Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
115 };
116
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
128 };
129 struct rt_trie_node *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct rt_trie_node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
162 int wasfull);
163 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169
170 /*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175 static const int sync_pages = 128;
176
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179
180 static inline struct tnode *node_parent(struct rt_trie_node *node)
181 {
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184
185 static inline struct tnode *node_parent_rcu(struct rt_trie_node *node)
186 {
187 struct tnode *ret = node_parent(node);
188
189 return rcu_dereference_rtnl(ret);
190 }
191
192 /* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
195 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
196 {
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
199 }
200
201 static inline struct rt_trie_node *tnode_get_child(struct tnode *tn, unsigned int i)
202 {
203 BUG_ON(i >= 1U << tn->bits);
204
205 return tn->child[i];
206 }
207
208 static inline struct rt_trie_node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
209 {
210 struct rt_trie_node *ret = tnode_get_child(tn, i);
211
212 return rcu_dereference_rtnl(ret);
213 }
214
215 static inline int tnode_child_length(const struct tnode *tn)
216 {
217 return 1 << tn->bits;
218 }
219
220 static inline t_key mask_pfx(t_key k, unsigned int l)
221 {
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223 }
224
225 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
226 {
227 if (offset < KEYLENGTH)
228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
229 else
230 return 0;
231 }
232
233 static inline int tkey_equals(t_key a, t_key b)
234 {
235 return a == b;
236 }
237
238 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239 {
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
244 }
245
246 static inline int tkey_mismatch(t_key a, int offset, t_key b)
247 {
248 t_key diff = a ^ b;
249 int i = offset;
250
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
254 i++;
255 return i;
256 }
257
258 /*
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
270 correct key path.
271
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
277 call to tkey_sub_equals() in trie_insert().
278
279 if n is an internal node - a 'tnode' here, the various parts of its key
280 have many different meanings.
281
282 Example:
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
296 n->bits = 4
297
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
303 index into the parent's child array. That is, they will be used to find
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
309 All the bits we have seen so far are significant to the node n. The rest
310 of the bits are really not needed or indeed known in n->key.
311
312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
313 n's child array, and will of course be different for each child.
314
315
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319 */
320
321 static inline void check_tnode(const struct tnode *tn)
322 {
323 WARN_ON(tn && tn->pos+tn->bits > 32);
324 }
325
326 static const int halve_threshold = 25;
327 static const int inflate_threshold = 50;
328 static const int halve_threshold_root = 15;
329 static const int inflate_threshold_root = 30;
330
331 static void __alias_free_mem(struct rcu_head *head)
332 {
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
335 }
336
337 static inline void alias_free_mem_rcu(struct fib_alias *fa)
338 {
339 call_rcu(&fa->rcu, __alias_free_mem);
340 }
341
342 static void __leaf_free_rcu(struct rcu_head *head)
343 {
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
346 }
347
348 static inline void free_leaf(struct leaf *l)
349 {
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351 }
352
353 static void __leaf_info_free_rcu(struct rcu_head *head)
354 {
355 kfree(container_of(head, struct leaf_info, rcu));
356 }
357
358 static inline void free_leaf_info(struct leaf_info *leaf)
359 {
360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
361 }
362
363 static struct tnode *tnode_alloc(size_t size)
364 {
365 if (size <= PAGE_SIZE)
366 return kzalloc(size, GFP_KERNEL);
367 else
368 return vzalloc(size);
369 }
370
371 static void __tnode_vfree(struct work_struct *arg)
372 {
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
375 }
376
377 static void __tnode_free_rcu(struct rcu_head *head)
378 {
379 struct tnode *tn = container_of(head, struct tnode, rcu);
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct rt_trie_node *) << tn->bits);
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
389 }
390
391 static inline void tnode_free(struct tnode *tn)
392 {
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
396 call_rcu(&tn->rcu, __tnode_free_rcu);
397 }
398
399 static void tnode_free_safe(struct tnode *tn)
400 {
401 BUG_ON(IS_LEAF(tn));
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct rt_trie_node *) << tn->bits);
406 }
407
408 static void tnode_free_flush(void)
409 {
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
422 }
423
424 static struct leaf *leaf_new(void)
425 {
426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432 }
433
434 static struct leaf_info *leaf_info_new(int plen)
435 {
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442 }
443
444 static struct tnode *tnode_new(t_key key, int pos, int bits)
445 {
446 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
447 struct tnode *tn = tnode_alloc(sz);
448
449 if (tn) {
450 tn->parent = T_TNODE;
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
457
458 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
459 sizeof(struct rt_trie_node) << bits);
460 return tn;
461 }
462
463 /*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
468 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
469 {
470 if (n == NULL || IS_LEAF(n))
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474 }
475
476 static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct rt_trie_node *n)
478 {
479 tnode_put_child_reorg(tn, i, n, -1);
480 }
481
482 /*
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
487 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
488 int wasfull)
489 {
490 struct rt_trie_node *chi = tn->child[i];
491 int isfull;
492
493 BUG_ON(i >= 1<<tn->bits);
494
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
500
501 /* update fullChildren */
502 if (wasfull == -1)
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
506 if (wasfull && !isfull)
507 tn->full_children--;
508 else if (!wasfull && isfull)
509 tn->full_children++;
510
511 if (n)
512 node_set_parent(n, tn);
513
514 rcu_assign_pointer(tn->child[i], n);
515 }
516
517 #define MAX_WORK 10
518 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
519 {
520 int i;
521 struct tnode *old_tn;
522 int inflate_threshold_use;
523 int halve_threshold_use;
524 int max_work;
525
526 if (!tn)
527 return NULL;
528
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
534 tnode_free_safe(tn);
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
539 goto one_child;
540 /*
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
548 * Telecommunications, page 6:
549 * "A node is doubled if the ratio of non-empty children to all
550 * children in the *doubled* node is at least 'high'."
551 *
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
557 * multiply the left-hand side by 50.
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
562 * children, that is non-null tnodes with a skip value of 0.
563 * All of those will be doubled in the resulting inflated tnode, so
564 * we just count them one extra time here.
