Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
126 static int arp_constructor(struct neighbour *neigh);
127 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
128 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
129 static void parp_redo(struct sk_buff *skb);
130
131 static const struct neigh_ops arp_generic_ops = {
132 .family = AF_INET,
133 .solicit = arp_solicit,
134 .error_report = arp_error_report,
135 .output = neigh_resolve_output,
136 .connected_output = neigh_connected_output,
137 };
138
139 static const struct neigh_ops arp_hh_ops = {
140 .family = AF_INET,
141 .solicit = arp_solicit,
142 .error_report = arp_error_report,
143 .output = neigh_resolve_output,
144 .connected_output = neigh_resolve_output,
145 };
146
147 static const struct neigh_ops arp_direct_ops = {
148 .family = AF_INET,
149 .output = neigh_direct_output,
150 .connected_output = neigh_direct_output,
151 };
152
153 struct neigh_table arp_tbl = {
154 .family = AF_INET,
155 .key_len = 4,
156 .protocol = cpu_to_be16(ETH_P_IP),
157 .hash = arp_hash,
158 .key_eq = arp_key_eq,
159 .constructor = arp_constructor,
160 .proxy_redo = parp_redo,
161 .id = "arp_cache",
162 .parms = {
163 .tbl = &arp_tbl,
164 .reachable_time = 30 * HZ,
165 .data = {
166 [NEIGH_VAR_MCAST_PROBES] = 3,
167 [NEIGH_VAR_UCAST_PROBES] = 3,
168 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
169 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
170 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
171 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
172 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
173 [NEIGH_VAR_PROXY_QLEN] = 64,
174 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
175 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
176 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
177 },
178 },
179 .gc_interval = 30 * HZ,
180 .gc_thresh1 = 128,
181 .gc_thresh2 = 512,
182 .gc_thresh3 = 1024,
183 };
184 EXPORT_SYMBOL(arp_tbl);
185
186 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
187 {
188 switch (dev->type) {
189 case ARPHRD_ETHER:
190 case ARPHRD_FDDI:
191 case ARPHRD_IEEE802:
192 ip_eth_mc_map(addr, haddr);
193 return 0;
194 case ARPHRD_INFINIBAND:
195 ip_ib_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 case ARPHRD_IPGRE:
198 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
199 return 0;
200 default:
201 if (dir) {
202 memcpy(haddr, dev->broadcast, dev->addr_len);
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208
209
210 static u32 arp_hash(const void *pkey,
211 const struct net_device *dev,
212 __u32 *hash_rnd)
213 {
214 return arp_hashfn(pkey, dev, hash_rnd);
215 }
216
217 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
218 {
219 return neigh_key_eq32(neigh, pkey);
220 }
221
222 static int arp_constructor(struct neighbour *neigh)
223 {
224 __be32 addr = *(__be32 *)neigh->primary_key;
225 struct net_device *dev = neigh->dev;
226 struct in_device *in_dev;
227 struct neigh_parms *parms;
228
229 rcu_read_lock();
230 in_dev = __in_dev_get_rcu(dev);
231 if (!in_dev) {
232 rcu_read_unlock();
233 return -EINVAL;
234 }
235
236 neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
237
238 parms = in_dev->arp_parms;
239 __neigh_parms_put(neigh->parms);
240 neigh->parms = neigh_parms_clone(parms);
241 rcu_read_unlock();
242
243 if (!dev->header_ops) {
244 neigh->nud_state = NUD_NOARP;
245 neigh->ops = &arp_direct_ops;
246 neigh->output = neigh_direct_output;
247 } else {
248 /* Good devices (checked by reading texts, but only Ethernet is
249 tested)
250
251 ARPHRD_ETHER: (ethernet, apfddi)
252 ARPHRD_FDDI: (fddi)
253 ARPHRD_IEEE802: (tr)
254 ARPHRD_METRICOM: (strip)
255 ARPHRD_ARCNET:
256 etc. etc. etc.
257
258 ARPHRD_IPDDP will also work, if author repairs it.
259 I did not it, because this driver does not work even
260 in old paradigm.
