hwmon: (max6650) Add support for alarms
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.408"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int prefixes;
148 unsigned int nodesizes[MAX_STAT_DEPTH];
149 };
150
151 struct trie {
152 struct node *trie;
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155 #endif
156 };
157
158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
161 static struct node *resize(struct trie *t, struct tnode *tn);
162 static struct tnode *inflate(struct trie *t, struct tnode *tn);
163 static struct tnode *halve(struct trie *t, struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183 static inline void node_set_parent(struct node *node, struct tnode *ptr)
184 {
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
187 }
188
189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190 {
191 BUG_ON(i >= 1U << tn->bits);
192
193 return tn->child[i];
194 }
195
196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197 {
198 struct node *ret = tnode_get_child(tn, i);
199
200 return rcu_dereference(ret);
201 }
202
203 static inline int tnode_child_length(const struct tnode *tn)
204 {
205 return 1 << tn->bits;
206 }
207
208 static inline t_key mask_pfx(t_key k, unsigned short l)
209 {
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211 }
212
213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214 {
215 if (offset < KEYLENGTH)
216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217 else
218 return 0;
219 }
220
221 static inline int tkey_equals(t_key a, t_key b)
222 {
223 return a == b;
224 }
225
226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227 {
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232 }
233
234 static inline int tkey_mismatch(t_key a, int offset, t_key b)
235 {
236 t_key diff = a ^ b;
237 int i = offset;
238
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
242 i++;
243 return i;
244 }
245
246 /*
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
258 correct key path.
259
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
266
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
269
270 Example:
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
284 n->bits = 4
285
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
299
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
302
303
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307 */
308
309 static inline void check_tnode(const struct tnode *tn)
310 {
311 WARN_ON(tn && tn->pos+tn->bits > 32);
312 }
313
314 static const int halve_threshold = 25;
315 static const int inflate_threshold = 50;
316 static const int halve_threshold_root = 8;
317 static const int inflate_threshold_root = 15;
318
319
320 static void __alias_free_mem(struct rcu_head *head)
321 {
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
324 }
325
326 static inline void alias_free_mem_rcu(struct fib_alias *fa)
327 {
328 call_rcu(&fa->rcu, __alias_free_mem);
329 }
330
331 static void __leaf_free_rcu(struct rcu_head *head)
332 {
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
335 }
336
337 static inline void free_leaf(struct leaf *l)
338 {
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340 }
341
342 static void __leaf_info_free_rcu(struct rcu_head *head)
343 {
344 kfree(container_of(head, struct leaf_info, rcu));
345 }
346
347 static inline void free_leaf_info(struct leaf_info *leaf)
348 {
349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
350 }
351
352 static struct tnode *tnode_alloc(size_t size)
353 {
354 if (size <= PAGE_SIZE)
355 return kzalloc(size, GFP_KERNEL);
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358 }
359
360 static void __tnode_vfree(struct work_struct *arg)
361 {
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
364 }
365
366 static void __tnode_free_rcu(struct rcu_head *head)
367 {
368 struct tnode *tn = container_of(head, struct tnode, rcu);
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
378 }
379
380 static inline void tnode_free(struct tnode *tn)
381 {
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
385 call_rcu(&tn->rcu, __tnode_free_rcu);
386 }
387
388 static struct leaf *leaf_new(void)
389 {
390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396 }
397
398 static struct leaf_info *leaf_info_new(int plen)
399 {
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406 }
407
408 static struct tnode *tnode_new(t_key key, int pos, int bits)
409 {
410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
411 struct tnode *tn = tnode_alloc(sz);
412
413 if (tn) {
414 tn->parent = T_TNODE;
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
421
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
424 return tn;
425 }
426
427 /*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
432 static inline int tnode_full(const struct tnode *tn, const struct node *n)
433 {
434 if (n == NULL || IS_LEAF(n))
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438 }
439
440 static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
442 {
443 tnode_put_child_reorg(tn, i, n, -1);
444 }
445
446 /*
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
451 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
453 {
454 struct node *chi = tn->child[i];
455 int isfull;
456
457 BUG_ON(i >= 1<<tn->bits);
458
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
464
465 /* update fullChildren */
466 if (wasfull == -1)
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
470 if (wasfull && !isfull)
471 tn->full_children--;
472 else if (!wasfull && isfull)
473 tn->full_children++;
474
475 if (n)
476 node_set_parent(n, tn);
477
478 rcu_assign_pointer(tn->child[i], n);
479 }
480
481 static struct node *resize(struct trie *t, struct tnode *tn)
482 {
483 int i;
484 int err = 0;
485 struct tnode *old_tn;
486 int inflate_threshold_use;
487 int halve_threshold_use;
488 int max_resize;
489
490 if (!tn)
491 return NULL;
492
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
504 struct node *n;
505
506 n = tn->child[i];
507 if (!n)
508 continue;
509
510 /* compress one level */
511 node_set_parent(n, NULL);
512 tnode_free(tn);
513 return n;
514 }
515 /*
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523 * Telecommunications, page 6:
524 * "A node is doubled if the ratio of non-empty children to all
525 * children in the *doubled* node is at least 'high'."
526 *
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
532 * multiply the left-hand side by 50.
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
537 * children, that is non-null tnodes with a skip value of 0.
538 * All of those will be doubled in the resulting inflated tnode, so
539 * we just count them one extra time here.
540 *
541 * A clearer way to write this would be:
542 *
543 * to_be_doubled = tn->full_children;
544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
558 *
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
562 *
563 * expand not_to_be_doubled and to_be_doubled, and shorten:
564 * 100 * (tnode_child_length(tn) - tn->empty_children +
565 * tn->full_children) >= inflate_threshold * new_child_length
566 *
567 * expand new_child_length:
568 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children) >=
570 * inflate_threshold * tnode_child_length(tn) * 2
571 *
572 * shorten again:
573 * 50 * (tn->full_children + tnode_child_length(tn) -
574 * tn->empty_children) >= inflate_threshold *
575 * tnode_child_length(tn)
576 *
577 */
578
579 check_tnode(tn);
580
581 /* Keep root node larger */
582
583 if (!tn->parent)
584 inflate_threshold_use = inflate_threshold_root;
585 else
586 inflate_threshold_use = inflate_threshold;
587
588 err = 0;
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
594
595 old_tn = tn;
596 tn = inflate(t, tn);
597
598 if (IS_ERR(tn)) {
599 tn = old_tn;
600 #ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602 #endif
603 break;
604 }
605 }
606
607 if (max_resize < 0) {
608 if (!tn->parent)
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
612 else
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
616 }
617
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
624
625
626 /* Keep root node larger */
627
628 if (!tn->parent)
629 halve_threshold_use = halve_threshold_root;
630 else
631 halve_threshold_use = halve_threshold;
632
633 err = 0;
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
636 100 * (tnode_child_length(tn) - tn->empty_children) <
637 halve_threshold_use * tnode_child_length(tn)) {
638
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 if (max_resize < 0) {
651 if (!tn->parent)
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
655 else
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
659 }
660
661 /* Only one child remains */
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
664 struct node *n;
665
666 n = tn->child[i];
667 if (!n)
668 continue;
669
670 /* compress one level */
671
672 node_set_parent(n, NULL);
673 tnode_free(tn);
674 return n;
675 }
676
677 return (struct node *) tn;
678 }
679
680 static struct tnode *inflate(struct trie *t, struct tnode *tn)
681 {
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
686 pr_debug("In inflate\n");
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
690 if (!tn)
691 return ERR_PTR(-ENOMEM);
692
693 /*
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
697 * of tnode is ignored.
