btrfs: ->submit_bio_hook error push-up
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <linux/prefetch.h>
76 #include <linux/export.h>
77 #include <net/net_namespace.h>
78 #include <net/ip.h>
79 #include <net/protocol.h>
80 #include <net/route.h>
81 #include <net/tcp.h>
82 #include <net/sock.h>
83 #include <net/ip_fib.h>
84 #include "fib_lookup.h"
85
86 #define MAX_STAT_DEPTH 32
87
88 #define KEYLENGTH (8*sizeof(t_key))
89
90 typedef unsigned int t_key;
91
92 #define T_TNODE 0
93 #define T_LEAF 1
94 #define NODE_TYPE_MASK 0x1UL
95 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
97 #define IS_TNODE(n) (!(n->parent & T_LEAF))
98 #define IS_LEAF(n) (n->parent & T_LEAF)
99
100 struct rt_trie_node {
101 unsigned long parent;
102 t_key key;
103 };
104
105 struct leaf {
106 unsigned long parent;
107 t_key key;
108 struct hlist_head list;
109 struct rcu_head rcu;
110 };
111
112 struct leaf_info {
113 struct hlist_node hlist;
114 int plen;
115 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
116 struct list_head falh;
117 struct rcu_head rcu;
118 };
119
120 struct tnode {
121 unsigned long parent;
122 t_key key;
123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
125 unsigned int full_children; /* KEYLENGTH bits needed */
126 unsigned int empty_children; /* KEYLENGTH bits needed */
127 union {
128 struct rcu_head rcu;
129 struct work_struct work;
130 struct tnode *tnode_free;
131 };
132 struct rt_trie_node __rcu *child[0];
133 };
134
135 #ifdef CONFIG_IP_FIB_TRIE_STATS
136 struct trie_use_stats {
137 unsigned int gets;
138 unsigned int backtrack;
139 unsigned int semantic_match_passed;
140 unsigned int semantic_match_miss;
141 unsigned int null_node_hit;
142 unsigned int resize_node_skipped;
143 };
144 #endif
145
146 struct trie_stat {
147 unsigned int totdepth;
148 unsigned int maxdepth;
149 unsigned int tnodes;
150 unsigned int leaves;
151 unsigned int nullpointers;
152 unsigned int prefixes;
153 unsigned int nodesizes[MAX_STAT_DEPTH];
154 };
155
156 struct trie {
157 struct rt_trie_node __rcu *trie;
158 #ifdef CONFIG_IP_FIB_TRIE_STATS
159 struct trie_use_stats stats;
160 #endif
161 };
162
163 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
164 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
165 int wasfull);
166 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
167 static struct tnode *inflate(struct trie *t, struct tnode *tn);
168 static struct tnode *halve(struct trie *t, struct tnode *tn);
169 /* tnodes to free after resize(); protected by RTNL */
170 static struct tnode *tnode_free_head;
171 static size_t tnode_free_size;
172
173 /*
174 * synchronize_rcu after call_rcu for that many pages; it should be especially
175 * useful before resizing the root node with PREEMPT_NONE configs; the value was
176 * obtained experimentally, aiming to avoid visible slowdown.
177 */
178 static const int sync_pages = 128;
179
180 static struct kmem_cache *fn_alias_kmem __read_mostly;
181 static struct kmem_cache *trie_leaf_kmem __read_mostly;
182
183 /*
184 * caller must hold RTNL
185 */
186 static inline struct tnode *node_parent(const struct rt_trie_node *node)
187 {
188 unsigned long parent;
189
190 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
191
192 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
193 }
194
195 /*
196 * caller must hold RCU read lock or RTNL
197 */
198 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
199 {
200 unsigned long parent;
201
202 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
203 lockdep_rtnl_is_held());
204
205 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
206 }
207
208 /* Same as rcu_assign_pointer
209 * but that macro() assumes that value is a pointer.
210 */
211 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
212 {
213 smp_wmb();
214 node->parent = (unsigned long)ptr | NODE_TYPE(node);
215 }
216
217 /*
218 * caller must hold RTNL
219 */
220 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
221 {
222 BUG_ON(i >= 1U << tn->bits);
223
224 return rtnl_dereference(tn->child[i]);
225 }
226
227 /*
228 * caller must hold RCU read lock or RTNL
229 */
230 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
231 {
232 BUG_ON(i >= 1U << tn->bits);
233
234 return rcu_dereference_rtnl(tn->child[i]);
235 }
236
237 static inline int tnode_child_length(const struct tnode *tn)
238 {
239 return 1 << tn->bits;
240 }
241
242 static inline t_key mask_pfx(t_key k, unsigned int l)
243 {
244 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
245 }
246
247 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
248 {
249 if (offset < KEYLENGTH)
250 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
251 else
252 return 0;
253 }
254
255 static inline int tkey_equals(t_key a, t_key b)
256 {
257 return a == b;
258 }
259
260 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
261 {
262 if (bits == 0 || offset >= KEYLENGTH)
263 return 1;
264 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
265 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
266 }
267
268 static inline int tkey_mismatch(t_key a, int offset, t_key b)
269 {
270 t_key diff = a ^ b;
271 int i = offset;
272
273 if (!diff)
274 return 0;
275 while ((diff << i) >> (KEYLENGTH-1) == 0)
276 i++;
277 return i;
278 }
279
280 /*
281 To understand this stuff, an understanding of keys and all their bits is
282 necessary. Every node in the trie has a key associated with it, but not
283 all of the bits in that key are significant.
284
285 Consider a node 'n' and its parent 'tp'.
286
287 If n is a leaf, every bit in its key is significant. Its presence is
288 necessitated by path compression, since during a tree traversal (when
289 searching for a leaf - unless we are doing an insertion) we will completely
290 ignore all skipped bits we encounter. Thus we need to verify, at the end of
291 a potentially successful search, that we have indeed been walking the
292 correct key path.
293
294 Note that we can never "miss" the correct key in the tree if present by
295 following the wrong path. Path compression ensures that segments of the key
296 that are the same for all keys with a given prefix are skipped, but the
297 skipped part *is* identical for each node in the subtrie below the skipped
298 bit! trie_insert() in this implementation takes care of that - note the
299 call to tkey_sub_equals() in trie_insert().
300
301 if n is an internal node - a 'tnode' here, the various parts of its key
302 have many different meanings.
303
304 Example:
305 _________________________________________________________________
306 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
307 -----------------------------------------------------------------
308 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
309
310 _________________________________________________________________
311 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
312 -----------------------------------------------------------------
313 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
314
315 tp->pos = 7
316 tp->bits = 3
317 n->pos = 15
318 n->bits = 4
319
320 First, let's just ignore the bits that come before the parent tp, that is
321 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
322 not use them for anything.
323
324 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
325 index into the parent's child array. That is, they will be used to find
326 'n' among tp's children.
327
328 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
329 for the node n.
330
331 All the bits we have seen so far are significant to the node n. The rest
332 of the bits are really not needed or indeed known in n->key.
333
334 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
335 n's child array, and will of course be different for each child.
336
337
338 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
339 at this point.
