Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.408"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int prefixes;
148 unsigned int nodesizes[MAX_STAT_DEPTH];
149 };
150
151 struct trie {
152 struct node *trie;
153 #ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155 #endif
156 };
157
158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
161 static struct node *resize(struct trie *t, struct tnode *tn);
162 static struct tnode *inflate(struct trie *t, struct tnode *tn);
163 static struct tnode *halve(struct trie *t, struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183 static inline void node_set_parent(struct node *node, struct tnode *ptr)
184 {
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
187 }
188
189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190 {
191 BUG_ON(i >= 1U << tn->bits);
192
193 return tn->child[i];
194 }
195
196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197 {
198 struct node *ret = tnode_get_child(tn, i);
199
200 return rcu_dereference(ret);
201 }
202
203 static inline int tnode_child_length(const struct tnode *tn)
204 {
205 return 1 << tn->bits;
206 }
207
208 static inline t_key mask_pfx(t_key k, unsigned short l)
209 {
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211 }
212
213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214 {
215 if (offset < KEYLENGTH)
216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217 else
218 return 0;
219 }
220
221 static inline int tkey_equals(t_key a, t_key b)
222 {
223 return a == b;
224 }
225
226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227 {
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232 }
233
234 static inline int tkey_mismatch(t_key a, int offset, t_key b)
235 {
236 t_key diff = a ^ b;
237 int i = offset;
238
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
242 i++;
243 return i;
244 }
245
246 /*
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
258 correct key path.
259
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
266
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
269
270 Example:
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
284 n->bits = 4
285
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
299
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
302
303
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307 */
308
309 static inline void check_tnode(const struct tnode *tn)
310 {
311 WARN_ON(tn && tn->pos+tn->bits > 32);
312 }
313
314 static const int halve_threshold = 25;
315 static const int inflate_threshold = 50;
316 static const int halve_threshold_root = 8;
317 static const int inflate_threshold_root = 15;
318
319
320 static void __alias_free_mem(struct rcu_head *head)
321 {
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
324 }
325
326 static inline void alias_free_mem_rcu(struct fib_alias *fa)
327 {
328 call_rcu(&fa->rcu, __alias_free_mem);
329 }
330
331 static void __leaf_free_rcu(struct rcu_head *head)
332 {
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
335 }
336
337 static inline void free_leaf(struct leaf *l)
338 {
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340 }
341
342 static void __leaf_info_free_rcu(struct rcu_head *head)
343 {
344 kfree(container_of(head, struct leaf_info, rcu));
345 }
346
347 static inline void free_leaf_info(struct leaf_info *leaf)
348 {
349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
350 }
351
352 static struct tnode *tnode_alloc(size_t size)
353 {
354 if (size <= PAGE_SIZE)
355 return kzalloc(size, GFP_KERNEL);
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358 }
359
360 static void __tnode_vfree(struct work_struct *arg)
361 {
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
364 }
365
366 static void __tnode_free_rcu(struct rcu_head *head)
367 {
368 struct tnode *tn = container_of(head, struct tnode, rcu);
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
378 }
379
380 static inline void tnode_free(struct tnode *tn)
381 {
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
385 call_rcu(&tn->rcu, __tnode_free_rcu);
386 }
387
388 static struct leaf *leaf_new(void)
389 {
390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396 }
397
398 static struct leaf_info *leaf_info_new(int plen)
399 {
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406 }
407
408 static struct tnode *tnode_new(t_key key, int pos, int bits)
409 {
410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
411 struct tnode *tn = tnode_alloc(sz);
412
413 if (tn) {
414 tn->parent = T_TNODE;
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
421
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
424 return tn;
425 }
426
427 /*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
432 static inline int tnode_full(const struct tnode *tn, const struct node *n)
433 {
434 if (n == NULL || IS_LEAF(n))
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438 }
439
440 static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
442 {
443 tnode_put_child_reorg(tn, i, n, -1);
444 }
445
446 /*
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
451 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
453 {
454 struct node *chi = tn->child[i];
455 int isfull;
456
457 BUG_ON(i >= 1<<tn->bits);
458
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
464
465 /* update fullChildren */
466 if (wasfull == -1)
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
470 if (wasfull && !isfull)
471 tn->full_children--;
472 else if (!wasfull && isfull)
473 tn->full_children++;
474
475 if (n)
476 node_set_parent(n, tn);
477
478 rcu_assign_pointer(tn->child[i], n);
479 }
480
481 static struct node *resize(struct trie *t, struct tnode *tn)
482 {
483 int i;
484 int err = 0;
485 struct tnode *old_tn;
486 int inflate_threshold_use;
487 int halve_threshold_use;
488 int max_resize;
489
490 if (!tn)
491 return NULL;
492
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
504 struct node *n;
505
506 n = tn->child[i];
507 if (!n)
508 continue;
509
510 /* compress one level */
511 node_set_parent(n, NULL);
512 tnode_free(tn);
513 return n;
514 }
515 /*
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
523 * Telecommunications, page 6:
524 * "A node is doubled if the ratio of non-empty children to all
525 * children in the *doubled* node is at least 'high'."
526 *
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
532 * multiply the left-hand side by 50.
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
537 * children, that is non-null tnodes with a skip value of 0.
538 * All of those will be doubled in the resulting inflated tnode, so
539 * we just count them one extra time here.
540 *
541 * A clearer way to write this would be:
542 *
543 * to_be_doubled = tn->full_children;
544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
558 *
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
562 *
563 * expand not_to_be_doubled and to_be_doubled, and shorten:
564 * 100 * (tnode_child_length(tn) - tn->empty_children +
565 * tn->full_children) >= inflate_threshold * new_child_length
566 *
567 * expand new_child_length:
568 * 100 * (tnode_child_length(tn) - tn->empty_children +
569 * tn->full_children) >=
570 * inflate_threshold * tnode_child_length(tn) * 2
571 *
572 * shorten again:
573 * 50 * (tn->full_children + tnode_child_length(tn) -
574 * tn->empty_children) >= inflate_threshold *
575 * tnode_child_length(tn)
576 *
577 */
578
579 check_tnode(tn);
580
581 /* Keep root node larger */
582
583 if (!tn->parent)
584 inflate_threshold_use = inflate_threshold_root;
585 else
586 inflate_threshold_use = inflate_threshold;
587
588 err = 0;
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
594
595 old_tn = tn;
596 tn = inflate(t, tn);
597
598 if (IS_ERR(tn)) {
599 tn = old_tn;
600 #ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602 #endif
603 break;
604 }
605 }
606
607 if (max_resize < 0) {
608 if (!tn->parent)
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
612 else
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
616 }
617
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
624
625
626 /* Keep root node larger */
627
628 if (!tn->parent)
629 halve_threshold_use = halve_threshold_root;
630 else
631 halve_threshold_use = halve_threshold;
632
633 err = 0;
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
636 100 * (tnode_child_length(tn) - tn->empty_children) <
637 halve_threshold_use * tnode_child_length(tn)) {
638
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 if (max_resize < 0) {
651 if (!tn->parent)
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
655 else
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
659 }
660
661 /* Only one child remains */
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
664 struct node *n;
665
666 n = tn->child[i];
667 if (!n)
668 continue;
669
670 /* compress one level */
671
672 node_set_parent(n, NULL);
673 tnode_free(tn);
674 return n;
675 }
676
677 return (struct node *) tn;
678 }
679
680 static struct tnode *inflate(struct trie *t, struct tnode *tn)
681 {
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
686 pr_debug("In inflate\n");
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
690 if (!tn)
691 return ERR_PTR(-ENOMEM);
692
693 /*
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
697 * of tnode is ignored.