565 *
566 * A clearer way to write this would be:
567 *
568 * to_be_doubled = tn->full_children;
569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
583 *
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
587 *
588 * expand not_to_be_doubled and to_be_doubled, and shorten:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >= inflate_threshold * new_child_length
591 *
592 * expand new_child_length:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >=
595 * inflate_threshold * tnode_child_length(tn) * 2
596 *
597 * shorten again:
598 * 50 * (tn->full_children + tnode_child_length(tn) -
599 * tn->empty_children) >= inflate_threshold *
600 * tnode_child_length(tn)
601 *
602 */
603
604 check_tnode(tn);
605
606 /* Keep root node larger */
607
608 if (!node_parent((struct rt_trie_node *)tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 } else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
614 }
615
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
621
622 old_tn = tn;
623 tn = inflate(t, tn);
624
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
631 }
632 }
633
634 check_tnode(tn);
635
636 /* Return if at least one inflate is run */
637 if (max_work != MAX_WORK)
638 return (struct rt_trie_node *) tn;
639
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
644
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
649
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
658 }
659 }
660
661
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct rt_trie_node *n;
667
668 n = tn->child[i];
669 if (!n)
670 continue;
671
672 /* compress one level */
673
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
677 }
678 }
679 return (struct rt_trie_node *) tn;
680 }
681
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
688 pr_debug("In inflate\n");
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
694
695 /*
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
700 */
701
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
704
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
717
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
724 }
725
726 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
727 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
728 }
729 }
730
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
736
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
761 tnode_free_safe(inode);
762 continue;
763 }
764
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
783
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
787
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
790
791 BUG_ON(!left);
792
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
795
796 BUG_ON(!right);
797
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
802 }
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
806 tnode_free_safe(inode);
807 }
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
820
821 return ERR_PTR(-ENOMEM);
822 }
823 }
824
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 struct tnode *oldtnode = tn;
828 struct rt_trie_node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
832 pr_debug("In halve\n");
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
838
839 /*
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
844 */
845
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
849
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
853
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855
856 if (!newn)
857 goto nomem;
858
859 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
860 }
861
862 }
863
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
869
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
876 }
877
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
881 }
882
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
889 }
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
902
903 return ERR_PTR(-ENOMEM);
904 }
905 }
906
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
909
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
915
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
919
920 return NULL;
921 }
922
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 struct leaf_info *li = find_leaf_info(l, plen);
926
927 if (!li)
928 return NULL;
929
930 return &li->falh;
931 }
932
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
952 }
953
954 /* rcu_read_lock needs to be hold by caller from readside */
955
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
958 {
959 int pos;
960 struct tnode *tn;
961 struct rt_trie_node *n;
962
963 pos = 0;
964 n = rcu_dereference_rtnl(t->trie);
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
968
969 check_tnode(tn);
970
971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
972 pos = tn->pos + tn->bits;
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
977 } else
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
985 return NULL;
986 }
987
988 static void trie_rebalance(struct trie *t, struct tnode *tn)
989 {
990 int wasfull;
991 t_key cindex, key;
992 struct tnode *tp;
993
994 key = tn->key;
995
996 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct rt_trie_node *)tn, wasfull);
1003
1004 tp = node_parent((struct rt_trie_node *) tn);
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1007
1008 tnode_free_flush();
1009 if (!tp)
1010 break;
1011 tn = tp;
1012 }
1013
1014 /* Handle last (top) tnode */
1015 if (IS_TNODE(tn))
1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1017
1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1019 tnode_free_flush();
1020 }
1021
1022 /* only used from updater-side */
1023
1024 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1025 {
1026 int pos, newpos;
1027 struct tnode *tp = NULL, *tn = NULL;
1028 struct rt_trie_node *n;
1029 struct leaf *l;
1030 int missbit;
1031 struct list_head *fa_head = NULL;
1032 struct leaf_info *li;
1033 t_key cindex;
1034
1035 pos = 0;
1036 n = t->trie;
1037
1038 /* If we point to NULL, stop. Either the tree is empty and we should
1039 * just put a new leaf in if, or we have reached an empty child slot,
1040 * and we should just put our new leaf in that.
1041 * If we point to a T_TNODE, check if it matches our key. Note that
1042 * a T_TNODE might be skipping any number of bits - its 'pos' need
1043 * not be the parent's 'pos'+'bits'!
1044 *
1045 * If it does match the current key, get pos/bits from it, extract
1046 * the index from our key, push the T_TNODE and walk the tree.
1047 *
1048 * If it doesn't, we have to replace it with a new T_TNODE.
1049 *
1050 * If we point to a T_LEAF, it might or might not have the same key
1051 * as we do. If it does, just change the value, update the T_LEAF's
1052 * value, and return it.
1053 * If it doesn't, we need to replace it with a T_TNODE.
1054 */
1055
1056 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1057 tn = (struct tnode *) n;
1058
1059 check_tnode(tn);
1060
1061 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1062 tp = tn;
1063 pos = tn->pos + tn->bits;
1064 n = tnode_get_child(tn,
1065 tkey_extract_bits(key,
1066 tn->pos,
1067 tn->bits));
1068
1069 BUG_ON(n && node_parent(n) != tn);
1070 } else
1071 break;
1072 }
1073
1074 /*
1075 * n ----> NULL, LEAF or TNODE
1076 *
1077 * tp is n's (parent) ----> NULL or TNODE
1078 */
1079
1080 BUG_ON(tp && IS_LEAF(tp));
1081
1082 /* Case 1: n is a leaf. Compare prefixes */
1083
1084 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1085 l = (struct leaf *) n;
1086 li = leaf_info_new(plen);
1087
1088 if (!li)
1089 return NULL;
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093 goto done;
1094 }
1095 l = leaf_new();
1096
1097 if (!l)
1098 return NULL;
1099
1100 l->key = key;
1101 li = leaf_info_new(plen);
1102
1103 if (!li) {
1104 free_leaf(l);
1105 return NULL;
1106 }
1107
1108 fa_head = &li->falh;
1109 insert_leaf_info(&l->list, li);
1110
1111 if (t->trie && n == NULL) {
1112 /* Case 2: n is NULL, and will just insert a new leaf */
1113
1114 node_set_parent((struct rt_trie_node *)l, tp);
1115
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
1118 } else {
1119 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1120 /*
1121 * Add a new tnode here
1122 * first tnode need some special handling
1123 */
1124
1125 if (tp)
1126 pos = tp->pos+tp->bits;
1127 else
1128 pos = 0;
1129
1130 if (n) {
1131 newpos = tkey_mismatch(key, pos, n->key);
1132 tn = tnode_new(n->key, newpos, 1);
1133 } else {
1134 newpos = 0;
1135 tn = tnode_new(key, newpos, 1); /* First tnode */
1136 }
1137
1138 if (!tn) {
1139 free_leaf_info(li);
1140 free_leaf(l);
1141 return NULL;
1142 }
1143
1144 node_set_parent((struct rt_trie_node *)tn, tp);
1145
1146 missbit = tkey_extract_bits(key, newpos, 1);
1147 put_child(t, tn, missbit, (struct rt_trie_node *)l);
1148 put_child(t, tn, 1-missbit, n);
1149
1150 if (tp) {
1151 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1152 put_child(t, (struct tnode *)tp, cindex,
1153 (struct rt_trie_node *)tn);
1154 } else {
1155 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1156 tp = tn;
1157 }
1158 }
1159
1160 if (tp && tp->pos + tp->bits > 32)
1161 pr_warning("fib_trie"
1162 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1163 tp, tp->pos, tp->bits, key, plen);
1164
1165 /* Rebalance the trie */
1166
1167 trie_rebalance(t, tp);
1168 done:
1169 return fa_head;
1170 }
1171
1172 /*
1173 * Caller must hold RTNL.
