[NETNS]: Modify the neighbour table code so it handles multiple network namespaces
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 * Alan Cox : Removed the Ethernet assumptions in
19 * Florian's code
20 * Alan Cox : Fixed some small errors in the ARP
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
75 */
76
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
119 #endif
120
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
123
124 #include <linux/netfilter_arp.h>
125
126 /*
127 * Interface to generic neighbour cache.
128 */
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
134
135 static struct neigh_ops arp_generic_ops = {
136 .family = AF_INET,
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
143 };
144
145 static struct neigh_ops arp_hh_ops = {
146 .family = AF_INET,
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
153 };
154
155 static struct neigh_ops arp_direct_ops = {
156 .family = AF_INET,
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
161 };
162
163 struct neigh_ops arp_broken_ops = {
164 .family = AF_INET,
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
171 };
172
173 struct neigh_table arp_tbl = {
174 .family = AF_INET,
175 .entry_size = sizeof(struct neighbour) + 4,
176 .key_len = 4,
177 .hash = arp_hash,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
180 .id = "arp_cache",
181 .parms = {
182 .tbl = &arp_tbl,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
188 .queue_len = 3,
189 .ucast_probes = 3,
190 .mcast_probes = 3,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
193 .proxy_qlen = 64,
194 .locktime = 1 * HZ,
195 },
196 .gc_interval = 30 * HZ,
197 .gc_thresh1 = 128,
198 .gc_thresh2 = 512,
199 .gc_thresh3 = 1024,
200 };
201
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203 {
204 switch (dev->type) {
205 case ARPHRD_ETHER:
206 case ARPHRD_FDDI:
207 case ARPHRD_IEEE802:
208 ip_eth_mc_map(addr, haddr);
209 return 0;
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
215 return 0;
216 default:
217 if (dir) {
218 memcpy(haddr, dev->broadcast, dev->addr_len);
219 return 0;
220 }
221 }
222 return -EINVAL;
223 }
224
225
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
227 {
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229 }
230
231 static int arp_constructor(struct neighbour *neigh)
232 {
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
237
238 neigh->type = inet_addr_type(addr);
239
240 rcu_read_lock();
241 in_dev = __in_dev_get_rcu(dev);
242 if (in_dev == NULL) {
243 rcu_read_unlock();
244 return -EINVAL;
245 }
246
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
250 rcu_read_unlock();
251
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
256 } else {
257 /* Good devices (checked by reading texts, but only Ethernet is
258 tested)
259
260 ARPHRD_ETHER: (ethernet, apfddi)
261 ARPHRD_FDDI: (fddi)
262 ARPHRD_IEEE802: (tr)
263 ARPHRD_METRICOM: (strip)
264 ARPHRD_ARCNET:
265 etc. etc. etc.
266
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
269 in old paradigm.
270 */
271
272 #if 1
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
277
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
283 */
284 switch (dev->type) {
285 default:
286 break;
287 case ARPHRD_ROSE:
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289 case ARPHRD_AX25:
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291 case ARPHRD_NETROM:
292 #endif
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
295 return 0;
296 #endif
297 ;}
298 #endif
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308 }
309
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
312 else
313 neigh->ops = &arp_generic_ops;
314
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
317 else
318 neigh->output = neigh->ops->output;
319 }
320 return 0;
321 }
322
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324 {
325 dst_link_failure(skb);
326 kfree_skb(skb);
327 }
328
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330 {
331 __be32 saddr = 0;
332 u8 *dst_ha = NULL;
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
337
338 if (!in_dev)
339 return;
340
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342 default:
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
346 break;
347 case 1: /* Restrict announcements of saddr in same subnet */
348 if (!skb)
349 break;
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
354 break;
355 }
356 saddr = 0;
357 break;
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
359 break;
360 }
361
362 if (in_dev)
363 in_dev_put(in_dev);
