Btrfs: do error checking in btrfs_del_csums
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 struct rcu_head rcu;
113 int plen;
114 struct list_head falh;
115 };
116
117 struct tnode {
118 unsigned long parent;
119 t_key key;
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
127 struct tnode *tnode_free;
128 };
129 struct node *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct node *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
161 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 /* tnodes to free after resize(); protected by RTNL */
167 static struct tnode *tnode_free_head;
168 static size_t tnode_free_size;
169
170 /*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175 static const int sync_pages = 128;
176
177 static struct kmem_cache *fn_alias_kmem __read_mostly;
178 static struct kmem_cache *trie_leaf_kmem __read_mostly;
179
180 static inline struct tnode *node_parent(struct node *node)
181 {
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183 }
184
185 static inline struct tnode *node_parent_rcu(struct node *node)
186 {
187 struct tnode *ret = node_parent(node);
188
189 return rcu_dereference_check(ret,
190 rcu_read_lock_held() ||
191 lockdep_rtnl_is_held());
192 }
193
194 /* Same as rcu_assign_pointer
195 * but that macro() assumes that value is a pointer.
196 */
197 static inline void node_set_parent(struct node *node, struct tnode *ptr)
198 {
199 smp_wmb();
200 node->parent = (unsigned long)ptr | NODE_TYPE(node);
201 }
202
203 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
204 {
205 BUG_ON(i >= 1U << tn->bits);
206
207 return tn->child[i];
208 }
209
210 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
211 {
212 struct node *ret = tnode_get_child(tn, i);
213
214 return rcu_dereference_check(ret,
215 rcu_read_lock_held() ||
216 lockdep_rtnl_is_held());
217 }
218
219 static inline int tnode_child_length(const struct tnode *tn)
220 {
221 return 1 << tn->bits;
222 }
223
224 static inline t_key mask_pfx(t_key k, unsigned short l)
225 {
226 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
227 }
228
229 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
230 {
231 if (offset < KEYLENGTH)
232 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
233 else
234 return 0;
235 }
236
237 static inline int tkey_equals(t_key a, t_key b)
238 {
239 return a == b;
240 }
241
242 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
243 {
244 if (bits == 0 || offset >= KEYLENGTH)
245 return 1;
246 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
247 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
248 }
249
250 static inline int tkey_mismatch(t_key a, int offset, t_key b)
251 {
252 t_key diff = a ^ b;
253 int i = offset;
254
255 if (!diff)
256 return 0;
257 while ((diff << i) >> (KEYLENGTH-1) == 0)
258 i++;
259 return i;
260 }
261
262 /*
263 To understand this stuff, an understanding of keys and all their bits is
264 necessary. Every node in the trie has a key associated with it, but not
265 all of the bits in that key are significant.
266
267 Consider a node 'n' and its parent 'tp'.
268
269 If n is a leaf, every bit in its key is significant. Its presence is
270 necessitated by path compression, since during a tree traversal (when
271 searching for a leaf - unless we are doing an insertion) we will completely
272 ignore all skipped bits we encounter. Thus we need to verify, at the end of
273 a potentially successful search, that we have indeed been walking the
274 correct key path.
275
276 Note that we can never "miss" the correct key in the tree if present by
277 following the wrong path. Path compression ensures that segments of the key
278 that are the same for all keys with a given prefix are skipped, but the
279 skipped part *is* identical for each node in the subtrie below the skipped
280 bit! trie_insert() in this implementation takes care of that - note the
281 call to tkey_sub_equals() in trie_insert().
282
283 if n is an internal node - a 'tnode' here, the various parts of its key
284 have many different meanings.
285
286 Example:
287 _________________________________________________________________
288 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
289 -----------------------------------------------------------------
290 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
291
292 _________________________________________________________________
293 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
294 -----------------------------------------------------------------
295 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
296
297 tp->pos = 7
298 tp->bits = 3
299 n->pos = 15
300 n->bits = 4
301
302 First, let's just ignore the bits that come before the parent tp, that is
303 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
304 not use them for anything.
305
306 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
307 index into the parent's child array. That is, they will be used to find
308 'n' among tp's children.
309
310 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
311 for the node n.
312
313 All the bits we have seen so far are significant to the node n. The rest
314 of the bits are really not needed or indeed known in n->key.
315
316 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
317 n's child array, and will of course be different for each child.
318
319
320 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
321 at this point.
322
323 */
324
325 static inline void check_tnode(const struct tnode *tn)
326 {
327 WARN_ON(tn && tn->pos+tn->bits > 32);
328 }
329
330 static const int halve_threshold = 25;
331 static const int inflate_threshold = 50;
332 static const int halve_threshold_root = 15;
333 static const int inflate_threshold_root = 30;
334
335 static void __alias_free_mem(struct rcu_head *head)
336 {
337 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
338 kmem_cache_free(fn_alias_kmem, fa);
339 }
340
341 static inline void alias_free_mem_rcu(struct fib_alias *fa)
342 {
343 call_rcu(&fa->rcu, __alias_free_mem);
344 }
345
346 static void __leaf_free_rcu(struct rcu_head *head)
347 {
348 struct leaf *l = container_of(head, struct leaf, rcu);
349 kmem_cache_free(trie_leaf_kmem, l);
350 }
351
352 static inline void free_leaf(struct leaf *l)
353 {
354 call_rcu_bh(&l->rcu, __leaf_free_rcu);
355 }
356
357 static void __leaf_info_free_rcu(struct rcu_head *head)
358 {
359 kfree(container_of(head, struct leaf_info, rcu));
360 }
361
362 static inline void free_leaf_info(struct leaf_info *leaf)
363 {
364 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
365 }
366
367 static struct tnode *tnode_alloc(size_t size)
368 {
369 if (size <= PAGE_SIZE)
370 return kzalloc(size, GFP_KERNEL);
371 else
372 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
373 }
374
375 static void __tnode_vfree(struct work_struct *arg)
376 {
377 struct tnode *tn = container_of(arg, struct tnode, work);
378 vfree(tn);
379 }
380
381 static void __tnode_free_rcu(struct rcu_head *head)
382 {
383 struct tnode *tn = container_of(head, struct tnode, rcu);
384 size_t size = sizeof(struct tnode) +
385 (sizeof(struct node *) << tn->bits);
386
387 if (size <= PAGE_SIZE)
388 kfree(tn);
389 else {
390 INIT_WORK(&tn->work, __tnode_vfree);
391 schedule_work(&tn->work);
392 }
393 }
394
395 static inline void tnode_free(struct tnode *tn)
396 {
397 if (IS_LEAF(tn))
398 free_leaf((struct leaf *) tn);
399 else
400 call_rcu(&tn->rcu, __tnode_free_rcu);
401 }
402
403 static void tnode_free_safe(struct tnode *tn)
404 {
405 BUG_ON(IS_LEAF(tn));
406 tn->tnode_free = tnode_free_head;
407 tnode_free_head = tn;
408 tnode_free_size += sizeof(struct tnode) +
409 (sizeof(struct node *) << tn->bits);
410 }
411
412 static void tnode_free_flush(void)
413 {
414 struct tnode *tn;
415
416 while ((tn = tnode_free_head)) {
417 tnode_free_head = tn->tnode_free;
418 tn->tnode_free = NULL;
419 tnode_free(tn);
420 }
421
422 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
423 tnode_free_size = 0;
424 synchronize_rcu();
425 }
426 }
427
428 static struct leaf *leaf_new(void)
429 {
430 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
431 if (l) {
432 l->parent = T_LEAF;
433 INIT_HLIST_HEAD(&l->list);
434 }
435 return l;
436 }
437
438 static struct leaf_info *leaf_info_new(int plen)
439 {
440 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
441 if (li) {
442 li->plen = plen;
443 INIT_LIST_HEAD(&li->falh);
444 }
445 return li;
446 }
447
448 static struct tnode *tnode_new(t_key key, int pos, int bits)
449 {
450 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
451 struct tnode *tn = tnode_alloc(sz);
452
453 if (tn) {
454 tn->parent = T_TNODE;
455 tn->pos = pos;
456 tn->bits = bits;
457 tn->key = key;
458 tn->full_children = 0;
459 tn->empty_children = 1<<bits;
460 }
461
462 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
463 (unsigned long) (sizeof(struct node) << bits));
464 return tn;
465 }
466
467 /*
468 * Check whether a tnode 'n' is "full", i.e. it is an internal node
469 * and no bits are skipped. See discussion in dyntree paper p. 6
470 */
471
472 static inline int tnode_full(const struct tnode *tn, const struct node *n)
473 {
474 if (n == NULL || IS_LEAF(n))
475 return 0;
476
477 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
478 }
479
480 static inline void put_child(struct trie *t, struct tnode *tn, int i,
481 struct node *n)
482 {
483 tnode_put_child_reorg(tn, i, n, -1);
484 }
485
486 /*
487 * Add a child at position i overwriting the old value.
488 * Update the value of full_children and empty_children.