1174 */
1175 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1176 {
1177 struct trie *t = (struct trie *) tb->tb_data;
1178 struct fib_alias *fa, *new_fa;
1179 struct list_head *fa_head = NULL;
1180 struct fib_info *fi;
1181 int plen = cfg->fc_dst_len;
1182 u8 tos = cfg->fc_tos;
1183 u32 key, mask;
1184 int err;
1185 struct leaf *l;
1186
1187 if (plen > 32)
1188 return -EINVAL;
1189
1190 key = ntohl(cfg->fc_dst);
1191
1192 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1193
1194 mask = ntohl(inet_make_mask(plen));
1195
1196 if (key & ~mask)
1197 return -EINVAL;
1198
1199 key = key & mask;
1200
1201 fi = fib_create_info(cfg);
1202 if (IS_ERR(fi)) {
1203 err = PTR_ERR(fi);
1204 goto err;
1205 }
1206
1207 l = fib_find_node(t, key);
1208 fa = NULL;
1209
1210 if (l) {
1211 fa_head = get_fa_head(l, plen);
1212 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1213 }
1214
1215 /* Now fa, if non-NULL, points to the first fib alias
1216 * with the same keys [prefix,tos,priority], if such key already
1217 * exists or to the node before which we will insert new one.
1218 *
1219 * If fa is NULL, we will need to allocate a new one and
1220 * insert to the head of f.
1221 *
1222 * If f is NULL, no fib node matched the destination key
1223 * and we need to allocate a new one of those as well.
1224 */
1225
1226 if (fa && fa->fa_tos == tos &&
1227 fa->fa_info->fib_priority == fi->fib_priority) {
1228 struct fib_alias *fa_first, *fa_match;
1229
1230 err = -EEXIST;
1231 if (cfg->fc_nlflags & NLM_F_EXCL)
1232 goto out;
1233
1234 /* We have 2 goals:
1235 * 1. Find exact match for type, scope, fib_info to avoid
1236 * duplicate routes
1237 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1238 */
1239 fa_match = NULL;
1240 fa_first = fa;
1241 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1242 list_for_each_entry_continue(fa, fa_head, fa_list) {
1243 if (fa->fa_tos != tos)
1244 break;
1245 if (fa->fa_info->fib_priority != fi->fib_priority)
1246 break;
1247 if (fa->fa_type == cfg->fc_type &&
1248 fa->fa_scope == cfg->fc_scope &&
1249 fa->fa_info == fi) {
1250 fa_match = fa;
1251 break;
1252 }
1253 }
1254
1255 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1256 struct fib_info *fi_drop;
1257 u8 state;
1258
1259 fa = fa_first;
1260 if (fa_match) {
1261 if (fa == fa_match)
1262 err = 0;
1263 goto out;
1264 }
1265 err = -ENOBUFS;
1266 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1267 if (new_fa == NULL)
1268 goto out;
1269
1270 fi_drop = fa->fa_info;
1271 new_fa->fa_tos = fa->fa_tos;
1272 new_fa->fa_info = fi;
1273 new_fa->fa_type = cfg->fc_type;
1274 new_fa->fa_scope = cfg->fc_scope;
1275 state = fa->fa_state;
1276 new_fa->fa_state = state & ~FA_S_ACCESSED;
1277
1278 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1279 alias_free_mem_rcu(fa);
1280
1281 fib_release_info(fi_drop);
1282 if (state & FA_S_ACCESSED)
1283 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1284 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1285 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1286
1287 goto succeeded;
1288 }
1289 /* Error if we find a perfect match which
1290 * uses the same scope, type, and nexthop
1291 * information.
1292 */
1293 if (fa_match)
1294 goto out;
1295
1296 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1297 fa = fa_first;
1298 }
1299 err = -ENOENT;
1300 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1301 goto out;
1302
1303 err = -ENOBUFS;
1304 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1305 if (new_fa == NULL)
1306 goto out;
1307
1308 new_fa->fa_info = fi;
1309 new_fa->fa_tos = tos;
1310 new_fa->fa_type = cfg->fc_type;
1311 new_fa->fa_scope = cfg->fc_scope;
1312 new_fa->fa_state = 0;
1313 /*
1314 * Insert new entry to the list.
1315 */
1316
1317 if (!fa_head) {
1318 fa_head = fib_insert_node(t, key, plen);
1319 if (unlikely(!fa_head)) {
1320 err = -ENOMEM;
1321 goto out_free_new_fa;
1322 }
1323 }
1324
1325 list_add_tail_rcu(&new_fa->fa_list,
1326 (fa ? &fa->fa_list : fa_head));
1327
1328 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1329 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1330 &cfg->fc_nlinfo, 0);
1331 succeeded:
1332 return 0;
1333
1334 out_free_new_fa:
1335 kmem_cache_free(fn_alias_kmem, new_fa);
1336 out:
1337 fib_release_info(fi);
1338 err:
1339 return err;
1340 }
1341
1342 /* should be called with rcu_read_lock */
1343 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1344 t_key key, const struct flowi4 *flp,
1345 struct fib_result *res, int fib_flags)
1346 {
1347 struct leaf_info *li;
1348 struct hlist_head *hhead = &l->list;
1349 struct hlist_node *node;
1350
1351 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1352 struct fib_alias *fa;
1353 int plen = li->plen;
1354 __be32 mask = inet_make_mask(plen);
1355
1356 if (l->key != (key & ntohl(mask)))
1357 continue;
1358
1359 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1360 struct fib_info *fi = fa->fa_info;
1361 int nhsel, err;
1362
1363 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1364 continue;
1365 if (fa->fa_scope < flp->flowi4_scope)
1366 continue;
1367 fib_alias_accessed(fa);
1368 err = fib_props[fa->fa_type].error;
1369 if (err) {
1370 #ifdef CONFIG_IP_FIB_TRIE_STATS
1371 t->stats.semantic_match_miss++;
1372 #endif
1373 return 1;
1374 }
1375 if (fi->fib_flags & RTNH_F_DEAD)
1376 continue;
1377 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1378 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1379
1380 if (nh->nh_flags & RTNH_F_DEAD)
1381 continue;
1382 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1383 continue;
1384
1385 #ifdef CONFIG_IP_FIB_TRIE_STATS
1386 t->stats.semantic_match_passed++;
1387 #endif
1388 res->prefixlen = plen;
1389 res->nh_sel = nhsel;
1390 res->type = fa->fa_type;
1391 res->scope = fa->fa_scope;
1392 res->fi = fi;
1393 res->table = tb;
1394 res->fa_head = &li->falh;
1395 if (!(fib_flags & FIB_LOOKUP_NOREF))
1396 atomic_inc(&res->fi->fib_clntref);
1397 return 0;
1398 }
1399 }
1400
1401 #ifdef CONFIG_IP_FIB_TRIE_STATS
1402 t->stats.semantic_match_miss++;
1403 #endif
1404 }
1405
1406 return 1;
1407 }
1408
1409 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1410 struct fib_result *res, int fib_flags)
1411 {
1412 struct trie *t = (struct trie *) tb->tb_data;
1413 int ret;
1414 struct rt_trie_node *n;
1415 struct tnode *pn;
1416 unsigned int pos, bits;
1417 t_key key = ntohl(flp->daddr);
1418 unsigned int chopped_off;
1419 t_key cindex = 0;
1420 unsigned int current_prefix_length = KEYLENGTH;
1421 struct tnode *cn;
1422 t_key pref_mismatch;
1423
1424 rcu_read_lock();
1425
1426 n = rcu_dereference(t->trie);
1427 if (!n)
1428 goto failed;
1429
1430 #ifdef CONFIG_IP_FIB_TRIE_STATS
1431 t->stats.gets++;
1432 #endif
1433
1434 /* Just a leaf? */
1435 if (IS_LEAF(n)) {
1436 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1437 goto found;
1438 }
1439
1440 pn = (struct tnode *) n;
1441 chopped_off = 0;
1442
1443 while (pn) {
1444 pos = pn->pos;
1445 bits = pn->bits;
1446
1447 if (!chopped_off)
1448 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1449 pos, bits);
1450
1451 n = tnode_get_child_rcu(pn, cindex);
1452
1453 if (n == NULL) {
1454 #ifdef CONFIG_IP_FIB_TRIE_STATS
1455 t->stats.null_node_hit++;
1456 #endif
1457 goto backtrace;
1458 }
1459
1460 if (IS_LEAF(n)) {
1461 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1462 if (ret > 0)
1463 goto backtrace;
1464 goto found;
1465 }
1466
1467 cn = (struct tnode *)n;
1468
1469 /*
1470 * It's a tnode, and we can do some extra checks here if we
1471 * like, to avoid descending into a dead-end branch.
