arp: Kill arp_find
[deliverable/linux.git] / net / ipv4 / arp.c
1 /* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 * Alan Cox : Removed the Ethernet assumptions in
17 * Florian's code
18 * Alan Cox : Fixed some small errors in the ARP
19 * logic
20 * Alan Cox : Allow >4K in /proc
21 * Alan Cox : Make ARP add its own protocol entry
22 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
23 * Stephen Henson : Add AX25 support to arp_get_info()
24 * Alan Cox : Drop data when a device is downed.
25 * Alan Cox : Use init_timer().
26 * Alan Cox : Double lock fixes.
27 * Martin Seine : Move the arphdr structure
28 * to if_arp.h for compatibility.
29 * with BSD based programs.
30 * Andrew Tridgell : Added ARP netmask code and
31 * re-arranged proxy handling.
32 * Alan Cox : Changed to use notifiers.
33 * Niibe Yutaka : Reply for this device or proxies only.
34 * Alan Cox : Don't proxy across hardware types!
35 * Jonathan Naylor : Added support for NET/ROM.
36 * Mike Shaver : RFC1122 checks.
37 * Jonathan Naylor : Only lookup the hardware address for
38 * the correct hardware type.
39 * Germano Caronni : Assorted subtle races.
40 * Craig Schlenter : Don't modify permanent entry
41 * during arp_rcv.
42 * Russ Nelson : Tidied up a few bits.
43 * Alexey Kuznetsov: Major changes to caching and behaviour,
44 * eg intelligent arp probing and
45 * generation
46 * of host down events.
47 * Alan Cox : Missing unlock in device events.
48 * Eckes : ARP ioctl control errors.
49 * Alexey Kuznetsov: Arp free fix.
50 * Manuel Rodriguez: Gratuitous ARP.
51 * Jonathan Layes : Added arpd support through kerneld
52 * message queue (960314)
53 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
54 * Mike McLagan : Routing by source
55 * Stuart Cheshire : Metricom and grat arp fixes
56 * *** FOR 2.1 clean this up ***
57 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 * Alan Cox : Took the AP1000 nasty FDDI hack and
59 * folded into the mainstream FDDI code.
60 * Ack spit, Linus how did you allow that
61 * one in...
62 * Jes Sorensen : Make FDDI work again in 2.1.x and
63 * clean up the APFDDI & gen. FDDI bits.
64 * Alexey Kuznetsov: new arp state machine;
65 * now it is in net/core/neighbour.c.
66 * Krzysztof Halasa: Added Frame Relay ARP support.
67 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
68 * Shmulik Hen: Split arp_send to arp_create and
69 * arp_xmit so intermediate drivers like
70 * bonding can change the skb before
71 * sending (e.g. insert 8021q tag).
72 * Harald Welte : convert to make use of jenkins hash
73 * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
74 */
75
76 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78 #include <linux/module.h>
79 #include <linux/types.h>
80 #include <linux/string.h>
81 #include <linux/kernel.h>
82 #include <linux/capability.h>
83 #include <linux/socket.h>
84 #include <linux/sockios.h>
85 #include <linux/errno.h>
86 #include <linux/in.h>
87 #include <linux/mm.h>
88 #include <linux/inet.h>
89 #include <linux/inetdevice.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/fddidevice.h>
93 #include <linux/if_arp.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/slab.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116
117 #include <linux/uaccess.h>
118
119 #include <linux/netfilter_arp.h>
120
121 /*
122 * Interface to generic neighbour cache.