261 */
262
263 if (neigh->type == RTN_MULTICAST) {
264 neigh->nud_state = NUD_NOARP;
265 arp_mc_map(addr, neigh->ha, dev, 1);
266 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
267 neigh->nud_state = NUD_NOARP;
268 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
269 } else if (neigh->type == RTN_BROADCAST ||
270 (dev->flags & IFF_POINTOPOINT)) {
271 neigh->nud_state = NUD_NOARP;
272 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
273 }
274
275 if (dev->header_ops->cache)
276 neigh->ops = &arp_hh_ops;
277 else
278 neigh->ops = &arp_generic_ops;
279
280 if (neigh->nud_state & NUD_VALID)
281 neigh->output = neigh->ops->connected_output;
282 else
283 neigh->output = neigh->ops->output;
284 }
285 return 0;
286 }
287
288 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
289 {
290 dst_link_failure(skb);
291 kfree_skb(skb);
292 }
293
294 /* Create and send an arp packet. */
295 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
296 struct net_device *dev, __be32 src_ip,
297 const unsigned char *dest_hw,
298 const unsigned char *src_hw,
299 const unsigned char *target_hw, struct sk_buff *oskb)
300 {
301 struct sk_buff *skb;
302
303 /* arp on this interface. */
304 if (dev->flags & IFF_NOARP)
305 return;
306
307 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
308 dest_hw, src_hw, target_hw);
309 if (!skb)
310 return;
311
312 if (oskb)
313 skb_dst_copy(skb, oskb);
314
315 arp_xmit(skb);
316 }
317
318 void arp_send(int type, int ptype, __be32 dest_ip,
319 struct net_device *dev, __be32 src_ip,
320 const unsigned char *dest_hw, const unsigned char *src_hw,
321 const unsigned char *target_hw)
322 {
323 arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
324 target_hw, NULL);
325 }
326 EXPORT_SYMBOL(arp_send);
327
328 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
329 {
330 __be32 saddr = 0;
331 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
332 struct net_device *dev = neigh->dev;
333 __be32 target = *(__be32 *)neigh->primary_key;
334 int probes = atomic_read(&neigh->probes);
335 struct in_device *in_dev;
336
337 rcu_read_lock();
338 in_dev = __in_dev_get_rcu(dev);
339 if (!in_dev) {
340 rcu_read_unlock();
341 return;
342 }
343 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 default:
345 case 0: /* By default announce any local IP */
346 if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
347 ip_hdr(skb)->saddr) == RTN_LOCAL)
348 saddr = ip_hdr(skb)->saddr;
349 break;
350 case 1: /* Restrict announcements of saddr in same subnet */
351 if (!skb)
352 break;
353 saddr = ip_hdr(skb)->saddr;
354 if (inet_addr_type_dev_table(dev_net(dev), dev,
355 saddr) == RTN_LOCAL) {
356 /* saddr should be known to target */
357 if (inet_addr_onlink(in_dev, target, saddr))
358 break;
359 }
360 saddr = 0;
361 break;
362 case 2: /* Avoid secondary IPs, get a primary/preferred one */
363 break;
364 }
365 rcu_read_unlock();
366
367 if (!saddr)
368 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
369
370 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
371 if (probes < 0) {
372 if (!(neigh->nud_state & NUD_VALID))
373 pr_debug("trying to ucast probe in NUD_INVALID\n");
374 neigh_ha_snapshot(dst_ha, neigh, dev);
375 dst_hw = dst_ha;
376 } else {
377 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
378 if (probes < 0) {
379 neigh_app_ns(neigh);
380 return;
381 }
382 }
383
384 arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
385 dst_hw, dev->dev_addr, NULL,
386 dev->priv_flags & IFF_XMIT_DST_RELEASE ? NULL : skb);
387 }
388
389 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
390 {
391 struct net *net = dev_net(in_dev->dev);
392 int scope;
393
394 switch (IN_DEV_ARP_IGNORE(in_dev)) {
395 case 0: /* Reply, the tip is already validated */
396 return 0;
397 case 1: /* Reply only if tip is configured on the incoming interface */
398 sip = 0;
399 scope = RT_SCOPE_HOST;
400 break;
401 case 2: /*
402 * Reply only if tip is configured on the incoming interface
403 * and is in same subnet as sip
404 */
405 scope = RT_SCOPE_HOST;
406 break;
407 case 3: /* Do not reply for scope host addresses */
408 sip = 0;
409 scope = RT_SCOPE_LINK;
410 in_dev = NULL;
411 break;
412 case 4: /* Reserved */
413 case 5:
414 case 6:
415 case 7:
416 return 0;
417 case 8: /* Do not reply */
418 return 1;
419 default:
420 return 0;
421 }
422 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
423 }
424
425 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
426 {
427 struct rtable *rt;
428 int flag = 0;
429 /*unsigned long now; */
430 struct net *net = dev_net(dev);
431
432 rt = ip_route_output(net, sip, tip, 0, 0);
433 if (IS_ERR(rt))
434 return 1;
435 if (rt->dst.dev != dev) {
436 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
437 flag = 1;
438 }
439 ip_rt_put(rt);
440 return flag;
441 }
442
443 /*
444 * Check if we can use proxy ARP for this path
445 */
446 static inline int arp_fwd_proxy(struct in_device *in_dev,
447 struct net_device *dev, struct rtable *rt)
448 {
449 struct in_device *out_dev;
450 int imi, omi = -1;
451
452 if (rt->dst.dev == dev)
453 return 0;
454
455 if (!IN_DEV_PROXY_ARP(in_dev))
456 return 0;
457 imi = IN_DEV_MEDIUM_ID(in_dev);
458 if (imi == 0)
459 return 1;
460 if (imi == -1)
461 return 0;
462
463 /* place to check for proxy_arp for routes */
464
465 out_dev = __in_dev_get_rcu(rt->dst.dev);
466 if (out_dev)
467 omi = IN_DEV_MEDIUM_ID(out_dev);
468
469 return omi != imi && omi != -1;
470 }
471
472 /*
473 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
474 *
475 * RFC3069 supports proxy arp replies back to the same interface. This
476 * is done to support (ethernet) switch features, like RFC 3069, where
477 * the individual ports are not allowed to communicate with each
478 * other, BUT they are allowed to talk to the upstream router. As
479 * described in RFC 3069, it is possible to allow these hosts to
480 * communicate through the upstream router, by proxy_arp'ing.