1472 * This tnode is in the parent's child array at index
1473 * key[p_pos..p_pos+p_bits] but potentially with some bits
1474 * chopped off, so in reality the index may be just a
1475 * subprefix, padded with zero at the end.
1476 * We can also take a look at any skipped bits in this
1477 * tnode - everything up to p_pos is supposed to be ok,
1478 * and the non-chopped bits of the index (se previous
1479 * paragraph) are also guaranteed ok, but the rest is
1480 * considered unknown.
1481 *
1482 * The skipped bits are key[pos+bits..cn->pos].
1483 */
1484
1485 /* If current_prefix_length < pos+bits, we are already doing
1486 * actual prefix matching, which means everything from
1487 * pos+(bits-chopped_off) onward must be zero along some
1488 * branch of this subtree - otherwise there is *no* valid
1489 * prefix present. Here we can only check the skipped
1490 * bits. Remember, since we have already indexed into the
1491 * parent's child array, we know that the bits we chopped of
1492 * *are* zero.
1493 */
1494
1495 /* NOTA BENE: Checking only skipped bits
1496 for the new node here */
1497
1498 if (current_prefix_length < pos+bits) {
1499 if (tkey_extract_bits(cn->key, current_prefix_length,
1500 cn->pos - current_prefix_length)
1501 || !(cn->child[0]))
1502 goto backtrace;
1503 }
1504
1505 /*
1506 * If chopped_off=0, the index is fully validated and we
1507 * only need to look at the skipped bits for this, the new,
1508 * tnode. What we actually want to do is to find out if
1509 * these skipped bits match our key perfectly, or if we will
1510 * have to count on finding a matching prefix further down,
1511 * because if we do, we would like to have some way of
1512 * verifying the existence of such a prefix at this point.
1513 */
1514
1515 /* The only thing we can do at this point is to verify that
1516 * any such matching prefix can indeed be a prefix to our
1517 * key, and if the bits in the node we are inspecting that
1518 * do not match our key are not ZERO, this cannot be true.
1519 * Thus, find out where there is a mismatch (before cn->pos)
1520 * and verify that all the mismatching bits are zero in the
1521 * new tnode's key.
1522 */
1523
1524 /*
1525 * Note: We aren't very concerned about the piece of
1526 * the key that precede pn->pos+pn->bits, since these
1527 * have already been checked. The bits after cn->pos
1528 * aren't checked since these are by definition
1529 * "unknown" at this point. Thus, what we want to see
1530 * is if we are about to enter the "prefix matching"
1531 * state, and in that case verify that the skipped
1532 * bits that will prevail throughout this subtree are
1533 * zero, as they have to be if we are to find a
1534 * matching prefix.
1535 */
1536
1537 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1538
1539 /*
1540 * In short: If skipped bits in this node do not match
1541 * the search key, enter the "prefix matching"
1542 * state.directly.
1543 */
1544 if (pref_mismatch) {
1545 int mp = KEYLENGTH - fls(pref_mismatch);
1546
1547 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1548 goto backtrace;
1549
1550 if (current_prefix_length >= cn->pos)
1551 current_prefix_length = mp;
1552 }
1553
1554 pn = (struct tnode *)n; /* Descend */
1555 chopped_off = 0;
1556 continue;
1557
1558 backtrace:
1559 chopped_off++;
1560
1561 /* As zero don't change the child key (cindex) */
1562 while ((chopped_off <= pn->bits)
1563 && !(cindex & (1<<(chopped_off-1))))
1564 chopped_off++;
1565
1566 /* Decrease current_... with bits chopped off */
1567 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1568 current_prefix_length = pn->pos + pn->bits
1569 - chopped_off;
1570
1571 /*
1572 * Either we do the actual chop off according or if we have
1573 * chopped off all bits in this tnode walk up to our parent.
1574 */
1575
1576 if (chopped_off <= pn->bits) {
1577 cindex &= ~(1 << (chopped_off-1));
1578 } else {
1579 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1580 if (!parent)
1581 goto failed;
1582
1583 /* Get Child's index */
1584 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1585 pn = parent;
1586 chopped_off = 0;
1587
1588 #ifdef CONFIG_IP_FIB_TRIE_STATS
1589 t->stats.backtrack++;
1590 #endif
1591 goto backtrace;
1592 }
1593 }
1594 failed:
1595 ret = 1;
1596 found:
1597 rcu_read_unlock();
1598 return ret;
1599 }
1600
1601 /*
1602 * Remove the leaf and return parent.
1603 */
1604 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1605 {
1606 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1607
1608 pr_debug("entering trie_leaf_remove(%p)\n", l);
1609
1610 if (tp) {
1611 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1612 put_child(t, (struct tnode *)tp, cindex, NULL);
1613 trie_rebalance(t, tp);
1614 } else
1615 rcu_assign_pointer(t->trie, NULL);
1616
1617 free_leaf(l);
1618 }
1619
1620 /*
1621 * Caller must hold RTNL.
