Merge branch 'akpm' (Andrew's patch-bomb)
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/prefetch.h>
75 #include <linux/export.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct rt_trie_node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 int plen;
114 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
115 struct list_head falh;
116 struct rcu_head rcu;
117 };
118
119 struct tnode {
120 unsigned long parent;
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned int full_children; /* KEYLENGTH bits needed */
125 unsigned int empty_children; /* KEYLENGTH bits needed */
126 union {
127 struct rcu_head rcu;
128 struct work_struct work;
129 struct tnode *tnode_free;
130 };
131 struct rt_trie_node __rcu *child[0];
132 };
133
134 #ifdef CONFIG_IP_FIB_TRIE_STATS
135 struct trie_use_stats {
136 unsigned int gets;
137 unsigned int backtrack;
138 unsigned int semantic_match_passed;
139 unsigned int semantic_match_miss;
140 unsigned int null_node_hit;
141 unsigned int resize_node_skipped;
142 };
143 #endif
144
145 struct trie_stat {
146 unsigned int totdepth;
147 unsigned int maxdepth;
148 unsigned int tnodes;
149 unsigned int leaves;
150 unsigned int nullpointers;
151 unsigned int prefixes;
152 unsigned int nodesizes[MAX_STAT_DEPTH];
153 };
154
155 struct trie {
156 struct rt_trie_node __rcu *trie;
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats stats;
159 #endif
160 };
161
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
163 int wasfull);
164 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
165 static struct tnode *inflate(struct trie *t, struct tnode *tn);
166 static struct tnode *halve(struct trie *t, struct tnode *tn);
167 /* tnodes to free after resize(); protected by RTNL */
168 static struct tnode *tnode_free_head;
169 static size_t tnode_free_size;
170
171 /*
172 * synchronize_rcu after call_rcu for that many pages; it should be especially
173 * useful before resizing the root node with PREEMPT_NONE configs; the value was
174 * obtained experimentally, aiming to avoid visible slowdown.
175 */
176 static const int sync_pages = 128;
177
178 static struct kmem_cache *fn_alias_kmem __read_mostly;
179 static struct kmem_cache *trie_leaf_kmem __read_mostly;
180
181 /*
182 * caller must hold RTNL
183 */
184 static inline struct tnode *node_parent(const struct rt_trie_node *node)
185 {
186 unsigned long parent;
187
188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189
190 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
191 }
192
193 /*
194 * caller must hold RCU read lock or RTNL
195 */
196 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
197 {
198 unsigned long parent;
199
200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 lockdep_rtnl_is_held());
202
203 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
204 }
205
206 /* Same as rcu_assign_pointer
207 * but that macro() assumes that value is a pointer.
208 */
209 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
210 {
211 smp_wmb();
212 node->parent = (unsigned long)ptr | NODE_TYPE(node);
213 }
214
215 /*
216 * caller must hold RTNL
217 */
218 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
219 {
220 BUG_ON(i >= 1U << tn->bits);
221
222 return rtnl_dereference(tn->child[i]);
223 }
224
225 /*
226 * caller must hold RCU read lock or RTNL
227 */
228 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
229 {
230 BUG_ON(i >= 1U << tn->bits);
231
232 return rcu_dereference_rtnl(tn->child[i]);
233 }
234
235 static inline int tnode_child_length(const struct tnode *tn)
236 {
237 return 1 << tn->bits;
238 }
239
240 static inline t_key mask_pfx(t_key k, unsigned int l)
241 {
242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243 }
244
245 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
246 {
247 if (offset < KEYLENGTH)
248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
249 else
250 return 0;
251 }
252
253 static inline int tkey_equals(t_key a, t_key b)
254 {
255 return a == b;
256 }
257
258 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259 {
260 if (bits == 0 || offset >= KEYLENGTH)
261 return 1;
262 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
264 }
265
266 static inline int tkey_mismatch(t_key a, int offset, t_key b)
267 {
268 t_key diff = a ^ b;
269 int i = offset;
270
271 if (!diff)
272 return 0;
273 while ((diff << i) >> (KEYLENGTH-1) == 0)
274 i++;
275 return i;
276 }
277
278 /*
279 To understand this stuff, an understanding of keys and all their bits is
280 necessary. Every node in the trie has a key associated with it, but not
281 all of the bits in that key are significant.
282
283 Consider a node 'n' and its parent 'tp'.
284
285 If n is a leaf, every bit in its key is significant. Its presence is
286 necessitated by path compression, since during a tree traversal (when
287 searching for a leaf - unless we are doing an insertion) we will completely
288 ignore all skipped bits we encounter. Thus we need to verify, at the end of
289 a potentially successful search, that we have indeed been walking the
290 correct key path.
291
292 Note that we can never "miss" the correct key in the tree if present by
293 following the wrong path. Path compression ensures that segments of the key
294 that are the same for all keys with a given prefix are skipped, but the
295 skipped part *is* identical for each node in the subtrie below the skipped
296 bit! trie_insert() in this implementation takes care of that - note the
297 call to tkey_sub_equals() in trie_insert().
298
299 if n is an internal node - a 'tnode' here, the various parts of its key
300 have many different meanings.
301
302 Example:
303 _________________________________________________________________
304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305 -----------------------------------------------------------------
306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
307
308 _________________________________________________________________
309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310 -----------------------------------------------------------------
311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312
313 tp->pos = 7
314 tp->bits = 3
315 n->pos = 15
316 n->bits = 4
317
318 First, let's just ignore the bits that come before the parent tp, that is
319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
320 not use them for anything.
321
322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
323 index into the parent's child array. That is, they will be used to find
324 'n' among tp's children.
325
326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327 for the node n.
328
329 All the bits we have seen so far are significant to the node n. The rest
330 of the bits are really not needed or indeed known in n->key.
331
332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
333 n's child array, and will of course be different for each child.
334
335
336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337 at this point.
338
339 */
340
341 static inline void check_tnode(const struct tnode *tn)
342 {
343 WARN_ON(tn && tn->pos+tn->bits > 32);
344 }
345
346 static const int halve_threshold = 25;
347 static const int inflate_threshold = 50;
348 static const int halve_threshold_root = 15;
349 static const int inflate_threshold_root = 30;
350
351 static void __alias_free_mem(struct rcu_head *head)
352 {
353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 kmem_cache_free(fn_alias_kmem, fa);
355 }
356
357 static inline void alias_free_mem_rcu(struct fib_alias *fa)
358 {
359 call_rcu(&fa->rcu, __alias_free_mem);
360 }
361
362 static void __leaf_free_rcu(struct rcu_head *head)
363 {
364 struct leaf *l = container_of(head, struct leaf, rcu);
365 kmem_cache_free(trie_leaf_kmem, l);
366 }
367
368 static inline void free_leaf(struct leaf *l)
369 {
370 call_rcu(&l->rcu, __leaf_free_rcu);
371 }
372
373 static inline void free_leaf_info(struct leaf_info *leaf)
374 {
375 kfree_rcu(leaf, rcu);
376 }
377
378 static struct tnode *tnode_alloc(size_t size)
379 {
380 if (size <= PAGE_SIZE)
381 return kzalloc(size, GFP_KERNEL);
382 else
383 return vzalloc(size);
384 }
385
386 static void __tnode_vfree(struct work_struct *arg)
387 {
388 struct tnode *tn = container_of(arg, struct tnode, work);
389 vfree(tn);
390 }
391
392 static void __tnode_free_rcu(struct rcu_head *head)
393 {
394 struct tnode *tn = container_of(head, struct tnode, rcu);
395 size_t size = sizeof(struct tnode) +
396 (sizeof(struct rt_trie_node *) << tn->bits);
397
398 if (size <= PAGE_SIZE)
399 kfree(tn);
400 else {
401 INIT_WORK(&tn->work, __tnode_vfree);
402 schedule_work(&tn->work);
403 }
404 }
405
406 static inline void tnode_free(struct tnode *tn)
407 {
408 if (IS_LEAF(tn))
409 free_leaf((struct leaf *) tn);
410 else
411 call_rcu(&tn->rcu, __tnode_free_rcu);
412 }
413
414 static void tnode_free_safe(struct tnode *tn)
415 {
416 BUG_ON(IS_LEAF(tn));
417 tn->tnode_free = tnode_free_head;
418 tnode_free_head = tn;
419 tnode_free_size += sizeof(struct tnode) +
420 (sizeof(struct rt_trie_node *) << tn->bits);
421 }
422
423 static void tnode_free_flush(void)
424 {
425 struct tnode *tn;
426
427 while ((tn = tnode_free_head)) {
428 tnode_free_head = tn->tnode_free;
429 tn->tnode_free = NULL;
430 tnode_free(tn);
431 }
432
433 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 tnode_free_size = 0;
435 synchronize_rcu();
436 }
437 }
438
439 static struct leaf *leaf_new(void)
440 {
441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
442 if (l) {
443 l->parent = T_LEAF;
444 INIT_HLIST_HEAD(&l->list);
445 }
446 return l;
447 }
448
449 static struct leaf_info *leaf_info_new(int plen)
450 {
451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
452 if (li) {
453 li->plen = plen;
454 li->mask_plen = ntohl(inet_make_mask(plen));
455 INIT_LIST_HEAD(&li->falh);
456 }
457 return li;
458 }
459
460 static struct tnode *tnode_new(t_key key, int pos, int bits)
461 {
462 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
463 struct tnode *tn = tnode_alloc(sz);
464
465 if (tn) {
466 tn->parent = T_TNODE;
467 tn->pos = pos;
468 tn->bits = bits;
469 tn->key = key;
470 tn->full_children = 0;
471 tn->empty_children = 1<<bits;
472 }
473
474 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
475 sizeof(struct rt_trie_node *) << bits);
476 return tn;
477 }
478
479 /*
480 * Check whether a tnode 'n' is "full", i.e. it is an internal node
481 * and no bits are skipped. See discussion in dyntree paper p. 6
482 */
483
484 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
485 {
486 if (n == NULL || IS_LEAF(n))
487 return 0;
488
489 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
490 }
491
492 static inline void put_child(struct tnode *tn, int i,
493 struct rt_trie_node *n)
494 {
495 tnode_put_child_reorg(tn, i, n, -1);
496 }
497
498 /*
499 * Add a child at position i overwriting the old value.
