookie()
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130
131 static const struct neigh_ops arp_generic_ops = {
132 .family = AF_INET,
133 .solicit = arp_solicit,
134 .error_report = arp_error_report,
135 .output = neigh_resolve_output,
136 .connected_output = neigh_connected_output,
137 };
138
139 static const struct neigh_ops arp_hh_ops = {
140 .family = AF_INET,
141 .solicit = arp_solicit,
142 .error_report = arp_error_report,
143 .output = neigh_resolve_output,
144 .connected_output = neigh_resolve_output,
145 };
146
147 static const struct neigh_ops arp_direct_ops = {
148 .family = AF_INET,
149 .output = neigh_direct_output,
150 .connected_output = neigh_direct_output,
151 };
152
153 struct neigh_table arp_tbl = {
154 .family = AF_INET,
155 .key_len = 4,
156 .protocol = cpu_to_be16(ETH_P_IP),
157 .hash = arp_hash,
158 .key_eq = arp_key_eq,
159 .constructor = arp_constructor,
160 .proxy_redo = parp_redo,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208
209
210 static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213 {
214 return arp_hashfn(pkey, dev, hash_rnd);
215 }
216
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 return neigh_key_eq32(neigh, pkey);
220 }
221
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr = *(__be32 *)neigh->primary_key;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228
229 rcu_read_lock();
230 in_dev = __in_dev_get_rcu(dev);
231 if (in_dev == NULL) {
232 rcu_read_unlock();
233 return -EINVAL;
234 }
235
236 neigh->type = inet_addr_type(dev_net(dev), addr);
237
238 parms = in_dev->arp_parms;
239 __neigh_parms_put(neigh->parms);
240 neigh->parms = neigh_parms_clone(parms);
241 rcu_read_unlock();
242
243 if (!dev->header_ops) {
244 neigh->nud_state = NUD_NOARP;
245 neigh->ops = &arp_direct_ops;
246 neigh->output = neigh_direct_output;
247 } else {
248 /* Good devices (checked by reading texts, but only Ethernet is
249 tested)
250
251 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_FDDI: (fddi)
253 ARPHRD_IEEE802: (tr)
254 ARPHRD_METRICOM: (strip)
255 ARPHRD_ARCNET:
256 etc. etc. etc.
257
258 ARPHRD_IPDDP will also work, if author repairs it.
259 I did not it, because this driver does not work even
260 in old paradigm.
261 */
262
263 if (neigh->type == RTN_MULTICAST) {
264 neigh->nud_state = NUD_NOARP;
265 arp_mc_map(addr, neigh->ha, dev, 1);
266 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 neigh->nud_state = NUD_NOARP;
268 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 } else if (neigh->type == RTN_BROADCAST ||
270 (dev->flags & IFF_POINTOPOINT)) {
271 neigh->nud_state = NUD_NOARP;
272 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 }
274
275 if (dev->header_ops->cache)
276 neigh->ops = &arp_hh_ops;
277 else
278 neigh->ops = &arp_generic_ops;
279
280 if (neigh->nud_state & NUD_VALID)
281 neigh->output = neigh->ops->connected_output;
282 else
283 neigh->output = neigh->ops->output;
284 }
285 return 0;
286 }
287
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 dst_link_failure(skb);
291 kfree_skb(skb);
292 }
293
294 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
295 {
296 __be32 saddr = 0;
297 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
298 struct net_device *dev = neigh->dev;
299 __be32 target = *(__be32 *)neigh->primary_key;
300 int probes = atomic_read(&neigh->probes);
301 struct in_device *in_dev;
302
303 rcu_read_lock();
304 in_dev = __in_dev_get_rcu(dev);
305 if (!in_dev) {
306 rcu_read_unlock();
307 return;
308 }
309 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
310 default:
311 case 0: /* By default announce any local IP */
312 if (skb && inet_addr_type(dev_net(dev),
313 ip_hdr(skb)->saddr) == RTN_LOCAL)
314 saddr = ip_hdr(skb)->saddr;
315 break;
316 case 1: /* Restrict announcements of saddr in same subnet */
317 if (!skb)
318 break;
319 saddr = ip_hdr(skb)->saddr;
320 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
321 /* saddr should be known to target */
322 if (inet_addr_onlink(in_dev, target, saddr))
323 break;
324 }
325 saddr = 0;
326 break;