364 if (!saddr)
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370 dst_ha = neigh->ha;
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
373 #ifdef CONFIG_ARPD
374 neigh_app_ns(neigh);
375 #endif
376 return;
377 }
378
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
381 if (dst_ha)
382 read_unlock_bh(&neigh->lock);
383 }
384
385 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
386 __be32 sip, __be32 tip)
387 {
388 int scope;
389
390 switch (IN_DEV_ARP_IGNORE(in_dev)) {
391 case 0: /* Reply, the tip is already validated */
392 return 0;
393 case 1: /* Reply only if tip is configured on the incoming interface */
394 sip = 0;
395 scope = RT_SCOPE_HOST;
396 break;
397 case 2: /*
398 * Reply only if tip is configured on the incoming interface
399 * and is in same subnet as sip
400 */
401 scope = RT_SCOPE_HOST;
402 break;
403 case 3: /* Do not reply for scope host addresses */
404 sip = 0;
405 scope = RT_SCOPE_LINK;
406 dev = NULL;
407 break;
408 case 4: /* Reserved */
409 case 5:
410 case 6:
411 case 7:
412 return 0;
413 case 8: /* Do not reply */
414 return 1;
415 default:
416 return 0;
417 }
418 return !inet_confirm_addr(dev, sip, tip, scope);
419 }
420
421 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
422 {
423 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
424 .saddr = tip } } };
425 struct rtable *rt;
426 int flag = 0;
427 /*unsigned long now; */
428
429 if (ip_route_output_key(&rt, &fl) < 0)
430 return 1;
431 if (rt->u.dst.dev != dev) {
432 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
433 flag = 1;
434 }
435 ip_rt_put(rt);
436 return flag;
437 }
438
439 /* OBSOLETE FUNCTIONS */
440
441 /*
442 * Find an arp mapping in the cache. If not found, post a request.
443 *
444 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
445 * even if it exists. It is supposed that skb->dev was mangled
446 * by a virtual device (eql, shaper). Nobody but broken devices
447 * is allowed to use this function, it is scheduled to be removed. --ANK
448 */
449
450 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
451 {
452 switch (addr_hint) {
453 case RTN_LOCAL:
454 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
455 memcpy(haddr, dev->dev_addr, dev->addr_len);
456 return 1;
457 case RTN_MULTICAST:
458 arp_mc_map(paddr, haddr, dev, 1);
459 return 1;
460 case RTN_BROADCAST:
461 memcpy(haddr, dev->broadcast, dev->addr_len);
462 return 1;
463 }
464 return 0;
465 }
466
467
468 int arp_find(unsigned char *haddr, struct sk_buff *skb)
469 {
470 struct net_device *dev = skb->dev;
471 __be32 paddr;
472 struct neighbour *n;
473
474 if (!skb->dst) {
475 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
476 kfree_skb(skb);
477 return 1;
478 }
479
480 paddr = ((struct rtable*)skb->dst)->rt_gateway;
481
482 if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
483 return 0;
484
485 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
486
487 if (n) {
488 n->used = jiffies;
489 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
490 read_lock_bh(&n->lock);
491 memcpy(haddr, n->ha, dev->addr_len);
492 read_unlock_bh(&n->lock);
493 neigh_release(n);
494 return 0;
495 }
496 neigh_release(n);
497 } else
498 kfree_skb(skb);
499 return 1;
500 }
501
502 /* END OF OBSOLETE FUNCTIONS */
503
504 int arp_bind_neighbour(struct dst_entry *dst)
505 {
506 struct net_device *dev = dst->dev;
507 struct neighbour *n = dst->neighbour;
508
509 if (dev == NULL)
510 return -EINVAL;
511 if (n == NULL) {
512 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
513 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
514 nexthop = 0;
515 n = __neigh_lookup_errno(
516 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
517 dev->type == ARPHRD_ATM ? clip_tbl_hook :
518 #endif
519 &arp_tbl, &nexthop, dev);
520 if (IS_ERR(n))
521 return PTR_ERR(n);
522 dst->neighbour = n;
523 }
524 return 0;
525 }
526
527 /*
528 * Check if we can use proxy ARP for this path
529 */
530
531 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
532 {
533 struct in_device *out_dev;
534 int imi, omi = -1;
535
536 if (!IN_DEV_PROXY_ARP(in_dev))
537 return 0;
538
539 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
540 return 1;
541 if (imi == -1)
542 return 0;
543
544 /* place to check for proxy_arp for routes */
545
546 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
547 omi = IN_DEV_MEDIUM_ID(out_dev);
548 in_dev_put(out_dev);
549 }
550 return (omi != imi && omi != -1);
551 }
552
553 /*
554 * Interface to link layer: send routine and receive handler.