698 */
699
700 for (i = 0; i < olen; i++) {
701 struct tnode *inode;
702
703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
710
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
713 if (!left)
714 goto nomem;
715
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
719 if (!right) {
720 tnode_free(left);
721 goto nomem;
722 }
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
729 for (i = 0; i < olen; i++) {
730 struct tnode *inode;
731 struct node *node = tnode_get_child(oldtnode, i);
732 struct tnode *left, *right;
733 int size, j;
734
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
742 tn->pos + tn->bits - 1) {
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
760 continue;
761 }
762
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
781
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
785
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
788
789 BUG_ON(!left);
790
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
793
794 BUG_ON(!right);
795
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
800 }
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
805 }
806 tnode_free(oldtnode);
807 return tn;
808 nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
813 for (j = 0; j < size; j++)
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
818
819 return ERR_PTR(-ENOMEM);
820 }
821 }
822
823 static struct tnode *halve(struct trie *t, struct tnode *tn)
824 {
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
830 pr_debug("In halve\n");
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
833
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
836
837 /*
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
841 * of tnode is ignored.
842 */
843
844 for (i = 0; i < olen; i += 2) {
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
847
848 /* Two nonempty children */
849 if (left && right) {
850 struct tnode *newn;
851
852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
853
854 if (!newn)
855 goto nomem;
856
857 put_child(t, tn, i/2, (struct node *)newn);
858 }
859
860 }
861
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
867
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
873 continue;
874 }
875
876 if (right == NULL) {
877 put_child(t, tn, i/2, left);
878 continue;
879 }
880
881 /* Two nonempty children */
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
887 }
888 tnode_free(oldtnode);
889 return tn;
890 nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
895 for (j = 0; j < size; j++)
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
900
901 return ERR_PTR(-ENOMEM);
902 }
903 }
904
905 /* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
907
908 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
909 {
910 struct hlist_head *head = &l->list;
911 struct hlist_node *node;
912 struct leaf_info *li;
913
914 hlist_for_each_entry_rcu(li, node, head, hlist)
915 if (li->plen == plen)
916 return li;
917
918 return NULL;
919 }
920
921 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
922 {
923 struct leaf_info *li = find_leaf_info(l, plen);
924
925 if (!li)
926 return NULL;
927
928 return &li->falh;
929 }
930
931 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932 {
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
950 }
951
952 /* rcu_read_lock needs to be hold by caller from readside */
953
954 static struct leaf *
955 fib_find_node(struct trie *t, u32 key)
956 {
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
962 n = rcu_dereference(t->trie);
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
966
967 check_tnode(tn);
968
969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970 pos = tn->pos + tn->bits;
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
975 } else
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
983 return NULL;
984 }
985
986 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987 {
988 int wasfull;
989 t_key cindex, key;
990 struct tnode *tp;
991
992 preempt_disable();
993 key = tn->key;
994
995 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
996 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
997 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
998 tn = (struct tnode *) resize(t, (struct tnode *)tn);
999
1000 tnode_put_child_reorg((struct tnode *)tp, cindex,
1001 (struct node *)tn, wasfull);
1002
1003 tp = node_parent((struct node *) tn);
1004 if (!tp)
1005 break;
1006 tn = tp;
1007 }
1008
1009 /* Handle last (top) tnode */
1010 if (IS_TNODE(tn))
1011 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1012
1013 preempt_enable();
1014 return (struct node *)tn;
1015 }
1016
1017 /* only used from updater-side */
1018
1019 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020 {
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct node *n;
1024 struct leaf *l;
1025 int missbit;
1026 struct list_head *fa_head = NULL;
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
1031 n = t->trie;
1032
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1039 *
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
1053
1054 check_tnode(tn);
1055
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn;
1058 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
1063
1064 BUG_ON(n && node_parent(n) != tn);
1065 } else
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
1072 * tp is n's (parent) ----> NULL or TNODE
1073 */
1074
1075 BUG_ON(tp && IS_LEAF(tp));
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080 l = (struct leaf *) n;
1081 li = leaf_info_new(plen);
1082
1083 if (!li)
1084 return NULL;
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
1090 l = leaf_new();
1091
1092 if (!l)
1093 return NULL;
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
1098 if (!li) {
1099 free_leaf(l);
1100 return NULL;
1101 }
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
1106 if (t->trie && n == NULL) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1108
1109 node_set_parent((struct node *)l, tp);
1110
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115 /*
1116 * Add a new tnode here
1117 * first tnode need some special handling
1118 */
1119
1120 if (tp)
1121 pos = tp->pos+tp->bits;
1122 else
1123 pos = 0;
1124
1125 if (n) {
1126 newpos = tkey_mismatch(key, pos, n->key);
1127 tn = tnode_new(n->key, newpos, 1);
1128 } else {
1129 newpos = 0;
1130 tn = tnode_new(key, newpos, 1); /* First tnode */
1131 }
1132
1133 if (!tn) {
1134 free_leaf_info(li);
1135 free_leaf(l);
1136 return NULL;
1137 }
1138
1139 node_set_parent((struct node *)tn, tp);
1140
1141 missbit = tkey_extract_bits(key, newpos, 1);
1142 put_child(t, tn, missbit, (struct node *)l);
1143 put_child(t, tn, 1-missbit, n);
1144
1145 if (tp) {
1146 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1147 put_child(t, (struct tnode *)tp, cindex,
1148 (struct node *)tn);
1149 } else {
1150 rcu_assign_pointer(t->trie, (struct node *)tn);
1151 tp = tn;
1152 }
1153 }
1154
1155 if (tp && tp->pos + tp->bits > 32)
1156 pr_warning("fib_trie"
1157 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1158 tp, tp->pos, tp->bits, key, plen);
1159
1160 /* Rebalance the trie */
1161
1162 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1163 done:
1164 return fa_head;
1165 }
1166
1167 /*
1168 * Caller must hold RTNL.
1169 */
1170 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1171 {
1172 struct trie *t = (struct trie *) tb->tb_data;
1173 struct fib_alias *fa, *new_fa;
1174 struct list_head *fa_head = NULL;
1175 struct fib_info *fi;
1176 int plen = cfg->fc_dst_len;
1177 u8 tos = cfg->fc_tos;
1178 u32 key, mask;
1179 int err;
1180 struct leaf *l;
1181
1182 if (plen > 32)
1183 return -EINVAL;
1184
1185 key = ntohl(cfg->fc_dst);
1186
1187 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1188
1189 mask = ntohl(inet_make_mask(plen));
1190
1191 if (key & ~mask)
1192 return -EINVAL;
1193
1194 key = key & mask;
1195
1196 fi = fib_create_info(cfg);
1197 if (IS_ERR(fi)) {
1198 err = PTR_ERR(fi);
1199 goto err;
1200 }
1201
1202 l = fib_find_node(t, key);
1203 fa = NULL;
1204
1205 if (l) {
1206 fa_head = get_fa_head(l, plen);
1207 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1208 }
1209
1210 /* Now fa, if non-NULL, points to the first fib alias
1211 * with the same keys [prefix,tos,priority], if such key already
1212 * exists or to the node before which we will insert new one.