327 case 2: /* Avoid secondary IPs, get a primary/preferred one */
328 break;
329 }
330 rcu_read_unlock();
331
332 if (!saddr)
333 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
334
335 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
336 if (probes < 0) {
337 if (!(neigh->nud_state & NUD_VALID))
338 pr_debug("trying to ucast probe in NUD_INVALID\n");
339 neigh_ha_snapshot(dst_ha, neigh, dev);
340 dst_hw = dst_ha;
341 } else {
342 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
343 if (probes < 0) {
344 neigh_app_ns(neigh);
345 return;
346 }
347 }
348
349 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
350 dst_hw, dev->dev_addr, NULL);
351 }
352
353 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
354 {
355 struct net *net = dev_net(in_dev->dev);
356 int scope;
357
358 switch (IN_DEV_ARP_IGNORE(in_dev)) {
359 case 0: /* Reply, the tip is already validated */
360 return 0;
361 case 1: /* Reply only if tip is configured on the incoming interface */
362 sip = 0;
363 scope = RT_SCOPE_HOST;
364 break;
365 case 2: /*
366 * Reply only if tip is configured on the incoming interface
367 * and is in same subnet as sip
368 */
369 scope = RT_SCOPE_HOST;
370 break;
371 case 3: /* Do not reply for scope host addresses */
372 sip = 0;
373 scope = RT_SCOPE_LINK;
374 in_dev = NULL;
375 break;
376 case 4: /* Reserved */
377 case 5:
378 case 6:
379 case 7:
380 return 0;
381 case 8: /* Do not reply */
382 return 1;
383 default:
384 return 0;
385 }
386 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
387 }
388
389 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
390 {
391 struct rtable *rt;
392 int flag = 0;
393 /*unsigned long now; */
394 struct net *net = dev_net(dev);
395
396 rt = ip_route_output(net, sip, tip, 0, 0);
397 if (IS_ERR(rt))
398 return 1;
399 if (rt->dst.dev != dev) {
400 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
401 flag = 1;
402 }
403 ip_rt_put(rt);
404 return flag;
405 }
406
407 /*
408 * Check if we can use proxy ARP for this path
409 */
410 static inline int arp_fwd_proxy(struct in_device *in_dev,
411 struct net_device *dev, struct rtable *rt)
412 {
413 struct in_device *out_dev;
414 int imi, omi = -1;
415
416 if (rt->dst.dev == dev)
417 return 0;
418
419 if (!IN_DEV_PROXY_ARP(in_dev))
420 return 0;
421 imi = IN_DEV_MEDIUM_ID(in_dev);
422 if (imi == 0)
423 return 1;
424 if (imi == -1)
425 return 0;
426
427 /* place to check for proxy_arp for routes */
428
429 out_dev = __in_dev_get_rcu(rt->dst.dev);
430 if (out_dev)
431 omi = IN_DEV_MEDIUM_ID(out_dev);
432
433 return omi != imi && omi != -1;
434 }
435
436 /*
437 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
438 *
439 * RFC3069 supports proxy arp replies back to the same interface. This
440 * is done to support (ethernet) switch features, like RFC 3069, where
441 * the individual ports are not allowed to communicate with each
442 * other, BUT they are allowed to talk to the upstream router. As
443 * described in RFC 3069, it is possible to allow these hosts to
444 * communicate through the upstream router, by proxy_arp'ing.
445 *
446 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
447 *
448 * This technology is known by different names:
449 * In RFC 3069 it is called VLAN Aggregation.
450 * Cisco and Allied Telesyn call it Private VLAN.
451 * Hewlett-Packard call it Source-Port filtering or port-isolation.
452 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
453 *
454 */
455 static inline int arp_fwd_pvlan(struct in_device *in_dev,
456 struct net_device *dev, struct rtable *rt,
457 __be32 sip, __be32 tip)
458 {
459 /* Private VLAN is only concerned about the same ethernet segment */
460 if (rt->dst.dev != dev)
461 return 0;
462
463 /* Don't reply on self probes (often done by windowz boxes)*/
464 if (sip == tip)
465 return 0;
466
467 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
468 return 1;
469 else
470 return 0;
471 }
472
473 /*
474 * Interface to link layer: send routine and receive handler.
475 */
476
477 /*
478 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
479 * message.