555 */
556
557 /*
558 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
559 * message.
560 */
561 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
562 struct net_device *dev, __be32 src_ip,
563 unsigned char *dest_hw, unsigned char *src_hw,
564 unsigned char *target_hw)
565 {
566 struct sk_buff *skb;
567 struct arphdr *arp;
568 unsigned char *arp_ptr;
569
570 /*
571 * Allocate a buffer
572 */
573
574 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
575 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
576 if (skb == NULL)
577 return NULL;
578
579 skb_reserve(skb, LL_RESERVED_SPACE(dev));
580 skb_reset_network_header(skb);
581 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
582 skb->dev = dev;
583 skb->protocol = htons(ETH_P_ARP);
584 if (src_hw == NULL)
585 src_hw = dev->dev_addr;
586 if (dest_hw == NULL)
587 dest_hw = dev->broadcast;
588
589 /*
590 * Fill the device header for the ARP frame
591 */
592 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
593 goto out;
594
595 /*
596 * Fill out the arp protocol part.
597 *
598 * The arp hardware type should match the device type, except for FDDI,
599 * which (according to RFC 1390) should always equal 1 (Ethernet).
600 */
601 /*
602 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
603 * DIX code for the protocol. Make these device structure fields.
604 */
605 switch (dev->type) {
606 default:
607 arp->ar_hrd = htons(dev->type);
608 arp->ar_pro = htons(ETH_P_IP);
609 break;
610
611 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
612 case ARPHRD_AX25:
613 arp->ar_hrd = htons(ARPHRD_AX25);
614 arp->ar_pro = htons(AX25_P_IP);
615 break;
616
617 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
618 case ARPHRD_NETROM:
619 arp->ar_hrd = htons(ARPHRD_NETROM);
620 arp->ar_pro = htons(AX25_P_IP);
621 break;
622 #endif
623 #endif
624
625 #ifdef CONFIG_FDDI
626 case ARPHRD_FDDI:
627 arp->ar_hrd = htons(ARPHRD_ETHER);
628 arp->ar_pro = htons(ETH_P_IP);
629 break;
630 #endif
631 #ifdef CONFIG_TR
632 case ARPHRD_IEEE802_TR:
633 arp->ar_hrd = htons(ARPHRD_IEEE802);
634 arp->ar_pro = htons(ETH_P_IP);
635 break;
636 #endif
637 }
638
639 arp->ar_hln = dev->addr_len;
640 arp->ar_pln = 4;
641 arp->ar_op = htons(type);
642
643 arp_ptr=(unsigned char *)(arp+1);
644
645 memcpy(arp_ptr, src_hw, dev->addr_len);
646 arp_ptr+=dev->addr_len;
647 memcpy(arp_ptr, &src_ip,4);
648 arp_ptr+=4;
649 if (target_hw != NULL)
650 memcpy(arp_ptr, target_hw, dev->addr_len);
651 else
652 memset(arp_ptr, 0, dev->addr_len);
653 arp_ptr+=dev->addr_len;
654 memcpy(arp_ptr, &dest_ip, 4);
655
656 return skb;
657
658 out:
659 kfree_skb(skb);
660 return NULL;
661 }
662
663 /*
664 * Send an arp packet.
665 */
666 void arp_xmit(struct sk_buff *skb)
667 {
668 /* Send it off, maybe filter it using firewalling first. */
669 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
670 }
671
672 /*
673 * Create and send an arp packet.
674 */
675 void arp_send(int type, int ptype, __be32 dest_ip,
676 struct net_device *dev, __be32 src_ip,
677 unsigned char *dest_hw, unsigned char *src_hw,
678 unsigned char *target_hw)
679 {
680 struct sk_buff *skb;
681
682 /*
683 * No arp on this interface.
684 */
685
686 if (dev->flags&IFF_NOARP)
687 return;
688
689 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
690 dest_hw, src_hw, target_hw);
691 if (skb == NULL) {
692 return;
693 }
694
695 arp_xmit(skb);
696 }
697
698 /*
699 * Process an arp request.