489 */
490
491 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
492 int wasfull)
493 {
494 struct node *chi = tn->child[i];
495 int isfull;
496
497 BUG_ON(i >= 1<<tn->bits);
498
499 /* update emptyChildren */
500 if (n == NULL && chi != NULL)
501 tn->empty_children++;
502 else if (n != NULL && chi == NULL)
503 tn->empty_children--;
504
505 /* update fullChildren */
506 if (wasfull == -1)
507 wasfull = tnode_full(tn, chi);
508
509 isfull = tnode_full(tn, n);
510 if (wasfull && !isfull)
511 tn->full_children--;
512 else if (!wasfull && isfull)
513 tn->full_children++;
514
515 if (n)
516 node_set_parent(n, tn);
517
518 rcu_assign_pointer(tn->child[i], n);
519 }
520
521 #define MAX_WORK 10
522 static struct node *resize(struct trie *t, struct tnode *tn)
523 {
524 int i;
525 struct tnode *old_tn;
526 int inflate_threshold_use;
527 int halve_threshold_use;
528 int max_work;
529
530 if (!tn)
531 return NULL;
532
533 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
534 tn, inflate_threshold, halve_threshold);
535
536 /* No children */
537 if (tn->empty_children == tnode_child_length(tn)) {
538 tnode_free_safe(tn);
539 return NULL;
540 }
541 /* One child */
542 if (tn->empty_children == tnode_child_length(tn) - 1)
543 goto one_child;
544 /*
545 * Double as long as the resulting node has a number of
546 * nonempty nodes that are above the threshold.
547 */
548
549 /*
550 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
551 * the Helsinki University of Technology and Matti Tikkanen of Nokia
552 * Telecommunications, page 6:
553 * "A node is doubled if the ratio of non-empty children to all
554 * children in the *doubled* node is at least 'high'."
555 *
556 * 'high' in this instance is the variable 'inflate_threshold'. It
557 * is expressed as a percentage, so we multiply it with
558 * tnode_child_length() and instead of multiplying by 2 (since the
559 * child array will be doubled by inflate()) and multiplying
560 * the left-hand side by 100 (to handle the percentage thing) we
561 * multiply the left-hand side by 50.
562 *
563 * The left-hand side may look a bit weird: tnode_child_length(tn)
564 * - tn->empty_children is of course the number of non-null children
565 * in the current node. tn->full_children is the number of "full"
566 * children, that is non-null tnodes with a skip value of 0.
567 * All of those will be doubled in the resulting inflated tnode, so
568 * we just count them one extra time here.
569 *
570 * A clearer way to write this would be:
571 *
572 * to_be_doubled = tn->full_children;
573 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
574 * tn->full_children;
575 *
576 * new_child_length = tnode_child_length(tn) * 2;
577 *
578 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
579 * new_child_length;
580 * if (new_fill_factor >= inflate_threshold)
581 *
582 * ...and so on, tho it would mess up the while () loop.
583 *
584 * anyway,
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
586 * inflate_threshold
587 *
588 * avoid a division:
589 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
590 * inflate_threshold * new_child_length
591 *
592 * expand not_to_be_doubled and to_be_doubled, and shorten:
593 * 100 * (tnode_child_length(tn) - tn->empty_children +
594 * tn->full_children) >= inflate_threshold * new_child_length
595 *
596 * expand new_child_length:
597 * 100 * (tnode_child_length(tn) - tn->empty_children +
598 * tn->full_children) >=
599 * inflate_threshold * tnode_child_length(tn) * 2
600 *
601 * shorten again:
602 * 50 * (tn->full_children + tnode_child_length(tn) -
603 * tn->empty_children) >= inflate_threshold *
604 * tnode_child_length(tn)
605 *
606 */
607
608 check_tnode(tn);
609
610 /* Keep root node larger */
611
612 if (!node_parent((struct node*) tn)) {
613 inflate_threshold_use = inflate_threshold_root;
614 halve_threshold_use = halve_threshold_root;
615 }
616 else {
617 inflate_threshold_use = inflate_threshold;
618 halve_threshold_use = halve_threshold;
619 }
620
621 max_work = MAX_WORK;
622 while ((tn->full_children > 0 && max_work-- &&
623 50 * (tn->full_children + tnode_child_length(tn)
624 - tn->empty_children)
625 >= inflate_threshold_use * tnode_child_length(tn))) {
626
627 old_tn = tn;
628 tn = inflate(t, tn);
629
630 if (IS_ERR(tn)) {
631 tn = old_tn;
632 #ifdef CONFIG_IP_FIB_TRIE_STATS
633 t->stats.resize_node_skipped++;
634 #endif
635 break;
636 }
637 }
638
639 check_tnode(tn);
640
641 /* Return if at least one inflate is run */
642 if( max_work != MAX_WORK)
643 return (struct node *) tn;
644
645 /*
646 * Halve as long as the number of empty children in this
647 * node is above threshold.
648 */
649
650 max_work = MAX_WORK;
651 while (tn->bits > 1 && max_work-- &&
652 100 * (tnode_child_length(tn) - tn->empty_children) <
653 halve_threshold_use * tnode_child_length(tn)) {
654
655 old_tn = tn;
656 tn = halve(t, tn);
657 if (IS_ERR(tn)) {
658 tn = old_tn;
659 #ifdef CONFIG_IP_FIB_TRIE_STATS
660 t->stats.resize_node_skipped++;
661 #endif
662 break;
663 }
664 }
665
666
667 /* Only one child remains */
668 if (tn->empty_children == tnode_child_length(tn) - 1) {
669 one_child:
670 for (i = 0; i < tnode_child_length(tn); i++) {
671 struct node *n;
672
673 n = tn->child[i];
674 if (!n)
675 continue;
676
677 /* compress one level */
678
679 node_set_parent(n, NULL);
680 tnode_free_safe(tn);
681 return n;
682 }
683 }
684 return (struct node *) tn;
685 }
686
687 static struct tnode *inflate(struct trie *t, struct tnode *tn)
688 {
689 struct tnode *oldtnode = tn;
690 int olen = tnode_child_length(tn);
691 int i;
692
693 pr_debug("In inflate\n");
694
695 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
696
697 if (!tn)
698 return ERR_PTR(-ENOMEM);
699
700 /*
701 * Preallocate and store tnodes before the actual work so we
702 * don't get into an inconsistent state if memory allocation
703 * fails. In case of failure we return the oldnode and inflate
704 * of tnode is ignored.
705 */
706
707 for (i = 0; i < olen; i++) {
708 struct tnode *inode;
709
710 inode = (struct tnode *) tnode_get_child(oldtnode, i);
711 if (inode &&
712 IS_TNODE(inode) &&
713 inode->pos == oldtnode->pos + oldtnode->bits &&
714 inode->bits > 1) {
715 struct tnode *left, *right;
716 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
717
718 left = tnode_new(inode->key&(~m), inode->pos + 1,
719 inode->bits - 1);
720 if (!left)
721 goto nomem;
722
723 right = tnode_new(inode->key|m, inode->pos + 1,
724 inode->bits - 1);
725
726 if (!right) {
727 tnode_free(left);
728 goto nomem;
729 }
730
731 put_child(t, tn, 2*i, (struct node *) left);
732 put_child(t, tn, 2*i+1, (struct node *) right);
733 }
734 }
735
736 for (i = 0; i < olen; i++) {
737 struct tnode *inode;
738 struct node *node = tnode_get_child(oldtnode, i);
739 struct tnode *left, *right;
740 int size, j;
741
742 /* An empty child */
743 if (node == NULL)
744 continue;
745
746 /* A leaf or an internal node with skipped bits */
747
748 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
749 tn->pos + tn->bits - 1) {
750 if (tkey_extract_bits(node->key,
751 oldtnode->pos + oldtnode->bits,
752 1) == 0)
753 put_child(t, tn, 2*i, node);
754 else
755 put_child(t, tn, 2*i+1, node);
756 continue;
757 }
758
759 /* An internal node with two children */
760 inode = (struct tnode *) node;
761
762 if (inode->bits == 1) {
763 put_child(t, tn, 2*i, inode->child[0]);
764 put_child(t, tn, 2*i+1, inode->child[1]);
765
766 tnode_free_safe(inode);
767 continue;
768 }
769
770 /* An internal node with more than two children */
771
772 /* We will replace this node 'inode' with two new
773 * ones, 'left' and 'right', each with half of the
774 * original children. The two new nodes will have
775 * a position one bit further down the key and this
776 * means that the "significant" part of their keys
777 * (see the discussion near the top of this file)
778 * will differ by one bit, which will be "0" in
779 * left's key and "1" in right's key. Since we are
780 * moving the key position by one step, the bit that
781 * we are moving away from - the bit at position
782 * (inode->pos) - is the one that will differ between
783 * left and right. So... we synthesize that bit in the
784 * two new keys.
785 * The mask 'm' below will be a single "one" bit at
786 * the position (inode->pos)
787 */
788
789 /* Use the old key, but set the new significant
790 * bit to zero.