481 *
482 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
483 *
484 * This technology is known by different names:
485 * In RFC 3069 it is called VLAN Aggregation.
486 * Cisco and Allied Telesyn call it Private VLAN.
487 * Hewlett-Packard call it Source-Port filtering or port-isolation.
488 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
489 *
490 */
491 static inline int arp_fwd_pvlan(struct in_device *in_dev,
492 struct net_device *dev, struct rtable *rt,
493 __be32 sip, __be32 tip)
494 {
495 /* Private VLAN is only concerned about the same ethernet segment */
496 if (rt->dst.dev != dev)
497 return 0;
498
499 /* Don't reply on self probes (often done by windowz boxes)*/
500 if (sip == tip)
501 return 0;
502
503 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
504 return 1;
505 else
506 return 0;
507 }
508
509 /*
510 * Interface to link layer: send routine and receive handler.
511 */
512
513 /*
514 * Create an arp packet. If dest_hw is not set, we create a broadcast
515 * message.
516 */
517 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
518 struct net_device *dev, __be32 src_ip,
519 const unsigned char *dest_hw,
520 const unsigned char *src_hw,
521 const unsigned char *target_hw)
522 {
523 struct sk_buff *skb;
524 struct arphdr *arp;
525 unsigned char *arp_ptr;
526 int hlen = LL_RESERVED_SPACE(dev);
527 int tlen = dev->needed_tailroom;
528
529 /*
530 * Allocate a buffer
531 */
532
533 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
534 if (!skb)
535 return NULL;
536
537 skb_reserve(skb, hlen);
538 skb_reset_network_header(skb);
539 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
540 skb->dev = dev;
541 skb->protocol = htons(ETH_P_ARP);
542 if (!src_hw)
543 src_hw = dev->dev_addr;
544 if (!dest_hw)
545 dest_hw = dev->broadcast;
546
547 /*
548 * Fill the device header for the ARP frame
549 */
550 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
551 goto out;
552
553 /*
554 * Fill out the arp protocol part.
555 *
556 * The arp hardware type should match the device type, except for FDDI,
557 * which (according to RFC 1390) should always equal 1 (Ethernet).
558 */
559 /*
560 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
561 * DIX code for the protocol. Make these device structure fields.
562 */
563 switch (dev->type) {
564 default:
565 arp->ar_hrd = htons(dev->type);
566 arp->ar_pro = htons(ETH_P_IP);
567 break;
568
569 #if IS_ENABLED(CONFIG_AX25)
570 case ARPHRD_AX25:
571 arp->ar_hrd = htons(ARPHRD_AX25);
572 arp->ar_pro = htons(AX25_P_IP);
573 break;
574
575 #if IS_ENABLED(CONFIG_NETROM)
576 case ARPHRD_NETROM:
577 arp->ar_hrd = htons(ARPHRD_NETROM);
578 arp->ar_pro = htons(AX25_P_IP);
579 break;
580 #endif
581 #endif
582
583 #if IS_ENABLED(CONFIG_FDDI)
584 case ARPHRD_FDDI:
585 arp->ar_hrd = htons(ARPHRD_ETHER);
586 arp->ar_pro = htons(ETH_P_IP);
587 break;
588 #endif
589 }
590
591 arp->ar_hln = dev->addr_len;
592 arp->ar_pln = 4;
593 arp->ar_op = htons(type);
594
595 arp_ptr = (unsigned char *)(arp + 1);
596
597 memcpy(arp_ptr, src_hw, dev->addr_len);
598 arp_ptr += dev->addr_len;
599 memcpy(arp_ptr, &src_ip, 4);
600 arp_ptr += 4;
601
602 switch (dev->type) {
603 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
604 case ARPHRD_IEEE1394:
605 break;
606 #endif
607 default:
608 if (target_hw)
609 memcpy(arp_ptr, target_hw, dev->addr_len);
610 else
611 memset(arp_ptr, 0, dev->addr_len);
612 arp_ptr += dev->addr_len;
613 }
614 memcpy(arp_ptr, &dest_ip, 4);
615
616 return skb;
617
618 out:
619 kfree_skb(skb);
620 return NULL;
621 }
622 EXPORT_SYMBOL(arp_create);
623
624 /*
625 * Send an arp packet.