340
341 */
342
343 static inline void check_tnode(const struct tnode *tn)
344 {
345 WARN_ON(tn && tn->pos+tn->bits > 32);
346 }
347
348 static const int halve_threshold = 25;
349 static const int inflate_threshold = 50;
350 static const int halve_threshold_root = 15;
351 static const int inflate_threshold_root = 30;
352
353 static void __alias_free_mem(struct rcu_head *head)
354 {
355 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
356 kmem_cache_free(fn_alias_kmem, fa);
357 }
358
359 static inline void alias_free_mem_rcu(struct fib_alias *fa)
360 {
361 call_rcu(&fa->rcu, __alias_free_mem);
362 }
363
364 static void __leaf_free_rcu(struct rcu_head *head)
365 {
366 struct leaf *l = container_of(head, struct leaf, rcu);
367 kmem_cache_free(trie_leaf_kmem, l);
368 }
369
370 static inline void free_leaf(struct leaf *l)
371 {
372 call_rcu_bh(&l->rcu, __leaf_free_rcu);
373 }
374
375 static inline void free_leaf_info(struct leaf_info *leaf)
376 {
377 kfree_rcu(leaf, rcu);
378 }
379
380 static struct tnode *tnode_alloc(size_t size)
381 {
382 if (size <= PAGE_SIZE)
383 return kzalloc(size, GFP_KERNEL);
384 else
385 return vzalloc(size);
386 }
387
388 static void __tnode_vfree(struct work_struct *arg)
389 {
390 struct tnode *tn = container_of(arg, struct tnode, work);
391 vfree(tn);
392 }
393
394 static void __tnode_free_rcu(struct rcu_head *head)
395 {
396 struct tnode *tn = container_of(head, struct tnode, rcu);
397 size_t size = sizeof(struct tnode) +
398 (sizeof(struct rt_trie_node *) << tn->bits);
399
400 if (size <= PAGE_SIZE)
401 kfree(tn);
402 else {
403 INIT_WORK(&tn->work, __tnode_vfree);
404 schedule_work(&tn->work);
405 }
406 }
407
408 static inline void tnode_free(struct tnode *tn)
409 {
410 if (IS_LEAF(tn))
411 free_leaf((struct leaf *) tn);
412 else
413 call_rcu(&tn->rcu, __tnode_free_rcu);
414 }
415
416 static void tnode_free_safe(struct tnode *tn)
417 {
418 BUG_ON(IS_LEAF(tn));
419 tn->tnode_free = tnode_free_head;
420 tnode_free_head = tn;
421 tnode_free_size += sizeof(struct tnode) +
422 (sizeof(struct rt_trie_node *) << tn->bits);
423 }
424
425 static void tnode_free_flush(void)
426 {
427 struct tnode *tn;
428
429 while ((tn = tnode_free_head)) {
430 tnode_free_head = tn->tnode_free;
431 tn->tnode_free = NULL;
432 tnode_free(tn);
433 }
434
435 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
436 tnode_free_size = 0;
437 synchronize_rcu();
438 }
439 }
440
441 static struct leaf *leaf_new(void)
442 {
443 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
444 if (l) {
445 l->parent = T_LEAF;
446 INIT_HLIST_HEAD(&l->list);
447 }
448 return l;
449 }
450
451 static struct leaf_info *leaf_info_new(int plen)
452 {
453 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
454 if (li) {
455 li->plen = plen;
456 li->mask_plen = ntohl(inet_make_mask(plen));
457 INIT_LIST_HEAD(&li->falh);
458 }
459 return li;
460 }
461
462 static struct tnode *tnode_new(t_key key, int pos, int bits)
463 {
464 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
465 struct tnode *tn = tnode_alloc(sz);
466
467 if (tn) {
468 tn->parent = T_TNODE;
469 tn->pos = pos;
470 tn->bits = bits;
471 tn->key = key;
472 tn->full_children = 0;
473 tn->empty_children = 1<<bits;
474 }
475
476 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
477 sizeof(struct rt_trie_node) << bits);
478 return tn;
479 }
480
481 /*
482 * Check whether a tnode 'n' is "full", i.e. it is an internal node
483 * and no bits are skipped. See discussion in dyntree paper p. 6
484 */
485
486 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
487 {
488 if (n == NULL || IS_LEAF(n))
489 return 0;
490
491 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
492 }
493
494 static inline void put_child(struct trie *t, struct tnode *tn, int i,
495 struct rt_trie_node *n)
496 {
497 tnode_put_child_reorg(tn, i, n, -1);
498 }
499
500 /*
501 * Add a child at position i overwriting the old value.
502 * Update the value of full_children and empty_children.
503 */
504
505 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
506 int wasfull)
507 {
508 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
509 int isfull;
510
511 BUG_ON(i >= 1<<tn->bits);
512
513 /* update emptyChildren */
514 if (n == NULL && chi != NULL)
515 tn->empty_children++;
516 else if (n != NULL && chi == NULL)
517 tn->empty_children--;
518
519 /* update fullChildren */
520 if (wasfull == -1)
521 wasfull = tnode_full(tn, chi);
522
523 isfull = tnode_full(tn, n);
524 if (wasfull && !isfull)
525 tn->full_children--;
526 else if (!wasfull && isfull)
527 tn->full_children++;
528
529 if (n)
530 node_set_parent(n, tn);
531
532 rcu_assign_pointer(tn->child[i], n);
533 }
534
535 #define MAX_WORK 10
536 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
537 {
538 int i;
539 struct tnode *old_tn;
540 int inflate_threshold_use;
541 int halve_threshold_use;
542 int max_work;
543
544 if (!tn)
545 return NULL;
546
547 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
548 tn, inflate_threshold, halve_threshold);
549
550 /* No children */
551 if (tn->empty_children == tnode_child_length(tn)) {
552 tnode_free_safe(tn);
553 return NULL;
554 }
555 /* One child */
556 if (tn->empty_children == tnode_child_length(tn) - 1)
557 goto one_child;
558 /*
559 * Double as long as the resulting node has a number of
560 * nonempty nodes that are above the threshold.
561 */
562
563 /*
564 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
565 * the Helsinki University of Technology and Matti Tikkanen of Nokia
566 * Telecommunications, page 6:
567 * "A node is doubled if the ratio of non-empty children to all
568 * children in the *doubled* node is at least 'high'."
569 *
570 * 'high' in this instance is the variable 'inflate_threshold'. It
571 * is expressed as a percentage, so we multiply it with
572 * tnode_child_length() and instead of multiplying by 2 (since the
573 * child array will be doubled by inflate()) and multiplying
574 * the left-hand side by 100 (to handle the percentage thing) we
575 * multiply the left-hand side by 50.
576 *
577 * The left-hand side may look a bit weird: tnode_child_length(tn)
578 * - tn->empty_children is of course the number of non-null children
579 * in the current node. tn->full_children is the number of "full"
580 * children, that is non-null tnodes with a skip value of 0.
581 * All of those will be doubled in the resulting inflated tnode, so
582 * we just count them one extra time here.
583 *
584 * A clearer way to write this would be:
585 *
586 * to_be_doubled = tn->full_children;
587 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
588 * tn->full_children;
589 *
590 * new_child_length = tnode_child_length(tn) * 2;
591 *
592 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
593 * new_child_length;
594 * if (new_fill_factor >= inflate_threshold)
595 *
596 * ...and so on, tho it would mess up the while () loop.
597 *
598 * anyway,
599 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
600 * inflate_threshold
601 *
602 * avoid a division:
603 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
604 * inflate_threshold * new_child_length
605 *
606 * expand not_to_be_doubled and to_be_doubled, and shorten:
607 * 100 * (tnode_child_length(tn) - tn->empty_children +
608 * tn->full_children) >= inflate_threshold * new_child_length
609 *
610 * expand new_child_length:
611 * 100 * (tnode_child_length(tn) - tn->empty_children +
612 * tn->full_children) >=
613 * inflate_threshold * tnode_child_length(tn) * 2
614 *
615 * shorten again:
616 * 50 * (tn->full_children + tnode_child_length(tn) -
617 * tn->empty_children) >= inflate_threshold *
618 * tnode_child_length(tn)
619 *
620 */
621
622 check_tnode(tn);
623
624 /* Keep root node larger */
625
626 if (!node_parent((struct rt_trie_node *)tn)) {
627 inflate_threshold_use = inflate_threshold_root;
628 halve_threshold_use = halve_threshold_root;
629 } else {
630 inflate_threshold_use = inflate_threshold;
631 halve_threshold_use = halve_threshold;
632 }
633
634 max_work = MAX_WORK;
635 while ((tn->full_children > 0 && max_work-- &&
636 50 * (tn->full_children + tnode_child_length(tn)
637 - tn->empty_children)
638 >= inflate_threshold_use * tnode_child_length(tn))) {
639
640 old_tn = tn;
641 tn = inflate(t, tn);
642
643 if (IS_ERR(tn)) {
644 tn = old_tn;
645 #ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
647 #endif
648 break;
649 }
650 }
651
652 check_tnode(tn);
653
654 /* Return if at least one inflate is run */
655 if (max_work != MAX_WORK)
656 return (struct rt_trie_node *) tn;
657
658 /*
659 * Halve as long as the number of empty children in this
660 * node is above threshold.
661 */
662
663 max_work = MAX_WORK;
664 while (tn->bits > 1 && max_work-- &&
665 100 * (tnode_child_length(tn) - tn->empty_children) <
666 halve_threshold_use * tnode_child_length(tn)) {
667
668 old_tn = tn;
669 tn = halve(t, tn);
670 if (IS_ERR(tn)) {
671 tn = old_tn;
672 #ifdef CONFIG_IP_FIB_TRIE_STATS
673 t->stats.resize_node_skipped++;
674 #endif
675 break;
676 }
677 }
678
679
680 /* Only one child remains */
681 if (tn->empty_children == tnode_child_length(tn) - 1) {
682 one_child:
683 for (i = 0; i < tnode_child_length(tn); i++) {
684 struct rt_trie_node *n;
685
686 n = rtnl_dereference(tn->child[i]);
687 if (!n)
688 continue;
689
690 /* compress one level */
691
692 node_set_parent(n, NULL);
693 tnode_free_safe(tn);
694 return n;
695 }
696 }
697 return (struct rt_trie_node *) tn;
698 }
699
700
701 static void tnode_clean_free(struct tnode *tn)
702 {
703 int i;
704 struct tnode *tofree;
705
706 for (i = 0; i < tnode_child_length(tn); i++) {
707 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
708 if (tofree)
709 tnode_free(tofree);
710 }
711 tnode_free(tn);
712 }
713
714 static struct tnode *inflate(struct trie *t, struct tnode *tn)
715 {
716 struct tnode *oldtnode = tn;
717 int olen = tnode_child_length(tn);
718 int i;
719
720 pr_debug("In inflate\n");
721
722 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
723
724 if (!tn)
725 return ERR_PTR(-ENOMEM);
726
727 /*
728 * Preallocate and store tnodes before the actual work so we
729 * don't get into an inconsistent state if memory allocation
730 * fails. In case of failure we return the oldnode and inflate
731 * of tnode is ignored.