791 */
792
793 left = (struct tnode *) tnode_get_child(tn, 2*i);
794 put_child(t, tn, 2*i, NULL);
795
796 BUG_ON(!left);
797
798 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
799 put_child(t, tn, 2*i+1, NULL);
800
801 BUG_ON(!right);
802
803 size = tnode_child_length(left);
804 for (j = 0; j < size; j++) {
805 put_child(t, left, j, inode->child[j]);
806 put_child(t, right, j, inode->child[j + size]);
807 }
808 put_child(t, tn, 2*i, resize(t, left));
809 put_child(t, tn, 2*i+1, resize(t, right));
810
811 tnode_free_safe(inode);
812 }
813 tnode_free_safe(oldtnode);
814 return tn;
815 nomem:
816 {
817 int size = tnode_child_length(tn);
818 int j;
819
820 for (j = 0; j < size; j++)
821 if (tn->child[j])
822 tnode_free((struct tnode *)tn->child[j]);
823
824 tnode_free(tn);
825
826 return ERR_PTR(-ENOMEM);
827 }
828 }
829
830 static struct tnode *halve(struct trie *t, struct tnode *tn)
831 {
832 struct tnode *oldtnode = tn;
833 struct node *left, *right;
834 int i;
835 int olen = tnode_child_length(tn);
836
837 pr_debug("In halve\n");
838
839 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
840
841 if (!tn)
842 return ERR_PTR(-ENOMEM);
843
844 /*
845 * Preallocate and store tnodes before the actual work so we
846 * don't get into an inconsistent state if memory allocation
847 * fails. In case of failure we return the oldnode and halve
848 * of tnode is ignored.
849 */
850
851 for (i = 0; i < olen; i += 2) {
852 left = tnode_get_child(oldtnode, i);
853 right = tnode_get_child(oldtnode, i+1);
854
855 /* Two nonempty children */
856 if (left && right) {
857 struct tnode *newn;
858
859 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
860
861 if (!newn)
862 goto nomem;
863
864 put_child(t, tn, i/2, (struct node *)newn);
865 }
866
867 }
868
869 for (i = 0; i < olen; i += 2) {
870 struct tnode *newBinNode;
871
872 left = tnode_get_child(oldtnode, i);
873 right = tnode_get_child(oldtnode, i+1);
874
875 /* At least one of the children is empty */
876 if (left == NULL) {
877 if (right == NULL) /* Both are empty */
878 continue;
879 put_child(t, tn, i/2, right);
880 continue;
881 }
882
883 if (right == NULL) {
884 put_child(t, tn, i/2, left);
885 continue;
886 }
887
888 /* Two nonempty children */
889 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
890 put_child(t, tn, i/2, NULL);
891 put_child(t, newBinNode, 0, left);
892 put_child(t, newBinNode, 1, right);
893 put_child(t, tn, i/2, resize(t, newBinNode));
894 }
895 tnode_free_safe(oldtnode);
896 return tn;
897 nomem:
898 {
899 int size = tnode_child_length(tn);
900 int j;
901
902 for (j = 0; j < size; j++)
903 if (tn->child[j])
904 tnode_free((struct tnode *)tn->child[j]);
905
906 tnode_free(tn);
907
908 return ERR_PTR(-ENOMEM);
909 }
910 }
911
912 /* readside must use rcu_read_lock currently dump routines
913 via get_fa_head and dump */
914
915 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
916 {
917 struct hlist_head *head = &l->list;
918 struct hlist_node *node;
919 struct leaf_info *li;
920
921 hlist_for_each_entry_rcu(li, node, head, hlist)
922 if (li->plen == plen)
923 return li;
924
925 return NULL;
926 }
927
928 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
929 {
930 struct leaf_info *li = find_leaf_info(l, plen);
931
932 if (!li)
933 return NULL;
934
935 return &li->falh;
936 }
937
938 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
939 {
940 struct leaf_info *li = NULL, *last = NULL;
941 struct hlist_node *node;
942
943 if (hlist_empty(head)) {
944 hlist_add_head_rcu(&new->hlist, head);
945 } else {
946 hlist_for_each_entry(li, node, head, hlist) {
947 if (new->plen > li->plen)
948 break;
949
950 last = li;
951 }
952 if (last)
953 hlist_add_after_rcu(&last->hlist, &new->hlist);
954 else
955 hlist_add_before_rcu(&new->hlist, &li->hlist);
956 }
957 }
958
959 /* rcu_read_lock needs to be hold by caller from readside */
960
961 static struct leaf *
962 fib_find_node(struct trie *t, u32 key)
963 {
964 int pos;
965 struct tnode *tn;
966 struct node *n;
967
968 pos = 0;
969 n = rcu_dereference_check(t->trie,
970 rcu_read_lock_held() ||
971 lockdep_rtnl_is_held());
972
973 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
974 tn = (struct tnode *) n;
975
976 check_tnode(tn);
977
978 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
979 pos = tn->pos + tn->bits;
980 n = tnode_get_child_rcu(tn,
981 tkey_extract_bits(key,
982 tn->pos,
983 tn->bits));
984 } else
985 break;
986 }
987 /* Case we have found a leaf. Compare prefixes */
988
989 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
990 return (struct leaf *)n;
991
992 return NULL;
993 }
994
995 static void trie_rebalance(struct trie *t, struct tnode *tn)
996 {
997 int wasfull;
998 t_key cindex, key;
999 struct tnode *tp;
1000
1001 key = tn->key;
1002
1003 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
1004 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1005 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1006 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1007
1008 tnode_put_child_reorg((struct tnode *)tp, cindex,
1009 (struct node *)tn, wasfull);
1010
1011 tp = node_parent((struct node *) tn);
1012 if (!tp)
1013 rcu_assign_pointer(t->trie, (struct node *)tn);
1014
1015 tnode_free_flush();
1016 if (!tp)
1017 break;
1018 tn = tp;
1019 }
1020
1021 /* Handle last (top) tnode */
1022 if (IS_TNODE(tn))
1023 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1024
1025 rcu_assign_pointer(t->trie, (struct node *)tn);
1026 tnode_free_flush();
1027 }
1028
1029 /* only used from updater-side */
1030
1031 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1032 {
1033 int pos, newpos;
1034 struct tnode *tp = NULL, *tn = NULL;
1035 struct node *n;
1036 struct leaf *l;
1037 int missbit;
1038 struct list_head *fa_head = NULL;
1039 struct leaf_info *li;
1040 t_key cindex;
1041
1042 pos = 0;
1043 n = t->trie;
1044
1045 /* If we point to NULL, stop. Either the tree is empty and we should
1046 * just put a new leaf in if, or we have reached an empty child slot,
1047 * and we should just put our new leaf in that.
1048 * If we point to a T_TNODE, check if it matches our key. Note that
1049 * a T_TNODE might be skipping any number of bits - its 'pos' need
1050 * not be the parent's 'pos'+'bits'!
1051 *
1052 * If it does match the current key, get pos/bits from it, extract
1053 * the index from our key, push the T_TNODE and walk the tree.
1054 *
1055 * If it doesn't, we have to replace it with a new T_TNODE.
1056 *
1057 * If we point to a T_LEAF, it might or might not have the same key
1058 * as we do. If it does, just change the value, update the T_LEAF's
1059 * value, and return it.
1060 * If it doesn't, we need to replace it with a T_TNODE.