698 */
699
700 for (i = 0; i < olen; i++) {
701 struct tnode *inode;
702
703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
710
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
713 if (!left)
714 goto nomem;
715
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
719 if (!right) {
720 tnode_free(left);
721 goto nomem;
722 }
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
729 for (i = 0; i < olen; i++) {
730 struct tnode *inode;
731 struct node *node = tnode_get_child(oldtnode, i);
732 struct tnode *left, *right;
733 int size, j;
734
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
742 tn->pos + tn->bits - 1) {
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
760 continue;
761 }
762
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
781
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
785
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
788
789 BUG_ON(!left);
790
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
793
794 BUG_ON(!right);
795
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
800 }
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
805 }
806 tnode_free(oldtnode);
807 return tn;
808 nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
813 for (j = 0; j < size; j++)
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
818
819 return ERR_PTR(-ENOMEM);
820 }
821 }
822
823 static struct tnode *halve(struct trie *t, struct tnode *tn)
824 {
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
830 pr_debug("In halve\n");
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
833
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
836
837 /*
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
841 * of tnode is ignored.
842 */
843
844 for (i = 0; i < olen; i += 2) {
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
847
848 /* Two nonempty children */
849 if (left && right) {
850 struct tnode *newn;
851
852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
853
854 if (!newn)
855 goto nomem;
856
857 put_child(t, tn, i/2, (struct node *)newn);
858 }
859
860 }
861
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
867
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
873 continue;
874 }
875
876 if (right == NULL) {
877 put_child(t, tn, i/2, left);
878 continue;
879 }
880
881 /* Two nonempty children */
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
887 }
888 tnode_free(oldtnode);
889 return tn;
890 nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
895 for (j = 0; j < size; j++)
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
900
901 return ERR_PTR(-ENOMEM);
902 }
903 }
904
905 /* readside must use rcu_read_lock currently dump routines
906 via get_fa_head and dump */
907
908 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
909 {
910 struct hlist_head *head = &l->list;
911 struct hlist_node *node;
912 struct leaf_info *li;
913
914 hlist_for_each_entry_rcu(li, node, head, hlist)
915 if (li->plen == plen)
916 return li;
917
918 return NULL;
919 }
920
921 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
922 {
923 struct leaf_info *li = find_leaf_info(l, plen);
924
925 if (!li)
926 return NULL;
927
928 return &li->falh;
929 }
930
931 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932 {
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
950 }
951
952 /* rcu_read_lock needs to be hold by caller from readside */
953
954 static struct leaf *
955 fib_find_node(struct trie *t, u32 key)
956 {
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
962 n = rcu_dereference(t->trie);
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
966
967 check_tnode(tn);
968
969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
970 pos = tn->pos + tn->bits;
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
975 } else
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
983 return NULL;
984 }
985
986 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987 {
988 int wasfull;
989 t_key cindex, key = tn->key;
990 struct tnode *tp;
991
992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
993 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
995 tn = (struct tnode *) resize(t, (struct tnode *)tn);
996
997 tnode_put_child_reorg((struct tnode *)tp, cindex,
998 (struct node *)tn, wasfull);
999
1000 tp = node_parent((struct node *) tn);
1001 if (!tp)
1002 break;
1003 tn = tp;
1004 }
1005
1006 /* Handle last (top) tnode */
1007 if (IS_TNODE(tn))
1008 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1009
1010 return (struct node *)tn;
1011 }
1012
1013 /* only used from updater-side */
1014
1015 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1016 {
1017 int pos, newpos;
1018 struct tnode *tp = NULL, *tn = NULL;
1019 struct node *n;
1020 struct leaf *l;
1021 int missbit;
1022 struct list_head *fa_head = NULL;
1023 struct leaf_info *li;
1024 t_key cindex;
1025
1026 pos = 0;
1027 n = t->trie;
1028
1029 /* If we point to NULL, stop. Either the tree is empty and we should
1030 * just put a new leaf in if, or we have reached an empty child slot,
1031 * and we should just put our new leaf in that.
1032 * If we point to a T_TNODE, check if it matches our key. Note that
1033 * a T_TNODE might be skipping any number of bits - its 'pos' need
1034 * not be the parent's 'pos'+'bits'!
1035 *
1036 * If it does match the current key, get pos/bits from it, extract
1037 * the index from our key, push the T_TNODE and walk the tree.
1038 *
1039 * If it doesn't, we have to replace it with a new T_TNODE.
1040 *
1041 * If we point to a T_LEAF, it might or might not have the same key
1042 * as we do. If it does, just change the value, update the T_LEAF's
1043 * value, and return it.
1044 * If it doesn't, we need to replace it with a T_TNODE.
1045 */
1046
1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1048 tn = (struct tnode *) n;
1049
1050 check_tnode(tn);
1051
1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1053 tp = tn;
1054 pos = tn->pos + tn->bits;
1055 n = tnode_get_child(tn,
1056 tkey_extract_bits(key,
1057 tn->pos,
1058 tn->bits));
1059
1060 BUG_ON(n && node_parent(n) != tn);
1061 } else
1062 break;
1063 }
1064
1065 /*
1066 * n ----> NULL, LEAF or TNODE
1067 *
1068 * tp is n's (parent) ----> NULL or TNODE
1069 */
1070
1071 BUG_ON(tp && IS_LEAF(tp));
1072
1073 /* Case 1: n is a leaf. Compare prefixes */
1074
1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1076 l = (struct leaf *) n;
1077 li = leaf_info_new(plen);
1078
1079 if (!li)
1080 return NULL;
1081
1082 fa_head = &li->falh;
1083 insert_leaf_info(&l->list, li);
1084 goto done;
1085 }
1086 l = leaf_new();
1087
1088 if (!l)
1089 return NULL;
1090
1091 l->key = key;
1092 li = leaf_info_new(plen);
1093
1094 if (!li) {
1095 free_leaf(l);
1096 return NULL;
1097 }
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101
1102 if (t->trie && n == NULL) {
1103 /* Case 2: n is NULL, and will just insert a new leaf */
1104
1105 node_set_parent((struct node *)l, tp);
1106
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1109 } else {
1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1111 /*
1112 * Add a new tnode here
1113 * first tnode need some special handling
1114 */
1115
1116 if (tp)
1117 pos = tp->pos+tp->bits;
1118 else
1119 pos = 0;
1120
1121 if (n) {
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
1124 } else {
1125 newpos = 0;
1126 tn = tnode_new(key, newpos, 1); /* First tnode */
1127 }
1128
1129 if (!tn) {
1130 free_leaf_info(li);
1131 free_leaf(l);
1132 return NULL;
1133 }
1134
1135 node_set_parent((struct node *)tn, tp);
1136
1137 missbit = tkey_extract_bits(key, newpos, 1);
1138 put_child(t, tn, missbit, (struct node *)l);
1139 put_child(t, tn, 1-missbit, n);
1140
1141 if (tp) {
1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1143 put_child(t, (struct tnode *)tp, cindex,
1144 (struct node *)tn);
1145 } else {
1146 rcu_assign_pointer(t->trie, (struct node *)tn);
1147 tp = tn;
1148 }
1149 }
1150
1151 if (tp && tp->pos + tp->bits > 32)
1152 pr_warning("fib_trie"
1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1154 tp, tp->pos, tp->bits, key, plen);
1155
1156 /* Rebalance the trie */
1157
1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1159 done:
1160 return fa_head;
1161 }
1162
1163 /*
1164 * Caller must hold RTNL.