732 */
733
734 for (i = 0; i < olen; i++) {
735 struct tnode *inode;
736
737 inode = (struct tnode *) tnode_get_child(oldtnode, i);
738 if (inode &&
739 IS_TNODE(inode) &&
740 inode->pos == oldtnode->pos + oldtnode->bits &&
741 inode->bits > 1) {
742 struct tnode *left, *right;
743 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
744
745 left = tnode_new(inode->key&(~m), inode->pos + 1,
746 inode->bits - 1);
747 if (!left)
748 goto nomem;
749
750 right = tnode_new(inode->key|m, inode->pos + 1,
751 inode->bits - 1);
752
753 if (!right) {
754 tnode_free(left);
755 goto nomem;
756 }
757
758 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
759 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
760 }
761 }
762
763 for (i = 0; i < olen; i++) {
764 struct tnode *inode;
765 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
766 struct tnode *left, *right;
767 int size, j;
768
769 /* An empty child */
770 if (node == NULL)
771 continue;
772
773 /* A leaf or an internal node with skipped bits */
774
775 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
776 tn->pos + tn->bits - 1) {
777 if (tkey_extract_bits(node->key,
778 oldtnode->pos + oldtnode->bits,
779 1) == 0)
780 put_child(t, tn, 2*i, node);
781 else
782 put_child(t, tn, 2*i+1, node);
783 continue;
784 }
785
786 /* An internal node with two children */
787 inode = (struct tnode *) node;
788
789 if (inode->bits == 1) {
790 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
791 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
792
793 tnode_free_safe(inode);
794 continue;
795 }
796
797 /* An internal node with more than two children */
798
799 /* We will replace this node 'inode' with two new
800 * ones, 'left' and 'right', each with half of the
801 * original children. The two new nodes will have
802 * a position one bit further down the key and this
803 * means that the "significant" part of their keys
804 * (see the discussion near the top of this file)
805 * will differ by one bit, which will be "0" in
806 * left's key and "1" in right's key. Since we are
807 * moving the key position by one step, the bit that
808 * we are moving away from - the bit at position
809 * (inode->pos) - is the one that will differ between
810 * left and right. So... we synthesize that bit in the
811 * two new keys.
812 * The mask 'm' below will be a single "one" bit at
813 * the position (inode->pos)
814 */
815
816 /* Use the old key, but set the new significant
817 * bit to zero.
818 */
819
820 left = (struct tnode *) tnode_get_child(tn, 2*i);
821 put_child(t, tn, 2*i, NULL);
822
823 BUG_ON(!left);
824
825 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
826 put_child(t, tn, 2*i+1, NULL);
827
828 BUG_ON(!right);
829
830 size = tnode_child_length(left);
831 for (j = 0; j < size; j++) {
832 put_child(t, left, j, rtnl_dereference(inode->child[j]));
833 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
834 }
835 put_child(t, tn, 2*i, resize(t, left));
836 put_child(t, tn, 2*i+1, resize(t, right));
837
838 tnode_free_safe(inode);
839 }
840 tnode_free_safe(oldtnode);
841 return tn;
842 nomem:
843 tnode_clean_free(tn);
844 return ERR_PTR(-ENOMEM);
845 }
846
847 static struct tnode *halve(struct trie *t, struct tnode *tn)
848 {
849 struct tnode *oldtnode = tn;
850 struct rt_trie_node *left, *right;
851 int i;
852 int olen = tnode_child_length(tn);
853
854 pr_debug("In halve\n");
855
856 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
857
858 if (!tn)
859 return ERR_PTR(-ENOMEM);
860
861 /*
862 * Preallocate and store tnodes before the actual work so we
863 * don't get into an inconsistent state if memory allocation
864 * fails. In case of failure we return the oldnode and halve
865 * of tnode is ignored.
866 */
867
868 for (i = 0; i < olen; i += 2) {
869 left = tnode_get_child(oldtnode, i);
870 right = tnode_get_child(oldtnode, i+1);
871
872 /* Two nonempty children */
873 if (left && right) {
874 struct tnode *newn;
875
876 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
877
878 if (!newn)
879 goto nomem;
880
881 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
882 }
883
884 }
885
886 for (i = 0; i < olen; i += 2) {
887 struct tnode *newBinNode;
888
889 left = tnode_get_child(oldtnode, i);
890 right = tnode_get_child(oldtnode, i+1);
891
892 /* At least one of the children is empty */
893 if (left == NULL) {
894 if (right == NULL) /* Both are empty */
895 continue;
896 put_child(t, tn, i/2, right);
897 continue;
898 }
899
900 if (right == NULL) {
901 put_child(t, tn, i/2, left);
902 continue;
903 }
904
905 /* Two nonempty children */
906 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
907 put_child(t, tn, i/2, NULL);
908 put_child(t, newBinNode, 0, left);
909 put_child(t, newBinNode, 1, right);
910 put_child(t, tn, i/2, resize(t, newBinNode));
911 }
912 tnode_free_safe(oldtnode);
913 return tn;
914 nomem:
915 tnode_clean_free(tn);
916 return ERR_PTR(-ENOMEM);
917 }
918
919 /* readside must use rcu_read_lock currently dump routines
920 via get_fa_head and dump */
921
922 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
923 {
924 struct hlist_head *head = &l->list;
925 struct hlist_node *node;
926 struct leaf_info *li;
927
928 hlist_for_each_entry_rcu(li, node, head, hlist)
929 if (li->plen == plen)
930 return li;
931
932 return NULL;
933 }
934
935 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
936 {
937 struct leaf_info *li = find_leaf_info(l, plen);
938
939 if (!li)
940 return NULL;
941
942 return &li->falh;
943 }
944
945 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
946 {
947 struct leaf_info *li = NULL, *last = NULL;
948 struct hlist_node *node;
949
950 if (hlist_empty(head)) {
951 hlist_add_head_rcu(&new->hlist, head);
952 } else {
953 hlist_for_each_entry(li, node, head, hlist) {
954 if (new->plen > li->plen)
955 break;
956
957 last = li;
958 }
959 if (last)
960 hlist_add_after_rcu(&last->hlist, &new->hlist);
961 else
962 hlist_add_before_rcu(&new->hlist, &li->hlist);
963 }
964 }
965
966 /* rcu_read_lock needs to be hold by caller from readside */
967
968 static struct leaf *
969 fib_find_node(struct trie *t, u32 key)
970 {
971 int pos;
972 struct tnode *tn;
973 struct rt_trie_node *n;
974
975 pos = 0;
976 n = rcu_dereference_rtnl(t->trie);
977
978 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
979 tn = (struct tnode *) n;
980
981 check_tnode(tn);
982
983 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
984 pos = tn->pos + tn->bits;
985 n = tnode_get_child_rcu(tn,
986 tkey_extract_bits(key,
987 tn->pos,
988 tn->bits));
989 } else
990 break;
991 }
992 /* Case we have found a leaf. Compare prefixes */
993
994 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
995 return (struct leaf *)n;
996
997 return NULL;
998 }
999
1000 static void trie_rebalance(struct trie *t, struct tnode *tn)
1001 {
1002 int wasfull;
1003 t_key cindex, key;
1004 struct tnode *tp;
1005
1006 key = tn->key;
1007
1008 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1009 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1010 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1011 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1012
1013 tnode_put_child_reorg((struct tnode *)tp, cindex,
1014 (struct rt_trie_node *)tn, wasfull);
1015
1016 tp = node_parent((struct rt_trie_node *) tn);
1017 if (!tp)
1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019
1020 tnode_free_flush();
1021 if (!tp)
1022 break;
1023 tn = tp;
1024 }
1025
1026 /* Handle last (top) tnode */
1027 if (IS_TNODE(tn))
1028 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1029
1030 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1031 tnode_free_flush();
1032 }
1033
1034 /* only used from updater-side */
1035
1036 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1037 {
1038 int pos, newpos;
1039 struct tnode *tp = NULL, *tn = NULL;
1040 struct rt_trie_node *n;
1041 struct leaf *l;
1042 int missbit;
1043 struct list_head *fa_head = NULL;
1044 struct leaf_info *li;
1045 t_key cindex;
1046
1047 pos = 0;
1048 n = rtnl_dereference(t->trie);
1049
1050 /* If we point to NULL, stop. Either the tree is empty and we should
1051 * just put a new leaf in if, or we have reached an empty child slot,
1052 * and we should just put our new leaf in that.