123 */
124 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129
130 static const struct neigh_ops arp_generic_ops = {
131 .family = AF_INET,
132 .solicit = arp_solicit,
133 .error_report = arp_error_report,
134 .output = neigh_resolve_output,
135 .connected_output = neigh_connected_output,
136 };
137
138 static const struct neigh_ops arp_hh_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_resolve_output,
144 };
145
146 static const struct neigh_ops arp_direct_ops = {
147 .family = AF_INET,
148 .output = neigh_direct_output,
149 .connected_output = neigh_direct_output,
150 };
151
152 struct neigh_table arp_tbl = {
153 .family = AF_INET,
154 .key_len = 4,
155 .hash = arp_hash,
156 .constructor = arp_constructor,
157 .proxy_redo = parp_redo,
158 .id = "arp_cache",
159 .parms = {
160 .tbl = &arp_tbl,
161 .reachable_time = 30 * HZ,
162 .data = {
163 [NEIGH_VAR_MCAST_PROBES] = 3,
164 [NEIGH_VAR_UCAST_PROBES] = 3,
165 [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
166 [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
167 [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
168 [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
169 [NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
170 [NEIGH_VAR_PROXY_QLEN] = 64,
171 [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
172 [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
173 [NEIGH_VAR_LOCKTIME] = 1 * HZ,
174 },
175 },
176 .gc_interval = 30 * HZ,
177 .gc_thresh1 = 128,
178 .gc_thresh2 = 512,
179 .gc_thresh3 = 1024,
180 };
181 EXPORT_SYMBOL(arp_tbl);
182
183 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
184 {
185 switch (dev->type) {
186 case ARPHRD_ETHER:
187 case ARPHRD_FDDI:
188 case ARPHRD_IEEE802:
189 ip_eth_mc_map(addr, haddr);
190 return 0;
191 case ARPHRD_INFINIBAND:
192 ip_ib_mc_map(addr, dev->broadcast, haddr);
193 return 0;
194 case ARPHRD_IPGRE:
195 ip_ipgre_mc_map(addr, dev->broadcast, haddr);
196 return 0;
197 default:
198 if (dir) {
199 memcpy(haddr, dev->broadcast, dev->addr_len);
200 return 0;
201 }
202 }
203 return -EINVAL;
204 }
205
206
207 static u32 arp_hash(const void *pkey,
208 const struct net_device *dev,
209 __u32 *hash_rnd)
210 {
211 return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
212 }
213
214 static int arp_constructor(struct neighbour *neigh)
215 {
216 __be32 addr = *(__be32 *)neigh->primary_key;
217 struct net_device *dev = neigh->dev;
218 struct in_device *in_dev;
219 struct neigh_parms *parms;
220
221 rcu_read_lock();
222 in_dev = __in_dev_get_rcu(dev);
223 if (in_dev == NULL) {
224 rcu_read_unlock();
225 return -EINVAL;
226 }
227
228 neigh->type = inet_addr_type(dev_net(dev), addr);
229
230 parms = in_dev->arp_parms;
231 __neigh_parms_put(neigh->parms);
232 neigh->parms = neigh_parms_clone(parms);
233 rcu_read_unlock();
234
235 if (!dev->header_ops) {
236 neigh->nud_state = NUD_NOARP;
237 neigh->ops = &arp_direct_ops;
238 neigh->output = neigh_direct_output;
239 } else {
240 /* Good devices (checked by reading texts, but only Ethernet is
241 tested)
242
243 ARPHRD_ETHER: (ethernet, apfddi)
244 ARPHRD_FDDI: (fddi)
245 ARPHRD_IEEE802: (tr)
246 ARPHRD_METRICOM: (strip)
247 ARPHRD_ARCNET:
248 etc. etc. etc.
249
250 ARPHRD_IPDDP will also work, if author repairs it.
251 I did not it, because this driver does not work even
252 in old paradigm.
253 */
254
255 if (neigh->type == RTN_MULTICAST) {
256 neigh->nud_state = NUD_NOARP;
257 arp_mc_map(addr, neigh->ha, dev, 1);
258 } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
259 neigh->nud_state = NUD_NOARP;
260 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
261 } else if (neigh->type == RTN_BROADCAST ||
262 (dev->flags & IFF_POINTOPOINT)) {
263 neigh->nud_state = NUD_NOARP;
264 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
265 }
266
267 if (dev->header_ops->cache)
268 neigh->ops = &arp_hh_ops;
269 else
270 neigh->ops = &arp_generic_ops;
271
272 if (neigh->nud_state & NUD_VALID)
273 neigh->output = neigh->ops->connected_output;
274 else
275 neigh->output = neigh->ops->output;
276 }
277 return 0;
278 }
279
280 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
281 {
282 dst_link_failure(skb);
283 kfree_skb(skb);
284 }
285
286 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
287 {
288 __be32 saddr = 0;
289 u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
290 struct net_device *dev = neigh->dev;
291 __be32 target = *(__be32 *)neigh->primary_key;
292 int probes = atomic_read(&neigh->probes);
293 struct in_device *in_dev;
294
295 rcu_read_lock();
296 in_dev = __in_dev_get_rcu(dev);
297 if (!in_dev) {
298 rcu_read_unlock();
299 return;
300 }
301 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
302 default:
303 case 0: /* By default announce any local IP */
304 if (skb && inet_addr_type(dev_net(dev),
305 ip_hdr(skb)->saddr) == RTN_LOCAL)
306 saddr = ip_hdr(skb)->saddr;
307 break;
308 case 1: /* Restrict announcements of saddr in same subnet */
309 if (!skb)
310 break;
311 saddr = ip_hdr(skb)->saddr;
312 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
313 /* saddr should be known to target */
314 if (inet_addr_onlink(in_dev, target, saddr))
315 break;
316 }
317 saddr = 0;
318 break;