1165 */
1166 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1167 {
1168 struct trie *t = (struct trie *) tb->tb_data;
1169 struct fib_alias *fa, *new_fa;
1170 struct list_head *fa_head = NULL;
1171 struct fib_info *fi;
1172 int plen = cfg->fc_dst_len;
1173 u8 tos = cfg->fc_tos;
1174 u32 key, mask;
1175 int err;
1176 struct leaf *l;
1177
1178 if (plen > 32)
1179 return -EINVAL;
1180
1181 key = ntohl(cfg->fc_dst);
1182
1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1184
1185 mask = ntohl(inet_make_mask(plen));
1186
1187 if (key & ~mask)
1188 return -EINVAL;
1189
1190 key = key & mask;
1191
1192 fi = fib_create_info(cfg);
1193 if (IS_ERR(fi)) {
1194 err = PTR_ERR(fi);
1195 goto err;
1196 }
1197
1198 l = fib_find_node(t, key);
1199 fa = NULL;
1200
1201 if (l) {
1202 fa_head = get_fa_head(l, plen);
1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1204 }
1205
1206 /* Now fa, if non-NULL, points to the first fib alias
1207 * with the same keys [prefix,tos,priority], if such key already
1208 * exists or to the node before which we will insert new one.
1209 *
1210 * If fa is NULL, we will need to allocate a new one and
1211 * insert to the head of f.
1212 *
1213 * If f is NULL, no fib node matched the destination key
1214 * and we need to allocate a new one of those as well.
1215 */
1216
1217 if (fa && fa->fa_tos == tos &&
1218 fa->fa_info->fib_priority == fi->fib_priority) {
1219 struct fib_alias *fa_first, *fa_match;
1220
1221 err = -EEXIST;
1222 if (cfg->fc_nlflags & NLM_F_EXCL)
1223 goto out;
1224
1225 /* We have 2 goals:
1226 * 1. Find exact match for type, scope, fib_info to avoid
1227 * duplicate routes
1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1229 */
1230 fa_match = NULL;
1231 fa_first = fa;
1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1233 list_for_each_entry_continue(fa, fa_head, fa_list) {
1234 if (fa->fa_tos != tos)
1235 break;
1236 if (fa->fa_info->fib_priority != fi->fib_priority)
1237 break;
1238 if (fa->fa_type == cfg->fc_type &&
1239 fa->fa_scope == cfg->fc_scope &&
1240 fa->fa_info == fi) {
1241 fa_match = fa;
1242 break;
1243 }
1244 }
1245
1246 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1247 struct fib_info *fi_drop;
1248 u8 state;
1249
1250 fa = fa_first;
1251 if (fa_match) {
1252 if (fa == fa_match)
1253 err = 0;
1254 goto out;
1255 }
1256 err = -ENOBUFS;
1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1258 if (new_fa == NULL)
1259 goto out;
1260
1261 fi_drop = fa->fa_info;
1262 new_fa->fa_tos = fa->fa_tos;
1263 new_fa->fa_info = fi;
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
1266 state = fa->fa_state;
1267 new_fa->fa_state = state & ~FA_S_ACCESSED;
1268
1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1270 alias_free_mem_rcu(fa);
1271
1272 fib_release_info(fi_drop);
1273 if (state & FA_S_ACCESSED)
1274 rt_cache_flush(-1);
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1277
1278 goto succeeded;
1279 }
1280 /* Error if we find a perfect match which
1281 * uses the same scope, type, and nexthop
1282 * information.
1283 */
1284 if (fa_match)
1285 goto out;
1286
1287 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1288 fa = fa_first;
1289 }
1290 err = -ENOENT;
1291 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1292 goto out;
1293
1294 err = -ENOBUFS;
1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1296 if (new_fa == NULL)
1297 goto out;
1298
1299 new_fa->fa_info = fi;
1300 new_fa->fa_tos = tos;
1301 new_fa->fa_type = cfg->fc_type;
1302 new_fa->fa_scope = cfg->fc_scope;
1303 new_fa->fa_state = 0;
1304 /*
1305 * Insert new entry to the list.
1306 */
1307
1308 if (!fa_head) {
1309 fa_head = fib_insert_node(t, key, plen);
1310 if (unlikely(!fa_head)) {
1311 err = -ENOMEM;
1312 goto out_free_new_fa;
1313 }
1314 }
1315
1316 list_add_tail_rcu(&new_fa->fa_list,
1317 (fa ? &fa->fa_list : fa_head));
1318
1319 rt_cache_flush(-1);
1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1321 &cfg->fc_nlinfo, 0);
1322 succeeded:
1323 return 0;
1324
1325 out_free_new_fa:
1326 kmem_cache_free(fn_alias_kmem, new_fa);
1327 out:
1328 fib_release_info(fi);
1329 err:
1330 return err;
1331 }
1332
1333 /* should be called with rcu_read_lock */
1334 static int check_leaf(struct trie *t, struct leaf *l,
1335 t_key key, const struct flowi *flp,
1336 struct fib_result *res)
1337 {
1338 struct leaf_info *li;
1339 struct hlist_head *hhead = &l->list;
1340 struct hlist_node *node;
1341
1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1343 int err;
1344 int plen = li->plen;
1345 __be32 mask = inet_make_mask(plen);
1346
1347 if (l->key != (key & ntohl(mask)))
1348 continue;
1349
1350 err = fib_semantic_match(&li->falh, flp, res,
1351 htonl(l->key), mask, plen);
1352
1353 #ifdef CONFIG_IP_FIB_TRIE_STATS
1354 if (err <= 0)
1355 t->stats.semantic_match_passed++;
1356 else
1357 t->stats.semantic_match_miss++;
1358 #endif
1359 if (err <= 0)
1360 return plen;
1361 }
1362
1363 return -1;
1364 }
1365
1366 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1367 struct fib_result *res)
1368 {
1369 struct trie *t = (struct trie *) tb->tb_data;
1370 int plen, ret = 0;
1371 struct node *n;
1372 struct tnode *pn;
1373 int pos, bits;
1374 t_key key = ntohl(flp->fl4_dst);
1375 int chopped_off;
1376 t_key cindex = 0;
1377 int current_prefix_length = KEYLENGTH;
1378 struct tnode *cn;
1379 t_key node_prefix, key_prefix, pref_mismatch;
1380 int mp;
1381
1382 rcu_read_lock();
1383
1384 n = rcu_dereference(t->trie);
1385 if (!n)
1386 goto failed;
1387
1388 #ifdef CONFIG_IP_FIB_TRIE_STATS
1389 t->stats.gets++;
1390 #endif
1391
1392 /* Just a leaf? */
1393 if (IS_LEAF(n)) {
1394 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1395 if (plen < 0)
1396 goto failed;
1397 ret = 0;
1398 goto found;
1399 }
1400
1401 pn = (struct tnode *) n;
1402 chopped_off = 0;
1403
1404 while (pn) {
1405 pos = pn->pos;
1406 bits = pn->bits;
1407
1408 if (!chopped_off)
1409 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1410 pos, bits);
1411
1412 n = tnode_get_child(pn, cindex);
1413
1414 if (n == NULL) {
1415 #ifdef CONFIG_IP_FIB_TRIE_STATS
1416 t->stats.null_node_hit++;
1417 #endif
1418 goto backtrace;
1419 }
1420
1421 if (IS_LEAF(n)) {
1422 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1423 if (plen < 0)
1424 goto backtrace;
1425
1426 ret = 0;
1427 goto found;
1428 }
1429
1430 cn = (struct tnode *)n;
1431
1432 /*
1433 * It's a tnode, and we can do some extra checks here if we
1434 * like, to avoid descending into a dead-end branch.