1053 * If we point to a T_TNODE, check if it matches our key. Note that
1054 * a T_TNODE might be skipping any number of bits - its 'pos' need
1055 * not be the parent's 'pos'+'bits'!
1056 *
1057 * If it does match the current key, get pos/bits from it, extract
1058 * the index from our key, push the T_TNODE and walk the tree.
1059 *
1060 * If it doesn't, we have to replace it with a new T_TNODE.
1061 *
1062 * If we point to a T_LEAF, it might or might not have the same key
1063 * as we do. If it does, just change the value, update the T_LEAF's
1064 * value, and return it.
1065 * If it doesn't, we need to replace it with a T_TNODE.
1066 */
1067
1068 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1069 tn = (struct tnode *) n;
1070
1071 check_tnode(tn);
1072
1073 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1074 tp = tn;
1075 pos = tn->pos + tn->bits;
1076 n = tnode_get_child(tn,
1077 tkey_extract_bits(key,
1078 tn->pos,
1079 tn->bits));
1080
1081 BUG_ON(n && node_parent(n) != tn);
1082 } else
1083 break;
1084 }
1085
1086 /*
1087 * n ----> NULL, LEAF or TNODE
1088 *
1089 * tp is n's (parent) ----> NULL or TNODE
1090 */
1091
1092 BUG_ON(tp && IS_LEAF(tp));
1093
1094 /* Case 1: n is a leaf. Compare prefixes */
1095
1096 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1097 l = (struct leaf *) n;
1098 li = leaf_info_new(plen);
1099
1100 if (!li)
1101 return NULL;
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105 goto done;
1106 }
1107 l = leaf_new();
1108
1109 if (!l)
1110 return NULL;
1111
1112 l->key = key;
1113 li = leaf_info_new(plen);
1114
1115 if (!li) {
1116 free_leaf(l);
1117 return NULL;
1118 }
1119
1120 fa_head = &li->falh;
1121 insert_leaf_info(&l->list, li);
1122
1123 if (t->trie && n == NULL) {
1124 /* Case 2: n is NULL, and will just insert a new leaf */
1125
1126 node_set_parent((struct rt_trie_node *)l, tp);
1127
1128 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1129 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1130 } else {
1131 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1132 /*
1133 * Add a new tnode here
1134 * first tnode need some special handling
1135 */
1136
1137 if (tp)
1138 pos = tp->pos+tp->bits;
1139 else
1140 pos = 0;
1141
1142 if (n) {
1143 newpos = tkey_mismatch(key, pos, n->key);
1144 tn = tnode_new(n->key, newpos, 1);
1145 } else {
1146 newpos = 0;
1147 tn = tnode_new(key, newpos, 1); /* First tnode */
1148 }
1149
1150 if (!tn) {
1151 free_leaf_info(li);
1152 free_leaf(l);
1153 return NULL;
1154 }
1155
1156 node_set_parent((struct rt_trie_node *)tn, tp);
1157
1158 missbit = tkey_extract_bits(key, newpos, 1);
1159 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1160 put_child(t, tn, 1-missbit, n);
1161
1162 if (tp) {
1163 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1164 put_child(t, (struct tnode *)tp, cindex,
1165 (struct rt_trie_node *)tn);
1166 } else {
1167 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1168 tp = tn;
1169 }
1170 }
1171
1172 if (tp && tp->pos + tp->bits > 32)
1173 pr_warning("fib_trie"
1174 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1175 tp, tp->pos, tp->bits, key, plen);
1176
1177 /* Rebalance the trie */
1178
1179 trie_rebalance(t, tp);
1180 done:
1181 return fa_head;
1182 }
1183
1184 /*
1185 * Caller must hold RTNL.
1186 */
1187 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1188 {
1189 struct trie *t = (struct trie *) tb->tb_data;
1190 struct fib_alias *fa, *new_fa;
1191 struct list_head *fa_head = NULL;
1192 struct fib_info *fi;
1193 int plen = cfg->fc_dst_len;
1194 u8 tos = cfg->fc_tos;
1195 u32 key, mask;
1196 int err;
1197 struct leaf *l;
1198
1199 if (plen > 32)
1200 return -EINVAL;
1201
1202 key = ntohl(cfg->fc_dst);
1203
1204 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1205
1206 mask = ntohl(inet_make_mask(plen));
1207
1208 if (key & ~mask)
1209 return -EINVAL;
1210
1211 key = key & mask;
1212
1213 fi = fib_create_info(cfg);
1214 if (IS_ERR(fi)) {
1215 err = PTR_ERR(fi);
1216 goto err;
1217 }
1218
1219 l = fib_find_node(t, key);
1220 fa = NULL;
1221
1222 if (l) {
1223 fa_head = get_fa_head(l, plen);
1224 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1225 }
1226
1227 /* Now fa, if non-NULL, points to the first fib alias
1228 * with the same keys [prefix,tos,priority], if such key already
1229 * exists or to the node before which we will insert new one.
1230 *
1231 * If fa is NULL, we will need to allocate a new one and
1232 * insert to the head of f.
1233 *
1234 * If f is NULL, no fib node matched the destination key
1235 * and we need to allocate a new one of those as well.
1236 */
1237
1238 if (fa && fa->fa_tos == tos &&
1239 fa->fa_info->fib_priority == fi->fib_priority) {
1240 struct fib_alias *fa_first, *fa_match;
1241
1242 err = -EEXIST;
1243 if (cfg->fc_nlflags & NLM_F_EXCL)
1244 goto out;
1245
1246 /* We have 2 goals:
1247 * 1. Find exact match for type, scope, fib_info to avoid
1248 * duplicate routes
1249 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1250 */
1251 fa_match = NULL;
1252 fa_first = fa;
1253 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1254 list_for_each_entry_continue(fa, fa_head, fa_list) {
1255 if (fa->fa_tos != tos)
1256 break;
1257 if (fa->fa_info->fib_priority != fi->fib_priority)
1258 break;
1259 if (fa->fa_type == cfg->fc_type &&
1260 fa->fa_info == fi) {
1261 fa_match = fa;
1262 break;
1263 }
1264 }
1265
1266 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1267 struct fib_info *fi_drop;
1268 u8 state;
1269
1270 fa = fa_first;
1271 if (fa_match) {
1272 if (fa == fa_match)
1273 err = 0;
1274 goto out;
1275 }
1276 err = -ENOBUFS;
1277 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1278 if (new_fa == NULL)
1279 goto out;
1280
1281 fi_drop = fa->fa_info;
1282 new_fa->fa_tos = fa->fa_tos;
1283 new_fa->fa_info = fi;
1284 new_fa->fa_type = cfg->fc_type;
1285 state = fa->fa_state;
1286 new_fa->fa_state = state & ~FA_S_ACCESSED;
1287
1288 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1289 alias_free_mem_rcu(fa);
1290
1291 fib_release_info(fi_drop);
1292 if (state & FA_S_ACCESSED)
1293 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1294 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1295 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1296
1297 goto succeeded;
1298 }
1299 /* Error if we find a perfect match which
1300 * uses the same scope, type, and nexthop
1301 * information.
1302 */
1303 if (fa_match)
1304 goto out;
1305
1306 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1307 fa = fa_first;
1308 }
1309 err = -ENOENT;
1310 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1311 goto out;
1312
1313 err = -ENOBUFS;
1314 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1315 if (new_fa == NULL)
1316 goto out;
1317
1318 new_fa->fa_info = fi;
1319 new_fa->fa_tos = tos;
1320 new_fa->fa_type = cfg->fc_type;
1321 new_fa->fa_state = 0;
1322 /*
1323 * Insert new entry to the list.