319 case 2: /* Avoid secondary IPs, get a primary/preferred one */
320 break;
321 }
322 rcu_read_unlock();
323
324 if (!saddr)
325 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
326
327 probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
328 if (probes < 0) {
329 if (!(neigh->nud_state & NUD_VALID))
330 pr_debug("trying to ucast probe in NUD_INVALID\n");
331 neigh_ha_snapshot(dst_ha, neigh, dev);
332 dst_hw = dst_ha;
333 } else {
334 probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
335 if (probes < 0) {
336 neigh_app_ns(neigh);
337 return;
338 }
339 }
340
341 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
342 dst_hw, dev->dev_addr, NULL);
343 }
344
345 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
346 {
347 struct net *net = dev_net(in_dev->dev);
348 int scope;
349
350 switch (IN_DEV_ARP_IGNORE(in_dev)) {
351 case 0: /* Reply, the tip is already validated */
352 return 0;
353 case 1: /* Reply only if tip is configured on the incoming interface */
354 sip = 0;
355 scope = RT_SCOPE_HOST;
356 break;
357 case 2: /*
358 * Reply only if tip is configured on the incoming interface
359 * and is in same subnet as sip
360 */
361 scope = RT_SCOPE_HOST;
362 break;
363 case 3: /* Do not reply for scope host addresses */
364 sip = 0;
365 scope = RT_SCOPE_LINK;
366 in_dev = NULL;
367 break;
368 case 4: /* Reserved */
369 case 5:
370 case 6:
371 case 7:
372 return 0;
373 case 8: /* Do not reply */
374 return 1;
375 default:
376 return 0;
377 }
378 return !inet_confirm_addr(net, in_dev, sip, tip, scope);
379 }
380
381 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
382 {
383 struct rtable *rt;
384 int flag = 0;
385 /*unsigned long now; */
386 struct net *net = dev_net(dev);
387
388 rt = ip_route_output(net, sip, tip, 0, 0);
389 if (IS_ERR(rt))
390 return 1;
391 if (rt->dst.dev != dev) {
392 NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
393 flag = 1;
394 }
395 ip_rt_put(rt);
396 return flag;
397 }
398
399 /*
400 * Check if we can use proxy ARP for this path
401 */
402 static inline int arp_fwd_proxy(struct in_device *in_dev,
403 struct net_device *dev, struct rtable *rt)
404 {
405 struct in_device *out_dev;
406 int imi, omi = -1;
407
408 if (rt->dst.dev == dev)
409 return 0;
410
411 if (!IN_DEV_PROXY_ARP(in_dev))
412 return 0;
413 imi = IN_DEV_MEDIUM_ID(in_dev);
414 if (imi == 0)
415 return 1;
416 if (imi == -1)
417 return 0;
418
419 /* place to check for proxy_arp for routes */
420
421 out_dev = __in_dev_get_rcu(rt->dst.dev);
422 if (out_dev)
423 omi = IN_DEV_MEDIUM_ID(out_dev);
424
425 return omi != imi && omi != -1;
426 }
427
428 /*
429 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
430 *
431 * RFC3069 supports proxy arp replies back to the same interface. This
432 * is done to support (ethernet) switch features, like RFC 3069, where
433 * the individual ports are not allowed to communicate with each
434 * other, BUT they are allowed to talk to the upstream router. As
435 * described in RFC 3069, it is possible to allow these hosts to
436 * communicate through the upstream router, by proxy_arp'ing.
437 *
438 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
439 *
440 * This technology is known by different names:
441 * In RFC 3069 it is called VLAN Aggregation.
442 * Cisco and Allied Telesyn call it Private VLAN.
443 * Hewlett-Packard call it Source-Port filtering or port-isolation.
444 * Ericsson call it MAC-Forced Forwarding (RFC Draft).
445 *
446 */
447 static inline int arp_fwd_pvlan(struct in_device *in_dev,
448 struct net_device *dev, struct rtable *rt,
449 __be32 sip, __be32 tip)
450 {
451 /* Private VLAN is only concerned about the same ethernet segment */
452 if (rt->dst.dev != dev)
453 return 0;
454
455 /* Don't reply on self probes (often done by windowz boxes)*/
456 if (sip == tip)
457 return 0;
458
459 if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
460 return 1;
461 else
462 return 0;
463 }
464
465 /*
466 * Interface to link layer: send routine and receive handler.
467 */
468
469 /*
470 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
471 * message.
472 */
473 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
474 struct net_device *dev, __be32 src_ip,
475 const unsigned char *dest_hw,
476 const unsigned char *src_hw,
477 const unsigned char *target_hw)
478 {
479 struct sk_buff *skb;
480 struct arphdr *arp;
481 unsigned char *arp_ptr;
482 int hlen = LL_RESERVED_SPACE(dev);
483 int tlen = dev->needed_tailroom;
484
485 /*
486 * Allocate a buffer
487 */
488
489 skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
490 if (skb == NULL)
491 return NULL;
492
493 skb_reserve(skb, hlen);
494 skb_reset_network_header(skb);
495 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
496 skb->dev = dev;
497 skb->protocol = htons(ETH_P_ARP);
498 if (src_hw == NULL)
499 src_hw = dev->dev_addr;
500 if (dest_hw == NULL)
501 dest_hw = dev->broadcast;
502
503 /*
504 * Fill the device header for the ARP frame
505 */
506 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
507 goto out;
508
509 /*
510 * Fill out the arp protocol part.
511 *
512 * The arp hardware type should match the device type, except for FDDI,
513 * which (according to RFC 1390) should always equal 1 (Ethernet).