500 * Update the value of full_children and empty_children.
501 */
502
503 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
504 int wasfull)
505 {
506 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
507 int isfull;
508
509 BUG_ON(i >= 1<<tn->bits);
510
511 /* update emptyChildren */
512 if (n == NULL && chi != NULL)
513 tn->empty_children++;
514 else if (n != NULL && chi == NULL)
515 tn->empty_children--;
516
517 /* update fullChildren */
518 if (wasfull == -1)
519 wasfull = tnode_full(tn, chi);
520
521 isfull = tnode_full(tn, n);
522 if (wasfull && !isfull)
523 tn->full_children--;
524 else if (!wasfull && isfull)
525 tn->full_children++;
526
527 if (n)
528 node_set_parent(n, tn);
529
530 rcu_assign_pointer(tn->child[i], n);
531 }
532
533 #define MAX_WORK 10
534 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
535 {
536 int i;
537 struct tnode *old_tn;
538 int inflate_threshold_use;
539 int halve_threshold_use;
540 int max_work;
541
542 if (!tn)
543 return NULL;
544
545 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
546 tn, inflate_threshold, halve_threshold);
547
548 /* No children */
549 if (tn->empty_children == tnode_child_length(tn)) {
550 tnode_free_safe(tn);
551 return NULL;
552 }
553 /* One child */
554 if (tn->empty_children == tnode_child_length(tn) - 1)
555 goto one_child;
556 /*
557 * Double as long as the resulting node has a number of
558 * nonempty nodes that are above the threshold.
559 */
560
561 /*
562 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
563 * the Helsinki University of Technology and Matti Tikkanen of Nokia
564 * Telecommunications, page 6:
565 * "A node is doubled if the ratio of non-empty children to all
566 * children in the *doubled* node is at least 'high'."
567 *
568 * 'high' in this instance is the variable 'inflate_threshold'. It
569 * is expressed as a percentage, so we multiply it with
570 * tnode_child_length() and instead of multiplying by 2 (since the
571 * child array will be doubled by inflate()) and multiplying
572 * the left-hand side by 100 (to handle the percentage thing) we
573 * multiply the left-hand side by 50.
574 *
575 * The left-hand side may look a bit weird: tnode_child_length(tn)
576 * - tn->empty_children is of course the number of non-null children
577 * in the current node. tn->full_children is the number of "full"
578 * children, that is non-null tnodes with a skip value of 0.
579 * All of those will be doubled in the resulting inflated tnode, so
580 * we just count them one extra time here.
581 *
582 * A clearer way to write this would be:
583 *
584 * to_be_doubled = tn->full_children;
585 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
586 * tn->full_children;
587 *
588 * new_child_length = tnode_child_length(tn) * 2;
589 *
590 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
591 * new_child_length;
592 * if (new_fill_factor >= inflate_threshold)
593 *
594 * ...and so on, tho it would mess up the while () loop.
595 *
596 * anyway,
597 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
598 * inflate_threshold
599 *
600 * avoid a division:
601 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
602 * inflate_threshold * new_child_length
603 *
604 * expand not_to_be_doubled and to_be_doubled, and shorten:
605 * 100 * (tnode_child_length(tn) - tn->empty_children +
606 * tn->full_children) >= inflate_threshold * new_child_length
607 *
608 * expand new_child_length:
609 * 100 * (tnode_child_length(tn) - tn->empty_children +
610 * tn->full_children) >=
611 * inflate_threshold * tnode_child_length(tn) * 2
612 *
613 * shorten again:
614 * 50 * (tn->full_children + tnode_child_length(tn) -
615 * tn->empty_children) >= inflate_threshold *
616 * tnode_child_length(tn)
617 *
618 */
619
620 check_tnode(tn);
621
622 /* Keep root node larger */
623
624 if (!node_parent((struct rt_trie_node *)tn)) {
625 inflate_threshold_use = inflate_threshold_root;
626 halve_threshold_use = halve_threshold_root;
627 } else {
628 inflate_threshold_use = inflate_threshold;
629 halve_threshold_use = halve_threshold;
630 }
631
632 max_work = MAX_WORK;
633 while ((tn->full_children > 0 && max_work-- &&
634 50 * (tn->full_children + tnode_child_length(tn)
635 - tn->empty_children)
636 >= inflate_threshold_use * tnode_child_length(tn))) {
637
638 old_tn = tn;
639 tn = inflate(t, tn);
640
641 if (IS_ERR(tn)) {
642 tn = old_tn;
643 #ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645 #endif
646 break;
647 }
648 }
649
650 check_tnode(tn);
651
652 /* Return if at least one inflate is run */
653 if (max_work != MAX_WORK)
654 return (struct rt_trie_node *) tn;
655
656 /*
657 * Halve as long as the number of empty children in this
658 * node is above threshold.
659 */
660
661 max_work = MAX_WORK;
662 while (tn->bits > 1 && max_work-- &&
663 100 * (tnode_child_length(tn) - tn->empty_children) <
664 halve_threshold_use * tnode_child_length(tn)) {
665
666 old_tn = tn;
667 tn = halve(t, tn);
668 if (IS_ERR(tn)) {
669 tn = old_tn;
670 #ifdef CONFIG_IP_FIB_TRIE_STATS
671 t->stats.resize_node_skipped++;
672 #endif
673 break;
674 }
675 }
676
677
678 /* Only one child remains */
679 if (tn->empty_children == tnode_child_length(tn) - 1) {
680 one_child:
681 for (i = 0; i < tnode_child_length(tn); i++) {
682 struct rt_trie_node *n;
683
684 n = rtnl_dereference(tn->child[i]);
685 if (!n)
686 continue;
687
688 /* compress one level */
689
690 node_set_parent(n, NULL);
691 tnode_free_safe(tn);
692 return n;
693 }
694 }
695 return (struct rt_trie_node *) tn;
696 }
697
698
699 static void tnode_clean_free(struct tnode *tn)
700 {
701 int i;
702 struct tnode *tofree;
703
704 for (i = 0; i < tnode_child_length(tn); i++) {
705 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
706 if (tofree)
707 tnode_free(tofree);
708 }
709 tnode_free(tn);
710 }
711
712 static struct tnode *inflate(struct trie *t, struct tnode *tn)
713 {
714 struct tnode *oldtnode = tn;
715 int olen = tnode_child_length(tn);
716 int i;
717
718 pr_debug("In inflate\n");
719
720 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
721
722 if (!tn)
723 return ERR_PTR(-ENOMEM);
724
725 /*
726 * Preallocate and store tnodes before the actual work so we
727 * don't get into an inconsistent state if memory allocation
728 * fails. In case of failure we return the oldnode and inflate
729 * of tnode is ignored.