700 */
701
702 static int arp_process(struct sk_buff *skb)
703 {
704 struct net_device *dev = skb->dev;
705 struct in_device *in_dev = in_dev_get(dev);
706 struct arphdr *arp;
707 unsigned char *arp_ptr;
708 struct rtable *rt;
709 unsigned char *sha;
710 __be32 sip, tip;
711 u16 dev_type = dev->type;
712 int addr_type;
713 struct neighbour *n;
714
715 /* arp_rcv below verifies the ARP header and verifies the device
716 * is ARP'able.
717 */
718
719 if (in_dev == NULL)
720 goto out;
721
722 arp = arp_hdr(skb);
723
724 switch (dev_type) {
725 default:
726 if (arp->ar_pro != htons(ETH_P_IP) ||
727 htons(dev_type) != arp->ar_hrd)
728 goto out;
729 break;
730 case ARPHRD_ETHER:
731 case ARPHRD_IEEE802_TR:
732 case ARPHRD_FDDI:
733 case ARPHRD_IEEE802:
734 /*
735 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
736 * devices, according to RFC 2625) devices will accept ARP
737 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
738 * This is the case also of FDDI, where the RFC 1390 says that
739 * FDDI devices should accept ARP hardware of (1) Ethernet,
740 * however, to be more robust, we'll accept both 1 (Ethernet)
741 * or 6 (IEEE 802.2)
742 */
743 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
744 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
745 arp->ar_pro != htons(ETH_P_IP))
746 goto out;
747 break;
748 case ARPHRD_AX25:
749 if (arp->ar_pro != htons(AX25_P_IP) ||
750 arp->ar_hrd != htons(ARPHRD_AX25))
751 goto out;
752 break;
753 case ARPHRD_NETROM:
754 if (arp->ar_pro != htons(AX25_P_IP) ||
755 arp->ar_hrd != htons(ARPHRD_NETROM))
756 goto out;
757 break;
758 }
759
760 /* Understand only these message types */
761
762 if (arp->ar_op != htons(ARPOP_REPLY) &&
763 arp->ar_op != htons(ARPOP_REQUEST))
764 goto out;
765
766 /*
767 * Extract fields
768 */
769 arp_ptr= (unsigned char *)(arp+1);
770 sha = arp_ptr;
771 arp_ptr += dev->addr_len;
772 memcpy(&sip, arp_ptr, 4);
773 arp_ptr += 4;
774 arp_ptr += dev->addr_len;
775 memcpy(&tip, arp_ptr, 4);
776 /*
777 * Check for bad requests for 127.x.x.x and requests for multicast
778 * addresses. If this is one such, delete it.
779 */
780 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
781 goto out;
782
783 /*
784 * Special case: We must set Frame Relay source Q.922 address
785 */
786 if (dev_type == ARPHRD_DLCI)
787 sha = dev->broadcast;
788
789 /*
790 * Process entry. The idea here is we want to send a reply if it is a
791 * request for us or if it is a request for someone else that we hold
792 * a proxy for. We want to add an entry to our cache if it is a reply
793 * to us or if it is a request for our address.
794 * (The assumption for this last is that if someone is requesting our
795 * address, they are probably intending to talk to us, so it saves time
796 * if we cache their address. Their address is also probably not in
797 * our cache, since ours is not in their cache.)
798 *
799 * Putting this another way, we only care about replies if they are to
800 * us, in which case we add them to the cache. For requests, we care
801 * about those for us and those for our proxies. We reply to both,
802 * and in the case of requests for us we add the requester to the arp
803 * cache.