1061 */
1062
1063 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1064 tn = (struct tnode *) n;
1065
1066 check_tnode(tn);
1067
1068 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1069 tp = tn;
1070 pos = tn->pos + tn->bits;
1071 n = tnode_get_child(tn,
1072 tkey_extract_bits(key,
1073 tn->pos,
1074 tn->bits));
1075
1076 BUG_ON(n && node_parent(n) != tn);
1077 } else
1078 break;
1079 }
1080
1081 /*
1082 * n ----> NULL, LEAF or TNODE
1083 *
1084 * tp is n's (parent) ----> NULL or TNODE
1085 */
1086
1087 BUG_ON(tp && IS_LEAF(tp));
1088
1089 /* Case 1: n is a leaf. Compare prefixes */
1090
1091 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1092 l = (struct leaf *) n;
1093 li = leaf_info_new(plen);
1094
1095 if (!li)
1096 return NULL;
1097
1098 fa_head = &li->falh;
1099 insert_leaf_info(&l->list, li);
1100 goto done;
1101 }
1102 l = leaf_new();
1103
1104 if (!l)
1105 return NULL;
1106
1107 l->key = key;
1108 li = leaf_info_new(plen);
1109
1110 if (!li) {
1111 free_leaf(l);
1112 return NULL;
1113 }
1114
1115 fa_head = &li->falh;
1116 insert_leaf_info(&l->list, li);
1117
1118 if (t->trie && n == NULL) {
1119 /* Case 2: n is NULL, and will just insert a new leaf */
1120
1121 node_set_parent((struct node *)l, tp);
1122
1123 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1124 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1125 } else {
1126 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1127 /*
1128 * Add a new tnode here
1129 * first tnode need some special handling
1130 */
1131
1132 if (tp)
1133 pos = tp->pos+tp->bits;
1134 else
1135 pos = 0;
1136
1137 if (n) {
1138 newpos = tkey_mismatch(key, pos, n->key);
1139 tn = tnode_new(n->key, newpos, 1);
1140 } else {
1141 newpos = 0;
1142 tn = tnode_new(key, newpos, 1); /* First tnode */
1143 }
1144
1145 if (!tn) {
1146 free_leaf_info(li);
1147 free_leaf(l);
1148 return NULL;
1149 }
1150
1151 node_set_parent((struct node *)tn, tp);
1152
1153 missbit = tkey_extract_bits(key, newpos, 1);
1154 put_child(t, tn, missbit, (struct node *)l);
1155 put_child(t, tn, 1-missbit, n);
1156
1157 if (tp) {
1158 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1159 put_child(t, (struct tnode *)tp, cindex,
1160 (struct node *)tn);
1161 } else {
1162 rcu_assign_pointer(t->trie, (struct node *)tn);
1163 tp = tn;
1164 }
1165 }
1166
1167 if (tp && tp->pos + tp->bits > 32)
1168 pr_warning("fib_trie"
1169 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1170 tp, tp->pos, tp->bits, key, plen);
1171
1172 /* Rebalance the trie */
1173
1174 trie_rebalance(t, tp);
1175 done:
1176 return fa_head;
1177 }
1178
1179 /*
1180 * Caller must hold RTNL.
1181 */
1182 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1183 {
1184 struct trie *t = (struct trie *) tb->tb_data;
1185 struct fib_alias *fa, *new_fa;
1186 struct list_head *fa_head = NULL;
1187 struct fib_info *fi;
1188 int plen = cfg->fc_dst_len;
1189 u8 tos = cfg->fc_tos;
1190 u32 key, mask;
1191 int err;
1192 struct leaf *l;
1193
1194 if (plen > 32)
1195 return -EINVAL;
1196
1197 key = ntohl(cfg->fc_dst);
1198
1199 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1200
1201 mask = ntohl(inet_make_mask(plen));
1202
1203 if (key & ~mask)
1204 return -EINVAL;
1205
1206 key = key & mask;
1207
1208 fi = fib_create_info(cfg);
1209 if (IS_ERR(fi)) {
1210 err = PTR_ERR(fi);
1211 goto err;
1212 }
1213
1214 l = fib_find_node(t, key);
1215 fa = NULL;
1216
1217 if (l) {
1218 fa_head = get_fa_head(l, plen);
1219 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1220 }
1221
1222 /* Now fa, if non-NULL, points to the first fib alias
1223 * with the same keys [prefix,tos,priority], if such key already
1224 * exists or to the node before which we will insert new one.
1225 *
1226 * If fa is NULL, we will need to allocate a new one and
1227 * insert to the head of f.
1228 *
1229 * If f is NULL, no fib node matched the destination key
1230 * and we need to allocate a new one of those as well.
1231 */
1232
1233 if (fa && fa->fa_tos == tos &&
1234 fa->fa_info->fib_priority == fi->fib_priority) {
1235 struct fib_alias *fa_first, *fa_match;
1236
1237 err = -EEXIST;
1238 if (cfg->fc_nlflags & NLM_F_EXCL)
1239 goto out;
1240
1241 /* We have 2 goals:
1242 * 1. Find exact match for type, scope, fib_info to avoid
1243 * duplicate routes
1244 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1245 */
1246 fa_match = NULL;
1247 fa_first = fa;
1248 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1249 list_for_each_entry_continue(fa, fa_head, fa_list) {
1250 if (fa->fa_tos != tos)
1251 break;
1252 if (fa->fa_info->fib_priority != fi->fib_priority)
1253 break;
1254 if (fa->fa_type == cfg->fc_type &&
1255 fa->fa_scope == cfg->fc_scope &&
1256 fa->fa_info == fi) {
1257 fa_match = fa;
1258 break;
1259 }
1260 }
1261
1262 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1263 struct fib_info *fi_drop;
1264 u8 state;
1265
1266 fa = fa_first;
1267 if (fa_match) {
1268 if (fa == fa_match)
1269 err = 0;
1270 goto out;
1271 }
1272 err = -ENOBUFS;
1273 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1274 if (new_fa == NULL)
1275 goto out;
1276
1277 fi_drop = fa->fa_info;
1278 new_fa->fa_tos = fa->fa_tos;
1279 new_fa->fa_info = fi;
1280 new_fa->fa_type = cfg->fc_type;
1281 new_fa->fa_scope = cfg->fc_scope;
1282 state = fa->fa_state;
1283 new_fa->fa_state = state & ~FA_S_ACCESSED;
1284
1285 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286 alias_free_mem_rcu(fa);
1287
1288 fib_release_info(fi_drop);
1289 if (state & FA_S_ACCESSED)
1290 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1291 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1293
1294 goto succeeded;
1295 }
1296 /* Error if we find a perfect match which
1297 * uses the same scope, type, and nexthop
1298 * information.
1299 */
1300 if (fa_match)
1301 goto out;
1302
1303 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1304 fa = fa_first;
1305 }
1306 err = -ENOENT;
1307 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1308 goto out;
1309
1310 err = -ENOBUFS;
1311 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1312 if (new_fa == NULL)
1313 goto out;
1314
1315 new_fa->fa_info = fi;
1316 new_fa->fa_tos = tos;
1317 new_fa->fa_type = cfg->fc_type;
1318 new_fa->fa_scope = cfg->fc_scope;
1319 new_fa->fa_state = 0;
1320 /*
1321 * Insert new entry to the list.
1322 */
1323
1324 if (!fa_head) {
1325 fa_head = fib_insert_node(t, key, plen);
1326 if (unlikely(!fa_head)) {
1327 err = -ENOMEM;
1328 goto out_free_new_fa;
1329 }
1330 }
1331
1332 list_add_tail_rcu(&new_fa->fa_list,
1333 (fa ? &fa->fa_list : fa_head));
1334
1335 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1336 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1337 &cfg->fc_nlinfo, 0);
1338 succeeded:
1339 return 0;
1340
1341 out_free_new_fa:
1342 kmem_cache_free(fn_alias_kmem, new_fa);
1343 out:
1344 fib_release_info(fi);
1345 err:
1346 return err;
1347 }
1348
1349 /* should be called with rcu_read_lock */
1350 static int check_leaf(struct trie *t, struct leaf *l,
1351 t_key key, const struct flowi *flp,
1352 struct fib_result *res)
1353 {
1354 struct leaf_info *li;
1355 struct hlist_head *hhead = &l->list;
1356 struct hlist_node *node;
1357
1358 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1359 int err;
1360 int plen = li->plen;
1361 __be32 mask = inet_make_mask(plen);
1362
1363 if (l->key != (key & ntohl(mask)))
1364 continue;
1365
1366 err = fib_semantic_match(&li->falh, flp, res, plen);
1367
1368 #ifdef CONFIG_IP_FIB_TRIE_STATS
1369 if (err <= 0)
1370 t->stats.semantic_match_passed++;
1371 else
1372 t->stats.semantic_match_miss++;
1373 #endif
1374 if (err <= 0)
1375 return err;
1376 }
1377
1378 return 1;
1379 }
1380
1381 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1382 struct fib_result *res)
1383 {
1384 struct trie *t = (struct trie *) tb->tb_data;
1385 int ret;
1386 struct node *n;
1387 struct tnode *pn;
1388 int pos, bits;
1389 t_key key = ntohl(flp->fl4_dst);
1390 int chopped_off;
1391 t_key cindex = 0;
1392 int current_prefix_length = KEYLENGTH;
1393 struct tnode *cn;
1394 t_key node_prefix, key_prefix, pref_mismatch;
1395 int mp;
1396
1397 rcu_read_lock();
1398
1399 n = rcu_dereference(t->trie);
1400 if (!n)
1401 goto failed;
1402
1403 #ifdef CONFIG_IP_FIB_TRIE_STATS
1404 t->stats.gets++;
1405 #endif
1406
1407 /* Just a leaf? */
1408 if (IS_LEAF(n)) {
1409 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1410 goto found;
1411 }
1412
1413 pn = (struct tnode *) n;
1414 chopped_off = 0;
1415
1416 while (pn) {
1417 pos = pn->pos;
1418 bits = pn->bits;
1419
1420 if (!chopped_off)
1421 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1422 pos, bits);
1423
1424 n = tnode_get_child_rcu(pn, cindex);
1425
1426 if (n == NULL) {
1427 #ifdef CONFIG_IP_FIB_TRIE_STATS
1428 t->stats.null_node_hit++;
1429 #endif
1430 goto backtrace;
1431 }
1432
1433 if (IS_LEAF(n)) {
1434 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1435 if (ret > 0)
1436 goto backtrace;
1437 goto found;
1438 }
1439
1440 cn = (struct tnode *)n;
1441
1442 /*
1443 * It's a tnode, and we can do some extra checks here if we
1444 * like, to avoid descending into a dead-end branch.