514 */
515 /*
516 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
517 * DIX code for the protocol. Make these device structure fields.
518 */
519 switch (dev->type) {
520 default:
521 arp->ar_hrd = htons(dev->type);
522 arp->ar_pro = htons(ETH_P_IP);
523 break;
524
525 #if IS_ENABLED(CONFIG_AX25)
526 case ARPHRD_AX25:
527 arp->ar_hrd = htons(ARPHRD_AX25);
528 arp->ar_pro = htons(AX25_P_IP);
529 break;
530
531 #if IS_ENABLED(CONFIG_NETROM)
532 case ARPHRD_NETROM:
533 arp->ar_hrd = htons(ARPHRD_NETROM);
534 arp->ar_pro = htons(AX25_P_IP);
535 break;
536 #endif
537 #endif
538
539 #if IS_ENABLED(CONFIG_FDDI)
540 case ARPHRD_FDDI:
541 arp->ar_hrd = htons(ARPHRD_ETHER);
542 arp->ar_pro = htons(ETH_P_IP);
543 break;
544 #endif
545 }
546
547 arp->ar_hln = dev->addr_len;
548 arp->ar_pln = 4;
549 arp->ar_op = htons(type);
550
551 arp_ptr = (unsigned char *)(arp + 1);
552
553 memcpy(arp_ptr, src_hw, dev->addr_len);
554 arp_ptr += dev->addr_len;
555 memcpy(arp_ptr, &src_ip, 4);
556 arp_ptr += 4;
557
558 switch (dev->type) {
559 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
560 case ARPHRD_IEEE1394:
561 break;
562 #endif
563 default:
564 if (target_hw != NULL)
565 memcpy(arp_ptr, target_hw, dev->addr_len);
566 else
567 memset(arp_ptr, 0, dev->addr_len);
568 arp_ptr += dev->addr_len;
569 }
570 memcpy(arp_ptr, &dest_ip, 4);
571
572 return skb;
573
574 out:
575 kfree_skb(skb);
576 return NULL;
577 }
578 EXPORT_SYMBOL(arp_create);
579
580 /*
581 * Send an arp packet.
582 */
583 void arp_xmit(struct sk_buff *skb)
584 {
585 /* Send it off, maybe filter it using firewalling first. */
586 NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
587 }
588 EXPORT_SYMBOL(arp_xmit);
589
590 /*
591 * Create and send an arp packet.
592 */
593 void arp_send(int type, int ptype, __be32 dest_ip,
594 struct net_device *dev, __be32 src_ip,
595 const unsigned char *dest_hw, const unsigned char *src_hw,
596 const unsigned char *target_hw)
597 {
598 struct sk_buff *skb;
599
600 /*
601 * No arp on this interface.
602 */
603
604 if (dev->flags&IFF_NOARP)
605 return;
606
607 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
608 dest_hw, src_hw, target_hw);
609 if (skb == NULL)
610 return;
611
612 arp_xmit(skb);
613 }
614 EXPORT_SYMBOL(arp_send);
615
616 /*
617 * Process an arp request.
618 */
619
620 static int arp_process(struct sk_buff *skb)
621 {
622 struct net_device *dev = skb->dev;
623 struct in_device *in_dev = __in_dev_get_rcu(dev);
624 struct arphdr *arp;
625 unsigned char *arp_ptr;
626 struct rtable *rt;
627 unsigned char *sha;
628 __be32 sip, tip;
629 u16 dev_type = dev->type;
630 int addr_type;
631 struct neighbour *n;
632 struct net *net = dev_net(dev);
633 bool is_garp = false;
634
635 /* arp_rcv below verifies the ARP header and verifies the device
636 * is ARP'able.
637 */
638
639 if (in_dev == NULL)
640 goto out;
641
642 arp = arp_hdr(skb);
643
644 switch (dev_type) {
645 default:
646 if (arp->ar_pro != htons(ETH_P_IP) ||
647 htons(dev_type) != arp->ar_hrd)
648 goto out;
649 break;
650 case ARPHRD_ETHER:
651 case ARPHRD_FDDI:
652 case ARPHRD_IEEE802:
653 /*
654 * ETHERNET, and Fibre Channel (which are IEEE 802
655 * devices, according to RFC 2625) devices will accept ARP
656 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
657 * This is the case also of FDDI, where the RFC 1390 says that
658 * FDDI devices should accept ARP hardware of (1) Ethernet,
659 * however, to be more robust, we'll accept both 1 (Ethernet)
660 * or 6 (IEEE 802.2)
661 */
662 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
663 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
664 arp->ar_pro != htons(ETH_P_IP))
665 goto out;
666 break;
667 case ARPHRD_AX25:
668 if (arp->ar_pro != htons(AX25_P_IP) ||
669 arp->ar_hrd != htons(ARPHRD_AX25))
670 goto out;
671 break;
672 case ARPHRD_NETROM:
673 if (arp->ar_pro != htons(AX25_P_IP) ||
674 arp->ar_hrd != htons(ARPHRD_NETROM))
675 goto out;
676 break;
677 }
678
679 /* Understand only these message types */
680
681 if (arp->ar_op != htons(ARPOP_REPLY) &&
682 arp->ar_op != htons(ARPOP_REQUEST))
683 goto out;
684
685 /*
686 * Extract fields
687 */
688 arp_ptr = (unsigned char *)(arp + 1);
689 sha = arp_ptr;
690 arp_ptr += dev->addr_len;
691 memcpy(&sip, arp_ptr, 4);
692 arp_ptr += 4;
693 switch (dev_type) {
694 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
695 case ARPHRD_IEEE1394:
696 break;
697 #endif
698 default:
699 arp_ptr += dev->addr_len;
700 }
701 memcpy(&tip, arp_ptr, 4);
702 /*
703 * Check for bad requests for 127.x.x.x and requests for multicast
704 * addresses. If this is one such, delete it.