1324 */
1325
1326 if (!fa_head) {
1327 fa_head = fib_insert_node(t, key, plen);
1328 if (unlikely(!fa_head)) {
1329 err = -ENOMEM;
1330 goto out_free_new_fa;
1331 }
1332 }
1333
1334 if (!plen)
1335 tb->tb_num_default++;
1336
1337 list_add_tail_rcu(&new_fa->fa_list,
1338 (fa ? &fa->fa_list : fa_head));
1339
1340 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1341 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1342 &cfg->fc_nlinfo, 0);
1343 succeeded:
1344 return 0;
1345
1346 out_free_new_fa:
1347 kmem_cache_free(fn_alias_kmem, new_fa);
1348 out:
1349 fib_release_info(fi);
1350 err:
1351 return err;
1352 }
1353
1354 /* should be called with rcu_read_lock */
1355 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1356 t_key key, const struct flowi4 *flp,
1357 struct fib_result *res, int fib_flags)
1358 {
1359 struct leaf_info *li;
1360 struct hlist_head *hhead = &l->list;
1361 struct hlist_node *node;
1362
1363 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1364 struct fib_alias *fa;
1365
1366 if (l->key != (key & li->mask_plen))
1367 continue;
1368
1369 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1370 struct fib_info *fi = fa->fa_info;
1371 int nhsel, err;
1372
1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1374 continue;
1375 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1376 continue;
1377 fib_alias_accessed(fa);
1378 err = fib_props[fa->fa_type].error;
1379 if (err) {
1380 #ifdef CONFIG_IP_FIB_TRIE_STATS
1381 t->stats.semantic_match_passed++;
1382 #endif
1383 return err;
1384 }
1385 if (fi->fib_flags & RTNH_F_DEAD)
1386 continue;
1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1389
1390 if (nh->nh_flags & RTNH_F_DEAD)
1391 continue;
1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1393 continue;
1394
1395 #ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.semantic_match_passed++;
1397 #endif
1398 res->prefixlen = li->plen;
1399 res->nh_sel = nhsel;
1400 res->type = fa->fa_type;
1401 res->scope = fa->fa_info->fib_scope;
1402 res->fi = fi;
1403 res->table = tb;
1404 res->fa_head = &li->falh;
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
1406 atomic_inc(&fi->fib_clntref);
1407 return 0;
1408 }
1409 }
1410
1411 #ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.semantic_match_miss++;
1413 #endif
1414 }
1415
1416 return 1;
1417 }
1418
1419 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1420 struct fib_result *res, int fib_flags)
1421 {
1422 struct trie *t = (struct trie *) tb->tb_data;
1423 int ret;
1424 struct rt_trie_node *n;
1425 struct tnode *pn;
1426 unsigned int pos, bits;
1427 t_key key = ntohl(flp->daddr);
1428 unsigned int chopped_off;
1429 t_key cindex = 0;
1430 unsigned int current_prefix_length = KEYLENGTH;
1431 struct tnode *cn;
1432 t_key pref_mismatch;
1433
1434 rcu_read_lock();
1435
1436 n = rcu_dereference(t->trie);
1437 if (!n)
1438 goto failed;
1439
1440 #ifdef CONFIG_IP_FIB_TRIE_STATS
1441 t->stats.gets++;
1442 #endif
1443
1444 /* Just a leaf? */
1445 if (IS_LEAF(n)) {
1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1447 goto found;
1448 }
1449
1450 pn = (struct tnode *) n;
1451 chopped_off = 0;
1452
1453 while (pn) {
1454 pos = pn->pos;
1455 bits = pn->bits;
1456
1457 if (!chopped_off)
1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459 pos, bits);
1460
1461 n = tnode_get_child_rcu(pn, cindex);
1462
1463 if (n == NULL) {
1464 #ifdef CONFIG_IP_FIB_TRIE_STATS
1465 t->stats.null_node_hit++;
1466 #endif
1467 goto backtrace;
1468 }
1469
1470 if (IS_LEAF(n)) {
1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1472 if (ret > 0)
1473 goto backtrace;
1474 goto found;
1475 }
1476
1477 cn = (struct tnode *)n;
1478
1479 /*
1480 * It's a tnode, and we can do some extra checks here if we
1481 * like, to avoid descending into a dead-end branch.
1482 * This tnode is in the parent's child array at index
1483 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484 * chopped off, so in reality the index may be just a
1485 * subprefix, padded with zero at the end.
1486 * We can also take a look at any skipped bits in this
1487 * tnode - everything up to p_pos is supposed to be ok,
1488 * and the non-chopped bits of the index (se previous
1489 * paragraph) are also guaranteed ok, but the rest is
1490 * considered unknown.
1491 *
1492 * The skipped bits are key[pos+bits..cn->pos].
1493 */
1494
1495 /* If current_prefix_length < pos+bits, we are already doing
1496 * actual prefix matching, which means everything from
1497 * pos+(bits-chopped_off) onward must be zero along some
1498 * branch of this subtree - otherwise there is *no* valid
1499 * prefix present. Here we can only check the skipped
1500 * bits. Remember, since we have already indexed into the
1501 * parent's child array, we know that the bits we chopped of
1502 * *are* zero.
1503 */
1504
1505 /* NOTA BENE: Checking only skipped bits
1506 for the new node here */
1507
1508 if (current_prefix_length < pos+bits) {
1509 if (tkey_extract_bits(cn->key, current_prefix_length,
1510 cn->pos - current_prefix_length)
1511 || !(cn->child[0]))
1512 goto backtrace;
1513 }
1514
1515 /*
1516 * If chopped_off=0, the index is fully validated and we
1517 * only need to look at the skipped bits for this, the new,
1518 * tnode. What we actually want to do is to find out if
1519 * these skipped bits match our key perfectly, or if we will
1520 * have to count on finding a matching prefix further down,
1521 * because if we do, we would like to have some way of
1522 * verifying the existence of such a prefix at this point.
1523 */
1524
1525 /* The only thing we can do at this point is to verify that
1526 * any such matching prefix can indeed be a prefix to our
1527 * key, and if the bits in the node we are inspecting that
1528 * do not match our key are not ZERO, this cannot be true.
1529 * Thus, find out where there is a mismatch (before cn->pos)
1530 * and verify that all the mismatching bits are zero in the
1531 * new tnode's key.
1532 */
1533
1534 /*
1535 * Note: We aren't very concerned about the piece of
1536 * the key that precede pn->pos+pn->bits, since these
1537 * have already been checked. The bits after cn->pos
1538 * aren't checked since these are by definition
1539 * "unknown" at this point. Thus, what we want to see
1540 * is if we are about to enter the "prefix matching"
1541 * state, and in that case verify that the skipped
1542 * bits that will prevail throughout this subtree are
1543 * zero, as they have to be if we are to find a
1544 * matching prefix.
1545 */
1546
1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1548
1549 /*
1550 * In short: If skipped bits in this node do not match
1551 * the search key, enter the "prefix matching"
1552 * state.directly.
1553 */
1554 if (pref_mismatch) {
1555 int mp = KEYLENGTH - fls(pref_mismatch);
1556
1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1558 goto backtrace;
1559
1560 if (current_prefix_length >= cn->pos)
1561 current_prefix_length = mp;
1562 }
1563
1564 pn = (struct tnode *)n; /* Descend */
1565 chopped_off = 0;
1566 continue;
1567
1568 backtrace:
1569 chopped_off++;
1570
1571 /* As zero don't change the child key (cindex) */
1572 while ((chopped_off <= pn->bits)
1573 && !(cindex & (1<<(chopped_off-1))))
1574 chopped_off++;
1575
1576 /* Decrease current_... with bits chopped off */
1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1578 current_prefix_length = pn->pos + pn->bits
1579 - chopped_off;
1580
1581 /*
1582 * Either we do the actual chop off according or if we have
1583 * chopped off all bits in this tnode walk up to our parent.
1584 */
1585
1586 if (chopped_off <= pn->bits) {
1587 cindex &= ~(1 << (chopped_off-1));
1588 } else {
1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1590 if (!parent)
1591 goto failed;
1592
1593 /* Get Child's index */
1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595 pn = parent;
1596 chopped_off = 0;
1597
1598 #ifdef CONFIG_IP_FIB_TRIE_STATS
1599 t->stats.backtrack++;
1600 #endif
1601 goto backtrace;
1602 }
1603 }
1604 failed:
1605 ret = 1;
1606 found:
1607 rcu_read_unlock();
1608 return ret;
1609 }
1610 EXPORT_SYMBOL_GPL(fib_table_lookup);
1611
1612 /*
1613 * Remove the leaf and return parent.
1614 */
1615 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1616 {
1617 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1618
1619 pr_debug("entering trie_leaf_remove(%p)\n", l);
1620
1621 if (tp) {
1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1623 put_child(t, (struct tnode *)tp, cindex, NULL);
1624 trie_rebalance(t, tp);
1625 } else
1626 RCU_INIT_POINTER(t->trie, NULL);
1627
1628 free_leaf(l);
1629 }
1630
1631 /*
1632 * Caller must hold RTNL.