730 */
731
732 for (i = 0; i < olen; i++) {
733 struct tnode *inode;
734
735 inode = (struct tnode *) tnode_get_child(oldtnode, i);
736 if (inode &&
737 IS_TNODE(inode) &&
738 inode->pos == oldtnode->pos + oldtnode->bits &&
739 inode->bits > 1) {
740 struct tnode *left, *right;
741 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
742
743 left = tnode_new(inode->key&(~m), inode->pos + 1,
744 inode->bits - 1);
745 if (!left)
746 goto nomem;
747
748 right = tnode_new(inode->key|m, inode->pos + 1,
749 inode->bits - 1);
750
751 if (!right) {
752 tnode_free(left);
753 goto nomem;
754 }
755
756 put_child(tn, 2*i, (struct rt_trie_node *) left);
757 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
758 }
759 }
760
761 for (i = 0; i < olen; i++) {
762 struct tnode *inode;
763 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
764 struct tnode *left, *right;
765 int size, j;
766
767 /* An empty child */
768 if (node == NULL)
769 continue;
770
771 /* A leaf or an internal node with skipped bits */
772
773 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
774 tn->pos + tn->bits - 1) {
775 if (tkey_extract_bits(node->key,
776 oldtnode->pos + oldtnode->bits,
777 1) == 0)
778 put_child(tn, 2*i, node);
779 else
780 put_child(tn, 2*i+1, node);
781 continue;
782 }
783
784 /* An internal node with two children */
785 inode = (struct tnode *) node;
786
787 if (inode->bits == 1) {
788 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
789 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
790
791 tnode_free_safe(inode);
792 continue;
793 }
794
795 /* An internal node with more than two children */
796
797 /* We will replace this node 'inode' with two new
798 * ones, 'left' and 'right', each with half of the
799 * original children. The two new nodes will have
800 * a position one bit further down the key and this
801 * means that the "significant" part of their keys
802 * (see the discussion near the top of this file)
803 * will differ by one bit, which will be "0" in
804 * left's key and "1" in right's key. Since we are
805 * moving the key position by one step, the bit that
806 * we are moving away from - the bit at position
807 * (inode->pos) - is the one that will differ between
808 * left and right. So... we synthesize that bit in the
809 * two new keys.
810 * The mask 'm' below will be a single "one" bit at
811 * the position (inode->pos)
812 */
813
814 /* Use the old key, but set the new significant
815 * bit to zero.
816 */
817
818 left = (struct tnode *) tnode_get_child(tn, 2*i);
819 put_child(tn, 2*i, NULL);
820
821 BUG_ON(!left);
822
823 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
824 put_child(tn, 2*i+1, NULL);
825
826 BUG_ON(!right);
827
828 size = tnode_child_length(left);
829 for (j = 0; j < size; j++) {
830 put_child(left, j, rtnl_dereference(inode->child[j]));
831 put_child(right, j, rtnl_dereference(inode->child[j + size]));
832 }
833 put_child(tn, 2*i, resize(t, left));
834 put_child(tn, 2*i+1, resize(t, right));
835
836 tnode_free_safe(inode);
837 }
838 tnode_free_safe(oldtnode);
839 return tn;
840 nomem:
841 tnode_clean_free(tn);
842 return ERR_PTR(-ENOMEM);
843 }
844
845 static struct tnode *halve(struct trie *t, struct tnode *tn)
846 {
847 struct tnode *oldtnode = tn;
848 struct rt_trie_node *left, *right;
849 int i;
850 int olen = tnode_child_length(tn);
851
852 pr_debug("In halve\n");
853
854 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
855
856 if (!tn)
857 return ERR_PTR(-ENOMEM);
858
859 /*
860 * Preallocate and store tnodes before the actual work so we
861 * don't get into an inconsistent state if memory allocation
862 * fails. In case of failure we return the oldnode and halve
863 * of tnode is ignored.
864 */
865
866 for (i = 0; i < olen; i += 2) {
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
869
870 /* Two nonempty children */
871 if (left && right) {
872 struct tnode *newn;
873
874 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
875
876 if (!newn)
877 goto nomem;
878
879 put_child(tn, i/2, (struct rt_trie_node *)newn);
880 }
881
882 }
883
884 for (i = 0; i < olen; i += 2) {
885 struct tnode *newBinNode;
886
887 left = tnode_get_child(oldtnode, i);
888 right = tnode_get_child(oldtnode, i+1);
889
890 /* At least one of the children is empty */
891 if (left == NULL) {
892 if (right == NULL) /* Both are empty */
893 continue;
894 put_child(tn, i/2, right);
895 continue;
896 }
897
898 if (right == NULL) {
899 put_child(tn, i/2, left);
900 continue;
901 }
902
903 /* Two nonempty children */
904 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
905 put_child(tn, i/2, NULL);
906 put_child(newBinNode, 0, left);
907 put_child(newBinNode, 1, right);
908 put_child(tn, i/2, resize(t, newBinNode));
909 }
910 tnode_free_safe(oldtnode);
911 return tn;
912 nomem:
913 tnode_clean_free(tn);
914 return ERR_PTR(-ENOMEM);
915 }
916
917 /* readside must use rcu_read_lock currently dump routines
918 via get_fa_head and dump */
919
920 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
921 {
922 struct hlist_head *head = &l->list;
923 struct hlist_node *node;
924 struct leaf_info *li;
925
926 hlist_for_each_entry_rcu(li, node, head, hlist)
927 if (li->plen == plen)
928 return li;
929
930 return NULL;
931 }
932
933 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
934 {
935 struct leaf_info *li = find_leaf_info(l, plen);
936
937 if (!li)
938 return NULL;
939
940 return &li->falh;
941 }
942
943 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
944 {
945 struct leaf_info *li = NULL, *last = NULL;
946 struct hlist_node *node;
947
948 if (hlist_empty(head)) {
949 hlist_add_head_rcu(&new->hlist, head);
950 } else {
951 hlist_for_each_entry(li, node, head, hlist) {
952 if (new->plen > li->plen)
953 break;
954
955 last = li;
956 }
957 if (last)
958 hlist_add_after_rcu(&last->hlist, &new->hlist);
959 else
960 hlist_add_before_rcu(&new->hlist, &li->hlist);
961 }
962 }
963
964 /* rcu_read_lock needs to be hold by caller from readside */
965
966 static struct leaf *
967 fib_find_node(struct trie *t, u32 key)
968 {
969 int pos;
970 struct tnode *tn;
971 struct rt_trie_node *n;
972
973 pos = 0;
974 n = rcu_dereference_rtnl(t->trie);
975
976 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
977 tn = (struct tnode *) n;
978
979 check_tnode(tn);
980
981 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
982 pos = tn->pos + tn->bits;
983 n = tnode_get_child_rcu(tn,
984 tkey_extract_bits(key,
985 tn->pos,
986 tn->bits));
987 } else
988 break;
989 }
990 /* Case we have found a leaf. Compare prefixes */
991
992 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
993 return (struct leaf *)n;
994
995 return NULL;
996 }
997
998 static void trie_rebalance(struct trie *t, struct tnode *tn)
999 {
1000 int wasfull;
1001 t_key cindex, key;
1002 struct tnode *tp;
1003
1004 key = tn->key;
1005
1006 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
1007 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1008 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1009 tn = (struct tnode *)resize(t, tn);
1010
1011 tnode_put_child_reorg(tp, cindex,
1012 (struct rt_trie_node *)tn, wasfull);
1013
1014 tp = node_parent((struct rt_trie_node *) tn);
1015 if (!tp)
1016 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1017
1018 tnode_free_flush();
1019 if (!tp)
1020 break;
1021 tn = tp;
1022 }
1023
1024 /* Handle last (top) tnode */
1025 if (IS_TNODE(tn))
1026 tn = (struct tnode *)resize(t, tn);
1027
1028 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1029 tnode_free_flush();
1030 }
1031
1032 /* only used from updater-side */
1033
1034 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1035 {
1036 int pos, newpos;
1037 struct tnode *tp = NULL, *tn = NULL;
1038 struct rt_trie_node *n;
1039 struct leaf *l;
1040 int missbit;
1041 struct list_head *fa_head = NULL;
1042 struct leaf_info *li;
1043 t_key cindex;
1044
1045 pos = 0;
1046 n = rtnl_dereference(t->trie);
1047
1048 /* If we point to NULL, stop. Either the tree is empty and we should
1049 * just put a new leaf in if, or we have reached an empty child slot,
1050 * and we should just put our new leaf in that.
1051 * If we point to a T_TNODE, check if it matches our key. Note that
1052 * a T_TNODE might be skipping any number of bits - its 'pos' need
1053 * not be the parent's 'pos'+'bits'!
1054 *
1055 * If it does match the current key, get pos/bits from it, extract
1056 * the index from our key, push the T_TNODE and walk the tree.
1057 *
1058 * If it doesn't, we have to replace it with a new T_TNODE.
1059 *
1060 * If we point to a T_LEAF, it might or might not have the same key
1061 * as we do. If it does, just change the value, update the T_LEAF's
1062 * value, and return it.
1063 * If it doesn't, we need to replace it with a T_TNODE.