1213 *
1214 * If fa is NULL, we will need to allocate a new one and
1215 * insert to the head of f.
1216 *
1217 * If f is NULL, no fib node matched the destination key
1218 * and we need to allocate a new one of those as well.
1219 */
1220
1221 if (fa && fa->fa_tos == tos &&
1222 fa->fa_info->fib_priority == fi->fib_priority) {
1223 struct fib_alias *fa_first, *fa_match;
1224
1225 err = -EEXIST;
1226 if (cfg->fc_nlflags & NLM_F_EXCL)
1227 goto out;
1228
1229 /* We have 2 goals:
1230 * 1. Find exact match for type, scope, fib_info to avoid
1231 * duplicate routes
1232 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1233 */
1234 fa_match = NULL;
1235 fa_first = fa;
1236 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1237 list_for_each_entry_continue(fa, fa_head, fa_list) {
1238 if (fa->fa_tos != tos)
1239 break;
1240 if (fa->fa_info->fib_priority != fi->fib_priority)
1241 break;
1242 if (fa->fa_type == cfg->fc_type &&
1243 fa->fa_scope == cfg->fc_scope &&
1244 fa->fa_info == fi) {
1245 fa_match = fa;
1246 break;
1247 }
1248 }
1249
1250 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1251 struct fib_info *fi_drop;
1252 u8 state;
1253
1254 fa = fa_first;
1255 if (fa_match) {
1256 if (fa == fa_match)
1257 err = 0;
1258 goto out;
1259 }
1260 err = -ENOBUFS;
1261 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1262 if (new_fa == NULL)
1263 goto out;
1264
1265 fi_drop = fa->fa_info;
1266 new_fa->fa_tos = fa->fa_tos;
1267 new_fa->fa_info = fi;
1268 new_fa->fa_type = cfg->fc_type;
1269 new_fa->fa_scope = cfg->fc_scope;
1270 state = fa->fa_state;
1271 new_fa->fa_state = state & ~FA_S_ACCESSED;
1272
1273 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1274 alias_free_mem_rcu(fa);
1275
1276 fib_release_info(fi_drop);
1277 if (state & FA_S_ACCESSED)
1278 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1279 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1280 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1281
1282 goto succeeded;
1283 }
1284 /* Error if we find a perfect match which
1285 * uses the same scope, type, and nexthop
1286 * information.
1287 */
1288 if (fa_match)
1289 goto out;
1290
1291 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1292 fa = fa_first;
1293 }
1294 err = -ENOENT;
1295 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1296 goto out;
1297
1298 err = -ENOBUFS;
1299 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300 if (new_fa == NULL)
1301 goto out;
1302
1303 new_fa->fa_info = fi;
1304 new_fa->fa_tos = tos;
1305 new_fa->fa_type = cfg->fc_type;
1306 new_fa->fa_scope = cfg->fc_scope;
1307 new_fa->fa_state = 0;
1308 /*
1309 * Insert new entry to the list.
1310 */
1311
1312 if (!fa_head) {
1313 fa_head = fib_insert_node(t, key, plen);
1314 if (unlikely(!fa_head)) {
1315 err = -ENOMEM;
1316 goto out_free_new_fa;
1317 }
1318 }
1319
1320 list_add_tail_rcu(&new_fa->fa_list,
1321 (fa ? &fa->fa_list : fa_head));
1322
1323 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1324 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1325 &cfg->fc_nlinfo, 0);
1326 succeeded:
1327 return 0;
1328
1329 out_free_new_fa:
1330 kmem_cache_free(fn_alias_kmem, new_fa);
1331 out:
1332 fib_release_info(fi);
1333 err:
1334 return err;
1335 }
1336
1337 /* should be called with rcu_read_lock */
1338 static int check_leaf(struct trie *t, struct leaf *l,
1339 t_key key, const struct flowi *flp,
1340 struct fib_result *res)
1341 {
1342 struct leaf_info *li;
1343 struct hlist_head *hhead = &l->list;
1344 struct hlist_node *node;
1345
1346 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1347 int err;
1348 int plen = li->plen;
1349 __be32 mask = inet_make_mask(plen);
1350
1351 if (l->key != (key & ntohl(mask)))
1352 continue;
1353
1354 err = fib_semantic_match(&li->falh, flp, res,
1355 htonl(l->key), mask, plen);
1356
1357 #ifdef CONFIG_IP_FIB_TRIE_STATS
1358 if (err <= 0)
1359 t->stats.semantic_match_passed++;
1360 else
1361 t->stats.semantic_match_miss++;
1362 #endif
1363 if (err <= 0)
1364 return err;
1365 }
1366
1367 return 1;
1368 }
1369
1370 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1371 struct fib_result *res)
1372 {
1373 struct trie *t = (struct trie *) tb->tb_data;
1374 int ret;
1375 struct node *n;
1376 struct tnode *pn;
1377 int pos, bits;
1378 t_key key = ntohl(flp->fl4_dst);
1379 int chopped_off;
1380 t_key cindex = 0;
1381 int current_prefix_length = KEYLENGTH;
1382 struct tnode *cn;
1383 t_key node_prefix, key_prefix, pref_mismatch;
1384 int mp;
1385
1386 rcu_read_lock();
1387
1388 n = rcu_dereference(t->trie);
1389 if (!n)
1390 goto failed;
1391
1392 #ifdef CONFIG_IP_FIB_TRIE_STATS
1393 t->stats.gets++;
1394 #endif
1395
1396 /* Just a leaf? */
1397 if (IS_LEAF(n)) {
1398 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1399 goto found;
1400 }
1401
1402 pn = (struct tnode *) n;
1403 chopped_off = 0;
1404
1405 while (pn) {
1406 pos = pn->pos;
1407 bits = pn->bits;
1408
1409 if (!chopped_off)
1410 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1411 pos, bits);
1412
1413 n = tnode_get_child(pn, cindex);
1414
1415 if (n == NULL) {
1416 #ifdef CONFIG_IP_FIB_TRIE_STATS
1417 t->stats.null_node_hit++;
1418 #endif
1419 goto backtrace;
1420 }
1421
1422 if (IS_LEAF(n)) {
1423 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1424 if (ret > 0)
1425 goto backtrace;
1426 goto found;
1427 }
1428
1429 cn = (struct tnode *)n;
1430
1431 /*
1432 * It's a tnode, and we can do some extra checks here if we
1433 * like, to avoid descending into a dead-end branch.
1434 * This tnode is in the parent's child array at index
1435 * key[p_pos..p_pos+p_bits] but potentially with some bits
1436 * chopped off, so in reality the index may be just a
1437 * subprefix, padded with zero at the end.