804 */
805
806 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
807 if (sip == 0) {
808 if (arp->ar_op == htons(ARPOP_REQUEST) &&
809 inet_addr_type(tip) == RTN_LOCAL &&
810 !arp_ignore(in_dev,dev,sip,tip))
811 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
812 dev->dev_addr, sha);
813 goto out;
814 }
815
816 if (arp->ar_op == htons(ARPOP_REQUEST) &&
817 ip_route_input(skb, tip, sip, 0, dev) == 0) {
818
819 rt = (struct rtable*)skb->dst;
820 addr_type = rt->rt_type;
821
822 if (addr_type == RTN_LOCAL) {
823 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
824 if (n) {
825 int dont_send = 0;
826
827 if (!dont_send)
828 dont_send |= arp_ignore(in_dev,dev,sip,tip);
829 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
830 dont_send |= arp_filter(sip,tip,dev);
831 if (!dont_send)
832 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
833
834 neigh_release(n);
835 }
836 goto out;
837 } else if (IN_DEV_FORWARD(in_dev)) {
838 if ((rt->rt_flags&RTCF_DNAT) ||
839 (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
840 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0)))) {
841 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842 if (n)
843 neigh_release(n);
844
845 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
846 skb->pkt_type == PACKET_HOST ||
847 in_dev->arp_parms->proxy_delay == 0) {
848 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
849 } else {
850 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
851 in_dev_put(in_dev);
852 return 0;
853 }
854 goto out;
855 }
856 }
857 }
858
859 /* Update our ARP tables */
860
861 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
862
863 if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
864 /* Unsolicited ARP is not accepted by default.
865 It is possible, that this option should be enabled for some
866 devices (strip is candidate)
867 */
868 if (n == NULL &&
869 arp->ar_op == htons(ARPOP_REPLY) &&
870 inet_addr_type(sip) == RTN_UNICAST)
871 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
872 }
873
874 if (n) {
875 int state = NUD_REACHABLE;
876 int override;
877
878 /* If several different ARP replies follows back-to-back,
879 use the FIRST one. It is possible, if several proxy
880 agents are active. Taking the first reply prevents
881 arp trashing and chooses the fastest router.
882 */
883 override = time_after(jiffies, n->updated + n->parms->locktime);
884
885 /* Broadcast replies and request packets
886 do not assert neighbour reachability.
887 */
888 if (arp->ar_op != htons(ARPOP_REPLY) ||
889 skb->pkt_type != PACKET_HOST)
890 state = NUD_STALE;
891 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
892 neigh_release(n);
893 }
894
895 out:
896 if (in_dev)
897 in_dev_put(in_dev);
898 kfree_skb(skb);
899 return 0;
900 }
901
902 static void parp_redo(struct sk_buff *skb)
903 {
904 arp_process(skb);
905 }
906
907
908 /*
909 * Receive an arp request from the device layer.
910 */
911
912 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
913 struct packet_type *pt, struct net_device *orig_dev)
914 {
915 struct arphdr *arp;
916
917 if (dev->nd_net != &init_net)
918 goto freeskb;
919
920 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
921 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
922 (2 * dev->addr_len) +
923 (2 * sizeof(u32)))))
924 goto freeskb;
925
926 arp = arp_hdr(skb);
927 if (arp->ar_hln != dev->addr_len ||
928 dev->flags & IFF_NOARP ||
929 skb->pkt_type == PACKET_OTHERHOST ||
930 skb->pkt_type == PACKET_LOOPBACK ||
931 arp->ar_pln != 4)
932 goto freeskb;
933
934 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
935 goto out_of_mem;
936
937 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
938
939 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
940
941 freeskb:
942 kfree_skb(skb);
943 out_of_mem:
944 return 0;
945 }
946
947 /*
948 * User level interface (ioctl)
949 */
950
951 /*
952 * Set (create) an ARP cache entry.