480 */
481 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
482 struct net_device *dev, __be32 src_ip,
483 const unsigned char *dest_hw,
484 const unsigned char *src_hw,
485 const unsigned char *target_hw)
486 {
487 struct sk_buff *skb;
488 struct arphdr *arp;
489 unsigned char *arp_ptr;
490 int hlen = LL_RESERVED_SPACE(dev);
491 int tlen = dev->needed_tailroom;
492
493 /*
494 * Allocate a buffer
495 */
496
497 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
498 if (skb == NULL)
499 return NULL;
500
501 skb_reserve(skb, hlen);
502 skb_reset_network_header(skb);
503 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
504 skb->dev = dev;
505 skb->protocol = htons(ETH_P_ARP);
506 if (src_hw == NULL)
507 src_hw = dev->dev_addr;
508 if (dest_hw == NULL)
509 dest_hw = dev->broadcast;
510
511 /*
512 * Fill the device header for the ARP frame
513 */
514 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
515 goto out;
516
517 /*
518 * Fill out the arp protocol part.
519 *
520 * The arp hardware type should match the device type, except for FDDI,
521 * which (according to RFC 1390) should always equal 1 (Ethernet).
522 */
523 /*
524 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
525 * DIX code for the protocol. Make these device structure fields.
526 */
527 switch (dev->type) {
528 default:
529 arp->ar_hrd = htons(dev->type);
530 arp->ar_pro = htons(ETH_P_IP);
531 break;
532
533 #if IS_ENABLED(CONFIG_AX25)
534 case ARPHRD_AX25:
535 arp->ar_hrd = htons(ARPHRD_AX25);
536 arp->ar_pro = htons(AX25_P_IP);
537 break;
538
539 #if IS_ENABLED(CONFIG_NETROM)
540 case ARPHRD_NETROM:
541 arp->ar_hrd = htons(ARPHRD_NETROM);
542 arp->ar_pro = htons(AX25_P_IP);
543 break;
544 #endif
545 #endif
546
547 #if IS_ENABLED(CONFIG_FDDI)
548 case ARPHRD_FDDI:
549 arp->ar_hrd = htons(ARPHRD_ETHER);
550 arp->ar_pro = htons(ETH_P_IP);
551 break;
552 #endif
553 }
554
555 arp->ar_hln = dev->addr_len;
556 arp->ar_pln = 4;
557 arp->ar_op = htons(type);
558
559 arp_ptr = (unsigned char *)(arp + 1);
560
561 memcpy(arp_ptr, src_hw, dev->addr_len);
562 arp_ptr += dev->addr_len;
563 memcpy(arp_ptr, &src_ip, 4);
564 arp_ptr += 4;
565
566 switch (dev->type) {
567 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
568 case ARPHRD_IEEE1394:
569 break;
570 #endif
571 default:
572 if (target_hw != NULL)
573 memcpy(arp_ptr, target_hw, dev->addr_len);
574 else
575 memset(arp_ptr, 0, dev->addr_len);
576 arp_ptr += dev->addr_len;
577 }
578 memcpy(arp_ptr, &dest_ip, 4);
579
580 return skb;
581
582 out:
583 kfree_skb(skb);
584 return NULL;
585 }
586 EXPORT_SYMBOL(arp_create);
587
588 /*
589 * Send an arp packet.
590 */
591 void arp_xmit(struct sk_buff *skb)
592 {
593 /* Send it off, maybe filter it using firewalling first. */
594 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
595 }
596 EXPORT_SYMBOL(arp_xmit);
597
598 /*
599 * Create and send an arp packet.
600 */
601 void arp_send(int type, int ptype, __be32 dest_ip,
602 struct net_device *dev, __be32 src_ip,
603 const unsigned char *dest_hw, const unsigned char *src_hw,
604 const unsigned char *target_hw)
605 {
606 struct sk_buff *skb;
607
608 /*
609 * No arp on this interface.
610 */
611
612 if (dev->flags&IFF_NOARP)
613 return;
614
615 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
616 dest_hw, src_hw, target_hw);
617 if (skb == NULL)
618 return;
619
620 arp_xmit(skb);
621 }
622 EXPORT_SYMBOL(arp_send);
623
624 /*
625 * Process an arp request.