626 */
627 void arp_xmit(struct sk_buff *skb)
628 {
629 /* Send it off, maybe filter it using firewalling first. */
630 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, NULL, skb,
631 NULL, skb->dev, dev_queue_xmit_sk);
632 }
633 EXPORT_SYMBOL(arp_xmit);
634
635 /*
636 * Process an arp request.
637 */
638
639 static int arp_process(struct sock *sk, struct sk_buff *skb)
640 {
641 struct net_device *dev = skb->dev;
642 struct in_device *in_dev = __in_dev_get_rcu(dev);
643 struct arphdr *arp;
644 unsigned char *arp_ptr;
645 struct rtable *rt;
646 unsigned char *sha;
647 __be32 sip, tip;
648 u16 dev_type = dev->type;
649 int addr_type;
650 struct neighbour *n;
651 struct net *net = dev_net(dev);
652 bool is_garp = false;
653
654 /* arp_rcv below verifies the ARP header and verifies the device
655 * is ARP'able.
656 */
657
658 if (!in_dev)
659 goto out;
660
661 arp = arp_hdr(skb);
662
663 switch (dev_type) {
664 default:
665 if (arp->ar_pro != htons(ETH_P_IP) ||
666 htons(dev_type) != arp->ar_hrd)
667 goto out;
668 break;
669 case ARPHRD_ETHER:
670 case ARPHRD_FDDI:
671 case ARPHRD_IEEE802:
672 /*
673 * ETHERNET, and Fibre Channel (which are IEEE 802
674 * devices, according to RFC 2625) devices will accept ARP
675 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
676 * This is the case also of FDDI, where the RFC 1390 says that
677 * FDDI devices should accept ARP hardware of (1) Ethernet,
678 * however, to be more robust, we'll accept both 1 (Ethernet)
679 * or 6 (IEEE 802.2)
680 */
681 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
682 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
683 arp->ar_pro != htons(ETH_P_IP))
684 goto out;
685 break;
686 case ARPHRD_AX25:
687 if (arp->ar_pro != htons(AX25_P_IP) ||
688 arp->ar_hrd != htons(ARPHRD_AX25))
689 goto out;
690 break;
691 case ARPHRD_NETROM:
692 if (arp->ar_pro != htons(AX25_P_IP) ||
693 arp->ar_hrd != htons(ARPHRD_NETROM))
694 goto out;
695 break;
696 }
697
698 /* Understand only these message types */
699
700 if (arp->ar_op != htons(ARPOP_REPLY) &&
701 arp->ar_op != htons(ARPOP_REQUEST))
702 goto out;
703
704 /*
705 * Extract fields
706 */
707 arp_ptr = (unsigned char *)(arp + 1);
708 sha = arp_ptr;
709 arp_ptr += dev->addr_len;
710 memcpy(&sip, arp_ptr, 4);
711 arp_ptr += 4;
712 switch (dev_type) {
713 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
714 case ARPHRD_IEEE1394:
715 break;
716 #endif
717 default:
718 arp_ptr += dev->addr_len;
719 }
720 memcpy(&tip, arp_ptr, 4);
721 /*
722 * Check for bad requests for 127.x.x.x and requests for multicast
723 * addresses. If this is one such, delete it.
724 */
725 if (ipv4_is_multicast(tip) ||
726 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
727 goto out;
728
729 /*
730 * Special case: We must set Frame Relay source Q.922 address
731 */
732 if (dev_type == ARPHRD_DLCI)
733 sha = dev->broadcast;
734
735 /*
736 * Process entry. The idea here is we want to send a reply if it is a
737 * request for us or if it is a request for someone else that we hold
738 * a proxy for. We want to add an entry to our cache if it is a reply
739 * to us or if it is a request for our address.