705 */
706 if (ipv4_is_multicast(tip) ||
707 (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
708 goto out;
709
710 /*
711 * Special case: We must set Frame Relay source Q.922 address
712 */
713 if (dev_type == ARPHRD_DLCI)
714 sha = dev->broadcast;
715
716 /*
717 * Process entry. The idea here is we want to send a reply if it is a
718 * request for us or if it is a request for someone else that we hold
719 * a proxy for. We want to add an entry to our cache if it is a reply
720 * to us or if it is a request for our address.
721 * (The assumption for this last is that if someone is requesting our
722 * address, they are probably intending to talk to us, so it saves time
723 * if we cache their address. Their address is also probably not in
724 * our cache, since ours is not in their cache.)
725 *
726 * Putting this another way, we only care about replies if they are to
727 * us, in which case we add them to the cache. For requests, we care
728 * about those for us and those for our proxies. We reply to both,
729 * and in the case of requests for us we add the requester to the arp
730 * cache.
731 */
732
733 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
734 if (sip == 0) {
735 if (arp->ar_op == htons(ARPOP_REQUEST) &&
736 inet_addr_type(net, tip) == RTN_LOCAL &&
737 !arp_ignore(in_dev, sip, tip))
738 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
739 dev->dev_addr, sha);
740 goto out;
741 }
742
743 if (arp->ar_op == htons(ARPOP_REQUEST) &&
744 ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
745
746 rt = skb_rtable(skb);
747 addr_type = rt->rt_type;
748
749 if (addr_type == RTN_LOCAL) {
750 int dont_send;
751
752 dont_send = arp_ignore(in_dev, sip, tip);
753 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
754 dont_send = arp_filter(sip, tip, dev);
755 if (!dont_send) {
756 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
757 if (n) {
758 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
759 dev, tip, sha, dev->dev_addr,
760 sha);
761 neigh_release(n);
762 }
763 }
764 goto out;
765 } else if (IN_DEV_FORWARD(in_dev)) {
766 if (addr_type == RTN_UNICAST &&
767 (arp_fwd_proxy(in_dev, dev, rt) ||
768 arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
769 (rt->dst.dev != dev &&
770 pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
771 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
772 if (n)
773 neigh_release(n);
774
775 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
776 skb->pkt_type == PACKET_HOST ||
777 NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
778 arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
779 dev, tip, sha, dev->dev_addr,
780 sha);
781 } else {
782 pneigh_enqueue(&arp_tbl,
783 in_dev->arp_parms, skb);
784 return 0;
785 }
786 goto out;
787 }
788 }
789 }
790
791 /* Update our ARP tables */
792
793 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
794
795 if (IN_DEV_ARP_ACCEPT(in_dev)) {
796 /* Unsolicited ARP is not accepted by default.
797 It is possible, that this option should be enabled for some
798 devices (strip is candidate)
799 */
800 is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
801 inet_addr_type(net, sip) == RTN_UNICAST;
802
803 if (n == NULL &&
804 ((arp->ar_op == htons(ARPOP_REPLY) &&
805 inet_addr_type(net, sip) == RTN_UNICAST) || is_garp))
806 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
807 }
808
809 if (n) {
810 int state = NUD_REACHABLE;
811 int override;
812
813 /* If several different ARP replies follows back-to-back,
814 use the FIRST one. It is possible, if several proxy
815 agents are active. Taking the first reply prevents
816 arp trashing and chooses the fastest router.
817 */
818 override = time_after(jiffies,
819 n->updated +
820 NEIGH_VAR(n->parms, LOCKTIME)) ||
821 is_garp;
822
823 /* Broadcast replies and request packets
824 do not assert neighbour reachability.
825 */
826 if (arp->ar_op != htons(ARPOP_REPLY) ||
827 skb->pkt_type != PACKET_HOST)
828 state = NUD_STALE;
829 neigh_update(n, sha, state,
830 override ? NEIGH_UPDATE_F_OVERRIDE : 0);
831 neigh_release(n);
832 }
833
834 out:
835 consume_skb(skb);
836 return 0;
837 }
838
839 static void parp_redo(struct sk_buff *skb)
840 {
841 arp_process(skb);
842 }
843
844
845 /*
846 * Receive an arp request from the device layer.