1622 */
1623 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1624 {
1625 struct trie *t = (struct trie *) tb->tb_data;
1626 u32 key, mask;
1627 int plen = cfg->fc_dst_len;
1628 u8 tos = cfg->fc_tos;
1629 struct fib_alias *fa, *fa_to_delete;
1630 struct list_head *fa_head;
1631 struct leaf *l;
1632 struct leaf_info *li;
1633
1634 if (plen > 32)
1635 return -EINVAL;
1636
1637 key = ntohl(cfg->fc_dst);
1638 mask = ntohl(inet_make_mask(plen));
1639
1640 if (key & ~mask)
1641 return -EINVAL;
1642
1643 key = key & mask;
1644 l = fib_find_node(t, key);
1645
1646 if (!l)
1647 return -ESRCH;
1648
1649 fa_head = get_fa_head(l, plen);
1650 fa = fib_find_alias(fa_head, tos, 0);
1651
1652 if (!fa)
1653 return -ESRCH;
1654
1655 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1656
1657 fa_to_delete = NULL;
1658 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1659 list_for_each_entry_continue(fa, fa_head, fa_list) {
1660 struct fib_info *fi = fa->fa_info;
1661
1662 if (fa->fa_tos != tos)
1663 break;
1664
1665 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1666 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1667 fa->fa_scope == cfg->fc_scope) &&
1668 (!cfg->fc_protocol ||
1669 fi->fib_protocol == cfg->fc_protocol) &&
1670 fib_nh_match(cfg, fi) == 0) {
1671 fa_to_delete = fa;
1672 break;
1673 }
1674 }
1675
1676 if (!fa_to_delete)
1677 return -ESRCH;
1678
1679 fa = fa_to_delete;
1680 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1681 &cfg->fc_nlinfo, 0);
1682
1683 l = fib_find_node(t, key);
1684 li = find_leaf_info(l, plen);
1685
1686 list_del_rcu(&fa->fa_list);
1687
1688 if (list_empty(fa_head)) {
1689 hlist_del_rcu(&li->hlist);
1690 free_leaf_info(li);
1691 }
1692
1693 if (hlist_empty(&l->list))
1694 trie_leaf_remove(t, l);
1695
1696 if (fa->fa_state & FA_S_ACCESSED)
1697 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1698
1699 fib_release_info(fa->fa_info);
1700 alias_free_mem_rcu(fa);
1701 return 0;
1702 }
1703
1704 static int trie_flush_list(struct list_head *head)
1705 {
1706 struct fib_alias *fa, *fa_node;
1707 int found = 0;
1708
1709 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1710 struct fib_info *fi = fa->fa_info;
1711
1712 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1713 list_del_rcu(&fa->fa_list);
1714 fib_release_info(fa->fa_info);
1715 alias_free_mem_rcu(fa);
1716 found++;
1717 }
1718 }
1719 return found;
1720 }
1721
1722 static int trie_flush_leaf(struct leaf *l)
1723 {
1724 int found = 0;
1725 struct hlist_head *lih = &l->list;
1726 struct hlist_node *node, *tmp;
1727 struct leaf_info *li = NULL;
1728
1729 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1730 found += trie_flush_list(&li->falh);
1731
1732 if (list_empty(&li->falh)) {
1733 hlist_del_rcu(&li->hlist);
1734 free_leaf_info(li);
1735 }
1736 }
1737 return found;
1738 }
1739
1740 /*
1741 * Scan for the next right leaf starting at node p->child[idx]
1742 * Since we have back pointer, no recursion necessary.
1743 */
1744 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1745 {
1746 do {
1747 t_key idx;
1748
1749 if (c)
1750 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1751 else
1752 idx = 0;
1753
1754 while (idx < 1u << p->bits) {
1755 c = tnode_get_child_rcu(p, idx++);
1756 if (!c)
1757 continue;
1758
1759 if (IS_LEAF(c)) {
1760 prefetch(p->child[idx]);
1761 return (struct leaf *) c;
1762 }
1763
1764 /* Rescan start scanning in new node */
1765 p = (struct tnode *) c;
1766 idx = 0;
1767 }
1768
1769 /* Node empty, walk back up to parent */
1770 c = (struct rt_trie_node *) p;
1771 } while ((p = node_parent_rcu(c)) != NULL);
1772
1773 return NULL; /* Root of trie */
1774 }
1775
1776 static struct leaf *trie_firstleaf(struct trie *t)
1777 {
1778 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1779
1780 if (!n)
1781 return NULL;
1782
1783 if (IS_LEAF(n)) /* trie is just a leaf */
1784 return (struct leaf *) n;
1785
1786 return leaf_walk_rcu(n, NULL);
1787 }
1788
1789 static struct leaf *trie_nextleaf(struct leaf *l)
1790 {
1791 struct rt_trie_node *c = (struct rt_trie_node *) l;
1792 struct tnode *p = node_parent_rcu(c);
1793
1794 if (!p)
1795 return NULL; /* trie with just one leaf */
1796
1797 return leaf_walk_rcu(p, c);
1798 }
1799
1800 static struct leaf *trie_leafindex(struct trie *t, int index)
1801 {
1802 struct leaf *l = trie_firstleaf(t);
1803
1804 while (l && index-- > 0)
1805 l = trie_nextleaf(l);
1806
1807 return l;
1808 }
1809
1810
1811 /*
1812 * Caller must hold RTNL.
1813 */
1814 int fib_table_flush(struct fib_table *tb)
1815 {
1816 struct trie *t = (struct trie *) tb->tb_data;
1817 struct leaf *l, *ll = NULL;
1818 int found = 0;
1819
1820 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1821 found += trie_flush_leaf(l);
1822
1823 if (ll && hlist_empty(&ll->list))
1824 trie_leaf_remove(t, ll);
1825 ll = l;
1826 }
1827
1828 if (ll && hlist_empty(&ll->list))
1829 trie_leaf_remove(t, ll);
1830
1831 pr_debug("trie_flush found=%d\n", found);
1832 return found;
1833 }
1834
1835 void fib_free_table(struct fib_table *tb)
1836 {
1837 kfree(tb);
1838 }
1839
1840 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1841 struct fib_table *tb,
1842 struct sk_buff *skb, struct netlink_callback *cb)
1843 {
1844 int i, s_i;
1845 struct fib_alias *fa;
1846 __be32 xkey = htonl(key);
1847
1848 s_i = cb->args[5];
1849 i = 0;
1850
1851 /* rcu_read_lock is hold by caller */
1852
1853 list_for_each_entry_rcu(fa, fah, fa_list) {
1854 if (i < s_i) {
1855 i++;
1856 continue;
1857 }
1858
1859 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1860 cb->nlh->nlmsg_seq,
1861 RTM_NEWROUTE,
1862 tb->tb_id,
1863 fa->fa_type,
1864 fa->fa_scope,
1865 xkey,
1866 plen,
1867 fa->fa_tos,
1868 fa->fa_info, NLM_F_MULTI) < 0) {
1869 cb->args[5] = i;
1870 return -1;
1871 }
1872 i++;
1873 }
1874 cb->args[5] = i;
1875 return skb->len;
1876 }
1877
1878 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1879 struct sk_buff *skb, struct netlink_callback *cb)
1880 {
1881 struct leaf_info *li;
1882 struct hlist_node *node;
1883 int i, s_i;
1884
1885 s_i = cb->args[4];
1886 i = 0;
1887
1888 /* rcu_read_lock is hold by caller */
1889 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1890 if (i < s_i) {
1891 i++;
1892 continue;
1893 }
1894
1895 if (i > s_i)
1896 cb->args[5] = 0;
1897
1898 if (list_empty(&li->falh))
1899 continue;
1900
1901 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1902 cb->args[4] = i;
1903 return -1;
1904 }
1905 i++;
1906 }
1907
1908 cb->args[4] = i;
1909 return skb->len;
1910 }
1911
1912 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1913 struct netlink_callback *cb)
1914 {
1915 struct leaf *l;
1916 struct trie *t = (struct trie *) tb->tb_data;
1917 t_key key = cb->args[2];
1918 int count = cb->args[3];
1919
1920 rcu_read_lock();
1921 /* Dump starting at last key.