1064 */
1065
1066 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1067 tn = (struct tnode *) n;
1068
1069 check_tnode(tn);
1070
1071 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1072 tp = tn;
1073 pos = tn->pos + tn->bits;
1074 n = tnode_get_child(tn,
1075 tkey_extract_bits(key,
1076 tn->pos,
1077 tn->bits));
1078
1079 BUG_ON(n && node_parent(n) != tn);
1080 } else
1081 break;
1082 }
1083
1084 /*
1085 * n ----> NULL, LEAF or TNODE
1086 *
1087 * tp is n's (parent) ----> NULL or TNODE
1088 */
1089
1090 BUG_ON(tp && IS_LEAF(tp));
1091
1092 /* Case 1: n is a leaf. Compare prefixes */
1093
1094 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1095 l = (struct leaf *) n;
1096 li = leaf_info_new(plen);
1097
1098 if (!li)
1099 return NULL;
1100
1101 fa_head = &li->falh;
1102 insert_leaf_info(&l->list, li);
1103 goto done;
1104 }
1105 l = leaf_new();
1106
1107 if (!l)
1108 return NULL;
1109
1110 l->key = key;
1111 li = leaf_info_new(plen);
1112
1113 if (!li) {
1114 free_leaf(l);
1115 return NULL;
1116 }
1117
1118 fa_head = &li->falh;
1119 insert_leaf_info(&l->list, li);
1120
1121 if (t->trie && n == NULL) {
1122 /* Case 2: n is NULL, and will just insert a new leaf */
1123
1124 node_set_parent((struct rt_trie_node *)l, tp);
1125
1126 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1127 put_child(tp, cindex, (struct rt_trie_node *)l);
1128 } else {
1129 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1130 /*
1131 * Add a new tnode here
1132 * first tnode need some special handling
1133 */
1134
1135 if (tp)
1136 pos = tp->pos+tp->bits;
1137 else
1138 pos = 0;
1139
1140 if (n) {
1141 newpos = tkey_mismatch(key, pos, n->key);
1142 tn = tnode_new(n->key, newpos, 1);
1143 } else {
1144 newpos = 0;
1145 tn = tnode_new(key, newpos, 1); /* First tnode */
1146 }
1147
1148 if (!tn) {
1149 free_leaf_info(li);
1150 free_leaf(l);
1151 return NULL;
1152 }
1153
1154 node_set_parent((struct rt_trie_node *)tn, tp);
1155
1156 missbit = tkey_extract_bits(key, newpos, 1);
1157 put_child(tn, missbit, (struct rt_trie_node *)l);
1158 put_child(tn, 1-missbit, n);
1159
1160 if (tp) {
1161 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1162 put_child(tp, cindex, (struct rt_trie_node *)tn);
1163 } else {
1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1165 tp = tn;
1166 }
1167 }
1168
1169 if (tp && tp->pos + tp->bits > 32)
1170 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1171 tp, tp->pos, tp->bits, key, plen);
1172
1173 /* Rebalance the trie */
1174
1175 trie_rebalance(t, tp);
1176 done:
1177 return fa_head;
1178 }
1179
1180 /*
1181 * Caller must hold RTNL.
1182 */
1183 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1184 {
1185 struct trie *t = (struct trie *) tb->tb_data;
1186 struct fib_alias *fa, *new_fa;
1187 struct list_head *fa_head = NULL;
1188 struct fib_info *fi;
1189 int plen = cfg->fc_dst_len;
1190 u8 tos = cfg->fc_tos;
1191 u32 key, mask;
1192 int err;
1193 struct leaf *l;
1194
1195 if (plen > 32)
1196 return -EINVAL;
1197
1198 key = ntohl(cfg->fc_dst);
1199
1200 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1201
1202 mask = ntohl(inet_make_mask(plen));
1203
1204 if (key & ~mask)
1205 return -EINVAL;
1206
1207 key = key & mask;
1208
1209 fi = fib_create_info(cfg);
1210 if (IS_ERR(fi)) {
1211 err = PTR_ERR(fi);
1212 goto err;
1213 }
1214
1215 l = fib_find_node(t, key);
1216 fa = NULL;
1217
1218 if (l) {
1219 fa_head = get_fa_head(l, plen);
1220 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1221 }
1222
1223 /* Now fa, if non-NULL, points to the first fib alias
1224 * with the same keys [prefix,tos,priority], if such key already
1225 * exists or to the node before which we will insert new one.
1226 *
1227 * If fa is NULL, we will need to allocate a new one and
1228 * insert to the head of f.
1229 *
1230 * If f is NULL, no fib node matched the destination key
1231 * and we need to allocate a new one of those as well.
1232 */
1233
1234 if (fa && fa->fa_tos == tos &&
1235 fa->fa_info->fib_priority == fi->fib_priority) {
1236 struct fib_alias *fa_first, *fa_match;
1237
1238 err = -EEXIST;
1239 if (cfg->fc_nlflags & NLM_F_EXCL)
1240 goto out;
1241
1242 /* We have 2 goals:
1243 * 1. Find exact match for type, scope, fib_info to avoid
1244 * duplicate routes
1245 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1246 */
1247 fa_match = NULL;
1248 fa_first = fa;
1249 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1250 list_for_each_entry_continue(fa, fa_head, fa_list) {
1251 if (fa->fa_tos != tos)
1252 break;
1253 if (fa->fa_info->fib_priority != fi->fib_priority)
1254 break;
1255 if (fa->fa_type == cfg->fc_type &&
1256 fa->fa_info == fi) {
1257 fa_match = fa;
1258 break;
1259 }
1260 }
1261
1262 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1263 struct fib_info *fi_drop;
1264 u8 state;
1265
1266 fa = fa_first;
1267 if (fa_match) {
1268 if (fa == fa_match)
1269 err = 0;
1270 goto out;
1271 }
1272 err = -ENOBUFS;
1273 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1274 if (new_fa == NULL)
1275 goto out;
1276
1277 fi_drop = fa->fa_info;
1278 new_fa->fa_tos = fa->fa_tos;
1279 new_fa->fa_info = fi;
1280 new_fa->fa_type = cfg->fc_type;
1281 state = fa->fa_state;
1282 new_fa->fa_state = state & ~FA_S_ACCESSED;
1283
1284 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1285 alias_free_mem_rcu(fa);
1286
1287 fib_release_info(fi_drop);
1288 if (state & FA_S_ACCESSED)
1289 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1290 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1291 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1292
1293 goto succeeded;
1294 }
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1297 * information.
1298 */
1299 if (fa_match)
1300 goto out;
1301
1302 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1303 fa = fa_first;
1304 }
1305 err = -ENOENT;
1306 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1307 goto out;
1308
1309 err = -ENOBUFS;
1310 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1311 if (new_fa == NULL)
1312 goto out;
1313
1314 new_fa->fa_info = fi;
1315 new_fa->fa_tos = tos;
1316 new_fa->fa_type = cfg->fc_type;
1317 new_fa->fa_state = 0;
1318 /*
1319 * Insert new entry to the list.