740 * (The assumption for this last is that if someone is requesting our
741 * address, they are probably intending to talk to us, so it saves time
742 * if we cache their address. Their address is also probably not in
743 * our cache, since ours is not in their cache.)
744 *
745 * Putting this another way, we only care about replies if they are to
746 * us, in which case we add them to the cache. For requests, we care
747 * about those for us and those for our proxies. We reply to both,
748 * and in the case of requests for us we add the requester to the arp
749 * cache.
750 */
751
752 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
753 if (sip == 0) {
754 if (arp->ar_op == htons(ARPOP_REQUEST) &&
755 inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
756 !arp_ignore(in_dev, sip, tip))
757 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
758 dev->dev_addr, sha);
759 goto out;
760 }
761
762 if (arp->ar_op == htons(ARPOP_REQUEST) &&
763 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
764
765 rt = skb_rtable(skb);
766 addr_type = rt->rt_type;
767
768 if (addr_type == RTN_LOCAL) {
769 int dont_send;
770
771 dont_send = arp_ignore(in_dev, sip, tip);
772 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
773 dont_send = arp_filter(sip, tip, dev);
774 if (!dont_send) {
775 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
776 if (n) {
777 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
778 dev, tip, sha, dev->dev_addr,
779 sha);
780 neigh_release(n);
781 }
782 }
783 goto out;
784 } else if (IN_DEV_FORWARD(in_dev)) {
785 if (addr_type == RTN_UNICAST &&
786 (arp_fwd_proxy(in_dev, dev, rt) ||
787 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
788 (rt->dst.dev != dev &&
789 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
790 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
791 if (n)
792 neigh_release(n);
793
794 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
795 skb->pkt_type == PACKET_HOST ||
796 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
797 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
798 dev, tip, sha, dev->dev_addr,
799 sha);
800 } else {
801 pneigh_enqueue(&arp_tbl,
802 in_dev->arp_parms, skb);
803 return 0;
804 }
805 goto out;
806 }
807 }
808 }
809
810 /* Update our ARP tables */
811
812 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
813
814 if (IN_DEV_ARP_ACCEPT(in_dev)) {
815 unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
816
817 /* Unsolicited ARP is not accepted by default.
818 It is possible, that this option should be enabled for some
819 devices (strip is candidate)
820 */
821 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
822 addr_type == RTN_UNICAST;
823
824 if (!n &&
825 ((arp->ar_op == htons(ARPOP_REPLY) &&
826 addr_type == RTN_UNICAST) || is_garp))
827 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
828 }
829
830 if (n) {
831 int state = NUD_REACHABLE;
832 int override;
833
834 /* If several different ARP replies follows back-to-back,
835 use the FIRST one. It is possible, if several proxy
836 agents are active. Taking the first reply prevents
837 arp trashing and chooses the fastest router.
838 */
839 override = time_after(jiffies,
840 n->updated +
841 NEIGH_VAR(n->parms, LOCKTIME)) ||
842 is_garp;
843
844 /* Broadcast replies and request packets
845 do not assert neighbour reachability.
846 */
847 if (arp->ar_op != htons(ARPOP_REPLY) ||
848 skb->pkt_type != PACKET_HOST)
849 state = NUD_STALE;
850 neigh_update(n, sha, state,
851 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
852 neigh_release(n);
853 }
854
855 out:
856 consume_skb(skb);
857 return 0;
858 }
859
860 static void parp_redo(struct sk_buff *skb)
861 {
862 arp_process(NULL, skb);
863 }
864
865
866 /*
867 * Receive an arp request from the device layer.
868 */
869
870 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
871 struct packet_type *pt, struct net_device *orig_dev)
872 {
873 const struct arphdr *arp;
874
875 /* do not tweak dropwatch on an ARP we will ignore */
876 if (dev->flags & IFF_NOARP ||
877 skb->pkt_type == PACKET_OTHERHOST ||
878 skb->pkt_type == PACKET_LOOPBACK)
879 goto consumeskb;
880
881 skb = skb_share_check(skb, GFP_ATOMIC);
882 if (!skb)
883 goto out_of_mem;
884
885 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
886 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
887 goto freeskb;
888
889 arp = arp_hdr(skb);
890 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
891 goto freeskb;
892
893 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
894
895 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, NULL, skb,
896 dev, NULL, arp_process);
897
898 consumeskb:
899 consume_skb(skb);
900 return 0;
901 freeskb:
902 kfree_skb(skb);
903 out_of_mem:
904 return 0;
905 }
906
907 /*
908 * User level interface (ioctl)
909 */
910
911 /*
912 * Set (create) an ARP cache entry.