1438 * We can also take a look at any skipped bits in this
1439 * tnode - everything up to p_pos is supposed to be ok,
1440 * and the non-chopped bits of the index (se previous
1441 * paragraph) are also guaranteed ok, but the rest is
1442 * considered unknown.
1443 *
1444 * The skipped bits are key[pos+bits..cn->pos].
1445 */
1446
1447 /* If current_prefix_length < pos+bits, we are already doing
1448 * actual prefix matching, which means everything from
1449 * pos+(bits-chopped_off) onward must be zero along some
1450 * branch of this subtree - otherwise there is *no* valid
1451 * prefix present. Here we can only check the skipped
1452 * bits. Remember, since we have already indexed into the
1453 * parent's child array, we know that the bits we chopped of
1454 * *are* zero.
1455 */
1456
1457 /* NOTA BENE: Checking only skipped bits
1458 for the new node here */
1459
1460 if (current_prefix_length < pos+bits) {
1461 if (tkey_extract_bits(cn->key, current_prefix_length,
1462 cn->pos - current_prefix_length)
1463 || !(cn->child[0]))
1464 goto backtrace;
1465 }
1466
1467 /*
1468 * If chopped_off=0, the index is fully validated and we
1469 * only need to look at the skipped bits for this, the new,
1470 * tnode. What we actually want to do is to find out if
1471 * these skipped bits match our key perfectly, or if we will
1472 * have to count on finding a matching prefix further down,
1473 * because if we do, we would like to have some way of
1474 * verifying the existence of such a prefix at this point.
1475 */
1476
1477 /* The only thing we can do at this point is to verify that
1478 * any such matching prefix can indeed be a prefix to our
1479 * key, and if the bits in the node we are inspecting that
1480 * do not match our key are not ZERO, this cannot be true.
1481 * Thus, find out where there is a mismatch (before cn->pos)
1482 * and verify that all the mismatching bits are zero in the
1483 * new tnode's key.
1484 */
1485
1486 /*
1487 * Note: We aren't very concerned about the piece of
1488 * the key that precede pn->pos+pn->bits, since these
1489 * have already been checked. The bits after cn->pos
1490 * aren't checked since these are by definition
1491 * "unknown" at this point. Thus, what we want to see
1492 * is if we are about to enter the "prefix matching"
1493 * state, and in that case verify that the skipped
1494 * bits that will prevail throughout this subtree are
1495 * zero, as they have to be if we are to find a
1496 * matching prefix.
1497 */
1498
1499 node_prefix = mask_pfx(cn->key, cn->pos);
1500 key_prefix = mask_pfx(key, cn->pos);
1501 pref_mismatch = key_prefix^node_prefix;
1502 mp = 0;
1503
1504 /*
1505 * In short: If skipped bits in this node do not match
1506 * the search key, enter the "prefix matching"
1507 * state.directly.
1508 */
1509 if (pref_mismatch) {
1510 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1511 mp++;
1512 pref_mismatch = pref_mismatch << 1;
1513 }
1514 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1515
1516 if (key_prefix != 0)
1517 goto backtrace;
1518
1519 if (current_prefix_length >= cn->pos)
1520 current_prefix_length = mp;
1521 }
1522
1523 pn = (struct tnode *)n; /* Descend */
1524 chopped_off = 0;
1525 continue;
1526
1527 backtrace:
1528 chopped_off++;
1529
1530 /* As zero don't change the child key (cindex) */
1531 while ((chopped_off <= pn->bits)
1532 && !(cindex & (1<<(chopped_off-1))))
1533 chopped_off++;
1534
1535 /* Decrease current_... with bits chopped off */
1536 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1537 current_prefix_length = pn->pos + pn->bits
1538 - chopped_off;
1539
1540 /*
1541 * Either we do the actual chop off according or if we have
1542 * chopped off all bits in this tnode walk up to our parent.
1543 */
1544
1545 if (chopped_off <= pn->bits) {
1546 cindex &= ~(1 << (chopped_off-1));
1547 } else {
1548 struct tnode *parent = node_parent((struct node *) pn);
1549 if (!parent)
1550 goto failed;
1551
1552 /* Get Child's index */
1553 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1554 pn = parent;
1555 chopped_off = 0;
1556
1557 #ifdef CONFIG_IP_FIB_TRIE_STATS
1558 t->stats.backtrack++;
1559 #endif
1560 goto backtrace;
1561 }
1562 }
1563 failed:
1564 ret = 1;
1565 found:
1566 rcu_read_unlock();
1567 return ret;
1568 }
1569
1570 /*
1571 * Remove the leaf and return parent.
1572 */
1573 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1574 {
1575 struct tnode *tp = node_parent((struct node *) l);
1576
1577 pr_debug("entering trie_leaf_remove(%p)\n", l);
1578
1579 if (tp) {
1580 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1581 put_child(t, (struct tnode *)tp, cindex, NULL);
1582 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1583 } else
1584 rcu_assign_pointer(t->trie, NULL);
1585
1586 free_leaf(l);
1587 }
1588
1589 /*
1590 * Caller must hold RTNL.
1591 */
1592 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1593 {
1594 struct trie *t = (struct trie *) tb->tb_data;
1595 u32 key, mask;
1596 int plen = cfg->fc_dst_len;
1597 u8 tos = cfg->fc_tos;
1598 struct fib_alias *fa, *fa_to_delete;
1599 struct list_head *fa_head;
1600 struct leaf *l;
1601 struct leaf_info *li;
1602
1603 if (plen > 32)
1604 return -EINVAL;
1605
1606 key = ntohl(cfg->fc_dst);
1607 mask = ntohl(inet_make_mask(plen));
1608
1609 if (key & ~mask)
1610 return -EINVAL;
1611
1612 key = key & mask;
1613 l = fib_find_node(t, key);
1614
1615 if (!l)
1616 return -ESRCH;
1617
1618 fa_head = get_fa_head(l, plen);
1619 fa = fib_find_alias(fa_head, tos, 0);
1620
1621 if (!fa)
1622 return -ESRCH;
1623
1624 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1625
1626 fa_to_delete = NULL;
1627 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1628 list_for_each_entry_continue(fa, fa_head, fa_list) {
1629 struct fib_info *fi = fa->fa_info;
1630
1631 if (fa->fa_tos != tos)
1632 break;
1633
1634 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1635 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1636 fa->fa_scope == cfg->fc_scope) &&
1637 (!cfg->fc_protocol ||
1638 fi->fib_protocol == cfg->fc_protocol) &&
1639 fib_nh_match(cfg, fi) == 0) {
1640 fa_to_delete = fa;
1641 break;
1642 }
1643 }
1644
1645 if (!fa_to_delete)
1646 return -ESRCH;
1647
1648 fa = fa_to_delete;
1649 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1650 &cfg->fc_nlinfo, 0);
1651
1652 l = fib_find_node(t, key);
1653 li = find_leaf_info(l, plen);
1654
1655 list_del_rcu(&fa->fa_list);
1656
1657 if (list_empty(fa_head)) {
1658 hlist_del_rcu(&li->hlist);
1659 free_leaf_info(li);
1660 }
1661
1662 if (hlist_empty(&l->list))
1663 trie_leaf_remove(t, l);
1664
1665 if (fa->fa_state & FA_S_ACCESSED)
1666 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1667
1668 fib_release_info(fa->fa_info);
1669 alias_free_mem_rcu(fa);
1670 return 0;
1671 }
1672
1673 static int trie_flush_list(struct list_head *head)
1674 {
1675 struct fib_alias *fa, *fa_node;
1676 int found = 0;
1677
1678 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1679 struct fib_info *fi = fa->fa_info;
1680
1681 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1682 list_del_rcu(&fa->fa_list);
1683 fib_release_info(fa->fa_info);
1684 alias_free_mem_rcu(fa);
1685 found++;
1686 }
1687 }
1688 return found;
1689 }
1690
1691 static int trie_flush_leaf(struct leaf *l)
1692 {
1693 int found = 0;
1694 struct hlist_head *lih = &l->list;
1695 struct hlist_node *node, *tmp;
1696 struct leaf_info *li = NULL;
1697
1698 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1699 found += trie_flush_list(&li->falh);
1700
1701 if (list_empty(&li->falh)) {
1702 hlist_del_rcu(&li->hlist);
1703 free_leaf_info(li);
1704 }
1705 }
1706 return found;
1707 }
1708
1709 /*
1710 * Scan for the next right leaf starting at node p->child[idx]
1711 * Since we have back pointer, no recursion necessary.