953 */
954
955 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
956 {
957 if (dev == NULL) {
958 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
959 return 0;
960 }
961 if (__in_dev_get_rtnl(dev)) {
962 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
963 return 0;
964 }
965 return -ENXIO;
966 }
967
968 static int arp_req_set_public(struct net *net, struct arpreq *r,
969 struct net_device *dev)
970 {
971 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
972 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
973
974 if (mask && mask != htonl(0xFFFFFFFF))
975 return -EINVAL;
976 if (!dev && (r->arp_flags & ATF_COM)) {
977 dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family,
978 r->arp_ha.sa_data);
979 if (!dev)
980 return -ENODEV;
981 }
982 if (mask) {
983 if (pneigh_lookup(&arp_tbl, &init_net, &ip, dev, 1) == NULL)
984 return -ENOBUFS;
985 return 0;
986 }
987
988 return arp_req_set_proxy(net, dev, 1);
989 }
990
991 static int arp_req_set(struct net *net, struct arpreq *r,
992 struct net_device * dev)
993 {
994 __be32 ip;
995 struct neighbour *neigh;
996 int err;
997
998 if (r->arp_flags & ATF_PUBL)
999 return arp_req_set_public(net, r, dev);
1000
1001 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1002 if (r->arp_flags & ATF_PERM)
1003 r->arp_flags |= ATF_COM;
1004 if (dev == NULL) {
1005 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1006 .tos = RTO_ONLINK } } };
1007 struct rtable * rt;
1008 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1009 return err;
1010 dev = rt->u.dst.dev;
1011 ip_rt_put(rt);
1012 if (!dev)
1013 return -EINVAL;
1014 }
1015 switch (dev->type) {
1016 #ifdef CONFIG_FDDI
1017 case ARPHRD_FDDI:
1018 /*
1019 * According to RFC 1390, FDDI devices should accept ARP
1020 * hardware types of 1 (Ethernet). However, to be more
1021 * robust, we'll accept hardware types of either 1 (Ethernet)
1022 * or 6 (IEEE 802.2).
1023 */
1024 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1025 r->arp_ha.sa_family != ARPHRD_ETHER &&
1026 r->arp_ha.sa_family != ARPHRD_IEEE802)
1027 return -EINVAL;
1028 break;
1029 #endif
1030 default:
1031 if (r->arp_ha.sa_family != dev->type)
1032 return -EINVAL;
1033 break;
1034 }
1035
1036 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1037 err = PTR_ERR(neigh);
1038 if (!IS_ERR(neigh)) {
1039 unsigned state = NUD_STALE;
1040 if (r->arp_flags & ATF_PERM)
1041 state = NUD_PERMANENT;
1042 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1043 r->arp_ha.sa_data : NULL, state,
1044 NEIGH_UPDATE_F_OVERRIDE|
1045 NEIGH_UPDATE_F_ADMIN);
1046 neigh_release(neigh);
1047 }
1048 return err;
1049 }
1050
1051 static unsigned arp_state_to_flags(struct neighbour *neigh)
1052 {
1053 unsigned flags = 0;
1054 if (neigh->nud_state&NUD_PERMANENT)
1055 flags = ATF_PERM|ATF_COM;
1056 else if (neigh->nud_state&NUD_VALID)
1057 flags = ATF_COM;
1058 return flags;
1059 }
1060
1061 /*
1062 * Get an ARP cache entry.
1063 */
1064
1065 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1066 {
1067 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1068 struct neighbour *neigh;
1069 int err = -ENXIO;
1070
1071 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1072 if (neigh) {
1073 read_lock_bh(&neigh->lock);
1074 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1075 r->arp_flags = arp_state_to_flags(neigh);
1076 read_unlock_bh(&neigh->lock);
1077 r->arp_ha.sa_family = dev->type;
1078 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1079 neigh_release(neigh);
1080 err = 0;
1081 }
1082 return err;
1083 }
1084
1085 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1086 struct net_device *dev)
1087 {
1088 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1089 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1090
1091 if (mask == htonl(0xFFFFFFFF))
1092 return pneigh_delete(&arp_tbl, &init_net, &ip, dev);
1093
1094 if (mask)
1095 return -EINVAL;
1096
1097 return arp_req_set_proxy(net, dev, 0);
1098 }
1099
1100 static int arp_req_delete(struct net *net, struct arpreq *r,
1101 struct net_device * dev)
1102 {
1103 int err;
1104 __be32 ip;
1105 struct neighbour *neigh;
1106
1107 if (r->arp_flags & ATF_PUBL)
1108 return arp_req_delete_public(net, r, dev);
1109
1110 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1111 if (dev == NULL) {
1112 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1113 .tos = RTO_ONLINK } } };
1114 struct rtable * rt;
1115 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1116 return err;
1117 dev = rt->u.dst.dev;
1118 ip_rt_put(rt);
1119 if (!dev)
1120 return -EINVAL;
1121 }
1122 err = -ENXIO;
1123 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1124 if (neigh) {
1125 if (neigh->nud_state&~NUD_NOARP)
1126 err = neigh_update(neigh, NULL, NUD_FAILED,
1127 NEIGH_UPDATE_F_OVERRIDE|
1128 NEIGH_UPDATE_F_ADMIN);
1129 neigh_release(neigh);
1130 }
1131 return err;
1132 }
1133
1134 /*
1135 * Handle an ARP layer I/O control request.