1445 * This tnode is in the parent's child array at index
1446 * key[p_pos..p_pos+p_bits] but potentially with some bits
1447 * chopped off, so in reality the index may be just a
1448 * subprefix, padded with zero at the end.
1449 * We can also take a look at any skipped bits in this
1450 * tnode - everything up to p_pos is supposed to be ok,
1451 * and the non-chopped bits of the index (se previous
1452 * paragraph) are also guaranteed ok, but the rest is
1453 * considered unknown.
1454 *
1455 * The skipped bits are key[pos+bits..cn->pos].
1456 */
1457
1458 /* If current_prefix_length < pos+bits, we are already doing
1459 * actual prefix matching, which means everything from
1460 * pos+(bits-chopped_off) onward must be zero along some
1461 * branch of this subtree - otherwise there is *no* valid
1462 * prefix present. Here we can only check the skipped
1463 * bits. Remember, since we have already indexed into the
1464 * parent's child array, we know that the bits we chopped of
1465 * *are* zero.
1466 */
1467
1468 /* NOTA BENE: Checking only skipped bits
1469 for the new node here */
1470
1471 if (current_prefix_length < pos+bits) {
1472 if (tkey_extract_bits(cn->key, current_prefix_length,
1473 cn->pos - current_prefix_length)
1474 || !(cn->child[0]))
1475 goto backtrace;
1476 }
1477
1478 /*
1479 * If chopped_off=0, the index is fully validated and we
1480 * only need to look at the skipped bits for this, the new,
1481 * tnode. What we actually want to do is to find out if
1482 * these skipped bits match our key perfectly, or if we will
1483 * have to count on finding a matching prefix further down,
1484 * because if we do, we would like to have some way of
1485 * verifying the existence of such a prefix at this point.
1486 */
1487
1488 /* The only thing we can do at this point is to verify that
1489 * any such matching prefix can indeed be a prefix to our
1490 * key, and if the bits in the node we are inspecting that
1491 * do not match our key are not ZERO, this cannot be true.
1492 * Thus, find out where there is a mismatch (before cn->pos)
1493 * and verify that all the mismatching bits are zero in the
1494 * new tnode's key.
1495 */
1496
1497 /*
1498 * Note: We aren't very concerned about the piece of
1499 * the key that precede pn->pos+pn->bits, since these
1500 * have already been checked. The bits after cn->pos
1501 * aren't checked since these are by definition
1502 * "unknown" at this point. Thus, what we want to see
1503 * is if we are about to enter the "prefix matching"
1504 * state, and in that case verify that the skipped
1505 * bits that will prevail throughout this subtree are
1506 * zero, as they have to be if we are to find a
1507 * matching prefix.
1508 */
1509
1510 node_prefix = mask_pfx(cn->key, cn->pos);
1511 key_prefix = mask_pfx(key, cn->pos);
1512 pref_mismatch = key_prefix^node_prefix;
1513 mp = 0;
1514
1515 /*
1516 * In short: If skipped bits in this node do not match
1517 * the search key, enter the "prefix matching"
1518 * state.directly.
1519 */
1520 if (pref_mismatch) {
1521 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1522 mp++;
1523 pref_mismatch = pref_mismatch << 1;
1524 }
1525 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1526
1527 if (key_prefix != 0)
1528 goto backtrace;
1529
1530 if (current_prefix_length >= cn->pos)
1531 current_prefix_length = mp;
1532 }
1533
1534 pn = (struct tnode *)n; /* Descend */
1535 chopped_off = 0;
1536 continue;
1537
1538 backtrace:
1539 chopped_off++;
1540
1541 /* As zero don't change the child key (cindex) */
1542 while ((chopped_off <= pn->bits)
1543 && !(cindex & (1<<(chopped_off-1))))
1544 chopped_off++;
1545
1546 /* Decrease current_... with bits chopped off */
1547 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1548 current_prefix_length = pn->pos + pn->bits
1549 - chopped_off;
1550
1551 /*
1552 * Either we do the actual chop off according or if we have
1553 * chopped off all bits in this tnode walk up to our parent.
1554 */
1555
1556 if (chopped_off <= pn->bits) {
1557 cindex &= ~(1 << (chopped_off-1));
1558 } else {
1559 struct tnode *parent = node_parent_rcu((struct node *) pn);
1560 if (!parent)
1561 goto failed;
1562
1563 /* Get Child's index */
1564 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1565 pn = parent;
1566 chopped_off = 0;
1567
1568 #ifdef CONFIG_IP_FIB_TRIE_STATS
1569 t->stats.backtrack++;
1570 #endif
1571 goto backtrace;
1572 }
1573 }
1574 failed:
1575 ret = 1;
1576 found:
1577 rcu_read_unlock();
1578 return ret;
1579 }
1580
1581 /*
1582 * Remove the leaf and return parent.
1583 */
1584 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1585 {
1586 struct tnode *tp = node_parent((struct node *) l);
1587
1588 pr_debug("entering trie_leaf_remove(%p)\n", l);
1589
1590 if (tp) {
1591 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1592 put_child(t, (struct tnode *)tp, cindex, NULL);
1593 trie_rebalance(t, tp);
1594 } else
1595 rcu_assign_pointer(t->trie, NULL);
1596
1597 free_leaf(l);
1598 }
1599
1600 /*
1601 * Caller must hold RTNL.
1602 */
1603 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1604 {
1605 struct trie *t = (struct trie *) tb->tb_data;
1606 u32 key, mask;
1607 int plen = cfg->fc_dst_len;
1608 u8 tos = cfg->fc_tos;
1609 struct fib_alias *fa, *fa_to_delete;
1610 struct list_head *fa_head;
1611 struct leaf *l;
1612 struct leaf_info *li;
1613
1614 if (plen > 32)
1615 return -EINVAL;
1616
1617 key = ntohl(cfg->fc_dst);
1618 mask = ntohl(inet_make_mask(plen));
1619
1620 if (key & ~mask)
1621 return -EINVAL;
1622
1623 key = key & mask;
1624 l = fib_find_node(t, key);
1625
1626 if (!l)
1627 return -ESRCH;
1628
1629 fa_head = get_fa_head(l, plen);
1630 fa = fib_find_alias(fa_head, tos, 0);
1631
1632 if (!fa)
1633 return -ESRCH;
1634
1635 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1636
1637 fa_to_delete = NULL;
1638 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1639 list_for_each_entry_continue(fa, fa_head, fa_list) {
1640 struct fib_info *fi = fa->fa_info;
1641
1642 if (fa->fa_tos != tos)
1643 break;
1644
1645 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1646 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1647 fa->fa_scope == cfg->fc_scope) &&
1648 (!cfg->fc_protocol ||
1649 fi->fib_protocol == cfg->fc_protocol) &&
1650 fib_nh_match(cfg, fi) == 0) {
1651 fa_to_delete = fa;
1652 break;
1653 }
1654 }
1655
1656 if (!fa_to_delete)
1657 return -ESRCH;
1658
1659 fa = fa_to_delete;
1660 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1661 &cfg->fc_nlinfo, 0);
1662
1663 l = fib_find_node(t, key);
1664 li = find_leaf_info(l, plen);
1665
1666 list_del_rcu(&fa->fa_list);
1667
1668 if (list_empty(fa_head)) {
1669 hlist_del_rcu(&li->hlist);
1670 free_leaf_info(li);
1671 }
1672
1673 if (hlist_empty(&l->list))
1674 trie_leaf_remove(t, l);
1675
1676 if (fa->fa_state & FA_S_ACCESSED)
1677 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1678
1679 fib_release_info(fa->fa_info);
1680 alias_free_mem_rcu(fa);
1681 return 0;
1682 }
1683
1684 static int trie_flush_list(struct list_head *head)
1685 {
1686 struct fib_alias *fa, *fa_node;
1687 int found = 0;
1688
1689 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1690 struct fib_info *fi = fa->fa_info;
1691
1692 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1693 list_del_rcu(&fa->fa_list);
1694 fib_release_info(fa->fa_info);
1695 alias_free_mem_rcu(fa);
1696 found++;
1697 }
1698 }
1699 return found;
1700 }
1701
1702 static int trie_flush_leaf(struct leaf *l)
1703 {
1704 int found = 0;
1705 struct hlist_head *lih = &l->list;
1706 struct hlist_node *node, *tmp;
1707 struct leaf_info *li = NULL;
1708
1709 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1710 found += trie_flush_list(&li->falh);
1711
1712 if (list_empty(&li->falh)) {
1713 hlist_del_rcu(&li->hlist);
1714 free_leaf_info(li);
1715 }
1716 }
1717 return found;
1718 }
1719
1720 /*
1721 * Scan for the next right leaf starting at node p->child[idx]
1722 * Since we have back pointer, no recursion necessary.