1712 */
1713 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1714 {
1715 do {
1716 t_key idx;
1717
1718 if (c)
1719 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1720 else
1721 idx = 0;
1722
1723 while (idx < 1u << p->bits) {
1724 c = tnode_get_child_rcu(p, idx++);
1725 if (!c)
1726 continue;
1727
1728 if (IS_LEAF(c)) {
1729 prefetch(p->child[idx]);
1730 return (struct leaf *) c;
1731 }
1732
1733 /* Rescan start scanning in new node */
1734 p = (struct tnode *) c;
1735 idx = 0;
1736 }
1737
1738 /* Node empty, walk back up to parent */
1739 c = (struct node *) p;
1740 } while ( (p = node_parent_rcu(c)) != NULL);
1741
1742 return NULL; /* Root of trie */
1743 }
1744
1745 static struct leaf *trie_firstleaf(struct trie *t)
1746 {
1747 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1748
1749 if (!n)
1750 return NULL;
1751
1752 if (IS_LEAF(n)) /* trie is just a leaf */
1753 return (struct leaf *) n;
1754
1755 return leaf_walk_rcu(n, NULL);
1756 }
1757
1758 static struct leaf *trie_nextleaf(struct leaf *l)
1759 {
1760 struct node *c = (struct node *) l;
1761 struct tnode *p = node_parent(c);
1762
1763 if (!p)
1764 return NULL; /* trie with just one leaf */
1765
1766 return leaf_walk_rcu(p, c);
1767 }
1768
1769 static struct leaf *trie_leafindex(struct trie *t, int index)
1770 {
1771 struct leaf *l = trie_firstleaf(t);
1772
1773 while (l && index-- > 0)
1774 l = trie_nextleaf(l);
1775
1776 return l;
1777 }
1778
1779
1780 /*
1781 * Caller must hold RTNL.
1782 */
1783 static int fn_trie_flush(struct fib_table *tb)
1784 {
1785 struct trie *t = (struct trie *) tb->tb_data;
1786 struct leaf *l, *ll = NULL;
1787 int found = 0;
1788
1789 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1790 found += trie_flush_leaf(l);
1791
1792 if (ll && hlist_empty(&ll->list))
1793 trie_leaf_remove(t, ll);
1794 ll = l;
1795 }
1796
1797 if (ll && hlist_empty(&ll->list))
1798 trie_leaf_remove(t, ll);
1799
1800 pr_debug("trie_flush found=%d\n", found);
1801 return found;
1802 }
1803
1804 static void fn_trie_select_default(struct fib_table *tb,
1805 const struct flowi *flp,
1806 struct fib_result *res)
1807 {
1808 struct trie *t = (struct trie *) tb->tb_data;
1809 int order, last_idx;
1810 struct fib_info *fi = NULL;
1811 struct fib_info *last_resort;
1812 struct fib_alias *fa = NULL;
1813 struct list_head *fa_head;
1814 struct leaf *l;
1815
1816 last_idx = -1;
1817 last_resort = NULL;
1818 order = -1;
1819
1820 rcu_read_lock();
1821
1822 l = fib_find_node(t, 0);
1823 if (!l)
1824 goto out;
1825
1826 fa_head = get_fa_head(l, 0);
1827 if (!fa_head)
1828 goto out;
1829
1830 if (list_empty(fa_head))
1831 goto out;
1832
1833 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1834 struct fib_info *next_fi = fa->fa_info;
1835
1836 if (fa->fa_scope != res->scope ||
1837 fa->fa_type != RTN_UNICAST)
1838 continue;
1839
1840 if (next_fi->fib_priority > res->fi->fib_priority)
1841 break;
1842 if (!next_fi->fib_nh[0].nh_gw ||
1843 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1844 continue;
1845 fa->fa_state |= FA_S_ACCESSED;
1846
1847 if (fi == NULL) {
1848 if (next_fi != res->fi)
1849 break;
1850 } else if (!fib_detect_death(fi, order, &last_resort,
1851 &last_idx, tb->tb_default)) {
1852 fib_result_assign(res, fi);
1853 tb->tb_default = order;
1854 goto out;
1855 }
1856 fi = next_fi;
1857 order++;
1858 }
1859 if (order <= 0 || fi == NULL) {
1860 tb->tb_default = -1;
1861 goto out;
1862 }
1863
1864 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1865 tb->tb_default)) {
1866 fib_result_assign(res, fi);
1867 tb->tb_default = order;
1868 goto out;
1869 }
1870 if (last_idx >= 0)
1871 fib_result_assign(res, last_resort);
1872 tb->tb_default = last_idx;
1873 out:
1874 rcu_read_unlock();
1875 }
1876
1877 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1878 struct fib_table *tb,
1879 struct sk_buff *skb, struct netlink_callback *cb)
1880 {
1881 int i, s_i;
1882 struct fib_alias *fa;
1883 __be32 xkey = htonl(key);
1884
1885 s_i = cb->args[5];
1886 i = 0;
1887
1888 /* rcu_read_lock is hold by caller */
1889
1890 list_for_each_entry_rcu(fa, fah, fa_list) {
1891 if (i < s_i) {
1892 i++;
1893 continue;
1894 }
1895
1896 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1897 cb->nlh->nlmsg_seq,
1898 RTM_NEWROUTE,
1899 tb->tb_id,
1900 fa->fa_type,
1901 fa->fa_scope,
1902 xkey,
1903 plen,
1904 fa->fa_tos,
1905 fa->fa_info, NLM_F_MULTI) < 0) {
1906 cb->args[5] = i;
1907 return -1;
1908 }
1909 i++;
1910 }
1911 cb->args[5] = i;
1912 return skb->len;
1913 }
1914
1915 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1916 struct sk_buff *skb, struct netlink_callback *cb)
1917 {
1918 struct leaf_info *li;
1919 struct hlist_node *node;
1920 int i, s_i;
1921
1922 s_i = cb->args[4];
1923 i = 0;
1924
1925 /* rcu_read_lock is hold by caller */
1926 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1927 if (i < s_i) {
1928 i++;
1929 continue;
1930 }
1931
1932 if (i > s_i)
1933 cb->args[5] = 0;
1934
1935 if (list_empty(&li->falh))
1936 continue;
1937
1938 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1939 cb->args[4] = i;
1940 return -1;
1941 }
1942 i++;
1943 }
1944
1945 cb->args[4] = i;
1946 return skb->len;
1947 }
1948
1949 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1950 struct netlink_callback *cb)
1951 {
1952 struct leaf *l;
1953 struct trie *t = (struct trie *) tb->tb_data;
1954 t_key key = cb->args[2];
1955 int count = cb->args[3];
1956
1957 rcu_read_lock();
1958 /* Dump starting at last key.