626 */
627
628 static int arp_process(struct sk_buff *skb)
629 {
630 struct net_device *dev = skb->dev;
631 struct in_device *in_dev = __in_dev_get_rcu(dev);
632 struct arphdr *arp;
633 unsigned char *arp_ptr;
634 struct rtable *rt;
635 unsigned char *sha;
636 __be32 sip, tip;
637 u16 dev_type = dev->type;
638 int addr_type;
639 struct neighbour *n;
640 struct net *net = dev_net(dev);
641 bool is_garp = false;
642
643 /* arp_rcv below verifies the ARP header and verifies the device
644 * is ARP'able.
645 */
646
647 if (in_dev == NULL)
648 goto out;
649
650 arp = arp_hdr(skb);
651
652 switch (dev_type) {
653 default:
654 if (arp->ar_pro != htons(ETH_P_IP) ||
655 htons(dev_type) != arp->ar_hrd)
656 goto out;
657 break;
658 case ARPHRD_ETHER:
659 case ARPHRD_FDDI:
660 case ARPHRD_IEEE802:
661 /*
662 * ETHERNET, and Fibre Channel (which are IEEE 802
663 * devices, according to RFC 2625) devices will accept ARP
664 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
665 * This is the case also of FDDI, where the RFC 1390 says that
666 * FDDI devices should accept ARP hardware of (1) Ethernet,
667 * however, to be more robust, we'll accept both 1 (Ethernet)
668 * or 6 (IEEE 802.2)
669 */
670 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
671 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
672 arp->ar_pro != htons(ETH_P_IP))
673 goto out;
674 break;
675 case ARPHRD_AX25:
676 if (arp->ar_pro != htons(AX25_P_IP) ||
677 arp->ar_hrd != htons(ARPHRD_AX25))
678 goto out;
679 break;
680 case ARPHRD_NETROM:
681 if (arp->ar_pro != htons(AX25_P_IP) ||
682 arp->ar_hrd != htons(ARPHRD_NETROM))
683 goto out;
684 break;
685 }
686
687 /* Understand only these message types */
688
689 if (arp->ar_op != htons(ARPOP_REPLY) &&
690 arp->ar_op != htons(ARPOP_REQUEST))
691 goto out;
692
693 /*
694 * Extract fields
695 */
696 arp_ptr = (unsigned char *)(arp + 1);
697 sha = arp_ptr;
698 arp_ptr += dev->addr_len;
699 memcpy(&sip, arp_ptr, 4);
700 arp_ptr += 4;
701 switch (dev_type) {
702 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
703 case ARPHRD_IEEE1394:
704 break;
705 #endif
706 default:
707 arp_ptr += dev->addr_len;
708 }
709 memcpy(&tip, arp_ptr, 4);
710 /*
711 * Check for bad requests for 127.x.x.x and requests for multicast
712 * addresses. If this is one such, delete it.
713 */
714 if (ipv4_is_multicast(tip) ||
715 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
716 goto out;
717
718 /*
719 * Special case: We must set Frame Relay source Q.922 address
720 */
721 if (dev_type == ARPHRD_DLCI)
722 sha = dev->broadcast;
723
724 /*
725 * Process entry. The idea here is we want to send a reply if it is a
726 * request for us or if it is a request for someone else that we hold
727 * a proxy for. We want to add an entry to our cache if it is a reply
728 * to us or if it is a request for our address.
729 * (The assumption for this last is that if someone is requesting our
730 * address, they are probably intending to talk to us, so it saves time
731 * if we cache their address. Their address is also probably not in
732 * our cache, since ours is not in their cache.)
733 *
734 * Putting this another way, we only care about replies if they are to
735 * us, in which case we add them to the cache. For requests, we care
736 * about those for us and those for our proxies. We reply to both,
737 * and in the case of requests for us we add the requester to the arp
738 * cache.