1922 * Note: 0.0.0.0/0 (ie default) is first key.
1923 */
1924 if (count == 0)
1925 l = trie_firstleaf(t);
1926 else {
1927 /* Normally, continue from last key, but if that is missing
1928 * fallback to using slow rescan
1929 */
1930 l = fib_find_node(t, key);
1931 if (!l)
1932 l = trie_leafindex(t, count);
1933 }
1934
1935 while (l) {
1936 cb->args[2] = l->key;
1937 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1938 cb->args[3] = count;
1939 rcu_read_unlock();
1940 return -1;
1941 }
1942
1943 ++count;
1944 l = trie_nextleaf(l);
1945 memset(&cb->args[4], 0,
1946 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1947 }
1948 cb->args[3] = count;
1949 rcu_read_unlock();
1950
1951 return skb->len;
1952 }
1953
1954 void __init fib_trie_init(void)
1955 {
1956 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1957 sizeof(struct fib_alias),
1958 0, SLAB_PANIC, NULL);
1959
1960 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1961 max(sizeof(struct leaf),
1962 sizeof(struct leaf_info)),
1963 0, SLAB_PANIC, NULL);
1964 }
1965
1966
1967 struct fib_table *fib_trie_table(u32 id)
1968 {
1969 struct fib_table *tb;
1970 struct trie *t;
1971
1972 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1973 GFP_KERNEL);
1974 if (tb == NULL)
1975 return NULL;
1976
1977 tb->tb_id = id;
1978 tb->tb_default = -1;
1979
1980 t = (struct trie *) tb->tb_data;
1981 memset(t, 0, sizeof(*t));
1982
1983 if (id == RT_TABLE_LOCAL)
1984 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1985
1986 return tb;
1987 }
1988
1989 #ifdef CONFIG_PROC_FS
1990 /* Depth first Trie walk iterator */
1991 struct fib_trie_iter {
1992 struct seq_net_private p;
1993 struct fib_table *tb;
1994 struct tnode *tnode;
1995 unsigned int index;
1996 unsigned int depth;
1997 };
1998
1999 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2000 {
2001 struct tnode *tn = iter->tnode;
2002 unsigned int cindex = iter->index;
2003 struct tnode *p;
2004
2005 /* A single entry routing table */
2006 if (!tn)
2007 return NULL;
2008
2009 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2010 iter->tnode, iter->index, iter->depth);
2011 rescan:
2012 while (cindex < (1<<tn->bits)) {
2013 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2014
2015 if (n) {
2016 if (IS_LEAF(n)) {
2017 iter->tnode = tn;
2018 iter->index = cindex + 1;
2019 } else {
2020 /* push down one level */
2021 iter->tnode = (struct tnode *) n;
2022 iter->index = 0;
2023 ++iter->depth;
2024 }
2025 return n;
2026 }
2027
2028 ++cindex;
2029 }
2030
2031 /* Current node exhausted, pop back up */
2032 p = node_parent_rcu((struct rt_trie_node *)tn);
2033 if (p) {
2034 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2035 tn = p;
2036 --iter->depth;
2037 goto rescan;
2038 }
2039
2040 /* got root? */
2041 return NULL;
2042 }
2043
2044 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2045 struct trie *t)
2046 {
2047 struct rt_trie_node *n;
2048
2049 if (!t)
2050 return NULL;
2051
2052 n = rcu_dereference(t->trie);
2053 if (!n)
2054 return NULL;
2055
2056 if (IS_TNODE(n)) {
2057 iter->tnode = (struct tnode *) n;
2058 iter->index = 0;
2059 iter->depth = 1;
2060 } else {
2061 iter->tnode = NULL;
2062 iter->index = 0;
2063 iter->depth = 0;
2064 }
2065
2066 return n;
2067 }
2068
2069 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2070 {
2071 struct rt_trie_node *n;
2072 struct fib_trie_iter iter;
2073
2074 memset(s, 0, sizeof(*s));
2075
2076 rcu_read_lock();
2077 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2078 if (IS_LEAF(n)) {
2079 struct leaf *l = (struct leaf *)n;
2080 struct leaf_info *li;
2081 struct hlist_node *tmp;
2082
2083 s->leaves++;
2084 s->totdepth += iter.depth;
2085 if (iter.depth > s->maxdepth)
2086 s->maxdepth = iter.depth;
2087
2088 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2089 ++s->prefixes;
2090 } else {
2091 const struct tnode *tn = (const struct tnode *) n;
2092 int i;
2093
2094 s->tnodes++;
2095 if (tn->bits < MAX_STAT_DEPTH)
2096 s->nodesizes[tn->bits]++;
2097
2098 for (i = 0; i < (1<<tn->bits); i++)
2099 if (!tn->child[i])
2100 s->nullpointers++;
2101 }
2102 }
2103 rcu_read_unlock();
2104 }
2105
2106 /*
2107 * This outputs /proc/net/fib_triestats
2108 */
2109 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2110 {
2111 unsigned int i, max, pointers, bytes, avdepth;
2112
2113 if (stat->leaves)
2114 avdepth = stat->totdepth*100 / stat->leaves;
2115 else
2116 avdepth = 0;
2117
2118 seq_printf(seq, "\tAver depth: %u.%02d\n",
2119 avdepth / 100, avdepth % 100);
2120 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2121
2122 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2123 bytes = sizeof(struct leaf) * stat->leaves;
2124
2125 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2126 bytes += sizeof(struct leaf_info) * stat->prefixes;
2127
2128 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2129 bytes += sizeof(struct tnode) * stat->tnodes;
2130
2131 max = MAX_STAT_DEPTH;
2132 while (max > 0 && stat->nodesizes[max-1] == 0)
2133 max--;
2134
2135 pointers = 0;
2136 for (i = 1; i <= max; i++)
2137 if (stat->nodesizes[i] != 0) {
2138 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2139 pointers += (1<<i) * stat->nodesizes[i];
2140 }
2141 seq_putc(seq, '\n');
2142 seq_printf(seq, "\tPointers: %u\n", pointers);
2143
2144 bytes += sizeof(struct rt_trie_node *) * pointers;
2145 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2146 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2147 }
2148
2149 #ifdef CONFIG_IP_FIB_TRIE_STATS
2150 static void trie_show_usage(struct seq_file *seq,
2151 const struct trie_use_stats *stats)
2152 {
2153 seq_printf(seq, "\nCounters:\n---------\n");
2154 seq_printf(seq, "gets = %u\n", stats->gets);
2155 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2156 seq_printf(seq, "semantic match passed = %u\n",
2157 stats->semantic_match_passed);
2158 seq_printf(seq, "semantic match miss = %u\n",
2159 stats->semantic_match_miss);