1959 * Note: 0.0.0.0/0 (ie default) is first key.
1960 */
1961 if (count == 0)
1962 l = trie_firstleaf(t);
1963 else {
1964 /* Normally, continue from last key, but if that is missing
1965 * fallback to using slow rescan
1966 */
1967 l = fib_find_node(t, key);
1968 if (!l)
1969 l = trie_leafindex(t, count);
1970 }
1971
1972 while (l) {
1973 cb->args[2] = l->key;
1974 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1975 cb->args[3] = count;
1976 rcu_read_unlock();
1977 return -1;
1978 }
1979
1980 ++count;
1981 l = trie_nextleaf(l);
1982 memset(&cb->args[4], 0,
1983 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1984 }
1985 cb->args[3] = count;
1986 rcu_read_unlock();
1987
1988 return skb->len;
1989 }
1990
1991 void __init fib_hash_init(void)
1992 {
1993 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1994 sizeof(struct fib_alias),
1995 0, SLAB_PANIC, NULL);
1996
1997 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1998 max(sizeof(struct leaf),
1999 sizeof(struct leaf_info)),
2000 0, SLAB_PANIC, NULL);
2001 }
2002
2003
2004 /* Fix more generic FIB names for init later */
2005 struct fib_table *fib_hash_table(u32 id)
2006 {
2007 struct fib_table *tb;
2008 struct trie *t;
2009
2010 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2011 GFP_KERNEL);
2012 if (tb == NULL)
2013 return NULL;
2014
2015 tb->tb_id = id;
2016 tb->tb_default = -1;
2017 tb->tb_lookup = fn_trie_lookup;
2018 tb->tb_insert = fn_trie_insert;
2019 tb->tb_delete = fn_trie_delete;
2020 tb->tb_flush = fn_trie_flush;
2021 tb->tb_select_default = fn_trie_select_default;
2022 tb->tb_dump = fn_trie_dump;
2023
2024 t = (struct trie *) tb->tb_data;
2025 memset(t, 0, sizeof(*t));
2026
2027 if (id == RT_TABLE_LOCAL)
2028 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2029
2030 return tb;
2031 }
2032
2033 #ifdef CONFIG_PROC_FS
2034 /* Depth first Trie walk iterator */
2035 struct fib_trie_iter {
2036 struct seq_net_private p;
2037 struct fib_table *tb;
2038 struct tnode *tnode;
2039 unsigned index;
2040 unsigned depth;
2041 };
2042
2043 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2044 {
2045 struct tnode *tn = iter->tnode;
2046 unsigned cindex = iter->index;
2047 struct tnode *p;
2048
2049 /* A single entry routing table */
2050 if (!tn)
2051 return NULL;
2052
2053 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054 iter->tnode, iter->index, iter->depth);
2055 rescan:
2056 while (cindex < (1<<tn->bits)) {
2057 struct node *n = tnode_get_child_rcu(tn, cindex);
2058
2059 if (n) {
2060 if (IS_LEAF(n)) {
2061 iter->tnode = tn;
2062 iter->index = cindex + 1;
2063 } else {
2064 /* push down one level */
2065 iter->tnode = (struct tnode *) n;
2066 iter->index = 0;
2067 ++iter->depth;
2068 }
2069 return n;
2070 }
2071
2072 ++cindex;
2073 }
2074
2075 /* Current node exhausted, pop back up */
2076 p = node_parent_rcu((struct node *)tn);
2077 if (p) {
2078 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2079 tn = p;
2080 --iter->depth;
2081 goto rescan;
2082 }
2083
2084 /* got root? */
2085 return NULL;
2086 }
2087
2088 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2089 struct trie *t)
2090 {
2091 struct node *n;
2092
2093 if (!t)
2094 return NULL;
2095
2096 n = rcu_dereference(t->trie);
2097 if (!n)
2098 return NULL;
2099
2100 if (IS_TNODE(n)) {
2101 iter->tnode = (struct tnode *) n;
2102 iter->index = 0;
2103 iter->depth = 1;
2104 } else {
2105 iter->tnode = NULL;
2106 iter->index = 0;
2107 iter->depth = 0;
2108 }
2109
2110 return n;
2111 }
2112
2113 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114 {
2115 struct node *n;
2116 struct fib_trie_iter iter;
2117
2118 memset(s, 0, sizeof(*s));
2119
2120 rcu_read_lock();
2121 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2122 if (IS_LEAF(n)) {
2123 struct leaf *l = (struct leaf *)n;
2124 struct leaf_info *li;
2125 struct hlist_node *tmp;
2126
2127 s->leaves++;
2128 s->totdepth += iter.depth;
2129 if (iter.depth > s->maxdepth)
2130 s->maxdepth = iter.depth;
2131
2132 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133 ++s->prefixes;
2134 } else {
2135 const struct tnode *tn = (const struct tnode *) n;
2136 int i;
2137
2138 s->tnodes++;
2139 if (tn->bits < MAX_STAT_DEPTH)
2140 s->nodesizes[tn->bits]++;
2141
2142 for (i = 0; i < (1<<tn->bits); i++)
2143 if (!tn->child[i])
2144 s->nullpointers++;
2145 }
2146 }
2147 rcu_read_unlock();
2148 }
2149
2150 /*
2151 * This outputs /proc/net/fib_triestats
2152 */
2153 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2154 {
2155 unsigned i, max, pointers, bytes, avdepth;
2156
2157 if (stat->leaves)
2158 avdepth = stat->totdepth*100 / stat->leaves;
2159 else
2160 avdepth = 0;
2161
2162 seq_printf(seq, "\tAver depth: %u.%02d\n",
2163 avdepth / 100, avdepth % 100);
2164 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2165
2166 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2167 bytes = sizeof(struct leaf) * stat->leaves;
2168
2169 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2170 bytes += sizeof(struct leaf_info) * stat->prefixes;
2171
2172 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2173 bytes += sizeof(struct tnode) * stat->tnodes;
2174
2175 max = MAX_STAT_DEPTH;
2176 while (max > 0 && stat->nodesizes[max-1] == 0)
2177 max--;
2178
2179 pointers = 0;
2180 for (i = 1; i <= max; i++)
2181 if (stat->nodesizes[i] != 0) {
2182 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2183 pointers += (1<<i) * stat->nodesizes[i];
2184 }
2185 seq_putc(seq, '\n');
2186 seq_printf(seq, "\tPointers: %u\n", pointers);
2187
2188 bytes += sizeof(struct node *) * pointers;
2189 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2190 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2191 }
2192
2193 #ifdef CONFIG_IP_FIB_TRIE_STATS
2194 static void trie_show_usage(struct seq_file *seq,
2195 const struct trie_use_stats *stats)
2196 {
2197 seq_printf(seq, "\nCounters:\n---------\n");
2198 seq_printf(seq, "gets = %u\n", stats->gets);