913 */
914
915 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
916 {
917 if (!dev) {
918 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
919 return 0;
920 }
921 if (__in_dev_get_rtnl(dev)) {
922 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
923 return 0;
924 }
925 return -ENXIO;
926 }
927
928 static int arp_req_set_public(struct net *net, struct arpreq *r,
929 struct net_device *dev)
930 {
931 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
932 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
933
934 if (mask && mask != htonl(0xFFFFFFFF))
935 return -EINVAL;
936 if (!dev && (r->arp_flags & ATF_COM)) {
937 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
938 r->arp_ha.sa_data);
939 if (!dev)
940 return -ENODEV;
941 }
942 if (mask) {
943 if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
944 return -ENOBUFS;
945 return 0;
946 }
947
948 return arp_req_set_proxy(net, dev, 1);
949 }
950
951 static int arp_req_set(struct net *net, struct arpreq *r,
952 struct net_device *dev)
953 {
954 __be32 ip;
955 struct neighbour *neigh;
956 int err;
957
958 if (r->arp_flags & ATF_PUBL)
959 return arp_req_set_public(net, r, dev);
960
961 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
962 if (r->arp_flags & ATF_PERM)
963 r->arp_flags |= ATF_COM;
964 if (!dev) {
965 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
966
967 if (IS_ERR(rt))
968 return PTR_ERR(rt);
969 dev = rt->dst.dev;
970 ip_rt_put(rt);
971 if (!dev)
972 return -EINVAL;
973 }
974 switch (dev->type) {
975 #if IS_ENABLED(CONFIG_FDDI)
976 case ARPHRD_FDDI:
977 /*
978 * According to RFC 1390, FDDI devices should accept ARP
979 * hardware types of 1 (Ethernet). However, to be more
980 * robust, we'll accept hardware types of either 1 (Ethernet)
981 * or 6 (IEEE 802.2).
982 */
983 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
984 r->arp_ha.sa_family != ARPHRD_ETHER &&
985 r->arp_ha.sa_family != ARPHRD_IEEE802)
986 return -EINVAL;
987 break;
988 #endif
989 default:
990 if (r->arp_ha.sa_family != dev->type)
991 return -EINVAL;
992 break;
993 }
994
995 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
996 err = PTR_ERR(neigh);
997 if (!IS_ERR(neigh)) {
998 unsigned int state = NUD_STALE;
999 if (r->arp_flags & ATF_PERM)
1000 state = NUD_PERMANENT;
1001 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1002 r->arp_ha.sa_data : NULL, state,
1003 NEIGH_UPDATE_F_OVERRIDE |
1004 NEIGH_UPDATE_F_ADMIN);
1005 neigh_release(neigh);
1006 }
1007 return err;
1008 }
1009
1010 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1011 {
1012 if (neigh->nud_state&NUD_PERMANENT)
1013 return ATF_PERM | ATF_COM;
1014 else if (neigh->nud_state&NUD_VALID)
1015 return ATF_COM;
1016 else
1017 return 0;
1018 }
1019
1020 /*
1021 * Get an ARP cache entry.
1022 */
1023
1024 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1025 {
1026 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1027 struct neighbour *neigh;
1028 int err = -ENXIO;
1029
1030 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1031 if (neigh) {
1032 if (!(neigh->nud_state & NUD_NOARP)) {
1033 read_lock_bh(&neigh->lock);
1034 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1035 r->arp_flags = arp_state_to_flags(neigh);
1036 read_unlock_bh(&neigh->lock);
1037 r->arp_ha.sa_family = dev->type;
1038 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1039 err = 0;
1040 }
1041 neigh_release(neigh);
1042 }
1043 return err;
1044 }
1045
1046 static int arp_invalidate(struct net_device *dev, __be32 ip)
1047 {
1048 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1049 int err = -ENXIO;
1050
1051 if (neigh) {
1052 if (neigh->nud_state & ~NUD_NOARP)
1053 err = neigh_update(neigh, NULL, NUD_FAILED,
1054 NEIGH_UPDATE_F_OVERRIDE|
1055 NEIGH_UPDATE_F_ADMIN);
1056 neigh_release(neigh);
1057 }
1058
1059 return err;
1060 }
1061
1062 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1063 struct net_device *dev)
1064 {
1065 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1066 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1067
1068 if (mask == htonl(0xFFFFFFFF))
1069 return pneigh_delete(&arp_tbl, net, &ip, dev);
1070
1071 if (mask)
1072 return -EINVAL;
1073
1074 return arp_req_set_proxy(net, dev, 0);
1075 }
1076
1077 static int arp_req_delete(struct net *net, struct arpreq *r,
1078 struct net_device *dev)
1079 {
1080 __be32 ip;
1081
1082 if (r->arp_flags & ATF_PUBL)
1083 return arp_req_delete_public(net, r, dev);
1084
1085 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1086 if (!dev) {
1087 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1088 if (IS_ERR(rt))
1089 return PTR_ERR(rt);
1090 dev = rt->dst.dev;
1091 ip_rt_put(rt);
1092 if (!dev)
1093 return -EINVAL;
1094 }
1095 return arp_invalidate(dev, ip);
1096 }
1097
1098 /*
1099 * Handle an ARP layer I/O control request.