1435 * This tnode is in the parent's child array at index
1436 * key[p_pos..p_pos+p_bits] but potentially with some bits
1437 * chopped off, so in reality the index may be just a
1438 * subprefix, padded with zero at the end.
1439 * We can also take a look at any skipped bits in this
1440 * tnode - everything up to p_pos is supposed to be ok,
1441 * and the non-chopped bits of the index (se previous
1442 * paragraph) are also guaranteed ok, but the rest is
1443 * considered unknown.
1444 *
1445 * The skipped bits are key[pos+bits..cn->pos].
1446 */
1447
1448 /* If current_prefix_length < pos+bits, we are already doing
1449 * actual prefix matching, which means everything from
1450 * pos+(bits-chopped_off) onward must be zero along some
1451 * branch of this subtree - otherwise there is *no* valid
1452 * prefix present. Here we can only check the skipped
1453 * bits. Remember, since we have already indexed into the
1454 * parent's child array, we know that the bits we chopped of
1455 * *are* zero.
1456 */
1457
1458 /* NOTA BENE: Checking only skipped bits
1459 for the new node here */
1460
1461 if (current_prefix_length < pos+bits) {
1462 if (tkey_extract_bits(cn->key, current_prefix_length,
1463 cn->pos - current_prefix_length)
1464 || !(cn->child[0]))
1465 goto backtrace;
1466 }
1467
1468 /*
1469 * If chopped_off=0, the index is fully validated and we
1470 * only need to look at the skipped bits for this, the new,
1471 * tnode. What we actually want to do is to find out if
1472 * these skipped bits match our key perfectly, or if we will
1473 * have to count on finding a matching prefix further down,
1474 * because if we do, we would like to have some way of
1475 * verifying the existence of such a prefix at this point.
1476 */
1477
1478 /* The only thing we can do at this point is to verify that
1479 * any such matching prefix can indeed be a prefix to our
1480 * key, and if the bits in the node we are inspecting that
1481 * do not match our key are not ZERO, this cannot be true.
1482 * Thus, find out where there is a mismatch (before cn->pos)
1483 * and verify that all the mismatching bits are zero in the
1484 * new tnode's key.
1485 */
1486
1487 /*
1488 * Note: We aren't very concerned about the piece of
1489 * the key that precede pn->pos+pn->bits, since these
1490 * have already been checked. The bits after cn->pos
1491 * aren't checked since these are by definition
1492 * "unknown" at this point. Thus, what we want to see
1493 * is if we are about to enter the "prefix matching"
1494 * state, and in that case verify that the skipped
1495 * bits that will prevail throughout this subtree are
1496 * zero, as they have to be if we are to find a
1497 * matching prefix.
1498 */
1499
1500 node_prefix = mask_pfx(cn->key, cn->pos);
1501 key_prefix = mask_pfx(key, cn->pos);
1502 pref_mismatch = key_prefix^node_prefix;
1503 mp = 0;
1504
1505 /*
1506 * In short: If skipped bits in this node do not match
1507 * the search key, enter the "prefix matching"
1508 * state.directly.
1509 */
1510 if (pref_mismatch) {
1511 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1512 mp++;
1513 pref_mismatch = pref_mismatch << 1;
1514 }
1515 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1516
1517 if (key_prefix != 0)
1518 goto backtrace;
1519
1520 if (current_prefix_length >= cn->pos)
1521 current_prefix_length = mp;
1522 }
1523
1524 pn = (struct tnode *)n; /* Descend */
1525 chopped_off = 0;
1526 continue;
1527
1528 backtrace:
1529 chopped_off++;
1530
1531 /* As zero don't change the child key (cindex) */
1532 while ((chopped_off <= pn->bits)
1533 && !(cindex & (1<<(chopped_off-1))))
1534 chopped_off++;
1535
1536 /* Decrease current_... with bits chopped off */
1537 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1538 current_prefix_length = pn->pos + pn->bits
1539 - chopped_off;
1540
1541 /*
1542 * Either we do the actual chop off according or if we have
1543 * chopped off all bits in this tnode walk up to our parent.
1544 */
1545
1546 if (chopped_off <= pn->bits) {
1547 cindex &= ~(1 << (chopped_off-1));
1548 } else {
1549 struct tnode *parent = node_parent((struct node *) pn);
1550 if (!parent)
1551 goto failed;
1552
1553 /* Get Child's index */
1554 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1555 pn = parent;
1556 chopped_off = 0;
1557
1558 #ifdef CONFIG_IP_FIB_TRIE_STATS
1559 t->stats.backtrack++;
1560 #endif
1561 goto backtrace;
1562 }
1563 }
1564 failed:
1565 ret = 1;
1566 found:
1567 rcu_read_unlock();
1568 return ret;
1569 }
1570
1571 /*
1572 * Remove the leaf and return parent.
1573 */
1574 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1575 {
1576 struct tnode *tp = node_parent((struct node *) l);
1577
1578 pr_debug("entering trie_leaf_remove(%p)\n", l);
1579
1580 if (tp) {
1581 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1582 put_child(t, (struct tnode *)tp, cindex, NULL);
1583 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1584 } else
1585 rcu_assign_pointer(t->trie, NULL);
1586
1587 free_leaf(l);
1588 }
1589
1590 /*
1591 * Caller must hold RTNL.