2199 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2200 seq_printf(seq, "semantic match passed = %u\n",
2201 stats->semantic_match_passed);
2202 seq_printf(seq, "semantic match miss = %u\n",
2203 stats->semantic_match_miss);
2204 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2205 seq_printf(seq, "skipped node resize = %u\n\n",
2206 stats->resize_node_skipped);
2207 }
2208 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2209
2210 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2211 {
2212 if (tb->tb_id == RT_TABLE_LOCAL)
2213 seq_puts(seq, "Local:\n");
2214 else if (tb->tb_id == RT_TABLE_MAIN)
2215 seq_puts(seq, "Main:\n");
2216 else
2217 seq_printf(seq, "Id %d:\n", tb->tb_id);
2218 }
2219
2220
2221 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2222 {
2223 struct net *net = (struct net *)seq->private;
2224 unsigned int h;
2225
2226 seq_printf(seq,
2227 "Basic info: size of leaf:"
2228 " %Zd bytes, size of tnode: %Zd bytes.\n",
2229 sizeof(struct leaf), sizeof(struct tnode));
2230
2231 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233 struct hlist_node *node;
2234 struct fib_table *tb;
2235
2236 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2237 struct trie *t = (struct trie *) tb->tb_data;
2238 struct trie_stat stat;
2239
2240 if (!t)
2241 continue;
2242
2243 fib_table_print(seq, tb);
2244
2245 trie_collect_stats(t, &stat);
2246 trie_show_stats(seq, &stat);
2247 #ifdef CONFIG_IP_FIB_TRIE_STATS
2248 trie_show_usage(seq, &t->stats);
2249 #endif
2250 }
2251 }
2252
2253 return 0;
2254 }
2255
2256 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2257 {
2258 return single_open_net(inode, file, fib_triestat_seq_show);
2259 }
2260
2261 static const struct file_operations fib_triestat_fops = {
2262 .owner = THIS_MODULE,
2263 .open = fib_triestat_seq_open,
2264 .read = seq_read,
2265 .llseek = seq_lseek,
2266 .release = single_release_net,
2267 };
2268
2269 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2270 {
2271 struct fib_trie_iter *iter = seq->private;
2272 struct net *net = seq_file_net(seq);
2273 loff_t idx = 0;
2274 unsigned int h;
2275
2276 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2277 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2278 struct hlist_node *node;
2279 struct fib_table *tb;
2280
2281 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2282 struct node *n;
2283
2284 for (n = fib_trie_get_first(iter,
2285 (struct trie *) tb->tb_data);
2286 n; n = fib_trie_get_next(iter))
2287 if (pos == idx++) {
2288 iter->tb = tb;
2289 return n;
2290 }
2291 }
2292 }
2293
2294 return NULL;
2295 }
2296
2297 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2298 __acquires(RCU)
2299 {
2300 rcu_read_lock();
2301 return fib_trie_get_idx(seq, *pos);
2302 }
2303
2304 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2305 {
2306 struct fib_trie_iter *iter = seq->private;
2307 struct net *net = seq_file_net(seq);
2308 struct fib_table *tb = iter->tb;
2309 struct hlist_node *tb_node;
2310 unsigned int h;
2311 struct node *n;
2312
2313 ++*pos;
2314 /* next node in same table */
2315 n = fib_trie_get_next(iter);
2316 if (n)
2317 return n;
2318
2319 /* walk rest of this hash chain */
2320 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2321 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2322 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324 if (n)
2325 goto found;
2326 }
2327
2328 /* new hash chain */
2329 while (++h < FIB_TABLE_HASHSZ) {
2330 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2331 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2332 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2333 if (n)
2334 goto found;
2335 }
2336 }
2337 return NULL;
2338
2339 found:
2340 iter->tb = tb;
2341 return n;
2342 }
2343
2344 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2345 __releases(RCU)
2346 {
2347 rcu_read_unlock();
2348 }
2349
2350 static void seq_indent(struct seq_file *seq, int n)
2351 {
2352 while (n-- > 0) seq_puts(seq, " ");
2353 }
2354
2355 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2356 {
2357 switch (s) {
2358 case RT_SCOPE_UNIVERSE: return "universe";
2359 case RT_SCOPE_SITE: return "site";
2360 case RT_SCOPE_LINK: return "link";
2361 case RT_SCOPE_HOST: return "host";
2362 case RT_SCOPE_NOWHERE: return "nowhere";
2363 default:
2364 snprintf(buf, len, "scope=%d", s);
2365 return buf;
2366 }
2367 }
2368
2369 static const char *rtn_type_names[__RTN_MAX] = {
2370 [RTN_UNSPEC] = "UNSPEC",
2371 [RTN_UNICAST] = "UNICAST",
2372 [RTN_LOCAL] = "LOCAL",
2373 [RTN_BROADCAST] = "BROADCAST",
2374 [RTN_ANYCAST] = "ANYCAST",
2375 [RTN_MULTICAST] = "MULTICAST",
2376 [RTN_BLACKHOLE] = "BLACKHOLE",
2377 [RTN_UNREACHABLE] = "UNREACHABLE",
2378 [RTN_PROHIBIT] = "PROHIBIT",
2379 [RTN_THROW] = "THROW",
2380 [RTN_NAT] = "NAT",
2381 [RTN_XRESOLVE] = "XRESOLVE",
2382 };
2383
2384 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2385 {
2386 if (t < __RTN_MAX && rtn_type_names[t])
2387 return rtn_type_names[t];
2388 snprintf(buf, len, "type %u", t);
2389 return buf;
2390 }
2391
2392 /* Pretty print the trie */
2393 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2394 {
2395 const struct fib_trie_iter *iter = seq->private;
2396 struct node *n = v;
2397
2398 if (!node_parent_rcu(n))
2399 fib_table_print(seq, iter->tb);
2400
2401 if (IS_TNODE(n)) {
2402 struct tnode *tn = (struct tnode *) n;
2403 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2404
2405 seq_indent(seq, iter->depth-1);
2406 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2407 &prf, tn->pos, tn->bits, tn->full_children,
2408 tn->empty_children);
2409
2410 } else {
2411 struct leaf *l = (struct leaf *) n;
2412 struct leaf_info *li;
2413 struct hlist_node *node;
2414 __be32 val = htonl(l->key);
2415
2416 seq_indent(seq, iter->depth);
2417 seq_printf(seq, " |-- %pI4\n", &val);
2418
2419 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2420 struct fib_alias *fa;
2421