2160 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2161 seq_printf(seq, "skipped node resize = %u\n\n",
2162 stats->resize_node_skipped);
2163 }
2164 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2165
2166 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2167 {
2168 if (tb->tb_id == RT_TABLE_LOCAL)
2169 seq_puts(seq, "Local:\n");
2170 else if (tb->tb_id == RT_TABLE_MAIN)
2171 seq_puts(seq, "Main:\n");
2172 else
2173 seq_printf(seq, "Id %d:\n", tb->tb_id);
2174 }
2175
2176
2177 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2178 {
2179 struct net *net = (struct net *)seq->private;
2180 unsigned int h;
2181
2182 seq_printf(seq,
2183 "Basic info: size of leaf:"
2184 " %Zd bytes, size of tnode: %Zd bytes.\n",
2185 sizeof(struct leaf), sizeof(struct tnode));
2186
2187 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2188 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2189 struct hlist_node *node;
2190 struct fib_table *tb;
2191
2192 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2193 struct trie *t = (struct trie *) tb->tb_data;
2194 struct trie_stat stat;
2195
2196 if (!t)
2197 continue;
2198
2199 fib_table_print(seq, tb);
2200
2201 trie_collect_stats(t, &stat);
2202 trie_show_stats(seq, &stat);
2203 #ifdef CONFIG_IP_FIB_TRIE_STATS
2204 trie_show_usage(seq, &t->stats);
2205 #endif
2206 }
2207 }
2208
2209 return 0;
2210 }
2211
2212 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2213 {
2214 return single_open_net(inode, file, fib_triestat_seq_show);
2215 }
2216
2217 static const struct file_operations fib_triestat_fops = {
2218 .owner = THIS_MODULE,
2219 .open = fib_triestat_seq_open,
2220 .read = seq_read,
2221 .llseek = seq_lseek,
2222 .release = single_release_net,
2223 };
2224
2225 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2226 {
2227 struct fib_trie_iter *iter = seq->private;
2228 struct net *net = seq_file_net(seq);
2229 loff_t idx = 0;
2230 unsigned int h;
2231
2232 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2233 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2234 struct hlist_node *node;
2235 struct fib_table *tb;
2236
2237 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2238 struct rt_trie_node *n;
2239
2240 for (n = fib_trie_get_first(iter,
2241 (struct trie *) tb->tb_data);
2242 n; n = fib_trie_get_next(iter))
2243 if (pos == idx++) {
2244 iter->tb = tb;
2245 return n;
2246 }
2247 }
2248 }
2249
2250 return NULL;
2251 }
2252
2253 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2254 __acquires(RCU)
2255 {
2256 rcu_read_lock();
2257 return fib_trie_get_idx(seq, *pos);
2258 }
2259
2260 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2261 {
2262 struct fib_trie_iter *iter = seq->private;
2263 struct net *net = seq_file_net(seq);
2264 struct fib_table *tb = iter->tb;
2265 struct hlist_node *tb_node;
2266 unsigned int h;
2267 struct rt_trie_node *n;
2268
2269 ++*pos;
2270 /* next node in same table */
2271 n = fib_trie_get_next(iter);
2272 if (n)
2273 return n;
2274
2275 /* walk rest of this hash chain */
2276 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2277 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2278 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2279 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2280 if (n)
2281 goto found;
2282 }
2283
2284 /* new hash chain */
2285 while (++h < FIB_TABLE_HASHSZ) {
2286 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2287 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2288 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2289 if (n)
2290 goto found;
2291 }
2292 }
2293 return NULL;
2294
2295 found:
2296 iter->tb = tb;
2297 return n;
2298 }
2299
2300 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2301 __releases(RCU)
2302 {
2303 rcu_read_unlock();
2304 }
2305
2306 static void seq_indent(struct seq_file *seq, int n)
2307 {
2308 while (n-- > 0)
2309 seq_puts(seq, " ");
2310 }
2311
2312 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2313 {
2314 switch (s) {
2315 case RT_SCOPE_UNIVERSE: return "universe";
2316 case RT_SCOPE_SITE: return "site";
2317 case RT_SCOPE_LINK: return "link";
2318 case RT_SCOPE_HOST: return "host";
2319 case RT_SCOPE_NOWHERE: return "nowhere";
2320 default:
2321 snprintf(buf, len, "scope=%d", s);
2322 return buf;
2323 }
2324 }
2325
2326 static const char *const rtn_type_names[__RTN_MAX] = {
2327 [RTN_UNSPEC] = "UNSPEC",
2328 [RTN_UNICAST] = "UNICAST",
2329 [RTN_LOCAL] = "LOCAL",
2330 [RTN_BROADCAST] = "BROADCAST",
2331 [RTN_ANYCAST] = "ANYCAST",
2332 [RTN_MULTICAST] = "MULTICAST",
2333 [RTN_BLACKHOLE] = "BLACKHOLE",
2334 [RTN_UNREACHABLE] = "UNREACHABLE",
2335 [RTN_PROHIBIT] = "PROHIBIT",
2336 [RTN_THROW] = "THROW",
2337 [RTN_NAT] = "NAT",
2338 [RTN_XRESOLVE] = "XRESOLVE",
2339 };
2340
2341 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2342 {
2343 if (t < __RTN_MAX && rtn_type_names[t])
2344 return rtn_type_names[t];
2345 snprintf(buf, len, "type %u", t);
2346 return buf;
2347 }
2348
2349 /* Pretty print the trie */
2350 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2351 {
2352 const struct fib_trie_iter *iter = seq->private;
2353 struct rt_trie_node *n = v;
2354
2355 if (!node_parent_rcu(n))
2356 fib_table_print(seq, iter->tb);
2357
2358 if (IS_TNODE(n)) {
2359 struct tnode *tn = (struct tnode *) n;
2360 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2361
2362 seq_indent(seq, iter->depth-1);
2363 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2364 &prf, tn->pos, tn->bits, tn->full_children,
2365 tn->empty_children);
2366
2367 } else {
2368 struct leaf *l = (struct leaf *) n;
2369 struct leaf_info *li;
2370 struct hlist_node *node;
2371 __be32 val = htonl(l->key);
2372
2373 seq_indent(seq, iter->depth);
2374 seq_printf(seq, " |-- %pI4\n", &val);
2375
2376 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2377 struct fib_alias *fa;
2378
2379 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2380 char buf1[32], buf2[32];
2381