739 */
740
741 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
742 if (sip == 0) {
743 if (arp->ar_op == htons(ARPOP_REQUEST) &&
744 inet_addr_type(net, tip) == RTN_LOCAL &&
745 !arp_ignore(in_dev, sip, tip))
746 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
747 dev->dev_addr, sha);
748 goto out;
749 }
750
751 if (arp->ar_op == htons(ARPOP_REQUEST) &&
752 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
753
754 rt = skb_rtable(skb);
755 addr_type = rt->rt_type;
756
757 if (addr_type == RTN_LOCAL) {
758 int dont_send;
759
760 dont_send = arp_ignore(in_dev, sip, tip);
761 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
762 dont_send = arp_filter(sip, tip, dev);
763 if (!dont_send) {
764 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
765 if (n) {
766 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
767 dev, tip, sha, dev->dev_addr,
768 sha);
769 neigh_release(n);
770 }
771 }
772 goto out;
773 } else if (IN_DEV_FORWARD(in_dev)) {
774 if (addr_type == RTN_UNICAST &&
775 (arp_fwd_proxy(in_dev, dev, rt) ||
776 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
777 (rt->dst.dev != dev &&
778 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
779 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
780 if (n)
781 neigh_release(n);
782
783 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
784 skb->pkt_type == PACKET_HOST ||
785 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
786 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
787 dev, tip, sha, dev->dev_addr,
788 sha);
789 } else {
790 pneigh_enqueue(&arp_tbl,
791 in_dev->arp_parms, skb);
792 return 0;
793 }
794 goto out;
795 }
796 }
797 }
798
799 /* Update our ARP tables */
800
801 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
802
803 if (IN_DEV_ARP_ACCEPT(in_dev)) {
804 /* Unsolicited ARP is not accepted by default.
805 It is possible, that this option should be enabled for some
806 devices (strip is candidate)
807 */
808 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
809 inet_addr_type(net, sip) == RTN_UNICAST;
810
811 if (n == NULL &&
812 ((arp->ar_op == htons(ARPOP_REPLY) &&
813 inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
814 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
815 }
816
817 if (n) {
818 int state = NUD_REACHABLE;
819 int override;
820
821 /* If several different ARP replies follows back-to-back,
822 use the FIRST one. It is possible, if several proxy
823 agents are active. Taking the first reply prevents
824 arp trashing and chooses the fastest router.
825 */
826 override = time_after(jiffies,
827 n->updated +
828 NEIGH_VAR(n->parms, LOCKTIME)) ||
829 is_garp;
830
831 /* Broadcast replies and request packets
832 do not assert neighbour reachability.
833 */
834 if (arp->ar_op != htons(ARPOP_REPLY) ||
835 skb->pkt_type != PACKET_HOST)
836 state = NUD_STALE;
837 neigh_update(n, sha, state,
838 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
839 neigh_release(n);
840 }
841
842 out:
843 consume_skb(skb);
844 return 0;
845 }
846
847 static void parp_redo(struct sk_buff *skb)
848 {
849 arp_process(skb);
850 }
851
852
853 /*
854 * Receive an arp request from the device layer.
855 */
856
857 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
858 struct packet_type *pt, struct net_device *orig_dev)
859 {
860 const struct arphdr *arp;
861
862 /* do not tweak dropwatch on an ARP we will ignore */
863 if (dev->flags & IFF_NOARP ||
864 skb->pkt_type == PACKET_OTHERHOST ||
865 skb->pkt_type == PACKET_LOOPBACK)
866 goto consumeskb;
867
868 skb = skb_share_check(skb, GFP_ATOMIC);
869 if (!skb)
870 goto out_of_mem;
871
872 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
873 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
874 goto freeskb;
875
876 arp = arp_hdr(skb);
877 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
878 goto freeskb;
879
880 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
881
882 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
883
884 consumeskb:
885 consume_skb(skb);
886 return 0;
887 freeskb:
888 kfree_skb(skb);
889 out_of_mem:
890 return 0;
891 }
892
893 /*
894 * User level interface (ioctl)
895 */
896
897 /*
898 * Set (create) an ARP cache entry.