2422 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2423 char buf1[32], buf2[32];
2424
2425 seq_indent(seq, iter->depth+1);
2426 seq_printf(seq, " /%d %s %s", li->plen,
2427 rtn_scope(buf1, sizeof(buf1),
2428 fa->fa_scope),
2429 rtn_type(buf2, sizeof(buf2),
2430 fa->fa_type));
2431 if (fa->fa_tos)
2432 seq_printf(seq, " tos=%d", fa->fa_tos);
2433 seq_putc(seq, '\n');
2434 }
2435 }
2436 }
2437
2438 return 0;
2439 }
2440
2441 static const struct seq_operations fib_trie_seq_ops = {
2442 .start = fib_trie_seq_start,
2443 .next = fib_trie_seq_next,
2444 .stop = fib_trie_seq_stop,
2445 .show = fib_trie_seq_show,
2446 };
2447
2448 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2449 {
2450 return seq_open_net(inode, file, &fib_trie_seq_ops,
2451 sizeof(struct fib_trie_iter));
2452 }
2453
2454 static const struct file_operations fib_trie_fops = {
2455 .owner = THIS_MODULE,
2456 .open = fib_trie_seq_open,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
2459 .release = seq_release_net,
2460 };
2461
2462 struct fib_route_iter {
2463 struct seq_net_private p;
2464 struct trie *main_trie;
2465 loff_t pos;
2466 t_key key;
2467 };
2468
2469 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2470 {
2471 struct leaf *l = NULL;
2472 struct trie *t = iter->main_trie;
2473
2474 /* use cache location of last found key */
2475 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2476 pos -= iter->pos;
2477 else {
2478 iter->pos = 0;
2479 l = trie_firstleaf(t);
2480 }
2481
2482 while (l && pos-- > 0) {
2483 iter->pos++;
2484 l = trie_nextleaf(l);
2485 }
2486
2487 if (l)
2488 iter->key = pos; /* remember it */
2489 else
2490 iter->pos = 0; /* forget it */
2491
2492 return l;
2493 }
2494
2495 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2496 __acquires(RCU)
2497 {
2498 struct fib_route_iter *iter = seq->private;
2499 struct fib_table *tb;
2500
2501 rcu_read_lock();
2502 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2503 if (!tb)
2504 return NULL;
2505
2506 iter->main_trie = (struct trie *) tb->tb_data;
2507 if (*pos == 0)
2508 return SEQ_START_TOKEN;
2509 else
2510 return fib_route_get_idx(iter, *pos - 1);
2511 }
2512
2513 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2514 {
2515 struct fib_route_iter *iter = seq->private;
2516 struct leaf *l = v;
2517
2518 ++*pos;
2519 if (v == SEQ_START_TOKEN) {
2520 iter->pos = 0;
2521 l = trie_firstleaf(iter->main_trie);
2522 } else {
2523 iter->pos++;
2524 l = trie_nextleaf(l);
2525 }
2526
2527 if (l)
2528 iter->key = l->key;
2529 else
2530 iter->pos = 0;
2531 return l;
2532 }
2533
2534 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2536 {
2537 rcu_read_unlock();
2538 }
2539
2540 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2541 {
2542 static unsigned type2flags[RTN_MAX + 1] = {
2543 [7] = RTF_REJECT, [8] = RTF_REJECT,
2544 };
2545 unsigned flags = type2flags[type];
2546
2547 if (fi && fi->fib_nh->nh_gw)
2548 flags |= RTF_GATEWAY;
2549 if (mask == htonl(0xFFFFFFFF))
2550 flags |= RTF_HOST;
2551 flags |= RTF_UP;
2552 return flags;
2553 }
2554
2555 /*
2556 * This outputs /proc/net/route.
2557 * The format of the file is not supposed to be changed
2558 * and needs to be same as fib_hash output to avoid breaking
2559 * legacy utilities
2560 */
2561 static int fib_route_seq_show(struct seq_file *seq, void *v)
2562 {
2563 struct leaf *l = v;
2564 struct leaf_info *li;
2565 struct hlist_node *node;
2566
2567 if (v == SEQ_START_TOKEN) {
2568 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2569 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2570 "\tWindow\tIRTT");
2571 return 0;
2572 }
2573
2574 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2575 struct fib_alias *fa;
2576 __be32 mask, prefix;
2577
2578 mask = inet_make_mask(li->plen);
2579 prefix = htonl(l->key);
2580
2581 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2582 const struct fib_info *fi = fa->fa_info;
2583 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2584 int len;
2585
2586 if (fa->fa_type == RTN_BROADCAST
2587 || fa->fa_type == RTN_MULTICAST)
2588 continue;
2589
2590 if (fi)
2591 seq_printf(seq,
2592 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593 "%d\t%08X\t%d\t%u\t%u%n",
2594 fi->fib_dev ? fi->fib_dev->name : "*",
2595 prefix,
2596 fi->fib_nh->nh_gw, flags, 0, 0,
2597 fi->fib_priority,
2598 mask,
2599 (fi->fib_advmss ?
2600 fi->fib_advmss + 40 : 0),
2601 fi->fib_window,
2602 fi->fib_rtt >> 3, &len);
2603 else
2604 seq_printf(seq,
2605 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606 "%d\t%08X\t%d\t%u\t%u%n",
2607 prefix, 0, flags, 0, 0, 0,
2608 mask, 0, 0, 0, &len);
2609
2610 seq_printf(seq, "%*s\n", 127 - len, "");
2611 }
2612 }
2613
2614 return 0;
2615 }
2616
2617 static const struct seq_operations fib_route_seq_ops = {
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
2621 .show = fib_route_seq_show,
2622 };
2623
2624 static int fib_route_seq_open(struct inode *inode, struct file *file)
2625 {
2626 return seq_open_net(inode, file, &fib_route_seq_ops,
2627 sizeof(struct fib_route_iter));
2628 }
2629
2630 static const struct file_operations fib_route_fops = {
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
2635 .release = seq_release_net,
2636 };
2637
2638 int __net_init fib_proc_init(struct net *net)
2639 {
2640 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2641 goto out1;
2642
2643 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2644 &fib_triestat_fops))
2645 goto out2;
2646
2647 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2648 goto out3;
2649
2650 return 0;
2651
2652 out3:
2653 proc_net_remove(net, "fib_triestat");
2654 out2:
2655 proc_net_remove(net, "fib_trie");
2656 out1:
2657 return -ENOMEM;
2658 }
2659
2660 void __net_exit fib_proc_exit(struct net *net)
2661 {
2662 proc_net_remove(net, "fib_trie");
2663 proc_net_remove(net, "fib_triestat");
2664 proc_net_remove(net, "route");
2665 }
2666
2667 #endif /* CONFIG_PROC_FS */
This page took 0.100517 seconds and 5 git commands to generate.