1633 */
1634 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1635 {
1636 struct trie *t = (struct trie *) tb->tb_data;
1637 u32 key, mask;
1638 int plen = cfg->fc_dst_len;
1639 u8 tos = cfg->fc_tos;
1640 struct fib_alias *fa, *fa_to_delete;
1641 struct list_head *fa_head;
1642 struct leaf *l;
1643 struct leaf_info *li;
1644
1645 if (plen > 32)
1646 return -EINVAL;
1647
1648 key = ntohl(cfg->fc_dst);
1649 mask = ntohl(inet_make_mask(plen));
1650
1651 if (key & ~mask)
1652 return -EINVAL;
1653
1654 key = key & mask;
1655 l = fib_find_node(t, key);
1656
1657 if (!l)
1658 return -ESRCH;
1659
1660 fa_head = get_fa_head(l, plen);
1661 fa = fib_find_alias(fa_head, tos, 0);
1662
1663 if (!fa)
1664 return -ESRCH;
1665
1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1667
1668 fa_to_delete = NULL;
1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1670 list_for_each_entry_continue(fa, fa_head, fa_list) {
1671 struct fib_info *fi = fa->fa_info;
1672
1673 if (fa->fa_tos != tos)
1674 break;
1675
1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1677 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1678 fa->fa_info->fib_scope == cfg->fc_scope) &&
1679 (!cfg->fc_prefsrc ||
1680 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1681 (!cfg->fc_protocol ||
1682 fi->fib_protocol == cfg->fc_protocol) &&
1683 fib_nh_match(cfg, fi) == 0) {
1684 fa_to_delete = fa;
1685 break;
1686 }
1687 }
1688
1689 if (!fa_to_delete)
1690 return -ESRCH;
1691
1692 fa = fa_to_delete;
1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1694 &cfg->fc_nlinfo, 0);
1695
1696 l = fib_find_node(t, key);
1697 li = find_leaf_info(l, plen);
1698
1699 list_del_rcu(&fa->fa_list);
1700
1701 if (!plen)
1702 tb->tb_num_default--;
1703
1704 if (list_empty(fa_head)) {
1705 hlist_del_rcu(&li->hlist);
1706 free_leaf_info(li);
1707 }
1708
1709 if (hlist_empty(&l->list))
1710 trie_leaf_remove(t, l);
1711
1712 if (fa->fa_state & FA_S_ACCESSED)
1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1714
1715 fib_release_info(fa->fa_info);
1716 alias_free_mem_rcu(fa);
1717 return 0;
1718 }
1719
1720 static int trie_flush_list(struct list_head *head)
1721 {
1722 struct fib_alias *fa, *fa_node;
1723 int found = 0;
1724
1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1726 struct fib_info *fi = fa->fa_info;
1727
1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1729 list_del_rcu(&fa->fa_list);
1730 fib_release_info(fa->fa_info);
1731 alias_free_mem_rcu(fa);
1732 found++;
1733 }
1734 }
1735 return found;
1736 }
1737
1738 static int trie_flush_leaf(struct leaf *l)
1739 {
1740 int found = 0;
1741 struct hlist_head *lih = &l->list;
1742 struct hlist_node *node, *tmp;
1743 struct leaf_info *li = NULL;
1744
1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1746 found += trie_flush_list(&li->falh);
1747
1748 if (list_empty(&li->falh)) {
1749 hlist_del_rcu(&li->hlist);
1750 free_leaf_info(li);
1751 }
1752 }
1753 return found;
1754 }
1755
1756 /*
1757 * Scan for the next right leaf starting at node p->child[idx]
1758 * Since we have back pointer, no recursion necessary.
1759 */
1760 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1761 {
1762 do {
1763 t_key idx;
1764
1765 if (c)
1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1767 else
1768 idx = 0;
1769
1770 while (idx < 1u << p->bits) {
1771 c = tnode_get_child_rcu(p, idx++);
1772 if (!c)
1773 continue;
1774
1775 if (IS_LEAF(c)) {
1776 prefetch(rcu_dereference_rtnl(p->child[idx]));
1777 return (struct leaf *) c;
1778 }
1779
1780 /* Rescan start scanning in new node */
1781 p = (struct tnode *) c;
1782 idx = 0;
1783 }
1784
1785 /* Node empty, walk back up to parent */
1786 c = (struct rt_trie_node *) p;
1787 } while ((p = node_parent_rcu(c)) != NULL);
1788
1789 return NULL; /* Root of trie */
1790 }
1791
1792 static struct leaf *trie_firstleaf(struct trie *t)
1793 {
1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1795
1796 if (!n)
1797 return NULL;
1798
1799 if (IS_LEAF(n)) /* trie is just a leaf */
1800 return (struct leaf *) n;
1801
1802 return leaf_walk_rcu(n, NULL);
1803 }
1804
1805 static struct leaf *trie_nextleaf(struct leaf *l)
1806 {
1807 struct rt_trie_node *c = (struct rt_trie_node *) l;
1808 struct tnode *p = node_parent_rcu(c);
1809
1810 if (!p)
1811 return NULL; /* trie with just one leaf */
1812
1813 return leaf_walk_rcu(p, c);
1814 }
1815
1816 static struct leaf *trie_leafindex(struct trie *t, int index)
1817 {
1818 struct leaf *l = trie_firstleaf(t);
1819
1820 while (l && index-- > 0)
1821 l = trie_nextleaf(l);
1822
1823 return l;
1824 }
1825
1826
1827 /*
1828 * Caller must hold RTNL.
1829 */
1830 int fib_table_flush(struct fib_table *tb)
1831 {
1832 struct trie *t = (struct trie *) tb->tb_data;
1833 struct leaf *l, *ll = NULL;
1834 int found = 0;
1835
1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1837 found += trie_flush_leaf(l);
1838
1839 if (ll && hlist_empty(&ll->list))
1840 trie_leaf_remove(t, ll);
1841 ll = l;
1842 }
1843
1844 if (ll && hlist_empty(&ll->list))
1845 trie_leaf_remove(t, ll);
1846
1847 pr_debug("trie_flush found=%d\n", found);
1848 return found;
1849 }
1850
1851 void fib_free_table(struct fib_table *tb)
1852 {
1853 kfree(tb);
1854 }
1855
1856 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1857 struct fib_table *tb,
1858 struct sk_buff *skb, struct netlink_callback *cb)
1859 {
1860 int i, s_i;
1861 struct fib_alias *fa;
1862 __be32 xkey = htonl(key);
1863
1864 s_i = cb->args[5];
1865 i = 0;
1866
1867 /* rcu_read_lock is hold by caller */
1868
1869 list_for_each_entry_rcu(fa, fah, fa_list) {
1870 if (i < s_i) {
1871 i++;
1872 continue;
1873 }
1874
1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1876 cb->nlh->nlmsg_seq,
1877 RTM_NEWROUTE,
1878 tb->tb_id,
1879 fa->fa_type,
1880 xkey,
1881 plen,
1882 fa->fa_tos,
1883 fa->fa_info, NLM_F_MULTI) < 0) {
1884 cb->args[5] = i;
1885 return -1;
1886 }
1887 i++;
1888 }
1889 cb->args[5] = i;
1890 return skb->len;
1891 }
1892
1893 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1894 struct sk_buff *skb, struct netlink_callback *cb)
1895 {
1896 struct leaf_info *li;
1897 struct hlist_node *node;
1898 int i, s_i;
1899
1900 s_i = cb->args[4];
1901 i = 0;
1902
1903 /* rcu_read_lock is hold by caller */
1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1905 if (i < s_i) {
1906 i++;
1907 continue;
1908 }
1909
1910 if (i > s_i)
1911 cb->args[5] = 0;
1912
1913 if (list_empty(&li->falh))
1914 continue;
1915
1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1917 cb->args[4] = i;
1918 return -1;
1919 }
1920 i++;
1921 }
1922
1923 cb->args[4] = i;
1924 return skb->len;
1925 }
1926
1927 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1928 struct netlink_callback *cb)
1929 {
1930 struct leaf *l;
1931 struct trie *t = (struct trie *) tb->tb_data;
1932 t_key key = cb->args[2];
1933 int count = cb->args[3];
1934
1935 rcu_read_lock();
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
1939 if (count == 0)
1940 l = trie_firstleaf(t);
1941 else {
1942 /* Normally, continue from last key, but if that is missing
1943 * fallback to using slow rescan
1944 */
1945 l = fib_find_node(t, key);
1946 if (!l)
1947 l = trie_leafindex(t, count);
1948 }
1949
1950 while (l) {
1951 cb->args[2] = l->key;
1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1953 cb->args[3] = count;
1954 rcu_read_unlock();
1955 return -1;
1956 }
1957
1958 ++count;
1959 l = trie_nextleaf(l);
1960 memset(&cb->args[4], 0,
1961 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1962 }
1963 cb->args[3] = count;
1964 rcu_read_unlock();
1965
1966 return skb->len;
1967 }
1968
1969 void __init fib_trie_init(void)
1970 {
1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1972 sizeof(struct fib_alias),
1973 0, SLAB_PANIC, NULL);
1974