1592 */
1593 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1594 {
1595 struct trie *t = (struct trie *) tb->tb_data;
1596 u32 key, mask;
1597 int plen = cfg->fc_dst_len;
1598 u8 tos = cfg->fc_tos;
1599 struct fib_alias *fa, *fa_to_delete;
1600 struct list_head *fa_head;
1601 struct leaf *l;
1602 struct leaf_info *li;
1603
1604 if (plen > 32)
1605 return -EINVAL;
1606
1607 key = ntohl(cfg->fc_dst);
1608 mask = ntohl(inet_make_mask(plen));
1609
1610 if (key & ~mask)
1611 return -EINVAL;
1612
1613 key = key & mask;
1614 l = fib_find_node(t, key);
1615
1616 if (!l)
1617 return -ESRCH;
1618
1619 fa_head = get_fa_head(l, plen);
1620 fa = fib_find_alias(fa_head, tos, 0);
1621
1622 if (!fa)
1623 return -ESRCH;
1624
1625 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1626
1627 fa_to_delete = NULL;
1628 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1629 list_for_each_entry_continue(fa, fa_head, fa_list) {
1630 struct fib_info *fi = fa->fa_info;
1631
1632 if (fa->fa_tos != tos)
1633 break;
1634
1635 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1636 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1637 fa->fa_scope == cfg->fc_scope) &&
1638 (!cfg->fc_protocol ||
1639 fi->fib_protocol == cfg->fc_protocol) &&
1640 fib_nh_match(cfg, fi) == 0) {
1641 fa_to_delete = fa;
1642 break;
1643 }
1644 }
1645
1646 if (!fa_to_delete)
1647 return -ESRCH;
1648
1649 fa = fa_to_delete;
1650 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1651 &cfg->fc_nlinfo, 0);
1652
1653 l = fib_find_node(t, key);
1654 li = find_leaf_info(l, plen);
1655
1656 list_del_rcu(&fa->fa_list);
1657
1658 if (list_empty(fa_head)) {
1659 hlist_del_rcu(&li->hlist);
1660 free_leaf_info(li);
1661 }
1662
1663 if (hlist_empty(&l->list))
1664 trie_leaf_remove(t, l);
1665
1666 if (fa->fa_state & FA_S_ACCESSED)
1667 rt_cache_flush(-1);
1668
1669 fib_release_info(fa->fa_info);
1670 alias_free_mem_rcu(fa);
1671 return 0;
1672 }
1673
1674 static int trie_flush_list(struct list_head *head)
1675 {
1676 struct fib_alias *fa, *fa_node;
1677 int found = 0;
1678
1679 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1680 struct fib_info *fi = fa->fa_info;
1681
1682 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1683 list_del_rcu(&fa->fa_list);
1684 fib_release_info(fa->fa_info);
1685 alias_free_mem_rcu(fa);
1686 found++;
1687 }
1688 }
1689 return found;
1690 }
1691
1692 static int trie_flush_leaf(struct leaf *l)
1693 {
1694 int found = 0;
1695 struct hlist_head *lih = &l->list;
1696 struct hlist_node *node, *tmp;
1697 struct leaf_info *li = NULL;
1698
1699 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1700 found += trie_flush_list(&li->falh);
1701
1702 if (list_empty(&li->falh)) {
1703 hlist_del_rcu(&li->hlist);
1704 free_leaf_info(li);
1705 }
1706 }
1707 return found;
1708 }
1709
1710 /*
1711 * Scan for the next right leaf starting at node p->child[idx]
1712 * Since we have back pointer, no recursion necessary.
1713 */
1714 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1715 {
1716 do {
1717 t_key idx;
1718
1719 if (c)
1720 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1721 else
1722 idx = 0;
1723
1724 while (idx < 1u << p->bits) {
1725 c = tnode_get_child_rcu(p, idx++);
1726 if (!c)
1727 continue;
1728
1729 if (IS_LEAF(c)) {
1730 prefetch(p->child[idx]);
1731 return (struct leaf *) c;
1732 }
1733
1734 /* Rescan start scanning in new node */
1735 p = (struct tnode *) c;
1736 idx = 0;
1737 }
1738
1739 /* Node empty, walk back up to parent */
1740 c = (struct node *) p;
1741 } while ( (p = node_parent_rcu(c)) != NULL);
1742
1743 return NULL; /* Root of trie */
1744 }
1745
1746 static struct leaf *trie_firstleaf(struct trie *t)
1747 {
1748 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1749
1750 if (!n)
1751 return NULL;
1752
1753 if (IS_LEAF(n)) /* trie is just a leaf */
1754 return (struct leaf *) n;
1755
1756 return leaf_walk_rcu(n, NULL);
1757 }
1758
1759 static struct leaf *trie_nextleaf(struct leaf *l)
1760 {
1761 struct node *c = (struct node *) l;
1762 struct tnode *p = node_parent(c);
1763
1764 if (!p)
1765 return NULL; /* trie with just one leaf */
1766
1767 return leaf_walk_rcu(p, c);
1768 }
1769
1770 static struct leaf *trie_leafindex(struct trie *t, int index)
1771 {
1772 struct leaf *l = trie_firstleaf(t);
1773
1774 while (l && index-- > 0)
1775 l = trie_nextleaf(l);
1776
1777 return l;
1778 }
1779
1780
1781 /*
1782 * Caller must hold RTNL.
1783 */
1784 static int fn_trie_flush(struct fib_table *tb)
1785 {
1786 struct trie *t = (struct trie *) tb->tb_data;
1787 struct leaf *l, *ll = NULL;
1788 int found = 0;
1789
1790 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1791 found += trie_flush_leaf(l);
1792
1793 if (ll && hlist_empty(&ll->list))
1794 trie_leaf_remove(t, ll);
1795 ll = l;
1796 }
1797
1798 if (ll && hlist_empty(&ll->list))
1799 trie_leaf_remove(t, ll);
1800
1801 pr_debug("trie_flush found=%d\n", found);
1802 return found;
1803 }
1804
1805 static void fn_trie_select_default(struct fib_table *tb,
1806 const struct flowi *flp,
1807 struct fib_result *res)
1808 {
1809 struct trie *t = (struct trie *) tb->tb_data;
1810 int order, last_idx;
1811 struct fib_info *fi = NULL;
1812 struct fib_info *last_resort;
1813 struct fib_alias *fa = NULL;
1814 struct list_head *fa_head;
1815 struct leaf *l;
1816
1817 last_idx = -1;
1818 last_resort = NULL;
1819 order = -1;
1820
1821 rcu_read_lock();
1822
1823 l = fib_find_node(t, 0);
1824 if (!l)
1825 goto out;
1826
1827 fa_head = get_fa_head(l, 0);
1828 if (!fa_head)
1829 goto out;
1830
1831 if (list_empty(fa_head))
1832 goto out;
1833
1834 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1835 struct fib_info *next_fi = fa->fa_info;
1836
1837 if (fa->fa_scope != res->scope ||
1838 fa->fa_type != RTN_UNICAST)
1839 continue;
1840
1841 if (next_fi->fib_priority > res->fi->fib_priority)
1842 break;
1843 if (!next_fi->fib_nh[0].nh_gw ||
1844 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1845 continue;
1846 fa->fa_state |= FA_S_ACCESSED;
1847
1848 if (fi == NULL) {
1849 if (next_fi != res->fi)
1850 break;
1851 } else if (!fib_detect_death(fi, order, &last_resort,
1852 &last_idx, tb->tb_default)) {
1853 fib_result_assign(res, fi);
1854 tb->tb_default = order;
1855 goto out;
1856 }
1857 fi = next_fi;
1858 order++;
1859 }
1860 if (order <= 0 || fi == NULL) {
1861 tb->tb_default = -1;
1862 goto out;
1863 }
1864
1865 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1866 tb->tb_default)) {
1867 fib_result_assign(res, fi);
1868 tb->tb_default = order;
1869 goto out;
1870 }
1871 if (last_idx >= 0)
1872 fib_result_assign(res, last_resort);
1873 tb->tb_default = last_idx;
1874 out:
1875 rcu_read_unlock();
1876 }
1877
1878 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1879 struct fib_table *tb,
1880 struct sk_buff *skb, struct netlink_callback *cb)
1881 {
1882 int i, s_i;
1883 struct fib_alias *fa;
1884 __be32 xkey = htonl(key);
1885
1886 s_i = cb->args[5];
1887 i = 0;
1888
1889 /* rcu_read_lock is hold by caller */
1890
1891 list_for_each_entry_rcu(fa, fah, fa_list) {
1892 if (i < s_i) {
1893 i++;
1894 continue;
1895 }
1896
1897 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1898 cb->nlh->nlmsg_seq,
1899 RTM_NEWROUTE,
1900 tb->tb_id,
1901 fa->fa_type,
1902 fa->fa_scope,
1903 xkey,
1904 plen,
1905 fa->fa_tos,
1906 fa->fa_info, NLM_F_MULTI) < 0) {
1907 cb->args[5] = i;
1908 return -1;
1909 }
1910 i++;
1911 }
1912 cb->args[5] = i;
1913 return skb->len;
1914 }
1915
1916 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1917 struct sk_buff *skb, struct netlink_callback *cb)
1918 {
1919 struct leaf_info *li;
1920 struct hlist_node *node;
1921 int i, s_i;
1922
1923 s_i = cb->args[4];
1924 i = 0;
1925
1926 /* rcu_read_lock is hold by caller */
1927 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1928 if (i < s_i) {
1929 i++;
1930 continue;
1931 }
1932
1933 if (i > s_i)
1934 cb->args[5] = 0;
1935
1936 if (list_empty(&li->falh))
1937 continue;
1938
1939 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1940 cb->args[4] = i;
1941 return -1;
1942 }
1943 i++;
1944 }
1945
1946 cb->args[4] = i;
1947 return skb->len;
1948 }
1949
1950 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1951 struct netlink_callback *cb)
1952 {
1953 struct leaf *l;
1954 struct trie *t = (struct trie *) tb->tb_data;
1955 t_key key = cb->args[2];
1956 int count = cb->args[3];
1957
1958 rcu_read_lock();
1959 /* Dump starting at last key.