1136 */
1137
1138 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1139 {
1140 int err;
1141 struct arpreq r;
1142 struct net_device *dev = NULL;
1143
1144 switch (cmd) {
1145 case SIOCDARP:
1146 case SIOCSARP:
1147 if (!capable(CAP_NET_ADMIN))
1148 return -EPERM;
1149 case SIOCGARP:
1150 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1151 if (err)
1152 return -EFAULT;
1153 break;
1154 default:
1155 return -EINVAL;
1156 }
1157
1158 if (r.arp_pa.sa_family != AF_INET)
1159 return -EPFNOSUPPORT;
1160
1161 if (!(r.arp_flags & ATF_PUBL) &&
1162 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1163 return -EINVAL;
1164 if (!(r.arp_flags & ATF_NETMASK))
1165 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1166 htonl(0xFFFFFFFFUL);
1167 rtnl_lock();
1168 if (r.arp_dev[0]) {
1169 err = -ENODEV;
1170 if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1171 goto out;
1172
1173 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1174 if (!r.arp_ha.sa_family)
1175 r.arp_ha.sa_family = dev->type;
1176 err = -EINVAL;
1177 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1178 goto out;
1179 } else if (cmd == SIOCGARP) {
1180 err = -ENODEV;
1181 goto out;
1182 }
1183
1184 switch (cmd) {
1185 case SIOCDARP:
1186 err = arp_req_delete(net, &r, dev);
1187 break;
1188 case SIOCSARP:
1189 err = arp_req_set(net, &r, dev);
1190 break;
1191 case SIOCGARP:
1192 err = arp_req_get(&r, dev);
1193 if (!err && copy_to_user(arg, &r, sizeof(r)))
1194 err = -EFAULT;
1195 break;
1196 }
1197 out:
1198 rtnl_unlock();
1199 return err;
1200 }
1201
1202 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1203 {
1204 struct net_device *dev = ptr;
1205
1206 if (dev->nd_net != &init_net)
1207 return NOTIFY_DONE;
1208
1209 switch (event) {
1210 case NETDEV_CHANGEADDR:
1211 neigh_changeaddr(&arp_tbl, dev);
1212 rt_cache_flush(0);
1213 break;
1214 default:
1215 break;
1216 }
1217
1218 return NOTIFY_DONE;
1219 }
1220
1221 static struct notifier_block arp_netdev_notifier = {
1222 .notifier_call = arp_netdev_event,
1223 };
1224
1225 /* Note, that it is not on notifier chain.
1226 It is necessary, that this routine was called after route cache will be
1227 flushed.
1228 */
1229 void arp_ifdown(struct net_device *dev)
1230 {
1231 neigh_ifdown(&arp_tbl, dev);
1232 }
1233
1234
1235 /*
1236 * Called once on startup.