1320 */
1321
1322 if (!fa_head) {
1323 fa_head = fib_insert_node(t, key, plen);
1324 if (unlikely(!fa_head)) {
1325 err = -ENOMEM;
1326 goto out_free_new_fa;
1327 }
1328 }
1329
1330 if (!plen)
1331 tb->tb_num_default++;
1332
1333 list_add_tail_rcu(&new_fa->fa_list,
1334 (fa ? &fa->fa_list : fa_head));
1335
1336 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1337 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1338 &cfg->fc_nlinfo, 0);
1339 succeeded:
1340 return 0;
1341
1342 out_free_new_fa:
1343 kmem_cache_free(fn_alias_kmem, new_fa);
1344 out:
1345 fib_release_info(fi);
1346 err:
1347 return err;
1348 }
1349
1350 /* should be called with rcu_read_lock */
1351 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1352 t_key key, const struct flowi4 *flp,
1353 struct fib_result *res, int fib_flags)
1354 {
1355 struct leaf_info *li;
1356 struct hlist_head *hhead = &l->list;
1357 struct hlist_node *node;
1358
1359 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1360 struct fib_alias *fa;
1361
1362 if (l->key != (key & li->mask_plen))
1363 continue;
1364
1365 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1366 struct fib_info *fi = fa->fa_info;
1367 int nhsel, err;
1368
1369 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1370 continue;
1371 if (fi->fib_dead)
1372 continue;
1373 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1374 continue;
1375 fib_alias_accessed(fa);
1376 err = fib_props[fa->fa_type].error;
1377 if (err) {
1378 #ifdef CONFIG_IP_FIB_TRIE_STATS
1379 t->stats.semantic_match_passed++;
1380 #endif
1381 return err;
1382 }
1383 if (fi->fib_flags & RTNH_F_DEAD)
1384 continue;
1385 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1386 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1387
1388 if (nh->nh_flags & RTNH_F_DEAD)
1389 continue;
1390 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1391 continue;
1392
1393 #ifdef CONFIG_IP_FIB_TRIE_STATS
1394 t->stats.semantic_match_passed++;
1395 #endif
1396 res->prefixlen = li->plen;
1397 res->nh_sel = nhsel;
1398 res->type = fa->fa_type;
1399 res->scope = fa->fa_info->fib_scope;
1400 res->fi = fi;
1401 res->table = tb;
1402 res->fa_head = &li->falh;
1403 if (!(fib_flags & FIB_LOOKUP_NOREF))
1404 atomic_inc(&fi->fib_clntref);
1405 return 0;
1406 }
1407 }
1408
1409 #ifdef CONFIG_IP_FIB_TRIE_STATS
1410 t->stats.semantic_match_miss++;
1411 #endif
1412 }
1413
1414 return 1;
1415 }
1416
1417 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1418 struct fib_result *res, int fib_flags)
1419 {
1420 struct trie *t = (struct trie *) tb->tb_data;
1421 int ret;
1422 struct rt_trie_node *n;
1423 struct tnode *pn;
1424 unsigned int pos, bits;
1425 t_key key = ntohl(flp->daddr);
1426 unsigned int chopped_off;
1427 t_key cindex = 0;
1428 unsigned int current_prefix_length = KEYLENGTH;
1429 struct tnode *cn;
1430 t_key pref_mismatch;
1431
1432 rcu_read_lock();
1433
1434 n = rcu_dereference(t->trie);
1435 if (!n)
1436 goto failed;
1437
1438 #ifdef CONFIG_IP_FIB_TRIE_STATS
1439 t->stats.gets++;
1440 #endif
1441
1442 /* Just a leaf? */
1443 if (IS_LEAF(n)) {
1444 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1445 goto found;
1446 }
1447
1448 pn = (struct tnode *) n;
1449 chopped_off = 0;
1450
1451 while (pn) {
1452 pos = pn->pos;
1453 bits = pn->bits;
1454
1455 if (!chopped_off)
1456 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1457 pos, bits);
1458
1459 n = tnode_get_child_rcu(pn, cindex);
1460
1461 if (n == NULL) {
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.null_node_hit++;
1464 #endif
1465 goto backtrace;
1466 }
1467
1468 if (IS_LEAF(n)) {
1469 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1470 if (ret > 0)
1471 goto backtrace;
1472 goto found;
1473 }
1474
1475 cn = (struct tnode *)n;
1476
1477 /*
1478 * It's a tnode, and we can do some extra checks here if we
1479 * like, to avoid descending into a dead-end branch.
1480 * This tnode is in the parent's child array at index
1481 * key[p_pos..p_pos+p_bits] but potentially with some bits
1482 * chopped off, so in reality the index may be just a
1483 * subprefix, padded with zero at the end.
1484 * We can also take a look at any skipped bits in this
1485 * tnode - everything up to p_pos is supposed to be ok,
1486 * and the non-chopped bits of the index (se previous
1487 * paragraph) are also guaranteed ok, but the rest is
1488 * considered unknown.
1489 *
1490 * The skipped bits are key[pos+bits..cn->pos].
1491 */
1492
1493 /* If current_prefix_length < pos+bits, we are already doing
1494 * actual prefix matching, which means everything from
1495 * pos+(bits-chopped_off) onward must be zero along some
1496 * branch of this subtree - otherwise there is *no* valid
1497 * prefix present. Here we can only check the skipped
1498 * bits. Remember, since we have already indexed into the
1499 * parent's child array, we know that the bits we chopped of
1500 * *are* zero.
1501 */
1502
1503 /* NOTA BENE: Checking only skipped bits
1504 for the new node here */
1505
1506 if (current_prefix_length < pos+bits) {
1507 if (tkey_extract_bits(cn->key, current_prefix_length,
1508 cn->pos - current_prefix_length)
1509 || !(cn->child[0]))
1510 goto backtrace;
1511 }
1512
1513 /*
1514 * If chopped_off=0, the index is fully validated and we
1515 * only need to look at the skipped bits for this, the new,
1516 * tnode. What we actually want to do is to find out if
1517 * these skipped bits match our key perfectly, or if we will
1518 * have to count on finding a matching prefix further down,
1519 * because if we do, we would like to have some way of
1520 * verifying the existence of such a prefix at this point.
1521 */
1522
1523 /* The only thing we can do at this point is to verify that
1524 * any such matching prefix can indeed be a prefix to our
1525 * key, and if the bits in the node we are inspecting that
1526 * do not match our key are not ZERO, this cannot be true.
1527 * Thus, find out where there is a mismatch (before cn->pos)
1528 * and verify that all the mismatching bits are zero in the
1529 * new tnode's key.
1530 */
1531
1532 /*
1533 * Note: We aren't very concerned about the piece of
1534 * the key that precede pn->pos+pn->bits, since these
1535 * have already been checked. The bits after cn->pos
1536 * aren't checked since these are by definition
1537 * "unknown" at this point. Thus, what we want to see
1538 * is if we are about to enter the "prefix matching"
1539 * state, and in that case verify that the skipped
1540 * bits that will prevail throughout this subtree are
1541 * zero, as they have to be if we are to find a
1542 * matching prefix.
1543 */
1544
1545 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1546
1547 /*
1548 * In short: If skipped bits in this node do not match
1549 * the search key, enter the "prefix matching"
1550 * state.directly.
1551 */
1552 if (pref_mismatch) {
1553 int mp = KEYLENGTH - fls(pref_mismatch);
1554
1555 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1556 goto backtrace;
1557
1558 if (current_prefix_length >= cn->pos)
1559 current_prefix_length = mp;
1560 }
1561
1562 pn = (struct tnode *)n; /* Descend */
1563 chopped_off = 0;
1564 continue;
1565
1566 backtrace:
1567 chopped_off++;
1568
1569 /* As zero don't change the child key (cindex) */
1570 while ((chopped_off <= pn->bits)
1571 && !(cindex & (1<<(chopped_off-1))))
1572 chopped_off++;
1573
1574 /* Decrease current_... with bits chopped off */
1575 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1576 current_prefix_length = pn->pos + pn->bits
1577 - chopped_off;
1578
1579 /*
1580 * Either we do the actual chop off according or if we have
1581 * chopped off all bits in this tnode walk up to our parent.
1582 */
1583
1584 if (chopped_off <= pn->bits) {
1585 cindex &= ~(1 << (chopped_off-1));
1586 } else {
1587 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1588 if (!parent)
1589 goto failed;
1590
1591 /* Get Child's index */
1592 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1593 pn = parent;
1594 chopped_off = 0;
1595
1596 #ifdef CONFIG_IP_FIB_TRIE_STATS
1597 t->stats.backtrack++;
1598 #endif
1599 goto backtrace;
1600 }
1601 }
1602 failed:
1603 ret = 1;
1604 found:
1605 rcu_read_unlock();
1606 return ret;
1607 }
1608 EXPORT_SYMBOL_GPL(fib_table_lookup);
1609
1610 /*
1611 * Remove the leaf and return parent.
1612 */
1613 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1614 {
1615 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1616
1617 pr_debug("entering trie_leaf_remove(%p)\n", l);
1618
1619 if (tp) {
1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1621 put_child(tp, cindex, NULL);
1622 trie_rebalance(t, tp);
1623 } else
1624 RCU_INIT_POINTER(t->trie, NULL);
1625
1626 free_leaf(l);
1627 }
1628
1629 /*
1630 * Caller must hold RTNL.