1960 * Note: 0.0.0.0/0 (ie default) is first key.
1961 */
1962 if (count == 0)
1963 l = trie_firstleaf(t);
1964 else {
1965 /* Normally, continue from last key, but if that is missing
1966 * fallback to using slow rescan
1967 */
1968 l = fib_find_node(t, key);
1969 if (!l)
1970 l = trie_leafindex(t, count);
1971 }
1972
1973 while (l) {
1974 cb->args[2] = l->key;
1975 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1976 cb->args[3] = count;
1977 rcu_read_unlock();
1978 return -1;
1979 }
1980
1981 ++count;
1982 l = trie_nextleaf(l);
1983 memset(&cb->args[4], 0,
1984 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1985 }
1986 cb->args[3] = count;
1987 rcu_read_unlock();
1988
1989 return skb->len;
1990 }
1991
1992 void __init fib_hash_init(void)
1993 {
1994 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1995 sizeof(struct fib_alias),
1996 0, SLAB_PANIC, NULL);
1997
1998 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1999 max(sizeof(struct leaf),
2000 sizeof(struct leaf_info)),
2001 0, SLAB_PANIC, NULL);
2002 }
2003
2004
2005 /* Fix more generic FIB names for init later */
2006 struct fib_table *fib_hash_table(u32 id)
2007 {
2008 struct fib_table *tb;
2009 struct trie *t;
2010
2011 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2012 GFP_KERNEL);
2013 if (tb == NULL)
2014 return NULL;
2015
2016 tb->tb_id = id;
2017 tb->tb_default = -1;
2018 tb->tb_lookup = fn_trie_lookup;
2019 tb->tb_insert = fn_trie_insert;
2020 tb->tb_delete = fn_trie_delete;
2021 tb->tb_flush = fn_trie_flush;
2022 tb->tb_select_default = fn_trie_select_default;
2023 tb->tb_dump = fn_trie_dump;
2024
2025 t = (struct trie *) tb->tb_data;
2026 memset(t, 0, sizeof(*t));
2027
2028 if (id == RT_TABLE_LOCAL)
2029 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2030
2031 return tb;
2032 }
2033
2034 #ifdef CONFIG_PROC_FS
2035 /* Depth first Trie walk iterator */
2036 struct fib_trie_iter {
2037 struct seq_net_private p;
2038 struct fib_table *tb;
2039 struct tnode *tnode;
2040 unsigned index;
2041 unsigned depth;
2042 };
2043
2044 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2045 {
2046 struct tnode *tn = iter->tnode;
2047 unsigned cindex = iter->index;
2048 struct tnode *p;
2049
2050 /* A single entry routing table */
2051 if (!tn)
2052 return NULL;
2053
2054 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2055 iter->tnode, iter->index, iter->depth);
2056 rescan:
2057 while (cindex < (1<<tn->bits)) {
2058 struct node *n = tnode_get_child_rcu(tn, cindex);
2059
2060 if (n) {
2061 if (IS_LEAF(n)) {
2062 iter->tnode = tn;
2063 iter->index = cindex + 1;
2064 } else {
2065 /* push down one level */
2066 iter->tnode = (struct tnode *) n;
2067 iter->index = 0;
2068 ++iter->depth;
2069 }
2070 return n;
2071 }
2072
2073 ++cindex;
2074 }
2075
2076 /* Current node exhausted, pop back up */
2077 p = node_parent_rcu((struct node *)tn);
2078 if (p) {
2079 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2080 tn = p;
2081 --iter->depth;
2082 goto rescan;
2083 }
2084
2085 /* got root? */
2086 return NULL;
2087 }
2088
2089 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2090 struct trie *t)
2091 {
2092 struct node *n;
2093
2094 if (!t)
2095 return NULL;
2096
2097 n = rcu_dereference(t->trie);
2098 if (!n)
2099 return NULL;
2100
2101 if (IS_TNODE(n)) {
2102 iter->tnode = (struct tnode *) n;
2103 iter->index = 0;
2104 iter->depth = 1;
2105 } else {
2106 iter->tnode = NULL;
2107 iter->index = 0;
2108 iter->depth = 0;
2109 }
2110
2111 return n;
2112 }
2113
2114 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2115 {
2116 struct node *n;
2117 struct fib_trie_iter iter;
2118
2119 memset(s, 0, sizeof(*s));
2120
2121 rcu_read_lock();
2122 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2123 if (IS_LEAF(n)) {
2124 struct leaf *l = (struct leaf *)n;
2125 struct leaf_info *li;
2126 struct hlist_node *tmp;
2127
2128 s->leaves++;
2129 s->totdepth += iter.depth;
2130 if (iter.depth > s->maxdepth)
2131 s->maxdepth = iter.depth;
2132
2133 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2134 ++s->prefixes;
2135 } else {
2136 const struct tnode *tn = (const struct tnode *) n;
2137 int i;
2138
2139 s->tnodes++;
2140 if (tn->bits < MAX_STAT_DEPTH)
2141 s->nodesizes[tn->bits]++;
2142
2143 for (i = 0; i < (1<<tn->bits); i++)
2144 if (!tn->child[i])
2145 s->nullpointers++;
2146 }
2147 }
2148 rcu_read_unlock();
2149 }
2150
2151 /*
2152 * This outputs /proc/net/fib_triestats
2153 */
2154 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2155 {
2156 unsigned i, max, pointers, bytes, avdepth;
2157
2158 if (stat->leaves)
2159 avdepth = stat->totdepth*100 / stat->leaves;
2160 else
2161 avdepth = 0;
2162
2163 seq_printf(seq, "\tAver depth: %u.%02d\n",
2164 avdepth / 100, avdepth % 100);
2165 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2166
2167 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2168 bytes = sizeof(struct leaf) * stat->leaves;
2169
2170 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2171 bytes += sizeof(struct leaf_info) * stat->prefixes;
2172
2173 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2174 bytes += sizeof(struct tnode) * stat->tnodes;
2175
2176 max = MAX_STAT_DEPTH;
2177 while (max > 0 && stat->nodesizes[max-1] == 0)
2178 max--;
2179
2180 pointers = 0;
2181 for (i = 1; i <= max; i++)
2182 if (stat->nodesizes[i] != 0) {
2183 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2184 pointers += (1<<i) * stat->nodesizes[i];
2185 }
2186 seq_putc(seq, '\n');
2187 seq_printf(seq, "\tPointers: %u\n", pointers);
2188
2189 bytes += sizeof(struct node *) * pointers;
2190 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2191 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2192 }
2193
2194 #ifdef CONFIG_IP_FIB_TRIE_STATS
2195 static void trie_show_usage(struct seq_file *seq,
2196 const struct trie_use_stats *stats)
2197 {
2198 seq_printf(seq, "\nCounters:\n---------\n");
2199 seq_printf(seq, "gets = %u\n", stats->gets);
2200 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2201 seq_printf(seq, "semantic match passed = %u\n",
2202 stats->semantic_match_passed);
2203 seq_printf(seq, "semantic match miss = %u\n",