847 */
848
849 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
850 struct packet_type *pt, struct net_device *orig_dev)
851 {
852 const struct arphdr *arp;
853
854 /* do not tweak dropwatch on an ARP we will ignore */
855 if (dev->flags & IFF_NOARP ||
856 skb->pkt_type == PACKET_OTHERHOST ||
857 skb->pkt_type == PACKET_LOOPBACK)
858 goto consumeskb;
859
860 skb = skb_share_check(skb, GFP_ATOMIC);
861 if (!skb)
862 goto out_of_mem;
863
864 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
865 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
866 goto freeskb;
867
868 arp = arp_hdr(skb);
869 if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
870 goto freeskb;
871
872 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
873
874 return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
875
876 consumeskb:
877 consume_skb(skb);
878 return 0;
879 freeskb:
880 kfree_skb(skb);
881 out_of_mem:
882 return 0;
883 }
884
885 /*
886 * User level interface (ioctl)
887 */
888
889 /*
890 * Set (create) an ARP cache entry.
891 */
892
893 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
894 {
895 if (dev == NULL) {
896 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
897 return 0;
898 }
899 if (__in_dev_get_rtnl(dev)) {
900 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
901 return 0;
902 }
903 return -ENXIO;
904 }
905
906 static int arp_req_set_public(struct net *net, struct arpreq *r,
907 struct net_device *dev)
908 {
909 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
910 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
911
912 if (mask && mask != htonl(0xFFFFFFFF))
913 return -EINVAL;
914 if (!dev && (r->arp_flags & ATF_COM)) {
915 dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
916 r->arp_ha.sa_data);
917 if (!dev)
918 return -ENODEV;
919 }
920 if (mask) {
921 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
922 return -ENOBUFS;
923 return 0;
924 }
925
926 return arp_req_set_proxy(net, dev, 1);
927 }
928
929 static int arp_req_set(struct net *net, struct arpreq *r,
930 struct net_device *dev)
931 {
932 __be32 ip;
933 struct neighbour *neigh;
934 int err;
935
936 if (r->arp_flags & ATF_PUBL)
937 return arp_req_set_public(net, r, dev);
938
939 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
940 if (r->arp_flags & ATF_PERM)
941 r->arp_flags |= ATF_COM;
942 if (dev == NULL) {
943 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
944
945 if (IS_ERR(rt))
946 return PTR_ERR(rt);
947 dev = rt->dst.dev;
948 ip_rt_put(rt);
949 if (!dev)
950 return -EINVAL;
951 }
952 switch (dev->type) {
953 #if IS_ENABLED(CONFIG_FDDI)
954 case ARPHRD_FDDI:
955 /*
956 * According to RFC 1390, FDDI devices should accept ARP
957 * hardware types of 1 (Ethernet). However, to be more
958 * robust, we'll accept hardware types of either 1 (Ethernet)
959 * or 6 (IEEE 802.2).
960 */
961 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
962 r->arp_ha.sa_family != ARPHRD_ETHER &&
963 r->arp_ha.sa_family != ARPHRD_IEEE802)
964 return -EINVAL;
965 break;
966 #endif
967 default:
968 if (r->arp_ha.sa_family != dev->type)
969 return -EINVAL;
970 break;
971 }
972
973 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
974 err = PTR_ERR(neigh);
975 if (!IS_ERR(neigh)) {
976 unsigned int state = NUD_STALE;
977 if (r->arp_flags & ATF_PERM)
978 state = NUD_PERMANENT;
979 err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
980 r->arp_ha.sa_data : NULL, state,
981 NEIGH_UPDATE_F_OVERRIDE |
982 NEIGH_UPDATE_F_ADMIN);
983 neigh_release(neigh);
984 }
985 return err;
986 }
987
988 static unsigned int arp_state_to_flags(struct neighbour *neigh)
989 {
990 if (neigh->nud_state&NUD_PERMANENT)
991 return ATF_PERM | ATF_COM;
992 else if (neigh->nud_state&NUD_VALID)
993 return ATF_COM;
994 else
995 return 0;
996 }
997
998 /*
999 * Get an ARP cache entry.