1100 */
1101
1102 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1103 {
1104 int err;
1105 struct arpreq r;
1106 struct net_device *dev = NULL;
1107
1108 switch (cmd) {
1109 case SIOCDARP:
1110 case SIOCSARP:
1111 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1112 return -EPERM;
1113 case SIOCGARP:
1114 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1115 if (err)
1116 return -EFAULT;
1117 break;
1118 default:
1119 return -EINVAL;
1120 }
1121
1122 if (r.arp_pa.sa_family != AF_INET)
1123 return -EPFNOSUPPORT;
1124
1125 if (!(r.arp_flags & ATF_PUBL) &&
1126 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1127 return -EINVAL;
1128 if (!(r.arp_flags & ATF_NETMASK))
1129 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1130 htonl(0xFFFFFFFFUL);
1131 rtnl_lock();
1132 if (r.arp_dev[0]) {
1133 err = -ENODEV;
1134 dev = __dev_get_by_name(net, r.arp_dev);
1135 if (!dev)
1136 goto out;
1137
1138 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1139 if (!r.arp_ha.sa_family)
1140 r.arp_ha.sa_family = dev->type;
1141 err = -EINVAL;
1142 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1143 goto out;
1144 } else if (cmd == SIOCGARP) {
1145 err = -ENODEV;
1146 goto out;
1147 }
1148
1149 switch (cmd) {
1150 case SIOCDARP:
1151 err = arp_req_delete(net, &r, dev);
1152 break;
1153 case SIOCSARP:
1154 err = arp_req_set(net, &r, dev);
1155 break;
1156 case SIOCGARP:
1157 err = arp_req_get(&r, dev);
1158 break;
1159 }
1160 out:
1161 rtnl_unlock();
1162 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1163 err = -EFAULT;
1164 return err;
1165 }
1166
1167 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1168 void *ptr)
1169 {
1170 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1171 struct netdev_notifier_change_info *change_info;
1172
1173 switch (event) {
1174 case NETDEV_CHANGEADDR:
1175 neigh_changeaddr(&arp_tbl, dev);
1176 rt_cache_flush(dev_net(dev));
1177 break;
1178 case NETDEV_CHANGE:
1179 change_info = ptr;
1180 if (change_info->flags_changed & IFF_NOARP)
1181 neigh_changeaddr(&arp_tbl, dev);
1182 break;
1183 default:
1184 break;
1185 }
1186
1187 return NOTIFY_DONE;
1188 }
1189
1190 static struct notifier_block arp_netdev_notifier = {
1191 .notifier_call = arp_netdev_event,
1192 };
1193
1194 /* Note, that it is not on notifier chain.
1195 It is necessary, that this routine was called after route cache will be
1196 flushed.
1197 */
1198 void arp_ifdown(struct net_device *dev)
1199 {
1200 neigh_ifdown(&arp_tbl, dev);
1201 }
1202
1203
1204 /*
1205 * Called once on startup.