1237 */
1238
1239 static struct packet_type arp_packet_type = {
1240 .type = __constant_htons(ETH_P_ARP),
1241 .func = arp_rcv,
1242 };
1243
1244 static int arp_proc_init(void);
1245
1246 void __init arp_init(void)
1247 {
1248 neigh_table_init(&arp_tbl);
1249
1250 dev_add_pack(&arp_packet_type);
1251 arp_proc_init();
1252 #ifdef CONFIG_SYSCTL
1253 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1254 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1255 #endif
1256 register_netdevice_notifier(&arp_netdev_notifier);
1257 }
1258
1259 #ifdef CONFIG_PROC_FS
1260 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1261
1262 /* ------------------------------------------------------------------------ */
1263 /*
1264 * ax25 -> ASCII conversion
1265 */
1266 static char *ax2asc2(ax25_address *a, char *buf)
1267 {
1268 char c, *s;
1269 int n;
1270
1271 for (n = 0, s = buf; n < 6; n++) {
1272 c = (a->ax25_call[n] >> 1) & 0x7F;
1273
1274 if (c != ' ') *s++ = c;
1275 }
1276
1277 *s++ = '-';
1278
1279 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1280 *s++ = '1';
1281 n -= 10;
1282 }
1283
1284 *s++ = n + '0';
1285 *s++ = '\0';
1286
1287 if (*buf == '\0' || *buf == '-')
1288 return "*";
1289
1290 return buf;
1291
1292 }
1293 #endif /* CONFIG_AX25 */
1294
1295 #define HBUFFERLEN 30
1296
1297 static void arp_format_neigh_entry(struct seq_file *seq,
1298 struct neighbour *n)
1299 {
1300 char hbuffer[HBUFFERLEN];
1301 const char hexbuf[] = "0123456789ABCDEF";
1302 int k, j;
1303 char tbuf[16];
1304 struct net_device *dev = n->dev;
1305 int hatype = dev->type;
1306
1307 read_lock(&n->lock);
1308 /* Convert hardware address to XX:XX:XX:XX ... form. */
1309 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1310 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1311 ax2asc2((ax25_address *)n->ha, hbuffer);
1312 else {
1313 #endif
1314 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1315 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1316 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1317 hbuffer[k++] = ':';
1318 }
1319 hbuffer[--k] = 0;
1320 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1321 }
1322 #endif
1323 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1324 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1325 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1326 read_unlock(&n->lock);
1327 }
1328
1329 static void arp_format_pneigh_entry(struct seq_file *seq,
1330 struct pneigh_entry *n)
1331 {
1332 struct net_device *dev = n->dev;
1333 int hatype = dev ? dev->type : 0;
1334 char tbuf[16];
1335
1336 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1337 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1338 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1339 dev ? dev->name : "*");
1340 }
1341
1342 static int arp_seq_show(struct seq_file *seq, void *v)
1343 {
1344 if (v == SEQ_START_TOKEN) {
1345 seq_puts(seq, "IP address HW type Flags "
1346 "HW address Mask Device\n");
1347 } else {
1348 struct neigh_seq_state *state = seq->private;
1349
1350 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1351 arp_format_pneigh_entry(seq, v);
1352 else
1353 arp_format_neigh_entry(seq, v);
1354 }
1355
1356 return 0;
1357 }
1358
1359 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1360 {
1361 /* Don't want to confuse "arp -a" w/ magic entries,
1362 * so we tell the generic iterator to skip NUD_NOARP.
1363 */
1364 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1365 }
1366
1367 /* ------------------------------------------------------------------------ */
1368
1369 static const struct seq_operations arp_seq_ops = {
1370 .start = arp_seq_start,
1371 .next = neigh_seq_next,
1372 .stop = neigh_seq_stop,
1373 .show = arp_seq_show,
1374 };
1375
1376 static int arp_seq_open(struct inode *inode, struct file *file)
1377 {
1378 return seq_open_net(inode, file, &arp_seq_ops,
1379 sizeof(struct neigh_seq_state));
1380 }
1381
1382 static const struct file_operations arp_seq_fops = {
1383 .owner = THIS_MODULE,
1384 .open = arp_seq_open,
1385 .read = seq_read,
1386 .llseek = seq_lseek,
1387 .release = seq_release_net,
1388 };
1389
1390 static int __init arp_proc_init(void)
1391 {
1392 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1393 return -ENOMEM;
1394 return 0;
1395 }
1396
1397 #else /* CONFIG_PROC_FS */
1398
1399 static int __init arp_proc_init(void)
1400 {
1401 return 0;
1402 }
1403
1404 #endif /* CONFIG_PROC_FS */
1405
1406 EXPORT_SYMBOL(arp_broken_ops);
1407 EXPORT_SYMBOL(arp_find);
1408 EXPORT_SYMBOL(arp_create);
1409 EXPORT_SYMBOL(arp_xmit);
1410 EXPORT_SYMBOL(arp_send);
1411 EXPORT_SYMBOL(arp_tbl);
1412
1413 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1414 EXPORT_SYMBOL(clip_tbl_hook);
1415 #endif
This page took 0.060244 seconds and 5 git commands to generate.