1631 */
1632 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1633 {
1634 struct trie *t = (struct trie *) tb->tb_data;
1635 u32 key, mask;
1636 int plen = cfg->fc_dst_len;
1637 u8 tos = cfg->fc_tos;
1638 struct fib_alias *fa, *fa_to_delete;
1639 struct list_head *fa_head;
1640 struct leaf *l;
1641 struct leaf_info *li;
1642
1643 if (plen > 32)
1644 return -EINVAL;
1645
1646 key = ntohl(cfg->fc_dst);
1647 mask = ntohl(inet_make_mask(plen));
1648
1649 if (key & ~mask)
1650 return -EINVAL;
1651
1652 key = key & mask;
1653 l = fib_find_node(t, key);
1654
1655 if (!l)
1656 return -ESRCH;
1657
1658 fa_head = get_fa_head(l, plen);
1659 fa = fib_find_alias(fa_head, tos, 0);
1660
1661 if (!fa)
1662 return -ESRCH;
1663
1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1665
1666 fa_to_delete = NULL;
1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668 list_for_each_entry_continue(fa, fa_head, fa_list) {
1669 struct fib_info *fi = fa->fa_info;
1670
1671 if (fa->fa_tos != tos)
1672 break;
1673
1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1676 fa->fa_info->fib_scope == cfg->fc_scope) &&
1677 (!cfg->fc_prefsrc ||
1678 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1679 (!cfg->fc_protocol ||
1680 fi->fib_protocol == cfg->fc_protocol) &&
1681 fib_nh_match(cfg, fi) == 0) {
1682 fa_to_delete = fa;
1683 break;
1684 }
1685 }
1686
1687 if (!fa_to_delete)
1688 return -ESRCH;
1689
1690 fa = fa_to_delete;
1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1692 &cfg->fc_nlinfo, 0);
1693
1694 l = fib_find_node(t, key);
1695 li = find_leaf_info(l, plen);
1696
1697 list_del_rcu(&fa->fa_list);
1698
1699 if (!plen)
1700 tb->tb_num_default--;
1701
1702 if (list_empty(fa_head)) {
1703 hlist_del_rcu(&li->hlist);
1704 free_leaf_info(li);
1705 }
1706
1707 if (hlist_empty(&l->list))
1708 trie_leaf_remove(t, l);
1709
1710 if (fa->fa_state & FA_S_ACCESSED)
1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1712
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
1715 return 0;
1716 }
1717
1718 static int trie_flush_list(struct list_head *head)
1719 {
1720 struct fib_alias *fa, *fa_node;
1721 int found = 0;
1722
1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 struct fib_info *fi = fa->fa_info;
1725
1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 list_del_rcu(&fa->fa_list);
1728 fib_release_info(fa->fa_info);
1729 alias_free_mem_rcu(fa);
1730 found++;
1731 }
1732 }
1733 return found;
1734 }
1735
1736 static int trie_flush_leaf(struct leaf *l)
1737 {
1738 int found = 0;
1739 struct hlist_head *lih = &l->list;
1740 struct hlist_node *node, *tmp;
1741 struct leaf_info *li = NULL;
1742
1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1744 found += trie_flush_list(&li->falh);
1745
1746 if (list_empty(&li->falh)) {
1747 hlist_del_rcu(&li->hlist);
1748 free_leaf_info(li);
1749 }
1750 }
1751 return found;
1752 }
1753
1754 /*
1755 * Scan for the next right leaf starting at node p->child[idx]
1756 * Since we have back pointer, no recursion necessary.
1757 */
1758 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1759 {
1760 do {
1761 t_key idx;
1762
1763 if (c)
1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1765 else
1766 idx = 0;
1767
1768 while (idx < 1u << p->bits) {
1769 c = tnode_get_child_rcu(p, idx++);
1770 if (!c)
1771 continue;
1772
1773 if (IS_LEAF(c)) {
1774 prefetch(rcu_dereference_rtnl(p->child[idx]));
1775 return (struct leaf *) c;
1776 }
1777
1778 /* Rescan start scanning in new node */
1779 p = (struct tnode *) c;
1780 idx = 0;
1781 }
1782
1783 /* Node empty, walk back up to parent */
1784 c = (struct rt_trie_node *) p;
1785 } while ((p = node_parent_rcu(c)) != NULL);
1786
1787 return NULL; /* Root of trie */
1788 }
1789
1790 static struct leaf *trie_firstleaf(struct trie *t)
1791 {
1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1793
1794 if (!n)
1795 return NULL;
1796
1797 if (IS_LEAF(n)) /* trie is just a leaf */
1798 return (struct leaf *) n;
1799
1800 return leaf_walk_rcu(n, NULL);
1801 }
1802
1803 static struct leaf *trie_nextleaf(struct leaf *l)
1804 {
1805 struct rt_trie_node *c = (struct rt_trie_node *) l;
1806 struct tnode *p = node_parent_rcu(c);
1807
1808 if (!p)
1809 return NULL; /* trie with just one leaf */
1810
1811 return leaf_walk_rcu(p, c);
1812 }
1813
1814 static struct leaf *trie_leafindex(struct trie *t, int index)
1815 {
1816 struct leaf *l = trie_firstleaf(t);
1817
1818 while (l && index-- > 0)
1819 l = trie_nextleaf(l);
1820
1821 return l;
1822 }
1823
1824
1825 /*
1826 * Caller must hold RTNL.
1827 */
1828 int fib_table_flush(struct fib_table *tb)
1829 {
1830 struct trie *t = (struct trie *) tb->tb_data;
1831 struct leaf *l, *ll = NULL;
1832 int found = 0;
1833
1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1835 found += trie_flush_leaf(l);
1836
1837 if (ll && hlist_empty(&ll->list))
1838 trie_leaf_remove(t, ll);
1839 ll = l;
1840 }
1841
1842 if (ll && hlist_empty(&ll->list))
1843 trie_leaf_remove(t, ll);
1844
1845 pr_debug("trie_flush found=%d\n", found);
1846 return found;
1847 }
1848
1849 void fib_free_table(struct fib_table *tb)
1850 {
1851 kfree(tb);
1852 }
1853
1854 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 struct fib_table *tb,
1856 struct sk_buff *skb, struct netlink_callback *cb)
1857 {
1858 int i, s_i;
1859 struct fib_alias *fa;
1860 __be32 xkey = htonl(key);
1861
1862 s_i = cb->args[5];
1863 i = 0;
1864
1865 /* rcu_read_lock is hold by caller */
1866
1867 list_for_each_entry_rcu(fa, fah, fa_list) {
1868 if (i < s_i) {
1869 i++;
1870 continue;
1871 }
1872
1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874 cb->nlh->nlmsg_seq,
1875 RTM_NEWROUTE,
1876 tb->tb_id,
1877 fa->fa_type,
1878 xkey,
1879 plen,
1880 fa->fa_tos,
1881 fa->fa_info, NLM_F_MULTI) < 0) {
1882 cb->args[5] = i;
1883 return -1;
1884 }
1885 i++;
1886 }
1887 cb->args[5] = i;
1888 return skb->len;
1889 }
1890
1891 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 struct leaf_info *li;
1895 struct hlist_node *node;
1896 int i, s_i;
1897
1898 s_i = cb->args[4];
1899 i = 0;
1900
1901 /* rcu_read_lock is hold by caller */
1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903 if (i < s_i) {
1904 i++;
1905 continue;
1906 }
1907
1908 if (i > s_i)
1909 cb->args[5] = 0;
1910
1911 if (list_empty(&li->falh))
1912 continue;
1913
1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1915 cb->args[4] = i;
1916 return -1;
1917 }
1918 i++;
1919 }
1920
1921 cb->args[4] = i;
1922 return skb->len;
1923 }
1924
1925 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926 struct netlink_callback *cb)
1927 {
1928 struct leaf *l;
1929 struct trie *t = (struct trie *) tb->tb_data;
1930 t_key key = cb->args[2];
1931 int count = cb->args[3];
1932
1933 rcu_read_lock();
1934 /* Dump starting at last key.
1935 * Note: 0.0.0.0/0 (ie default) is first key.