899 */
900
901 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
902 {
903 if (dev == NULL) {
904 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
905 return 0;
906 }
907 if (__in_dev_get_rtnl(dev)) {
908 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
909 return 0;
910 }
911 return -ENXIO;
912 }
913
914 static int arp_req_set_public(struct net *net, struct arpreq *r,
915 struct net_device *dev)
916 {
917 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
918 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
919
920 if (mask && mask != htonl(0xFFFFFFFF))
921 return -EINVAL;
922 if (!dev && (r->arp_flags & ATF_COM)) {
923 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
924 r->arp_ha.sa_data);
925 if (!dev)
926 return -ENODEV;
927 }
928 if (mask) {
929 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
930 return -ENOBUFS;
931 return 0;
932 }
933
934 return arp_req_set_proxy(net, dev, 1);
935 }
936
937 static int arp_req_set(struct net *net, struct arpreq *r,
938 struct net_device *dev)
939 {
940 __be32 ip;
941 struct neighbour *neigh;
942 int err;
943
944 if (r->arp_flags & ATF_PUBL)
945 return arp_req_set_public(net, r, dev);
946
947 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
948 if (r->arp_flags & ATF_PERM)
949 r->arp_flags |= ATF_COM;
950 if (dev == NULL) {
951 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
952
953 if (IS_ERR(rt))
954 return PTR_ERR(rt);
955 dev = rt->dst.dev;
956 ip_rt_put(rt);
957 if (!dev)
958 return -EINVAL;
959 }
960 switch (dev->type) {
961 #if IS_ENABLED(CONFIG_FDDI)
962 case ARPHRD_FDDI:
963 /*
964 * According to RFC 1390, FDDI devices should accept ARP
965 * hardware types of 1 (Ethernet). However, to be more
966 * robust, we'll accept hardware types of either 1 (Ethernet)
967 * or 6 (IEEE 802.2).
968 */
969 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
970 r->arp_ha.sa_family != ARPHRD_ETHER &&
971 r->arp_ha.sa_family != ARPHRD_IEEE802)
972 return -EINVAL;
973 break;
974 #endif
975 default:
976 if (r->arp_ha.sa_family != dev->type)
977 return -EINVAL;
978 break;
979 }
980
981 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
982 err = PTR_ERR(neigh);
983 if (!IS_ERR(neigh)) {
984 unsigned int state = NUD_STALE;
985 if (r->arp_flags & ATF_PERM)
986 state = NUD_PERMANENT;
987 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
988 r->arp_ha.sa_data : NULL, state,
989 NEIGH_UPDATE_F_OVERRIDE |
990 NEIGH_UPDATE_F_ADMIN);
991 neigh_release(neigh);
992 }
993 return err;
994 }
995
996 static unsigned int arp_state_to_flags(struct neighbour *neigh)
997 {
998 if (neigh->nud_state&NUD_PERMANENT)
999 return ATF_PERM | ATF_COM;
1000 else if (neigh->nud_state&NUD_VALID)
1001 return ATF_COM;
1002 else
1003 return 0;
1004 }
1005
1006 /*
1007 * Get an ARP cache entry.
1008 */
1009
1010 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1011 {
1012 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1013 struct neighbour *neigh;
1014 int err = -ENXIO;
1015
1016 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1017 if (neigh) {
1018 read_lock_bh(&neigh->lock);
1019 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1020 r->arp_flags = arp_state_to_flags(neigh);
1021 read_unlock_bh(&neigh->lock);
1022 r->arp_ha.sa_family = dev->type;
1023 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1024 neigh_release(neigh);
1025 err = 0;
1026 }
1027 return err;
1028 }
1029
1030 static int arp_invalidate(struct net_device *dev, __be32 ip)
1031 {
1032 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1033 int err = -ENXIO;
1034
1035 if (neigh) {
1036 if (neigh->nud_state & ~NUD_NOARP)
1037 err = neigh_update(neigh, NULL, NUD_FAILED,
1038 NEIGH_UPDATE_F_OVERRIDE|
1039 NEIGH_UPDATE_F_ADMIN);
1040 neigh_release(neigh);
1041 }
1042
1043 return err;
1044 }
1045
1046 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1047 struct net_device *dev)
1048 {
1049 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1050 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1051
1052 if (mask == htonl(0xFFFFFFFF))
1053 return pneigh_delete(&arp_tbl, net, &ip, dev);
1054
1055 if (mask)
1056 return -EINVAL;
1057
1058 return arp_req_set_proxy(net, dev, 0);
1059 }
1060
1061 static int arp_req_delete(struct net *net, struct arpreq *r,
1062 struct net_device *dev)
1063 {
1064 __be32 ip;
1065
1066 if (r->arp_flags & ATF_PUBL)
1067 return arp_req_delete_public(net, r, dev);
1068
1069 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1070 if (dev == NULL) {
1071 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1072 if (IS_ERR(rt))
1073 return PTR_ERR(rt);
1074 dev = rt->dst.dev;
1075 ip_rt_put(rt);
1076 if (!dev)
1077 return -EINVAL;
1078 }
1079 return arp_invalidate(dev, ip);
1080 }
1081
1082 /*
1083 * Handle an ARP layer I/O control request.