1000 */
1001
1002 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1003 {
1004 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1005 struct neighbour *neigh;
1006 int err = -ENXIO;
1007
1008 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1009 if (neigh) {
1010 read_lock_bh(&neigh->lock);
1011 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1012 r->arp_flags = arp_state_to_flags(neigh);
1013 read_unlock_bh(&neigh->lock);
1014 r->arp_ha.sa_family = dev->type;
1015 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1016 neigh_release(neigh);
1017 err = 0;
1018 }
1019 return err;
1020 }
1021
1022 static int arp_invalidate(struct net_device *dev, __be32 ip)
1023 {
1024 struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1025 int err = -ENXIO;
1026
1027 if (neigh) {
1028 if (neigh->nud_state & ~NUD_NOARP)
1029 err = neigh_update(neigh, NULL, NUD_FAILED,
1030 NEIGH_UPDATE_F_OVERRIDE|
1031 NEIGH_UPDATE_F_ADMIN);
1032 neigh_release(neigh);
1033 }
1034
1035 return err;
1036 }
1037
1038 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1039 struct net_device *dev)
1040 {
1041 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1042 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1043
1044 if (mask == htonl(0xFFFFFFFF))
1045 return pneigh_delete(&arp_tbl, net, &ip, dev);
1046
1047 if (mask)
1048 return -EINVAL;
1049
1050 return arp_req_set_proxy(net, dev, 0);
1051 }
1052
1053 static int arp_req_delete(struct net *net, struct arpreq *r,
1054 struct net_device *dev)
1055 {
1056 __be32 ip;
1057
1058 if (r->arp_flags & ATF_PUBL)
1059 return arp_req_delete_public(net, r, dev);
1060
1061 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1062 if (dev == NULL) {
1063 struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1064 if (IS_ERR(rt))
1065 return PTR_ERR(rt);
1066 dev = rt->dst.dev;
1067 ip_rt_put(rt);
1068 if (!dev)
1069 return -EINVAL;
1070 }
1071 return arp_invalidate(dev, ip);
1072 }
1073
1074 /*
1075 * Handle an ARP layer I/O control request.
1076 */
1077
1078 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1079 {
1080 int err;
1081 struct arpreq r;
1082 struct net_device *dev = NULL;
1083
1084 switch (cmd) {
1085 case SIOCDARP:
1086 case SIOCSARP:
1087 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1088 return -EPERM;
1089 case SIOCGARP:
1090 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1091 if (err)
1092 return -EFAULT;
1093 break;
1094 default:
1095 return -EINVAL;
1096 }
1097
1098 if (r.arp_pa.sa_family != AF_INET)
1099 return -EPFNOSUPPORT;
1100
1101 if (!(r.arp_flags & ATF_PUBL) &&
1102 (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1103 return -EINVAL;
1104 if (!(r.arp_flags & ATF_NETMASK))
1105 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1106 htonl(0xFFFFFFFFUL);
1107 rtnl_lock();
1108 if (r.arp_dev[0]) {
1109 err = -ENODEV;
1110 dev = __dev_get_by_name(net, r.arp_dev);
1111 if (dev == NULL)
1112 goto out;
1113
1114 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1115 if (!r.arp_ha.sa_family)
1116 r.arp_ha.sa_family = dev->type;
1117 err = -EINVAL;
1118 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1119 goto out;
1120 } else if (cmd == SIOCGARP) {
1121 err = -ENODEV;
1122 goto out;
1123 }
1124
1125 switch (cmd) {
1126 case SIOCDARP:
1127 err = arp_req_delete(net, &r, dev);
1128 break;
1129 case SIOCSARP:
1130 err = arp_req_set(net, &r, dev);
1131 break;
1132 case SIOCGARP:
1133 err = arp_req_get(&r, dev);
1134 break;
1135 }
1136 out:
1137 rtnl_unlock();
1138 if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1139 err = -EFAULT;
1140 return err;
1141 }
1142
1143 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1144 void *ptr)
1145 {
1146 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1147 struct netdev_notifier_change_info *change_info;
1148
1149 switch (event) {
1150 case NETDEV_CHANGEADDR:
1151 neigh_changeaddr(&arp_tbl, dev);
1152 rt_cache_flush(dev_net(dev));
1153 break;
1154 case NETDEV_CHANGE:
1155 change_info = ptr;
1156 if (change_info->flags_changed & IFF_NOARP)
1157 neigh_changeaddr(&arp_tbl, dev);
1158 break;
1159 default:
1160 break;
1161 }
1162
1163 return NOTIFY_DONE;
1164 }
1165
1166 static struct notifier_block arp_netdev_notifier = {
1167 .notifier_call = arp_netdev_event,
1168 };
1169
1170 /* Note, that it is not on notifier chain.
1171 It is necessary, that this routine was called after route cache will be
1172 flushed.
1173 */
1174 void arp_ifdown(struct net_device *dev)
1175 {
1176 neigh_ifdown(&arp_tbl, dev);
1177 }
1178
1179
1180 /*
1181 * Called once on startup.