2382 seq_indent(seq, iter->depth+1);
2383 seq_printf(seq, " /%d %s %s", li->plen,
2384 rtn_scope(buf1, sizeof(buf1),
2385 fa->fa_scope),
2386 rtn_type(buf2, sizeof(buf2),
2387 fa->fa_type));
2388 if (fa->fa_tos)
2389 seq_printf(seq, " tos=%d", fa->fa_tos);
2390 seq_putc(seq, '\n');
2391 }
2392 }
2393 }
2394
2395 return 0;
2396 }
2397
2398 static const struct seq_operations fib_trie_seq_ops = {
2399 .start = fib_trie_seq_start,
2400 .next = fib_trie_seq_next,
2401 .stop = fib_trie_seq_stop,
2402 .show = fib_trie_seq_show,
2403 };
2404
2405 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2406 {
2407 return seq_open_net(inode, file, &fib_trie_seq_ops,
2408 sizeof(struct fib_trie_iter));
2409 }
2410
2411 static const struct file_operations fib_trie_fops = {
2412 .owner = THIS_MODULE,
2413 .open = fib_trie_seq_open,
2414 .read = seq_read,
2415 .llseek = seq_lseek,
2416 .release = seq_release_net,
2417 };
2418
2419 struct fib_route_iter {
2420 struct seq_net_private p;
2421 struct trie *main_trie;
2422 loff_t pos;
2423 t_key key;
2424 };
2425
2426 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2427 {
2428 struct leaf *l = NULL;
2429 struct trie *t = iter->main_trie;
2430
2431 /* use cache location of last found key */
2432 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2433 pos -= iter->pos;
2434 else {
2435 iter->pos = 0;
2436 l = trie_firstleaf(t);
2437 }
2438
2439 while (l && pos-- > 0) {
2440 iter->pos++;
2441 l = trie_nextleaf(l);
2442 }
2443
2444 if (l)
2445 iter->key = pos; /* remember it */
2446 else
2447 iter->pos = 0; /* forget it */
2448
2449 return l;
2450 }
2451
2452 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2453 __acquires(RCU)
2454 {
2455 struct fib_route_iter *iter = seq->private;
2456 struct fib_table *tb;
2457
2458 rcu_read_lock();
2459 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2460 if (!tb)
2461 return NULL;
2462
2463 iter->main_trie = (struct trie *) tb->tb_data;
2464 if (*pos == 0)
2465 return SEQ_START_TOKEN;
2466 else
2467 return fib_route_get_idx(iter, *pos - 1);
2468 }
2469
2470 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2471 {
2472 struct fib_route_iter *iter = seq->private;
2473 struct leaf *l = v;
2474
2475 ++*pos;
2476 if (v == SEQ_START_TOKEN) {
2477 iter->pos = 0;
2478 l = trie_firstleaf(iter->main_trie);
2479 } else {
2480 iter->pos++;
2481 l = trie_nextleaf(l);
2482 }
2483
2484 if (l)
2485 iter->key = l->key;
2486 else
2487 iter->pos = 0;
2488 return l;
2489 }
2490
2491 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2492 __releases(RCU)
2493 {
2494 rcu_read_unlock();
2495 }
2496
2497 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2498 {
2499 unsigned int flags = 0;
2500
2501 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2502 flags = RTF_REJECT;
2503 if (fi && fi->fib_nh->nh_gw)
2504 flags |= RTF_GATEWAY;
2505 if (mask == htonl(0xFFFFFFFF))
2506 flags |= RTF_HOST;
2507 flags |= RTF_UP;
2508 return flags;
2509 }
2510
2511 /*
2512 * This outputs /proc/net/route.
2513 * The format of the file is not supposed to be changed
2514 * and needs to be same as fib_hash output to avoid breaking
2515 * legacy utilities
2516 */
2517 static int fib_route_seq_show(struct seq_file *seq, void *v)
2518 {
2519 struct leaf *l = v;
2520 struct leaf_info *li;
2521 struct hlist_node *node;
2522
2523 if (v == SEQ_START_TOKEN) {
2524 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2525 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2526 "\tWindow\tIRTT");
2527 return 0;
2528 }
2529
2530 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2531 struct fib_alias *fa;
2532 __be32 mask, prefix;
2533
2534 mask = inet_make_mask(li->plen);
2535 prefix = htonl(l->key);
2536
2537 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2538 const struct fib_info *fi = fa->fa_info;
2539 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2540 int len;
2541
2542 if (fa->fa_type == RTN_BROADCAST
2543 || fa->fa_type == RTN_MULTICAST)
2544 continue;
2545
2546 if (fi)
2547 seq_printf(seq,
2548 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2549 "%d\t%08X\t%d\t%u\t%u%n",
2550 fi->fib_dev ? fi->fib_dev->name : "*",
2551 prefix,
2552 fi->fib_nh->nh_gw, flags, 0, 0,
2553 fi->fib_priority,
2554 mask,
2555 (fi->fib_advmss ?
2556 fi->fib_advmss + 40 : 0),
2557 fi->fib_window,
2558 fi->fib_rtt >> 3, &len);
2559 else
2560 seq_printf(seq,
2561 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
2563 prefix, 0, flags, 0, 0, 0,
2564 mask, 0, 0, 0, &len);
2565
2566 seq_printf(seq, "%*s\n", 127 - len, "");
2567 }
2568 }
2569
2570 return 0;
2571 }
2572
2573 static const struct seq_operations fib_route_seq_ops = {
2574 .start = fib_route_seq_start,
2575 .next = fib_route_seq_next,
2576 .stop = fib_route_seq_stop,
2577 .show = fib_route_seq_show,
2578 };
2579
2580 static int fib_route_seq_open(struct inode *inode, struct file *file)
2581 {
2582 return seq_open_net(inode, file, &fib_route_seq_ops,
2583 sizeof(struct fib_route_iter));
2584 }
2585
2586 static const struct file_operations fib_route_fops = {
2587 .owner = THIS_MODULE,
2588 .open = fib_route_seq_open,
2589 .read = seq_read,
2590 .llseek = seq_lseek,
2591 .release = seq_release_net,
2592 };
2593
2594 int __net_init fib_proc_init(struct net *net)
2595 {
2596 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2597 goto out1;
2598
2599 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2600 &fib_triestat_fops))
2601 goto out2;
2602
2603 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2604 goto out3;
2605
2606 return 0;
2607
2608 out3:
2609 proc_net_remove(net, "fib_triestat");
2610 out2:
2611 proc_net_remove(net, "fib_trie");
2612 out1:
2613 return -ENOMEM;
2614 }
2615
2616 void __net_exit fib_proc_exit(struct net *net)
2617 {
2618 proc_net_remove(net, "fib_trie");
2619 proc_net_remove(net, "fib_triestat");
2620 proc_net_remove(net, "route");
2621 }
2622
2623 #endif /* CONFIG_PROC_FS */
This page took 0.102304 seconds and 5 git commands to generate.