1936 */
1937 if (count == 0)
1938 l = trie_firstleaf(t);
1939 else {
1940 /* Normally, continue from last key, but if that is missing
1941 * fallback to using slow rescan
1942 */
1943 l = fib_find_node(t, key);
1944 if (!l)
1945 l = trie_leafindex(t, count);
1946 }
1947
1948 while (l) {
1949 cb->args[2] = l->key;
1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1951 cb->args[3] = count;
1952 rcu_read_unlock();
1953 return -1;
1954 }
1955
1956 ++count;
1957 l = trie_nextleaf(l);
1958 memset(&cb->args[4], 0,
1959 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1960 }
1961 cb->args[3] = count;
1962 rcu_read_unlock();
1963
1964 return skb->len;
1965 }
1966
1967 void __init fib_trie_init(void)
1968 {
1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970 sizeof(struct fib_alias),
1971 0, SLAB_PANIC, NULL);
1972
1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974 max(sizeof(struct leaf),
1975 sizeof(struct leaf_info)),
1976 0, SLAB_PANIC, NULL);
1977 }
1978
1979
1980 struct fib_table *fib_trie_table(u32 id)
1981 {
1982 struct fib_table *tb;
1983 struct trie *t;
1984
1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986 GFP_KERNEL);
1987 if (tb == NULL)
1988 return NULL;
1989
1990 tb->tb_id = id;
1991 tb->tb_default = -1;
1992 tb->tb_num_default = 0;
1993
1994 t = (struct trie *) tb->tb_data;
1995 memset(t, 0, sizeof(*t));
1996
1997 return tb;
1998 }
1999
2000 #ifdef CONFIG_PROC_FS
2001 /* Depth first Trie walk iterator */
2002 struct fib_trie_iter {
2003 struct seq_net_private p;
2004 struct fib_table *tb;
2005 struct tnode *tnode;
2006 unsigned int index;
2007 unsigned int depth;
2008 };
2009
2010 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
2011 {
2012 struct tnode *tn = iter->tnode;
2013 unsigned int cindex = iter->index;
2014 struct tnode *p;
2015
2016 /* A single entry routing table */
2017 if (!tn)
2018 return NULL;
2019
2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 iter->tnode, iter->index, iter->depth);
2022 rescan:
2023 while (cindex < (1<<tn->bits)) {
2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2025
2026 if (n) {
2027 if (IS_LEAF(n)) {
2028 iter->tnode = tn;
2029 iter->index = cindex + 1;
2030 } else {
2031 /* push down one level */
2032 iter->tnode = (struct tnode *) n;
2033 iter->index = 0;
2034 ++iter->depth;
2035 }
2036 return n;
2037 }
2038
2039 ++cindex;
2040 }
2041
2042 /* Current node exhausted, pop back up */
2043 p = node_parent_rcu((struct rt_trie_node *)tn);
2044 if (p) {
2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046 tn = p;
2047 --iter->depth;
2048 goto rescan;
2049 }
2050
2051 /* got root? */
2052 return NULL;
2053 }
2054
2055 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2056 struct trie *t)
2057 {
2058 struct rt_trie_node *n;
2059
2060 if (!t)
2061 return NULL;
2062
2063 n = rcu_dereference(t->trie);
2064 if (!n)
2065 return NULL;
2066
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 iter->depth = 1;
2071 } else {
2072 iter->tnode = NULL;
2073 iter->index = 0;
2074 iter->depth = 0;
2075 }
2076
2077 return n;
2078 }
2079
2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081 {
2082 struct rt_trie_node *n;
2083 struct fib_trie_iter iter;
2084
2085 memset(s, 0, sizeof(*s));
2086
2087 rcu_read_lock();
2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2089 if (IS_LEAF(n)) {
2090 struct leaf *l = (struct leaf *)n;
2091 struct leaf_info *li;
2092 struct hlist_node *tmp;
2093
2094 s->leaves++;
2095 s->totdepth += iter.depth;
2096 if (iter.depth > s->maxdepth)
2097 s->maxdepth = iter.depth;
2098
2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100 ++s->prefixes;
2101 } else {
2102 const struct tnode *tn = (const struct tnode *) n;
2103 int i;
2104
2105 s->tnodes++;
2106 if (tn->bits < MAX_STAT_DEPTH)
2107 s->nodesizes[tn->bits]++;
2108
2109 for (i = 0; i < (1<<tn->bits); i++)
2110 if (!tn->child[i])
2111 s->nullpointers++;
2112 }
2113 }
2114 rcu_read_unlock();
2115 }
2116
2117 /*
2118 * This outputs /proc/net/fib_triestats
2119 */
2120 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2121 {
2122 unsigned int i, max, pointers, bytes, avdepth;
2123
2124 if (stat->leaves)
2125 avdepth = stat->totdepth*100 / stat->leaves;
2126 else
2127 avdepth = 0;
2128
2129 seq_printf(seq, "\tAver depth: %u.%02d\n",
2130 avdepth / 100, avdepth % 100);
2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2132
2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2134 bytes = sizeof(struct leaf) * stat->leaves;
2135
2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2137 bytes += sizeof(struct leaf_info) * stat->prefixes;
2138
2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2140 bytes += sizeof(struct tnode) * stat->tnodes;
2141
2142 max = MAX_STAT_DEPTH;
2143 while (max > 0 && stat->nodesizes[max-1] == 0)
2144 max--;
2145
2146 pointers = 0;
2147 for (i = 1; i <= max; i++)
2148 if (stat->nodesizes[i] != 0) {
2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2150 pointers += (1<<i) * stat->nodesizes[i];
2151 }
2152 seq_putc(seq, '\n');
2153 seq_printf(seq, "\tPointers: %u\n", pointers);
2154
2155 bytes += sizeof(struct rt_trie_node *) * pointers;
2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2158 }
2159
2160 #ifdef CONFIG_IP_FIB_TRIE_STATS
2161 static void trie_show_usage(struct seq_file *seq,
2162 const struct trie_use_stats *stats)
2163 {
2164 seq_printf(seq, "\nCounters:\n---------\n");
2165 seq_printf(seq, "gets = %u\n", stats->gets);
2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167 seq_printf(seq, "semantic match passed = %u\n",
2168 stats->semantic_match_passed);
2169 seq_printf(seq, "semantic match miss = %u\n",
2170 stats->semantic_match_miss);
2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172 seq_printf(seq, "skipped node resize = %u\n\n",
2173 stats->resize_node_skipped);
2174 }
2175 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2176
2177 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2178 {
2179 if (tb->tb_id == RT_TABLE_LOCAL)
2180 seq_puts(seq, "Local:\n");
2181 else if (tb->tb_id == RT_TABLE_MAIN)
2182 seq_puts(seq, "Main:\n");
2183 else
2184 seq_printf(seq, "Id %d:\n", tb->tb_id);
2185 }
2186
2187
2188 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189 {
2190 struct net *net = (struct net *)seq->private;
2191 unsigned int h;
2192
2193 seq_printf(seq,
2194 "Basic info: size of leaf:"
2195 " %Zd bytes, size of tnode: %Zd bytes.\n",
2196 sizeof(struct leaf), sizeof(struct tnode));
2197
2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 struct hlist_node *node;
2201 struct fib_table *tb;
2202
2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 struct trie *t = (struct trie *) tb->tb_data;
2205 struct trie_stat stat;
2206
2207 if (!t)
2208 continue;
2209
2210 fib_table_print(seq, tb);
2211
2212 trie_collect_stats(t, &stat);
2213 trie_show_stats(seq, &stat);
2214 #ifdef CONFIG_IP_FIB_TRIE_STATS
2215 trie_show_usage(seq, &t->stats);
2216 #endif
2217 }
2218 }
2219
2220 return 0;
2221 }
2222
2223 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2224 {
2225 return single_open_net(inode, file, fib_triestat_seq_show);
2226 }
2227
2228 static const struct file_operations fib_triestat_fops = {
2229 .owner = THIS_MODULE,
2230 .open = fib_triestat_seq_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
2233 .release = single_release_net,
2234 };
2235
2236 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2237 {
2238 struct fib_trie_iter *iter = seq->private;
2239 struct net *net = seq_file_net(seq);
2240 loff_t idx = 0;
2241 unsigned int h;
2242
2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245 struct hlist_node *node;
2246 struct fib_table *tb;
2247
2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2249 struct rt_trie_node *n;
2250
2251 for (n = fib_trie_get_first(iter,
2252 (struct trie *) tb->tb_data);
2253 n; n = fib_trie_get_next(iter))
2254 if (pos == idx++) {
2255 iter->tb = tb;
2256 return n;
2257 }
2258 }
2259 }
2260
2261 return NULL;
2262 }
2263
2264 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2265 __acquires(RCU)
2266 {
2267 rcu_read_lock();
2268 return fib_trie_get_idx(seq, *pos);
2269 }
2270
2271 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2272 {
2273 struct fib_trie_iter *iter = seq->private;
2274 struct net *net = seq_file_net(seq);
2275 struct fib_table *tb = iter->tb;
2276 struct hlist_node *tb_node;
2277 unsigned int h;
2278 struct rt_trie_node *n;
2279
2280 ++*pos;
2281 /* next node in same table */
2282 n = fib_trie_get_next(iter);
2283 if (n)
2284 return n;