1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1976 max(sizeof(struct leaf),
1977 sizeof(struct leaf_info)),
1978 0, SLAB_PANIC, NULL);
1979 }
1980
1981
1982 struct fib_table *fib_trie_table(u32 id)
1983 {
1984 struct fib_table *tb;
1985 struct trie *t;
1986
1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1988 GFP_KERNEL);
1989 if (tb == NULL)
1990 return NULL;
1991
1992 tb->tb_id = id;
1993 tb->tb_default = -1;
1994 tb->tb_num_default = 0;
1995
1996 t = (struct trie *) tb->tb_data;
1997 memset(t, 0, sizeof(*t));
1998
1999 return tb;
2000 }
2001
2002 #ifdef CONFIG_PROC_FS
2003 /* Depth first Trie walk iterator */
2004 struct fib_trie_iter {
2005 struct seq_net_private p;
2006 struct fib_table *tb;
2007 struct tnode *tnode;
2008 unsigned int index;
2009 unsigned int depth;
2010 };
2011
2012 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2013 {
2014 struct tnode *tn = iter->tnode;
2015 unsigned int cindex = iter->index;
2016 struct tnode *p;
2017
2018 /* A single entry routing table */
2019 if (!tn)
2020 return NULL;
2021
2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2023 iter->tnode, iter->index, iter->depth);
2024 rescan:
2025 while (cindex < (1<<tn->bits)) {
2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2027
2028 if (n) {
2029 if (IS_LEAF(n)) {
2030 iter->tnode = tn;
2031 iter->index = cindex + 1;
2032 } else {
2033 /* push down one level */
2034 iter->tnode = (struct tnode *) n;
2035 iter->index = 0;
2036 ++iter->depth;
2037 }
2038 return n;
2039 }
2040
2041 ++cindex;
2042 }
2043
2044 /* Current node exhausted, pop back up */
2045 p = node_parent_rcu((struct rt_trie_node *)tn);
2046 if (p) {
2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2048 tn = p;
2049 --iter->depth;
2050 goto rescan;
2051 }
2052
2053 /* got root? */
2054 return NULL;
2055 }
2056
2057 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2058 struct trie *t)
2059 {
2060 struct rt_trie_node *n;
2061
2062 if (!t)
2063 return NULL;
2064
2065 n = rcu_dereference(t->trie);
2066 if (!n)
2067 return NULL;
2068
2069 if (IS_TNODE(n)) {
2070 iter->tnode = (struct tnode *) n;
2071 iter->index = 0;
2072 iter->depth = 1;
2073 } else {
2074 iter->tnode = NULL;
2075 iter->index = 0;
2076 iter->depth = 0;
2077 }
2078
2079 return n;
2080 }
2081
2082 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083 {
2084 struct rt_trie_node *n;
2085 struct fib_trie_iter iter;
2086
2087 memset(s, 0, sizeof(*s));
2088
2089 rcu_read_lock();
2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2091 if (IS_LEAF(n)) {
2092 struct leaf *l = (struct leaf *)n;
2093 struct leaf_info *li;
2094 struct hlist_node *tmp;
2095
2096 s->leaves++;
2097 s->totdepth += iter.depth;
2098 if (iter.depth > s->maxdepth)
2099 s->maxdepth = iter.depth;
2100
2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2102 ++s->prefixes;
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
2108 if (tn->bits < MAX_STAT_DEPTH)
2109 s->nodesizes[tn->bits]++;
2110
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
2114 }
2115 }
2116 rcu_read_unlock();
2117 }
2118
2119 /*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123 {
2124 unsigned int i, max, pointers, bytes, avdepth;
2125
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
2130
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2134
2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2136 bytes = sizeof(struct leaf) * stat->leaves;
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2139 bytes += sizeof(struct leaf_info) * stat->prefixes;
2140
2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2142 bytes += sizeof(struct tnode) * stat->tnodes;
2143
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
2146 max--;
2147
2148 pointers = 0;
2149 for (i = 1; i <= max; i++)
2150 if (stat->nodesizes[i] != 0) {
2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2156
2157 bytes += sizeof(struct rt_trie_node *) * pointers;
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2160 }
2161
2162 #ifdef CONFIG_IP_FIB_TRIE_STATS
2163 static void trie_show_usage(struct seq_file *seq,
2164 const struct trie_use_stats *stats)
2165 {
2166 seq_printf(seq, "\nCounters:\n---------\n");
2167 seq_printf(seq, "gets = %u\n", stats->gets);
2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2169 seq_printf(seq, "semantic match passed = %u\n",
2170 stats->semantic_match_passed);
2171 seq_printf(seq, "semantic match miss = %u\n",
2172 stats->semantic_match_miss);
2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2174 seq_printf(seq, "skipped node resize = %u\n\n",
2175 stats->resize_node_skipped);
2176 }
2177 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2178
2179 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2180 {
2181 if (tb->tb_id == RT_TABLE_LOCAL)
2182 seq_puts(seq, "Local:\n");
2183 else if (tb->tb_id == RT_TABLE_MAIN)
2184 seq_puts(seq, "Main:\n");
2185 else
2186 seq_printf(seq, "Id %d:\n", tb->tb_id);
2187 }
2188
2189
2190 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2191 {
2192 struct net *net = (struct net *)seq->private;
2193 unsigned int h;
2194
2195 seq_printf(seq,
2196 "Basic info: size of leaf:"
2197 " %Zd bytes, size of tnode: %Zd bytes.\n",
2198 sizeof(struct leaf), sizeof(struct tnode));
2199
2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2202 struct hlist_node *node;
2203 struct fib_table *tb;
2204
2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
2208
2209 if (!t)
2210 continue;
2211
2212 fib_table_print(seq, tb);
2213
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216 #ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq, &t->stats);
2218 #endif
2219 }
2220 }
2221
2222 return 0;
2223 }
2224
2225 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2226 {
2227 return single_open_net(inode, file, fib_triestat_seq_show);
2228 }
2229
2230 static const struct file_operations fib_triestat_fops = {
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
2235 .release = single_release_net,
2236 };
2237
2238 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2239 {
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
2242 loff_t idx = 0;
2243 unsigned int h;
2244
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 struct hlist_node *node;
2248 struct fib_table *tb;
2249
2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2251 struct rt_trie_node *n;
2252
2253 for (n = fib_trie_get_first(iter,
2254 (struct trie *) tb->tb_data);
2255 n; n = fib_trie_get_next(iter))
2256 if (pos == idx++) {
2257 iter->tb = tb;
2258 return n;
2259 }
2260 }
2261 }
2262
2263 return NULL;
2264 }
2265
2266 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2267 __acquires(RCU)
2268 {
2269 rcu_read_lock();
2270 return fib_trie_get_idx(seq, *pos);
2271 }
2272
2273 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2274 {
2275 struct fib_trie_iter *iter = seq->private;
2276 struct net *net = seq_file_net(seq);
2277 struct fib_table *tb = iter->tb;
2278 struct hlist_node *tb_node;
2279 unsigned int h;
2280 struct rt_trie_node *n;
2281
2282 ++*pos;
2283 /* next node in same table */
2284 n = fib_trie_get_next(iter);
2285 if (n)
2286 return n;
2287
2288 /* walk rest of this hash chain */
2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
2296
2297 /* new hash chain */
2298 while (++h < FIB_TABLE_HASHSZ) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302 if (n)
2303 goto found;
2304 }
2305 }
2306 return NULL;
2307
2308 found:
2309 iter->tb = tb;
2310 return n;
2311 }
2312
2313 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2314 __releases(RCU)
2315 {
2316 rcu_read_unlock();
2317 }
2318
2319 static void seq_indent(struct seq_file *seq, int n)
2320 {
2321 while (n-- > 0)
2322 seq_puts(seq, " ");
2323 }
2324
2325 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2326 {
2327 switch (s) {
2328 case RT_SCOPE_UNIVERSE: return "universe";