1723 */
1724 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1725 {
1726 do {
1727 t_key idx;
1728
1729 if (c)
1730 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1731 else
1732 idx = 0;
1733
1734 while (idx < 1u << p->bits) {
1735 c = tnode_get_child_rcu(p, idx++);
1736 if (!c)
1737 continue;
1738
1739 if (IS_LEAF(c)) {
1740 prefetch(p->child[idx]);
1741 return (struct leaf *) c;
1742 }
1743
1744 /* Rescan start scanning in new node */
1745 p = (struct tnode *) c;
1746 idx = 0;
1747 }
1748
1749 /* Node empty, walk back up to parent */
1750 c = (struct node *) p;
1751 } while ( (p = node_parent_rcu(c)) != NULL);
1752
1753 return NULL; /* Root of trie */
1754 }
1755
1756 static struct leaf *trie_firstleaf(struct trie *t)
1757 {
1758 struct tnode *n = (struct tnode *) rcu_dereference_check(t->trie,
1759 rcu_read_lock_held() ||
1760 lockdep_rtnl_is_held());
1761
1762 if (!n)
1763 return NULL;
1764
1765 if (IS_LEAF(n)) /* trie is just a leaf */
1766 return (struct leaf *) n;
1767
1768 return leaf_walk_rcu(n, NULL);
1769 }
1770
1771 static struct leaf *trie_nextleaf(struct leaf *l)
1772 {
1773 struct node *c = (struct node *) l;
1774 struct tnode *p = node_parent_rcu(c);
1775
1776 if (!p)
1777 return NULL; /* trie with just one leaf */
1778
1779 return leaf_walk_rcu(p, c);
1780 }
1781
1782 static struct leaf *trie_leafindex(struct trie *t, int index)
1783 {
1784 struct leaf *l = trie_firstleaf(t);
1785
1786 while (l && index-- > 0)
1787 l = trie_nextleaf(l);
1788
1789 return l;
1790 }
1791
1792
1793 /*
1794 * Caller must hold RTNL.
1795 */
1796 int fib_table_flush(struct fib_table *tb)
1797 {
1798 struct trie *t = (struct trie *) tb->tb_data;
1799 struct leaf *l, *ll = NULL;
1800 int found = 0;
1801
1802 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1803 found += trie_flush_leaf(l);
1804
1805 if (ll && hlist_empty(&ll->list))
1806 trie_leaf_remove(t, ll);
1807 ll = l;
1808 }
1809
1810 if (ll && hlist_empty(&ll->list))
1811 trie_leaf_remove(t, ll);
1812
1813 pr_debug("trie_flush found=%d\n", found);
1814 return found;
1815 }
1816
1817 void fib_table_select_default(struct fib_table *tb,
1818 const struct flowi *flp,
1819 struct fib_result *res)
1820 {
1821 struct trie *t = (struct trie *) tb->tb_data;
1822 int order, last_idx;
1823 struct fib_info *fi = NULL;
1824 struct fib_info *last_resort;
1825 struct fib_alias *fa = NULL;
1826 struct list_head *fa_head;
1827 struct leaf *l;
1828
1829 last_idx = -1;
1830 last_resort = NULL;
1831 order = -1;
1832
1833 rcu_read_lock();
1834
1835 l = fib_find_node(t, 0);
1836 if (!l)
1837 goto out;
1838
1839 fa_head = get_fa_head(l, 0);
1840 if (!fa_head)
1841 goto out;
1842
1843 if (list_empty(fa_head))
1844 goto out;
1845
1846 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1847 struct fib_info *next_fi = fa->fa_info;
1848
1849 if (fa->fa_scope != res->scope ||
1850 fa->fa_type != RTN_UNICAST)
1851 continue;
1852
1853 if (next_fi->fib_priority > res->fi->fib_priority)
1854 break;
1855 if (!next_fi->fib_nh[0].nh_gw ||
1856 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1857 continue;
1858 fa->fa_state |= FA_S_ACCESSED;
1859
1860 if (fi == NULL) {
1861 if (next_fi != res->fi)
1862 break;
1863 } else if (!fib_detect_death(fi, order, &last_resort,
1864 &last_idx, tb->tb_default)) {
1865 fib_result_assign(res, fi);
1866 tb->tb_default = order;
1867 goto out;
1868 }
1869 fi = next_fi;
1870 order++;
1871 }
1872 if (order <= 0 || fi == NULL) {
1873 tb->tb_default = -1;
1874 goto out;
1875 }
1876
1877 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1878 tb->tb_default)) {
1879 fib_result_assign(res, fi);
1880 tb->tb_default = order;
1881 goto out;
1882 }
1883 if (last_idx >= 0)
1884 fib_result_assign(res, last_resort);
1885 tb->tb_default = last_idx;
1886 out:
1887 rcu_read_unlock();
1888 }
1889
1890 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1891 struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 int i, s_i;
1895 struct fib_alias *fa;
1896 __be32 xkey = htonl(key);
1897
1898 s_i = cb->args[5];
1899 i = 0;
1900
1901 /* rcu_read_lock is hold by caller */
1902
1903 list_for_each_entry_rcu(fa, fah, fa_list) {
1904 if (i < s_i) {
1905 i++;
1906 continue;
1907 }
1908
1909 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1910 cb->nlh->nlmsg_seq,
1911 RTM_NEWROUTE,
1912 tb->tb_id,
1913 fa->fa_type,
1914 fa->fa_scope,
1915 xkey,
1916 plen,
1917 fa->fa_tos,
1918 fa->fa_info, NLM_F_MULTI) < 0) {
1919 cb->args[5] = i;
1920 return -1;
1921 }
1922 i++;
1923 }
1924 cb->args[5] = i;
1925 return skb->len;
1926 }
1927
1928 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1929 struct sk_buff *skb, struct netlink_callback *cb)
1930 {
1931 struct leaf_info *li;
1932 struct hlist_node *node;
1933 int i, s_i;
1934
1935 s_i = cb->args[4];
1936 i = 0;
1937
1938 /* rcu_read_lock is hold by caller */
1939 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1940 if (i < s_i) {
1941 i++;
1942 continue;
1943 }
1944
1945 if (i > s_i)
1946 cb->args[5] = 0;
1947
1948 if (list_empty(&li->falh))
1949 continue;
1950
1951 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1952 cb->args[4] = i;
1953 return -1;
1954 }
1955 i++;
1956 }
1957
1958 cb->args[4] = i;
1959 return skb->len;
1960 }
1961
1962 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1963 struct netlink_callback *cb)
1964 {
1965 struct leaf *l;
1966 struct trie *t = (struct trie *) tb->tb_data;
1967 t_key key = cb->args[2];
1968 int count = cb->args[3];
1969
1970 rcu_read_lock();
1971 /* Dump starting at last key.
1972 * Note: 0.0.0.0/0 (ie default) is first key.