2204 stats->semantic_match_miss);
2205 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2206 seq_printf(seq, "skipped node resize = %u\n\n",
2207 stats->resize_node_skipped);
2208 }
2209 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2210
2211 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2212 {
2213 if (tb->tb_id == RT_TABLE_LOCAL)
2214 seq_puts(seq, "Local:\n");
2215 else if (tb->tb_id == RT_TABLE_MAIN)
2216 seq_puts(seq, "Main:\n");
2217 else
2218 seq_printf(seq, "Id %d:\n", tb->tb_id);
2219 }
2220
2221
2222 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2223 {
2224 struct net *net = (struct net *)seq->private;
2225 unsigned int h;
2226
2227 seq_printf(seq,
2228 "Basic info: size of leaf:"
2229 " %Zd bytes, size of tnode: %Zd bytes.\n",
2230 sizeof(struct leaf), sizeof(struct tnode));
2231
2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 struct hlist_node *node;
2235 struct fib_table *tb;
2236
2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2238 struct trie *t = (struct trie *) tb->tb_data;
2239 struct trie_stat stat;
2240
2241 if (!t)
2242 continue;
2243
2244 fib_table_print(seq, tb);
2245
2246 trie_collect_stats(t, &stat);
2247 trie_show_stats(seq, &stat);
2248 #ifdef CONFIG_IP_FIB_TRIE_STATS
2249 trie_show_usage(seq, &t->stats);
2250 #endif
2251 }
2252 }
2253
2254 return 0;
2255 }
2256
2257 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2258 {
2259 int err;
2260 struct net *net;
2261
2262 net = get_proc_net(inode);
2263 if (net == NULL)
2264 return -ENXIO;
2265 err = single_open(file, fib_triestat_seq_show, net);
2266 if (err < 0) {
2267 put_net(net);
2268 return err;
2269 }
2270 return 0;
2271 }
2272
2273 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2274 {
2275 struct seq_file *seq = f->private_data;
2276 put_net(seq->private);
2277 return single_release(ino, f);
2278 }
2279
2280 static const struct file_operations fib_triestat_fops = {
2281 .owner = THIS_MODULE,
2282 .open = fib_triestat_seq_open,
2283 .read = seq_read,
2284 .llseek = seq_lseek,
2285 .release = fib_triestat_seq_release,
2286 };
2287
2288 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2289 {
2290 struct fib_trie_iter *iter = seq->private;
2291 struct net *net = seq_file_net(seq);
2292 loff_t idx = 0;
2293 unsigned int h;
2294
2295 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2296 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2297 struct hlist_node *node;
2298 struct fib_table *tb;
2299
2300 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2301 struct node *n;
2302
2303 for (n = fib_trie_get_first(iter,
2304 (struct trie *) tb->tb_data);
2305 n; n = fib_trie_get_next(iter))
2306 if (pos == idx++) {
2307 iter->tb = tb;
2308 return n;
2309 }
2310 }
2311 }
2312
2313 return NULL;
2314 }
2315
2316 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2317 __acquires(RCU)
2318 {
2319 rcu_read_lock();
2320 return fib_trie_get_idx(seq, *pos);
2321 }
2322
2323 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2324 {
2325 struct fib_trie_iter *iter = seq->private;
2326 struct net *net = seq_file_net(seq);
2327 struct fib_table *tb = iter->tb;
2328 struct hlist_node *tb_node;
2329 unsigned int h;
2330 struct node *n;
2331
2332 ++*pos;
2333 /* next node in same table */
2334 n = fib_trie_get_next(iter);
2335 if (n)
2336 return n;
2337
2338 /* walk rest of this hash chain */
2339 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2340 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2341 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2342 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2343 if (n)
2344 goto found;
2345 }
2346
2347 /* new hash chain */
2348 while (++h < FIB_TABLE_HASHSZ) {
2349 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2350 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2351 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2352 if (n)
2353 goto found;
2354 }
2355 }
2356 return NULL;
2357
2358 found:
2359 iter->tb = tb;
2360 return n;
2361 }
2362
2363 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2364 __releases(RCU)
2365 {
2366 rcu_read_unlock();
2367 }
2368
2369 static void seq_indent(struct seq_file *seq, int n)
2370 {
2371 while (n-- > 0) seq_puts(seq, " ");
2372 }
2373
2374 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2375 {
2376 switch (s) {
2377 case RT_SCOPE_UNIVERSE: return "universe";
2378 case RT_SCOPE_SITE: return "site";
2379 case RT_SCOPE_LINK: return "link";
2380 case RT_SCOPE_HOST: return "host";
2381 case RT_SCOPE_NOWHERE: return "nowhere";
2382 default:
2383 snprintf(buf, len, "scope=%d", s);
2384 return buf;
2385 }
2386 }
2387
2388 static const char *rtn_type_names[__RTN_MAX] = {
2389 [RTN_UNSPEC] = "UNSPEC",
2390 [RTN_UNICAST] = "UNICAST",
2391 [RTN_LOCAL] = "LOCAL",
2392 [RTN_BROADCAST] = "BROADCAST",
2393 [RTN_ANYCAST] = "ANYCAST",
2394 [RTN_MULTICAST] = "MULTICAST",
2395 [RTN_BLACKHOLE] = "BLACKHOLE",
2396 [RTN_UNREACHABLE] = "UNREACHABLE",
2397 [RTN_PROHIBIT] = "PROHIBIT",
2398 [RTN_THROW] = "THROW",
2399 [RTN_NAT] = "NAT",
2400 [RTN_XRESOLVE] = "XRESOLVE",
2401 };
2402
2403 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2404 {
2405 if (t < __RTN_MAX && rtn_type_names[t])
2406 return rtn_type_names[t];
2407 snprintf(buf, len, "type %u", t);
2408 return buf;
2409 }
2410
2411 /* Pretty print the trie */
2412 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2413 {
2414 const struct fib_trie_iter *iter = seq->private;
2415 struct node *n = v;
2416
2417 if (!node_parent_rcu(n))
2418 fib_table_print(seq, iter->tb);
2419
2420 if (IS_TNODE(n)) {
2421 struct tnode *tn = (struct tnode *) n;
2422 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2423
2424 seq_indent(seq, iter->depth-1);
2425 seq_printf(seq, " +-- " NIPQUAD_FMT "/%d %d %d %d\n",
2426 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2427 tn->empty_children);
2428
2429 } else {
2430 struct leaf *l = (struct leaf *) n;
2431 struct leaf_info *li;
2432 struct hlist_node *node;
2433 __be32 val = htonl(l->key);
2434
2435 seq_indent(seq, iter->depth);
2436 seq_printf(seq, " |-- " NIPQUAD_FMT "\n", NIPQUAD(val));
2437
2438 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2439 struct fib_alias *fa;