2285
2286 /* walk rest of this hash chain */
2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291 if (n)
2292 goto found;
2293 }
2294
2295 /* new hash chain */
2296 while (++h < FIB_TABLE_HASHSZ) {
2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300 if (n)
2301 goto found;
2302 }
2303 }
2304 return NULL;
2305
2306 found:
2307 iter->tb = tb;
2308 return n;
2309 }
2310
2311 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2312 __releases(RCU)
2313 {
2314 rcu_read_unlock();
2315 }
2316
2317 static void seq_indent(struct seq_file *seq, int n)
2318 {
2319 while (n-- > 0)
2320 seq_puts(seq, " ");
2321 }
2322
2323 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2324 {
2325 switch (s) {
2326 case RT_SCOPE_UNIVERSE: return "universe";
2327 case RT_SCOPE_SITE: return "site";
2328 case RT_SCOPE_LINK: return "link";
2329 case RT_SCOPE_HOST: return "host";
2330 case RT_SCOPE_NOWHERE: return "nowhere";
2331 default:
2332 snprintf(buf, len, "scope=%d", s);
2333 return buf;
2334 }
2335 }
2336
2337 static const char *const rtn_type_names[__RTN_MAX] = {
2338 [RTN_UNSPEC] = "UNSPEC",
2339 [RTN_UNICAST] = "UNICAST",
2340 [RTN_LOCAL] = "LOCAL",
2341 [RTN_BROADCAST] = "BROADCAST",
2342 [RTN_ANYCAST] = "ANYCAST",
2343 [RTN_MULTICAST] = "MULTICAST",
2344 [RTN_BLACKHOLE] = "BLACKHOLE",
2345 [RTN_UNREACHABLE] = "UNREACHABLE",
2346 [RTN_PROHIBIT] = "PROHIBIT",
2347 [RTN_THROW] = "THROW",
2348 [RTN_NAT] = "NAT",
2349 [RTN_XRESOLVE] = "XRESOLVE",
2350 };
2351
2352 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2353 {
2354 if (t < __RTN_MAX && rtn_type_names[t])
2355 return rtn_type_names[t];
2356 snprintf(buf, len, "type %u", t);
2357 return buf;
2358 }
2359
2360 /* Pretty print the trie */
2361 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2362 {
2363 const struct fib_trie_iter *iter = seq->private;
2364 struct rt_trie_node *n = v;
2365
2366 if (!node_parent_rcu(n))
2367 fib_table_print(seq, iter->tb);
2368
2369 if (IS_TNODE(n)) {
2370 struct tnode *tn = (struct tnode *) n;
2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2372
2373 seq_indent(seq, iter->depth-1);
2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2375 &prf, tn->pos, tn->bits, tn->full_children,
2376 tn->empty_children);
2377
2378 } else {
2379 struct leaf *l = (struct leaf *) n;
2380 struct leaf_info *li;
2381 struct hlist_node *node;
2382 __be32 val = htonl(l->key);
2383
2384 seq_indent(seq, iter->depth);
2385 seq_printf(seq, " |-- %pI4\n", &val);
2386
2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388 struct fib_alias *fa;
2389
2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391 char buf1[32], buf2[32];
2392
2393 seq_indent(seq, iter->depth+1);
2394 seq_printf(seq, " /%d %s %s", li->plen,
2395 rtn_scope(buf1, sizeof(buf1),
2396 fa->fa_info->fib_scope),
2397 rtn_type(buf2, sizeof(buf2),
2398 fa->fa_type));
2399 if (fa->fa_tos)
2400 seq_printf(seq, " tos=%d", fa->fa_tos);
2401 seq_putc(seq, '\n');
2402 }
2403 }
2404 }
2405
2406 return 0;
2407 }
2408
2409 static const struct seq_operations fib_trie_seq_ops = {
2410 .start = fib_trie_seq_start,
2411 .next = fib_trie_seq_next,
2412 .stop = fib_trie_seq_stop,
2413 .show = fib_trie_seq_show,
2414 };
2415
2416 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2417 {
2418 return seq_open_net(inode, file, &fib_trie_seq_ops,
2419 sizeof(struct fib_trie_iter));
2420 }
2421
2422 static const struct file_operations fib_trie_fops = {
2423 .owner = THIS_MODULE,
2424 .open = fib_trie_seq_open,
2425 .read = seq_read,
2426 .llseek = seq_lseek,
2427 .release = seq_release_net,
2428 };
2429
2430 struct fib_route_iter {
2431 struct seq_net_private p;
2432 struct trie *main_trie;
2433 loff_t pos;
2434 t_key key;
2435 };
2436
2437 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2438 {
2439 struct leaf *l = NULL;
2440 struct trie *t = iter->main_trie;
2441
2442 /* use cache location of last found key */
2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444 pos -= iter->pos;
2445 else {
2446 iter->pos = 0;
2447 l = trie_firstleaf(t);
2448 }
2449
2450 while (l && pos-- > 0) {
2451 iter->pos++;
2452 l = trie_nextleaf(l);
2453 }
2454
2455 if (l)
2456 iter->key = pos; /* remember it */
2457 else
2458 iter->pos = 0; /* forget it */
2459
2460 return l;
2461 }
2462
2463 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464 __acquires(RCU)
2465 {
2466 struct fib_route_iter *iter = seq->private;
2467 struct fib_table *tb;
2468
2469 rcu_read_lock();
2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2471 if (!tb)
2472 return NULL;
2473
2474 iter->main_trie = (struct trie *) tb->tb_data;
2475 if (*pos == 0)
2476 return SEQ_START_TOKEN;
2477 else
2478 return fib_route_get_idx(iter, *pos - 1);
2479 }
2480
2481 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482 {
2483 struct fib_route_iter *iter = seq->private;
2484 struct leaf *l = v;
2485
2486 ++*pos;
2487 if (v == SEQ_START_TOKEN) {
2488 iter->pos = 0;
2489 l = trie_firstleaf(iter->main_trie);
2490 } else {
2491 iter->pos++;
2492 l = trie_nextleaf(l);
2493 }
2494
2495 if (l)
2496 iter->key = l->key;
2497 else
2498 iter->pos = 0;
2499 return l;
2500 }
2501
2502 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503 __releases(RCU)
2504 {
2505 rcu_read_unlock();
2506 }
2507
2508 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2509 {
2510 unsigned int flags = 0;
2511
2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513 flags = RTF_REJECT;
2514 if (fi && fi->fib_nh->nh_gw)
2515 flags |= RTF_GATEWAY;
2516 if (mask == htonl(0xFFFFFFFF))
2517 flags |= RTF_HOST;
2518 flags |= RTF_UP;
2519 return flags;
2520 }
2521
2522 /*
2523 * This outputs /proc/net/route.
2524 * The format of the file is not supposed to be changed
2525 * and needs to be same as fib_hash output to avoid breaking
2526 * legacy utilities
2527 */
2528 static int fib_route_seq_show(struct seq_file *seq, void *v)
2529 {
2530 struct leaf *l = v;
2531 struct leaf_info *li;
2532 struct hlist_node *node;
2533
2534 if (v == SEQ_START_TOKEN) {
2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537 "\tWindow\tIRTT");
2538 return 0;
2539 }
2540
2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2542 struct fib_alias *fa;
2543 __be32 mask, prefix;
2544
2545 mask = inet_make_mask(li->plen);
2546 prefix = htonl(l->key);
2547
2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2549 const struct fib_info *fi = fa->fa_info;
2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2551 int len;
2552
2553 if (fa->fa_type == RTN_BROADCAST
2554 || fa->fa_type == RTN_MULTICAST)
2555 continue;
2556
2557 if (fi)
2558 seq_printf(seq,
2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
2561 fi->fib_dev ? fi->fib_dev->name : "*",
2562 prefix,
2563 fi->fib_nh->nh_gw, flags, 0, 0,
2564 fi->fib_priority,
2565 mask,
2566 (fi->fib_advmss ?
2567 fi->fib_advmss + 40 : 0),
2568 fi->fib_window,
2569 fi->fib_rtt >> 3, &len);
2570 else
2571 seq_printf(seq,
2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573 "%d\t%08X\t%d\t%u\t%u%n",
2574 prefix, 0, flags, 0, 0, 0,
2575 mask, 0, 0, 0, &len);
2576
2577 seq_printf(seq, "%*s\n", 127 - len, "");
2578 }
2579 }
2580
2581 return 0;
2582 }
2583
2584 static const struct seq_operations fib_route_seq_ops = {
2585 .start = fib_route_seq_start,
2586 .next = fib_route_seq_next,
2587 .stop = fib_route_seq_stop,
2588 .show = fib_route_seq_show,
2589 };
2590
2591 static int fib_route_seq_open(struct inode *inode, struct file *file)
2592 {
2593 return seq_open_net(inode, file, &fib_route_seq_ops,
2594 sizeof(struct fib_route_iter));
2595 }
2596
2597 static const struct file_operations fib_route_fops = {
2598 .owner = THIS_MODULE,
2599 .open = fib_route_seq_open,
2600 .read = seq_read,
2601 .llseek = seq_lseek,
2602 .release = seq_release_net,
2603 };
2604
2605 int __net_init fib_proc_init(struct net *net)
2606 {
2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2608 goto out1;
2609
2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611 &fib_triestat_fops))
2612 goto out2;
2613
2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2615 goto out3;
2616
2617 return 0;
2618
2619 out3:
2620 proc_net_remove(net, "fib_triestat");
2621 out2:
2622 proc_net_remove(net, "fib_trie");
2623 out1:
2624 return -ENOMEM;
2625 }
2626
2627 void __net_exit fib_proc_exit(struct net *net)
2628 {
2629 proc_net_remove(net, "fib_trie");
2630 proc_net_remove(net, "fib_triestat");
2631 proc_net_remove(net, "route");
2632 }
2633
2634 #endif /* CONFIG_PROC_FS */
This page took 0.122971 seconds and 5 git commands to generate.