1973 */
1974 if (count == 0)
1975 l = trie_firstleaf(t);
1976 else {
1977 /* Normally, continue from last key, but if that is missing
1978 * fallback to using slow rescan
1979 */
1980 l = fib_find_node(t, key);
1981 if (!l)
1982 l = trie_leafindex(t, count);
1983 }
1984
1985 while (l) {
1986 cb->args[2] = l->key;
1987 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1988 cb->args[3] = count;
1989 rcu_read_unlock();
1990 return -1;
1991 }
1992
1993 ++count;
1994 l = trie_nextleaf(l);
1995 memset(&cb->args[4], 0,
1996 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1997 }
1998 cb->args[3] = count;
1999 rcu_read_unlock();
2000
2001 return skb->len;
2002 }
2003
2004 void __init fib_hash_init(void)
2005 {
2006 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2007 sizeof(struct fib_alias),
2008 0, SLAB_PANIC, NULL);
2009
2010 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2011 max(sizeof(struct leaf),
2012 sizeof(struct leaf_info)),
2013 0, SLAB_PANIC, NULL);
2014 }
2015
2016
2017 /* Fix more generic FIB names for init later */
2018 struct fib_table *fib_hash_table(u32 id)
2019 {
2020 struct fib_table *tb;
2021 struct trie *t;
2022
2023 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2024 GFP_KERNEL);
2025 if (tb == NULL)
2026 return NULL;
2027
2028 tb->tb_id = id;
2029 tb->tb_default = -1;
2030
2031 t = (struct trie *) tb->tb_data;
2032 memset(t, 0, sizeof(*t));
2033
2034 if (id == RT_TABLE_LOCAL)
2035 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2036
2037 return tb;
2038 }
2039
2040 #ifdef CONFIG_PROC_FS
2041 /* Depth first Trie walk iterator */
2042 struct fib_trie_iter {
2043 struct seq_net_private p;
2044 struct fib_table *tb;
2045 struct tnode *tnode;
2046 unsigned index;
2047 unsigned depth;
2048 };
2049
2050 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2051 {
2052 struct tnode *tn = iter->tnode;
2053 unsigned cindex = iter->index;
2054 struct tnode *p;
2055
2056 /* A single entry routing table */
2057 if (!tn)
2058 return NULL;
2059
2060 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2061 iter->tnode, iter->index, iter->depth);
2062 rescan:
2063 while (cindex < (1<<tn->bits)) {
2064 struct node *n = tnode_get_child_rcu(tn, cindex);
2065
2066 if (n) {
2067 if (IS_LEAF(n)) {
2068 iter->tnode = tn;
2069 iter->index = cindex + 1;
2070 } else {
2071 /* push down one level */
2072 iter->tnode = (struct tnode *) n;
2073 iter->index = 0;
2074 ++iter->depth;
2075 }
2076 return n;
2077 }
2078
2079 ++cindex;
2080 }
2081
2082 /* Current node exhausted, pop back up */
2083 p = node_parent_rcu((struct node *)tn);
2084 if (p) {
2085 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2086 tn = p;
2087 --iter->depth;
2088 goto rescan;
2089 }
2090
2091 /* got root? */
2092 return NULL;
2093 }
2094
2095 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2096 struct trie *t)
2097 {
2098 struct node *n;
2099
2100 if (!t)
2101 return NULL;
2102
2103 n = rcu_dereference(t->trie);
2104 if (!n)
2105 return NULL;
2106
2107 if (IS_TNODE(n)) {
2108 iter->tnode = (struct tnode *) n;
2109 iter->index = 0;
2110 iter->depth = 1;
2111 } else {
2112 iter->tnode = NULL;
2113 iter->index = 0;
2114 iter->depth = 0;
2115 }
2116
2117 return n;
2118 }
2119
2120 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2121 {
2122 struct node *n;
2123 struct fib_trie_iter iter;
2124
2125 memset(s, 0, sizeof(*s));
2126
2127 rcu_read_lock();
2128 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2129 if (IS_LEAF(n)) {
2130 struct leaf *l = (struct leaf *)n;
2131 struct leaf_info *li;
2132 struct hlist_node *tmp;
2133
2134 s->leaves++;
2135 s->totdepth += iter.depth;
2136 if (iter.depth > s->maxdepth)
2137 s->maxdepth = iter.depth;
2138
2139 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2140 ++s->prefixes;
2141 } else {
2142 const struct tnode *tn = (const struct tnode *) n;
2143 int i;
2144
2145 s->tnodes++;
2146 if (tn->bits < MAX_STAT_DEPTH)
2147 s->nodesizes[tn->bits]++;
2148
2149 for (i = 0; i < (1<<tn->bits); i++)
2150 if (!tn->child[i])
2151 s->nullpointers++;
2152 }
2153 }
2154 rcu_read_unlock();
2155 }
2156
2157 /*
2158 * This outputs /proc/net/fib_triestats
2159 */
2160 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2161 {
2162 unsigned i, max, pointers, bytes, avdepth;
2163
2164 if (stat->leaves)
2165 avdepth = stat->totdepth*100 / stat->leaves;
2166 else
2167 avdepth = 0;
2168
2169 seq_printf(seq, "\tAver depth: %u.%02d\n",
2170 avdepth / 100, avdepth % 100);
2171 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2172
2173 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2174 bytes = sizeof(struct leaf) * stat->leaves;
2175
2176 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2177 bytes += sizeof(struct leaf_info) * stat->prefixes;
2178
2179 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2180 bytes += sizeof(struct tnode) * stat->tnodes;
2181
2182 max = MAX_STAT_DEPTH;
2183 while (max > 0 && stat->nodesizes[max-1] == 0)
2184 max--;
2185
2186 pointers = 0;
2187 for (i = 1; i <= max; i++)
2188 if (stat->nodesizes[i] != 0) {
2189 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2190 pointers += (1<<i) * stat->nodesizes[i];
2191 }
2192 seq_putc(seq, '\n');
2193 seq_printf(seq, "\tPointers: %u\n", pointers);
2194
2195 bytes += sizeof(struct node *) * pointers;
2196 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2197 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2198 }
2199
2200 #ifdef CONFIG_IP_FIB_TRIE_STATS
2201 static void trie_show_usage(struct seq_file *seq,
2202 const struct trie_use_stats *stats)
2203 {
2204 seq_printf(seq, "\nCounters:\n---------\n");
2205 seq_printf(seq, "gets = %u\n", stats->gets);
2206 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2207 seq_printf(seq, "semantic match passed = %u\n",
2208 stats->semantic_match_passed);
2209 seq_printf(seq, "semantic match miss = %u\n",
2210 stats->semantic_match_miss);
2211 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2212 seq_printf(seq, "skipped node resize = %u\n\n",
2213 stats->resize_node_skipped);
2214 }
2215 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2216
2217 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2218 {
2219 if (tb->tb_id == RT_TABLE_LOCAL)
2220 seq_puts(seq, "Local:\n");
2221 else if (tb->tb_id == RT_TABLE_MAIN)
2222 seq_puts(seq, "Main:\n");
2223 else
2224 seq_printf(seq, "Id %d:\n", tb->tb_id);
2225 }
2226
2227
2228 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2229 {
2230 struct net *net = (struct net *)seq->private;
2231 unsigned int h;
2232
2233 seq_printf(seq,
2234 "Basic info: size of leaf:"
2235 " %Zd bytes, size of tnode: %Zd bytes.\n",
2236 sizeof(struct leaf), sizeof(struct tnode));
2237
2238 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2239 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2240 struct hlist_node *node;
2241 struct fib_table *tb;
2242
2243 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2244 struct trie *t = (struct trie *) tb->tb_data;
2245 struct trie_stat stat;
2246
2247 if (!t)
2248 continue;
2249
2250 fib_table_print(seq, tb);
2251
2252 trie_collect_stats(t, &stat);
2253 trie_show_stats(seq, &stat);
2254 #ifdef CONFIG_IP_FIB_TRIE_STATS
2255 trie_show_usage(seq, &t->stats);
2256 #endif
2257 }
2258 }
2259
2260 return 0;
2261 }
2262
2263 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2264 {
2265 return single_open_net(inode, file, fib_triestat_seq_show);
2266 }
2267
2268 static const struct file_operations fib_triestat_fops = {
2269 .owner = THIS_MODULE,
2270 .open = fib_triestat_seq_open,
2271 .read = seq_read,
2272 .llseek = seq_lseek,
2273 .release = single_release_net,
2274 };
2275
2276 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2277 {
2278 struct fib_trie_iter *iter = seq->private;
2279 struct net *net = seq_file_net(seq);
2280 loff_t idx = 0;
2281 unsigned int h;
2282
2283 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2284 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2285 struct hlist_node *node;
2286 struct fib_table *tb;
2287
2288 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2289 struct node *n;
2290
2291 for (n = fib_trie_get_first(iter,
2292 (struct trie *) tb->tb_data);
2293 n; n = fib_trie_get_next(iter))
2294 if (pos == idx++) {
2295 iter->tb = tb;
2296 return n;
2297 }
2298 }
2299 }
2300
2301 return NULL;
2302 }
2303
2304 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2305 __acquires(RCU)
2306 {
2307 rcu_read_lock();
2308 return fib_trie_get_idx(seq, *pos);
2309 }
2310
2311 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2312 {
2313 struct fib_trie_iter *iter = seq->private;
2314 struct net *net = seq_file_net(seq);
2315 struct fib_table *tb = iter->tb;
2316 struct hlist_node *tb_node;
2317 unsigned int h;
2318 struct node *n;
2319
2320 ++*pos;
2321 /* next node in same table */
2322 n = fib_trie_get_next(iter);
2323 if (n)
2324 return n;
2325
2326 /* walk rest of this hash chain */