1206 */
1207
1208 static struct packet_type arp_packet_type __read_mostly = {
1209 .type = cpu_to_be16(ETH_P_ARP),
1210 .func = arp_rcv,
1211 };
1212
1213 static int arp_proc_init(void);
1214
1215 void __init arp_init(void)
1216 {
1217 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1218
1219 dev_add_pack(&arp_packet_type);
1220 arp_proc_init();
1221 #ifdef CONFIG_SYSCTL
1222 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1223 #endif
1224 register_netdevice_notifier(&arp_netdev_notifier);
1225 }
1226
1227 #ifdef CONFIG_PROC_FS
1228 #if IS_ENABLED(CONFIG_AX25)
1229
1230 /* ------------------------------------------------------------------------ */
1231 /*
1232 * ax25 -> ASCII conversion
1233 */
1234 static char *ax2asc2(ax25_address *a, char *buf)
1235 {
1236 char c, *s;
1237 int n;
1238
1239 for (n = 0, s = buf; n < 6; n++) {
1240 c = (a->ax25_call[n] >> 1) & 0x7F;
1241
1242 if (c != ' ')
1243 *s++ = c;
1244 }
1245
1246 *s++ = '-';
1247 n = (a->ax25_call[6] >> 1) & 0x0F;
1248 if (n > 9) {
1249 *s++ = '1';
1250 n -= 10;
1251 }
1252
1253 *s++ = n + '0';
1254 *s++ = '\0';
1255
1256 if (*buf == '\0' || *buf == '-')
1257 return "*";
1258
1259 return buf;
1260 }
1261 #endif /* CONFIG_AX25 */
1262
1263 #define HBUFFERLEN 30
1264
1265 static void arp_format_neigh_entry(struct seq_file *seq,
1266 struct neighbour *n)
1267 {
1268 char hbuffer[HBUFFERLEN];
1269 int k, j;
1270 char tbuf[16];
1271 struct net_device *dev = n->dev;
1272 int hatype = dev->type;
1273
1274 read_lock(&n->lock);
1275 /* Convert hardware address to XX:XX:XX:XX ... form. */
1276 #if IS_ENABLED(CONFIG_AX25)
1277 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1278 ax2asc2((ax25_address *)n->ha, hbuffer);
1279 else {
1280 #endif
1281 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1282 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1283 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1284 hbuffer[k++] = ':';
1285 }
1286 if (k != 0)
1287 --k;
1288 hbuffer[k] = 0;
1289 #if IS_ENABLED(CONFIG_AX25)
1290 }
1291 #endif
1292 sprintf(tbuf, "%pI4", n->primary_key);
1293 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1294 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1295 read_unlock(&n->lock);
1296 }
1297
1298 static void arp_format_pneigh_entry(struct seq_file *seq,
1299 struct pneigh_entry *n)
1300 {
1301 struct net_device *dev = n->dev;
1302 int hatype = dev ? dev->type : 0;
1303 char tbuf[16];
1304
1305 sprintf(tbuf, "%pI4", n->key);
1306 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1307 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1308 dev ? dev->name : "*");
1309 }
1310
1311 static int arp_seq_show(struct seq_file *seq, void *v)
1312 {
1313 if (v == SEQ_START_TOKEN) {
1314 seq_puts(seq, "IP address HW type Flags "
1315 "HW address Mask Device\n");
1316 } else {
1317 struct neigh_seq_state *state = seq->private;
1318
1319 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1320 arp_format_pneigh_entry(seq, v);
1321 else
1322 arp_format_neigh_entry(seq, v);
1323 }
1324
1325 return 0;
1326 }
1327
1328 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1329 {
1330 /* Don't want to confuse "arp -a" w/ magic entries,
1331 * so we tell the generic iterator to skip NUD_NOARP.
1332 */
1333 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1334 }
1335
1336 /* ------------------------------------------------------------------------ */
1337
1338 static const struct seq_operations arp_seq_ops = {
1339 .start = arp_seq_start,
1340 .next = neigh_seq_next,
1341 .stop = neigh_seq_stop,
1342 .show = arp_seq_show,
1343 };
1344
1345 static int arp_seq_open(struct inode *inode, struct file *file)
1346 {
1347 return seq_open_net(inode, file, &arp_seq_ops,
1348 sizeof(struct neigh_seq_state));
1349 }
1350
1351 static const struct file_operations arp_seq_fops = {
1352 .owner = THIS_MODULE,
1353 .open = arp_seq_open,
1354 .read = seq_read,
1355 .llseek = seq_lseek,
1356 .release = seq_release_net,
1357 };
1358
1359
1360 static int __net_init arp_net_init(struct net *net)
1361 {
1362 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1363 return -ENOMEM;
1364 return 0;
1365 }
1366
1367 static void __net_exit arp_net_exit(struct net *net)
1368 {
1369 remove_proc_entry("arp", net->proc_net);
1370 }
1371
1372 static struct pernet_operations arp_net_ops = {
1373 .init = arp_net_init,
1374 .exit = arp_net_exit,
1375 };
1376
1377 static int __init arp_proc_init(void)
1378 {
1379 return register_pernet_subsys(&arp_net_ops);
1380 }
1381
1382 #else /* CONFIG_PROC_FS */
1383
1384 static int __init arp_proc_init(void)
1385 {
1386 return 0;
1387 }
1388
1389 #endif /* CONFIG_PROC_FS */
This page took 0.148887 seconds and 6 git commands to generate.