1182 */
1183
1184 static struct packet_type arp_packet_type __read_mostly = {
1185 .type = cpu_to_be16(ETH_P_ARP),
1186 .func = arp_rcv,
1187 };
1188
1189 static int arp_proc_init(void);
1190
1191 void __init arp_init(void)
1192 {
1193 neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1194
1195 dev_add_pack(&arp_packet_type);
1196 arp_proc_init();
1197 #ifdef CONFIG_SYSCTL
1198 neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1199 #endif
1200 register_netdevice_notifier(&arp_netdev_notifier);
1201 }
1202
1203 #ifdef CONFIG_PROC_FS
1204 #if IS_ENABLED(CONFIG_AX25)
1205
1206 /* ------------------------------------------------------------------------ */
1207 /*
1208 * ax25 -> ASCII conversion
1209 */
1210 static char *ax2asc2(ax25_address *a, char *buf)
1211 {
1212 char c, *s;
1213 int n;
1214
1215 for (n = 0, s = buf; n < 6; n++) {
1216 c = (a->ax25_call[n] >> 1) & 0x7F;
1217
1218 if (c != ' ')
1219 *s++ = c;
1220 }
1221
1222 *s++ = '-';
1223 n = (a->ax25_call[6] >> 1) & 0x0F;
1224 if (n > 9) {
1225 *s++ = '1';
1226 n -= 10;
1227 }
1228
1229 *s++ = n + '0';
1230 *s++ = '\0';
1231
1232 if (*buf == '\0' || *buf == '-')
1233 return "*";
1234
1235 return buf;
1236 }
1237 #endif /* CONFIG_AX25 */
1238
1239 #define HBUFFERLEN 30
1240
1241 static void arp_format_neigh_entry(struct seq_file *seq,
1242 struct neighbour *n)
1243 {
1244 char hbuffer[HBUFFERLEN];
1245 int k, j;
1246 char tbuf[16];
1247 struct net_device *dev = n->dev;
1248 int hatype = dev->type;
1249
1250 read_lock(&n->lock);
1251 /* Convert hardware address to XX:XX:XX:XX ... form. */
1252 #if IS_ENABLED(CONFIG_AX25)
1253 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1254 ax2asc2((ax25_address *)n->ha, hbuffer);
1255 else {
1256 #endif
1257 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1258 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1259 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1260 hbuffer[k++] = ':';
1261 }
1262 if (k != 0)
1263 --k;
1264 hbuffer[k] = 0;
1265 #if IS_ENABLED(CONFIG_AX25)
1266 }
1267 #endif
1268 sprintf(tbuf, "%pI4", n->primary_key);
1269 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1270 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1271 read_unlock(&n->lock);
1272 }
1273
1274 static void arp_format_pneigh_entry(struct seq_file *seq,
1275 struct pneigh_entry *n)
1276 {
1277 struct net_device *dev = n->dev;
1278 int hatype = dev ? dev->type : 0;
1279 char tbuf[16];
1280
1281 sprintf(tbuf, "%pI4", n->key);
1282 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1283 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1284 dev ? dev->name : "*");
1285 }
1286
1287 static int arp_seq_show(struct seq_file *seq, void *v)
1288 {
1289 if (v == SEQ_START_TOKEN) {
1290 seq_puts(seq, "IP address HW type Flags "
1291 "HW address Mask Device\n");
1292 } else {
1293 struct neigh_seq_state *state = seq->private;
1294
1295 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1296 arp_format_pneigh_entry(seq, v);
1297 else
1298 arp_format_neigh_entry(seq, v);
1299 }
1300
1301 return 0;
1302 }
1303
1304 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1305 {
1306 /* Don't want to confuse "arp -a" w/ magic entries,
1307 * so we tell the generic iterator to skip NUD_NOARP.
1308 */
1309 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1310 }
1311
1312 /* ------------------------------------------------------------------------ */
1313
1314 static const struct seq_operations arp_seq_ops = {
1315 .start = arp_seq_start,
1316 .next = neigh_seq_next,
1317 .stop = neigh_seq_stop,
1318 .show = arp_seq_show,
1319 };
1320
1321 static int arp_seq_open(struct inode *inode, struct file *file)
1322 {
1323 return seq_open_net(inode, file, &arp_seq_ops,
1324 sizeof(struct neigh_seq_state));
1325 }
1326
1327 static const struct file_operations arp_seq_fops = {
1328 .owner = THIS_MODULE,
1329 .open = arp_seq_open,
1330 .read = seq_read,
1331 .llseek = seq_lseek,
1332 .release = seq_release_net,
1333 };
1334
1335
1336 static int __net_init arp_net_init(struct net *net)
1337 {
1338 if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1339 return -ENOMEM;
1340 return 0;
1341 }
1342
1343 static void __net_exit arp_net_exit(struct net *net)
1344 {
1345 remove_proc_entry("arp", net->proc_net);
1346 }
1347
1348 static struct pernet_operations arp_net_ops = {
1349 .init = arp_net_init,
1350 .exit = arp_net_exit,
1351 };
1352
1353 static int __init arp_proc_init(void)
1354 {
1355 return register_pernet_subsys(&arp_net_ops);
1356 }
1357
1358 #else /* CONFIG_PROC_FS */
1359
1360 static int __init arp_proc_init(void)
1361 {
1362 return 0;
1363 }
1364
1365 #endif /* CONFIG_PROC_FS */
This page took 0.059619 seconds and 6 git commands to generate.