2327 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2328 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2329 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2330 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2331 if (n)
2332 goto found;
2333 }
2334
2335 /* new hash chain */
2336 while (++h < FIB_TABLE_HASHSZ) {
2337 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2338 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2339 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2340 if (n)
2341 goto found;
2342 }
2343 }
2344 return NULL;
2345
2346 found:
2347 iter->tb = tb;
2348 return n;
2349 }
2350
2351 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2352 __releases(RCU)
2353 {
2354 rcu_read_unlock();
2355 }
2356
2357 static void seq_indent(struct seq_file *seq, int n)
2358 {
2359 while (n-- > 0) seq_puts(seq, " ");
2360 }
2361
2362 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2363 {
2364 switch (s) {
2365 case RT_SCOPE_UNIVERSE: return "universe";
2366 case RT_SCOPE_SITE: return "site";
2367 case RT_SCOPE_LINK: return "link";
2368 case RT_SCOPE_HOST: return "host";
2369 case RT_SCOPE_NOWHERE: return "nowhere";
2370 default:
2371 snprintf(buf, len, "scope=%d", s);
2372 return buf;
2373 }
2374 }
2375
2376 static const char *const rtn_type_names[__RTN_MAX] = {
2377 [RTN_UNSPEC] = "UNSPEC",
2378 [RTN_UNICAST] = "UNICAST",
2379 [RTN_LOCAL] = "LOCAL",
2380 [RTN_BROADCAST] = "BROADCAST",
2381 [RTN_ANYCAST] = "ANYCAST",
2382 [RTN_MULTICAST] = "MULTICAST",
2383 [RTN_BLACKHOLE] = "BLACKHOLE",
2384 [RTN_UNREACHABLE] = "UNREACHABLE",
2385 [RTN_PROHIBIT] = "PROHIBIT",
2386 [RTN_THROW] = "THROW",
2387 [RTN_NAT] = "NAT",
2388 [RTN_XRESOLVE] = "XRESOLVE",
2389 };
2390
2391 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2392 {
2393 if (t < __RTN_MAX && rtn_type_names[t])
2394 return rtn_type_names[t];
2395 snprintf(buf, len, "type %u", t);
2396 return buf;
2397 }
2398
2399 /* Pretty print the trie */
2400 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2401 {
2402 const struct fib_trie_iter *iter = seq->private;
2403 struct node *n = v;
2404
2405 if (!node_parent_rcu(n))
2406 fib_table_print(seq, iter->tb);
2407
2408 if (IS_TNODE(n)) {
2409 struct tnode *tn = (struct tnode *) n;
2410 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2411
2412 seq_indent(seq, iter->depth-1);
2413 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2414 &prf, tn->pos, tn->bits, tn->full_children,
2415 tn->empty_children);
2416
2417 } else {
2418 struct leaf *l = (struct leaf *) n;
2419 struct leaf_info *li;
2420 struct hlist_node *node;
2421 __be32 val = htonl(l->key);
2422
2423 seq_indent(seq, iter->depth);
2424 seq_printf(seq, " |-- %pI4\n", &val);
2425
2426 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2427 struct fib_alias *fa;
2428
2429 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2430 char buf1[32], buf2[32];
2431
2432 seq_indent(seq, iter->depth+1);
2433 seq_printf(seq, " /%d %s %s", li->plen,
2434 rtn_scope(buf1, sizeof(buf1),
2435 fa->fa_scope),
2436 rtn_type(buf2, sizeof(buf2),
2437 fa->fa_type));
2438 if (fa->fa_tos)
2439 seq_printf(seq, " tos=%d", fa->fa_tos);
2440 seq_putc(seq, '\n');
2441 }
2442 }
2443 }
2444
2445 return 0;
2446 }
2447
2448 static const struct seq_operations fib_trie_seq_ops = {
2449 .start = fib_trie_seq_start,
2450 .next = fib_trie_seq_next,
2451 .stop = fib_trie_seq_stop,
2452 .show = fib_trie_seq_show,
2453 };
2454
2455 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2456 {
2457 return seq_open_net(inode, file, &fib_trie_seq_ops,
2458 sizeof(struct fib_trie_iter));
2459 }
2460
2461 static const struct file_operations fib_trie_fops = {
2462 .owner = THIS_MODULE,
2463 .open = fib_trie_seq_open,
2464 .read = seq_read,
2465 .llseek = seq_lseek,
2466 .release = seq_release_net,
2467 };
2468
2469 struct fib_route_iter {
2470 struct seq_net_private p;
2471 struct trie *main_trie;
2472 loff_t pos;
2473 t_key key;
2474 };
2475
2476 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2477 {
2478 struct leaf *l = NULL;
2479 struct trie *t = iter->main_trie;
2480
2481 /* use cache location of last found key */
2482 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2483 pos -= iter->pos;
2484 else {
2485 iter->pos = 0;
2486 l = trie_firstleaf(t);
2487 }
2488
2489 while (l && pos-- > 0) {
2490 iter->pos++;
2491 l = trie_nextleaf(l);
2492 }
2493
2494 if (l)
2495 iter->key = pos; /* remember it */
2496 else
2497 iter->pos = 0; /* forget it */
2498
2499 return l;
2500 }
2501
2502 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2503 __acquires(RCU)
2504 {
2505 struct fib_route_iter *iter = seq->private;
2506 struct fib_table *tb;
2507
2508 rcu_read_lock();
2509 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2510 if (!tb)
2511 return NULL;
2512
2513 iter->main_trie = (struct trie *) tb->tb_data;
2514 if (*pos == 0)
2515 return SEQ_START_TOKEN;
2516 else
2517 return fib_route_get_idx(iter, *pos - 1);
2518 }
2519
2520 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2521 {
2522 struct fib_route_iter *iter = seq->private;
2523 struct leaf *l = v;
2524
2525 ++*pos;
2526 if (v == SEQ_START_TOKEN) {
2527 iter->pos = 0;
2528 l = trie_firstleaf(iter->main_trie);
2529 } else {
2530 iter->pos++;
2531 l = trie_nextleaf(l);
2532 }
2533
2534 if (l)
2535 iter->key = l->key;
2536 else
2537 iter->pos = 0;
2538 return l;
2539 }
2540
2541 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2542 __releases(RCU)
2543 {
2544 rcu_read_unlock();
2545 }
2546
2547 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2548 {
2549 static unsigned type2flags[RTN_MAX + 1] = {
2550 [7] = RTF_REJECT, [8] = RTF_REJECT,
2551 };
2552 unsigned flags = type2flags[type];
2553
2554 if (fi && fi->fib_nh->nh_gw)
2555 flags |= RTF_GATEWAY;
2556 if (mask == htonl(0xFFFFFFFF))
2557 flags |= RTF_HOST;
2558 flags |= RTF_UP;
2559 return flags;
2560 }
2561
2562 /*
2563 * This outputs /proc/net/route.
2564 * The format of the file is not supposed to be changed
2565 * and needs to be same as fib_hash output to avoid breaking
2566 * legacy utilities
2567 */
2568 static int fib_route_seq_show(struct seq_file *seq, void *v)
2569 {
2570 struct leaf *l = v;
2571 struct leaf_info *li;
2572 struct hlist_node *node;
2573
2574 if (v == SEQ_START_TOKEN) {
2575 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2576 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2577 "\tWindow\tIRTT");
2578 return 0;
2579 }
2580
2581 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2582 struct fib_alias *fa;
2583 __be32 mask, prefix;
2584
2585 mask = inet_make_mask(li->plen);
2586 prefix = htonl(l->key);
2587
2588 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2589 const struct fib_info *fi = fa->fa_info;
2590 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2591 int len;
2592
2593 if (fa->fa_type == RTN_BROADCAST
2594 || fa->fa_type == RTN_MULTICAST)
2595 continue;
2596
2597 if (fi)
2598 seq_printf(seq,
2599 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2600 "%d\t%08X\t%d\t%u\t%u%n",
2601 fi->fib_dev ? fi->fib_dev->name : "*",
2602 prefix,
2603 fi->fib_nh->nh_gw, flags, 0, 0,
2604 fi->fib_priority,
2605 mask,
2606 (fi->fib_advmss ?
2607 fi->fib_advmss + 40 : 0),
2608 fi->fib_window,
2609 fi->fib_rtt >> 3, &len);
2610 else
2611 seq_printf(seq,
2612 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2613 "%d\t%08X\t%d\t%u\t%u%n",
2614 prefix, 0, flags, 0, 0, 0,
2615 mask, 0, 0, 0, &len);
2616
2617 seq_printf(seq, "%*s\n", 127 - len, "");
2618 }
2619 }
2620
2621 return 0;
2622 }
2623
2624 static const struct seq_operations fib_route_seq_ops = {
2625 .start = fib_route_seq_start,
2626 .next = fib_route_seq_next,
2627 .stop = fib_route_seq_stop,
2628 .show = fib_route_seq_show,
2629 };
2630
2631 static int fib_route_seq_open(struct inode *inode, struct file *file)
2632 {
2633 return seq_open_net(inode, file, &fib_route_seq_ops,
2634 sizeof(struct fib_route_iter));
2635 }
2636
2637 static const struct file_operations fib_route_fops = {
2638 .owner = THIS_MODULE,
2639 .open = fib_route_seq_open,
2640 .read = seq_read,
2641 .llseek = seq_lseek,
2642 .release = seq_release_net,
2643 };
2644
2645 int __net_init fib_proc_init(struct net *net)
2646 {
2647 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2648 goto out1;
2649
2650 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2651 &fib_triestat_fops))
2652 goto out2;
2653
2654 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2655 goto out3;
2656
2657 return 0;
2658
2659 out3:
2660 proc_net_remove(net, "fib_triestat");
2661 out2:
2662 proc_net_remove(net, "fib_trie");
2663 out1:
2664 return -ENOMEM;
2665 }
2666
2667 void __net_exit fib_proc_exit(struct net *net)
2668 {
2669 proc_net_remove(net, "fib_trie");
2670 proc_net_remove(net, "fib_triestat");
2671 proc_net_remove(net, "route");
2672 }
2673
2674 #endif /* CONFIG_PROC_FS */
This page took 0.106622 seconds and 5 git commands to generate.