1084 */
1085
1086 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1087 {
1088 int err;
1089 struct arpreq r;
1090 struct net_device *dev = NULL;
1091
1092 switch (cmd) {
1093 case SIOCDARP:
1094 case SIOCSARP:
1095 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1096 return -EPERM;
1097 case SIOCGARP:
1098 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1099 if (err)
1100 return -EFAULT;
1101 break;
1102 default:
1103 return -EINVAL;
1104 }
1105
1106 if (r.arp_pa.sa_family != AF_INET)
1107 return -EPFNOSUPPORT;
1108
1109 if (!(r.arp_flags & ATF_PUBL) &&
1110 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1111 return -EINVAL;
1112 if (!(r.arp_flags & ATF_NETMASK))
1113 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1114 htonl(0xFFFFFFFFUL);
1115 rtnl_lock();
1116 if (r.arp_dev[0]) {
1117 err = -ENODEV;
1118 dev = __dev_get_by_name(net, r.arp_dev);
1119 if (dev == NULL)
1120 goto out;
1121
1122 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1123 if (!r.arp_ha.sa_family)
1124 r.arp_ha.sa_family = dev->type;
1125 err = -EINVAL;
1126 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1127 goto out;
1128 } else if (cmd == SIOCGARP) {
1129 err = -ENODEV;
1130 goto out;
1131 }
1132
1133 switch (cmd) {
1134 case SIOCDARP:
1135 err = arp_req_delete(net, &r, dev);
1136 break;
1137 case SIOCSARP:
1138 err = arp_req_set(net, &r, dev);
1139 break;
1140 case SIOCGARP:
1141 err = arp_req_get(&r, dev);
1142 break;
1143 }
1144 out:
1145 rtnl_unlock();
1146 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1147 err = -EFAULT;
1148 return err;
1149 }
1150
1151 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1152 void *ptr)
1153 {
1154 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1155 struct netdev_notifier_change_info *change_info;
1156
1157 switch (event) {
1158 case NETDEV_CHANGEADDR:
1159 neigh_changeaddr(&arp_tbl, dev);
1160 rt_cache_flush(dev_net(dev));
1161 break;
1162 case NETDEV_CHANGE:
1163 change_info = ptr;
1164 if (change_info->flags_changed & IFF_NOARP)
1165 neigh_changeaddr(&arp_tbl, dev);
1166 break;
1167 default:
1168 break;
1169 }
1170
1171 return NOTIFY_DONE;
1172 }
1173
1174 static struct notifier_block arp_netdev_notifier = {
1175 .notifier_call = arp_netdev_event,
1176 };
1177
1178 /* Note, that it is not on notifier chain.
1179 It is necessary, that this routine was called after route cache will be
1180 flushed.
1181 */
1182 void arp_ifdown(struct net_device *dev)
1183 {
1184 neigh_ifdown(&arp_tbl, dev);
1185 }
1186
1187
1188 /*
1189 * Called once on startup.