2440
2441 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2442 char buf1[32], buf2[32];
2443
2444 seq_indent(seq, iter->depth+1);
2445 seq_printf(seq, " /%d %s %s", li->plen,
2446 rtn_scope(buf1, sizeof(buf1),
2447 fa->fa_scope),
2448 rtn_type(buf2, sizeof(buf2),
2449 fa->fa_type));
2450 if (fa->fa_tos)
2451 seq_printf(seq, " tos=%d", fa->fa_tos);
2452 seq_putc(seq, '\n');
2453 }
2454 }
2455 }
2456
2457 return 0;
2458 }
2459
2460 static const struct seq_operations fib_trie_seq_ops = {
2461 .start = fib_trie_seq_start,
2462 .next = fib_trie_seq_next,
2463 .stop = fib_trie_seq_stop,
2464 .show = fib_trie_seq_show,
2465 };
2466
2467 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2468 {
2469 return seq_open_net(inode, file, &fib_trie_seq_ops,
2470 sizeof(struct fib_trie_iter));
2471 }
2472
2473 static const struct file_operations fib_trie_fops = {
2474 .owner = THIS_MODULE,
2475 .open = fib_trie_seq_open,
2476 .read = seq_read,
2477 .llseek = seq_lseek,
2478 .release = seq_release_net,
2479 };
2480
2481 struct fib_route_iter {
2482 struct seq_net_private p;
2483 struct trie *main_trie;
2484 loff_t pos;
2485 t_key key;
2486 };
2487
2488 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2489 {
2490 struct leaf *l = NULL;
2491 struct trie *t = iter->main_trie;
2492
2493 /* use cache location of last found key */
2494 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2495 pos -= iter->pos;
2496 else {
2497 iter->pos = 0;
2498 l = trie_firstleaf(t);
2499 }
2500
2501 while (l && pos-- > 0) {
2502 iter->pos++;
2503 l = trie_nextleaf(l);
2504 }
2505
2506 if (l)
2507 iter->key = pos; /* remember it */
2508 else
2509 iter->pos = 0; /* forget it */
2510
2511 return l;
2512 }
2513
2514 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2515 __acquires(RCU)
2516 {
2517 struct fib_route_iter *iter = seq->private;
2518 struct fib_table *tb;
2519
2520 rcu_read_lock();
2521 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2522 if (!tb)
2523 return NULL;
2524
2525 iter->main_trie = (struct trie *) tb->tb_data;
2526 if (*pos == 0)
2527 return SEQ_START_TOKEN;
2528 else
2529 return fib_route_get_idx(iter, *pos - 1);
2530 }
2531
2532 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2533 {
2534 struct fib_route_iter *iter = seq->private;
2535 struct leaf *l = v;
2536
2537 ++*pos;
2538 if (v == SEQ_START_TOKEN) {
2539 iter->pos = 0;
2540 l = trie_firstleaf(iter->main_trie);
2541 } else {
2542 iter->pos++;
2543 l = trie_nextleaf(l);
2544 }
2545
2546 if (l)
2547 iter->key = l->key;
2548 else
2549 iter->pos = 0;
2550 return l;
2551 }
2552
2553 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2554 __releases(RCU)
2555 {
2556 rcu_read_unlock();
2557 }
2558
2559 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2560 {
2561 static unsigned type2flags[RTN_MAX + 1] = {
2562 [7] = RTF_REJECT, [8] = RTF_REJECT,
2563 };
2564 unsigned flags = type2flags[type];
2565
2566 if (fi && fi->fib_nh->nh_gw)
2567 flags |= RTF_GATEWAY;
2568 if (mask == htonl(0xFFFFFFFF))
2569 flags |= RTF_HOST;
2570 flags |= RTF_UP;
2571 return flags;
2572 }
2573
2574 /*
2575 * This outputs /proc/net/route.
2576 * The format of the file is not supposed to be changed
2577 * and needs to be same as fib_hash output to avoid breaking
2578 * legacy utilities
2579 */
2580 static int fib_route_seq_show(struct seq_file *seq, void *v)
2581 {
2582 struct leaf *l = v;
2583 struct leaf_info *li;
2584 struct hlist_node *node;
2585
2586 if (v == SEQ_START_TOKEN) {
2587 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2588 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2589 "\tWindow\tIRTT");
2590 return 0;
2591 }
2592
2593 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2594 struct fib_alias *fa;
2595 __be32 mask, prefix;
2596
2597 mask = inet_make_mask(li->plen);
2598 prefix = htonl(l->key);
2599
2600 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2601 const struct fib_info *fi = fa->fa_info;
2602 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2603 int len;
2604
2605 if (fa->fa_type == RTN_BROADCAST
2606 || fa->fa_type == RTN_MULTICAST)
2607 continue;
2608
2609 if (fi)
2610 seq_printf(seq,
2611 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2612 "%d\t%08X\t%d\t%u\t%u%n",
2613 fi->fib_dev ? fi->fib_dev->name : "*",
2614 prefix,
2615 fi->fib_nh->nh_gw, flags, 0, 0,
2616 fi->fib_priority,
2617 mask,
2618 (fi->fib_advmss ?
2619 fi->fib_advmss + 40 : 0),
2620 fi->fib_window,
2621 fi->fib_rtt >> 3, &len);
2622 else
2623 seq_printf(seq,
2624 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2625 "%d\t%08X\t%d\t%u\t%u%n",
2626 prefix, 0, flags, 0, 0, 0,
2627 mask, 0, 0, 0, &len);
2628
2629 seq_printf(seq, "%*s\n", 127 - len, "");
2630 }
2631 }
2632
2633 return 0;
2634 }
2635
2636 static const struct seq_operations fib_route_seq_ops = {
2637 .start = fib_route_seq_start,
2638 .next = fib_route_seq_next,
2639 .stop = fib_route_seq_stop,
2640 .show = fib_route_seq_show,
2641 };
2642
2643 static int fib_route_seq_open(struct inode *inode, struct file *file)
2644 {
2645 return seq_open_net(inode, file, &fib_route_seq_ops,
2646 sizeof(struct fib_route_iter));
2647 }
2648
2649 static const struct file_operations fib_route_fops = {
2650 .owner = THIS_MODULE,
2651 .open = fib_route_seq_open,
2652 .read = seq_read,
2653 .llseek = seq_lseek,
2654 .release = seq_release_net,
2655 };
2656
2657 int __net_init fib_proc_init(struct net *net)
2658 {
2659 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2660 goto out1;
2661
2662 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2663 &fib_triestat_fops))
2664 goto out2;
2665
2666 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2667 goto out3;
2668
2669 return 0;
2670
2671 out3:
2672 proc_net_remove(net, "fib_triestat");
2673 out2:
2674 proc_net_remove(net, "fib_trie");
2675 out1:
2676 return -ENOMEM;
2677 }
2678
2679 void __net_exit fib_proc_exit(struct net *net)
2680 {
2681 proc_net_remove(net, "fib_trie");
2682 proc_net_remove(net, "fib_triestat");
2683 proc_net_remove(net, "route");
2684 }
2685
2686 #endif /* CONFIG_PROC_FS */
This page took 0.131453 seconds and 5 git commands to generate.