2329 case RT_SCOPE_SITE: return "site";
2330 case RT_SCOPE_LINK: return "link";
2331 case RT_SCOPE_HOST: return "host";
2332 case RT_SCOPE_NOWHERE: return "nowhere";
2333 default:
2334 snprintf(buf, len, "scope=%d", s);
2335 return buf;
2336 }
2337 }
2338
2339 static const char *const rtn_type_names[__RTN_MAX] = {
2340 [RTN_UNSPEC] = "UNSPEC",
2341 [RTN_UNICAST] = "UNICAST",
2342 [RTN_LOCAL] = "LOCAL",
2343 [RTN_BROADCAST] = "BROADCAST",
2344 [RTN_ANYCAST] = "ANYCAST",
2345 [RTN_MULTICAST] = "MULTICAST",
2346 [RTN_BLACKHOLE] = "BLACKHOLE",
2347 [RTN_UNREACHABLE] = "UNREACHABLE",
2348 [RTN_PROHIBIT] = "PROHIBIT",
2349 [RTN_THROW] = "THROW",
2350 [RTN_NAT] = "NAT",
2351 [RTN_XRESOLVE] = "XRESOLVE",
2352 };
2353
2354 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2355 {
2356 if (t < __RTN_MAX && rtn_type_names[t])
2357 return rtn_type_names[t];
2358 snprintf(buf, len, "type %u", t);
2359 return buf;
2360 }
2361
2362 /* Pretty print the trie */
2363 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2364 {
2365 const struct fib_trie_iter *iter = seq->private;
2366 struct rt_trie_node *n = v;
2367
2368 if (!node_parent_rcu(n))
2369 fib_table_print(seq, iter->tb);
2370
2371 if (IS_TNODE(n)) {
2372 struct tnode *tn = (struct tnode *) n;
2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2374
2375 seq_indent(seq, iter->depth-1);
2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2377 &prf, tn->pos, tn->bits, tn->full_children,
2378 tn->empty_children);
2379
2380 } else {
2381 struct leaf *l = (struct leaf *) n;
2382 struct leaf_info *li;
2383 struct hlist_node *node;
2384 __be32 val = htonl(l->key);
2385
2386 seq_indent(seq, iter->depth);
2387 seq_printf(seq, " |-- %pI4\n", &val);
2388
2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390 struct fib_alias *fa;
2391
2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393 char buf1[32], buf2[32];
2394
2395 seq_indent(seq, iter->depth+1);
2396 seq_printf(seq, " /%d %s %s", li->plen,
2397 rtn_scope(buf1, sizeof(buf1),
2398 fa->fa_info->fib_scope),
2399 rtn_type(buf2, sizeof(buf2),
2400 fa->fa_type));
2401 if (fa->fa_tos)
2402 seq_printf(seq, " tos=%d", fa->fa_tos);
2403 seq_putc(seq, '\n');
2404 }
2405 }
2406 }
2407
2408 return 0;
2409 }
2410
2411 static const struct seq_operations fib_trie_seq_ops = {
2412 .start = fib_trie_seq_start,
2413 .next = fib_trie_seq_next,
2414 .stop = fib_trie_seq_stop,
2415 .show = fib_trie_seq_show,
2416 };
2417
2418 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2419 {
2420 return seq_open_net(inode, file, &fib_trie_seq_ops,
2421 sizeof(struct fib_trie_iter));
2422 }
2423
2424 static const struct file_operations fib_trie_fops = {
2425 .owner = THIS_MODULE,
2426 .open = fib_trie_seq_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
2429 .release = seq_release_net,
2430 };
2431
2432 struct fib_route_iter {
2433 struct seq_net_private p;
2434 struct trie *main_trie;
2435 loff_t pos;
2436 t_key key;
2437 };
2438
2439 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2440 {
2441 struct leaf *l = NULL;
2442 struct trie *t = iter->main_trie;
2443
2444 /* use cache location of last found key */
2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2446 pos -= iter->pos;
2447 else {
2448 iter->pos = 0;
2449 l = trie_firstleaf(t);
2450 }
2451
2452 while (l && pos-- > 0) {
2453 iter->pos++;
2454 l = trie_nextleaf(l);
2455 }
2456
2457 if (l)
2458 iter->key = pos; /* remember it */
2459 else
2460 iter->pos = 0; /* forget it */
2461
2462 return l;
2463 }
2464
2465 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2466 __acquires(RCU)
2467 {
2468 struct fib_route_iter *iter = seq->private;
2469 struct fib_table *tb;
2470
2471 rcu_read_lock();
2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2473 if (!tb)
2474 return NULL;
2475
2476 iter->main_trie = (struct trie *) tb->tb_data;
2477 if (*pos == 0)
2478 return SEQ_START_TOKEN;
2479 else
2480 return fib_route_get_idx(iter, *pos - 1);
2481 }
2482
2483 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2484 {
2485 struct fib_route_iter *iter = seq->private;
2486 struct leaf *l = v;
2487
2488 ++*pos;
2489 if (v == SEQ_START_TOKEN) {
2490 iter->pos = 0;
2491 l = trie_firstleaf(iter->main_trie);
2492 } else {
2493 iter->pos++;
2494 l = trie_nextleaf(l);
2495 }
2496
2497 if (l)
2498 iter->key = l->key;
2499 else
2500 iter->pos = 0;
2501 return l;
2502 }
2503
2504 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2505 __releases(RCU)
2506 {
2507 rcu_read_unlock();
2508 }
2509
2510 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2511 {
2512 unsigned int flags = 0;
2513
2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2515 flags = RTF_REJECT;
2516 if (fi && fi->fib_nh->nh_gw)
2517 flags |= RTF_GATEWAY;
2518 if (mask == htonl(0xFFFFFFFF))
2519 flags |= RTF_HOST;
2520 flags |= RTF_UP;
2521 return flags;
2522 }
2523
2524 /*
2525 * This outputs /proc/net/route.
2526 * The format of the file is not supposed to be changed
2527 * and needs to be same as fib_hash output to avoid breaking
2528 * legacy utilities
2529 */
2530 static int fib_route_seq_show(struct seq_file *seq, void *v)
2531 {
2532 struct leaf *l = v;
2533 struct leaf_info *li;
2534 struct hlist_node *node;
2535
2536 if (v == SEQ_START_TOKEN) {
2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2539 "\tWindow\tIRTT");
2540 return 0;
2541 }
2542
2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2544 struct fib_alias *fa;
2545 __be32 mask, prefix;
2546
2547 mask = inet_make_mask(li->plen);
2548 prefix = htonl(l->key);
2549
2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2551 const struct fib_info *fi = fa->fa_info;
2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2553 int len;
2554
2555 if (fa->fa_type == RTN_BROADCAST
2556 || fa->fa_type == RTN_MULTICAST)
2557 continue;
2558
2559 if (fi)
2560 seq_printf(seq,
2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
2563 fi->fib_dev ? fi->fib_dev->name : "*",
2564 prefix,
2565 fi->fib_nh->nh_gw, flags, 0, 0,
2566 fi->fib_priority,
2567 mask,
2568 (fi->fib_advmss ?
2569 fi->fib_advmss + 40 : 0),
2570 fi->fib_window,
2571 fi->fib_rtt >> 3, &len);
2572 else
2573 seq_printf(seq,
2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2575 "%d\t%08X\t%d\t%u\t%u%n",
2576 prefix, 0, flags, 0, 0, 0,
2577 mask, 0, 0, 0, &len);
2578
2579 seq_printf(seq, "%*s\n", 127 - len, "");
2580 }
2581 }
2582
2583 return 0;
2584 }
2585
2586 static const struct seq_operations fib_route_seq_ops = {
2587 .start = fib_route_seq_start,
2588 .next = fib_route_seq_next,
2589 .stop = fib_route_seq_stop,
2590 .show = fib_route_seq_show,
2591 };
2592
2593 static int fib_route_seq_open(struct inode *inode, struct file *file)
2594 {
2595 return seq_open_net(inode, file, &fib_route_seq_ops,
2596 sizeof(struct fib_route_iter));
2597 }
2598
2599 static const struct file_operations fib_route_fops = {
2600 .owner = THIS_MODULE,
2601 .open = fib_route_seq_open,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
2604 .release = seq_release_net,
2605 };
2606
2607 int __net_init fib_proc_init(struct net *net)
2608 {
2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2610 goto out1;
2611
2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2613 &fib_triestat_fops))
2614 goto out2;
2615
2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2617 goto out3;
2618
2619 return 0;
2620
2621 out3:
2622 proc_net_remove(net, "fib_triestat");
2623 out2:
2624 proc_net_remove(net, "fib_trie");
2625 out1:
2626 return -ENOMEM;
2627 }
2628
2629 void __net_exit fib_proc_exit(struct net *net)
2630 {
2631 proc_net_remove(net, "fib_trie");
2632 proc_net_remove(net, "fib_triestat");
2633 proc_net_remove(net, "route");
2634 }
2635
2636 #endif /* CONFIG_PROC_FS */
This page took 0.110294 seconds and 5 git commands to generate.