1190 */
1191
1192 static struct packet_type arp_packet_type __read_mostly = {
1193 .type = cpu_to_be16(ETH_P_ARP),
1194 .func = arp_rcv,
1195 };
1196
1197 static int arp_proc_init(void);
1198
1199 void __init arp_init(void)
1200 {
1201 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1202
1203 dev_add_pack(&arp_packet_type);
1204 arp_proc_init();
1205 #ifdef CONFIG_SYSCTL
1206 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1207 #endif
1208 register_netdevice_notifier(&arp_netdev_notifier);
1209 }
1210
1211 #ifdef CONFIG_PROC_FS
1212 #if IS_ENABLED(CONFIG_AX25)
1213
1214 /* ------------------------------------------------------------------------ */
1215 /*
1216 * ax25 -> ASCII conversion
1217 */
1218 static char *ax2asc2(ax25_address *a, char *buf)
1219 {
1220 char c, *s;
1221 int n;
1222
1223 for (n = 0, s = buf; n < 6; n++) {
1224 c = (a->ax25_call[n] >> 1) & 0x7F;
1225
1226 if (c != ' ')
1227 *s++ = c;
1228 }
1229
1230 *s++ = '-';
1231 n = (a->ax25_call[6] >> 1) & 0x0F;
1232 if (n > 9) {
1233 *s++ = '1';
1234 n -= 10;
1235 }
1236
1237 *s++ = n + '0';
1238 *s++ = '\0';
1239
1240 if (*buf == '\0' || *buf == '-')
1241 return "*";
1242
1243 return buf;
1244 }
1245 #endif /* CONFIG_AX25 */
1246
1247 #define HBUFFERLEN 30
1248
1249 static void arp_format_neigh_entry(struct seq_file *seq,
1250 struct neighbour *n)
1251 {
1252 char hbuffer[HBUFFERLEN];
1253 int k, j;
1254 char tbuf[16];
1255 struct net_device *dev = n->dev;
1256 int hatype = dev->type;
1257
1258 read_lock(&n->lock);
1259 /* Convert hardware address to XX:XX:XX:XX ... form. */
1260 #if IS_ENABLED(CONFIG_AX25)
1261 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1262 ax2asc2((ax25_address *)n->ha, hbuffer);
1263 else {
1264 #endif
1265 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1266 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1267 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1268 hbuffer[k++] = ':';
1269 }
1270 if (k != 0)
1271 --k;
1272 hbuffer[k] = 0;
1273 #if IS_ENABLED(CONFIG_AX25)
1274 }
1275 #endif
1276 sprintf(tbuf, "%pI4", n->primary_key);
1277 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1278 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1279 read_unlock(&n->lock);
1280 }
1281
1282 static void arp_format_pneigh_entry(struct seq_file *seq,
1283 struct pneigh_entry *n)
1284 {
1285 struct net_device *dev = n->dev;
1286 int hatype = dev ? dev->type : 0;
1287 char tbuf[16];
1288
1289 sprintf(tbuf, "%pI4", n->key);
1290 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1291 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1292 dev ? dev->name : "*");
1293 }
1294
1295 static int arp_seq_show(struct seq_file *seq, void *v)
1296 {
1297 if (v == SEQ_START_TOKEN) {
1298 seq_puts(seq, "IP address HW type Flags "
1299 "HW address Mask Device\n");
1300 } else {
1301 struct neigh_seq_state *state = seq->private;
1302
1303 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1304 arp_format_pneigh_entry(seq, v);
1305 else
1306 arp_format_neigh_entry(seq, v);
1307 }
1308
1309 return 0;
1310 }
1311
1312 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1313 {
1314 /* Don't want to confuse "arp -a" w/ magic entries,
1315 * so we tell the generic iterator to skip NUD_NOARP.
1316 */
1317 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1318 }
1319
1320 /* ------------------------------------------------------------------------ */
1321
1322 static const struct seq_operations arp_seq_ops = {
1323 .start = arp_seq_start,
1324 .next = neigh_seq_next,
1325 .stop = neigh_seq_stop,
1326 .show = arp_seq_show,
1327 };
1328
1329 static int arp_seq_open(struct inode *inode, struct file *file)
1330 {
1331 return seq_open_net(inode, file, &arp_seq_ops,
1332 sizeof(struct neigh_seq_state));
1333 }
1334
1335 static const struct file_operations arp_seq_fops = {
1336 .owner = THIS_MODULE,
1337 .open = arp_seq_open,
1338 .read = seq_read,
1339 .llseek = seq_lseek,
1340 .release = seq_release_net,
1341 };
1342
1343
1344 static int __net_init arp_net_init(struct net *net)
1345 {
1346 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1347 return -ENOMEM;
1348 return 0;
1349 }
1350
1351 static void __net_exit arp_net_exit(struct net *net)
1352 {
1353 remove_proc_entry("arp", net->proc_net);
1354 }
1355
1356 static struct pernet_operations arp_net_ops = {
1357 .init = arp_net_init,
1358 .exit = arp_net_exit,
1359 };
1360
1361 static int __init arp_proc_init(void)
1362 {
1363 return register_pernet_subsys(&arp_net_ops);
1364 }
1365
1366 #else /* CONFIG_PROC_FS */
1367
1368 static int __init arp_proc_init(void)
1369 {
1370 return 0;
1371 }
1372
1373 #endif /* CONFIG_PROC_FS */
This page took 0.081287 seconds and 5 git commands to generate.