Merge git://git.skbuff.net/gitroot/yoshfuji/linux-2.6-git-rfc3542
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 */
45
46 #define VERSION "0.402"
47
48 #include <linux/config.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
51 #include <asm/bitops.h>
52 #include <linux/types.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/mm.h>
56 #include <linux/string.h>
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/errno.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_arp.h>
64 #include <linux/proc_fs.h>
65 #include <linux/rcupdate.h>
66 #include <linux/skbuff.h>
67 #include <linux/netlink.h>
68 #include <linux/init.h>
69 #include <linux/list.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <net/route.h>
73 #include <net/tcp.h>
74 #include <net/sock.h>
75 #include <net/ip_fib.h>
76 #include "fib_lookup.h"
77
78 #undef CONFIG_IP_FIB_TRIE_STATS
79 #define MAX_CHILDS 16384
80
81 #define KEYLENGTH (8*sizeof(t_key))
82 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
83 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
84
85 typedef unsigned int t_key;
86
87 #define T_TNODE 0
88 #define T_LEAF 1
89 #define NODE_TYPE_MASK 0x1UL
90 #define NODE_PARENT(node) \
91 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
92
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define NODE_SET_PARENT(node, ptr) \
96 rcu_assign_pointer((node)->parent, \
97 ((unsigned long)(ptr)) | NODE_TYPE(node))
98
99 #define IS_TNODE(n) (!(n->parent & T_LEAF))
100 #define IS_LEAF(n) (n->parent & T_LEAF)
101
102 struct node {
103 t_key key;
104 unsigned long parent;
105 };
106
107 struct leaf {
108 t_key key;
109 unsigned long parent;
110 struct hlist_head list;
111 struct rcu_head rcu;
112 };
113
114 struct leaf_info {
115 struct hlist_node hlist;
116 struct rcu_head rcu;
117 int plen;
118 struct list_head falh;
119 };
120
121 struct tnode {
122 t_key key;
123 unsigned long parent;
124 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
125 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
126 unsigned short full_children; /* KEYLENGTH bits needed */
127 unsigned short empty_children; /* KEYLENGTH bits needed */
128 struct rcu_head rcu;
129 struct node *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int nodesizes[MAX_CHILDS];
150 };
151
152 struct trie {
153 struct node *trie;
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156 #endif
157 int size;
158 unsigned int revision;
159 };
160
161 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
162 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
163 static struct node *resize(struct trie *t, struct tnode *tn);
164 static struct tnode *inflate(struct trie *t, struct tnode *tn);
165 static struct tnode *halve(struct trie *t, struct tnode *tn);
166 static void tnode_free(struct tnode *tn);
167 static void trie_dump_seq(struct seq_file *seq, struct trie *t);
168
169 static kmem_cache_t *fn_alias_kmem __read_mostly;
170 static struct trie *trie_local = NULL, *trie_main = NULL;
171
172
173 /* rcu_read_lock needs to be hold by caller from readside */
174
175 static inline struct node *tnode_get_child(struct tnode *tn, int i)
176 {
177 BUG_ON(i >= 1 << tn->bits);
178
179 return rcu_dereference(tn->child[i]);
180 }
181
182 static inline int tnode_child_length(const struct tnode *tn)
183 {
184 return 1 << tn->bits;
185 }
186
187 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
188 {
189 if (offset < KEYLENGTH)
190 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
191 else
192 return 0;
193 }
194
195 static inline int tkey_equals(t_key a, t_key b)
196 {
197 return a == b;
198 }
199
200 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
201 {
202 if (bits == 0 || offset >= KEYLENGTH)
203 return 1;
204 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
205 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
206 }
207
208 static inline int tkey_mismatch(t_key a, int offset, t_key b)
209 {
210 t_key diff = a ^ b;
211 int i = offset;
212
213 if (!diff)
214 return 0;
215 while ((diff << i) >> (KEYLENGTH-1) == 0)
216 i++;
217 return i;
218 }
219
220 /*
221 To understand this stuff, an understanding of keys and all their bits is
222 necessary. Every node in the trie has a key associated with it, but not
223 all of the bits in that key are significant.
224
225 Consider a node 'n' and its parent 'tp'.
226
227 If n is a leaf, every bit in its key is significant. Its presence is
228 necessitaded by path compression, since during a tree traversal (when
229 searching for a leaf - unless we are doing an insertion) we will completely
230 ignore all skipped bits we encounter. Thus we need to verify, at the end of
231 a potentially successful search, that we have indeed been walking the
232 correct key path.
233
234 Note that we can never "miss" the correct key in the tree if present by
235 following the wrong path. Path compression ensures that segments of the key
236 that are the same for all keys with a given prefix are skipped, but the
237 skipped part *is* identical for each node in the subtrie below the skipped
238 bit! trie_insert() in this implementation takes care of that - note the
239 call to tkey_sub_equals() in trie_insert().
240
241 if n is an internal node - a 'tnode' here, the various parts of its key
242 have many different meanings.
243
244 Example:
245 _________________________________________________________________
246 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
247 -----------------------------------------------------------------
248 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
249
250 _________________________________________________________________
251 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
252 -----------------------------------------------------------------
253 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
254
255 tp->pos = 7
256 tp->bits = 3
257 n->pos = 15
258 n->bits = 4
259
260 First, let's just ignore the bits that come before the parent tp, that is
261 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
262 not use them for anything.
263
264 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
265 index into the parent's child array. That is, they will be used to find
266 'n' among tp's children.
267
268 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
269 for the node n.
270
271 All the bits we have seen so far are significant to the node n. The rest
272 of the bits are really not needed or indeed known in n->key.
273
274 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
275 n's child array, and will of course be different for each child.
276
277
278 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
279 at this point.
280
281 */
282
283 static inline void check_tnode(const struct tnode *tn)
284 {
285 WARN_ON(tn && tn->pos+tn->bits > 32);
286 }
287
288 static int halve_threshold = 25;
289 static int inflate_threshold = 50;
290
291
292 static void __alias_free_mem(struct rcu_head *head)
293 {
294 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
295 kmem_cache_free(fn_alias_kmem, fa);
296 }
297
298 static inline void alias_free_mem_rcu(struct fib_alias *fa)
299 {
300 call_rcu(&fa->rcu, __alias_free_mem);
301 }
302
303 static void __leaf_free_rcu(struct rcu_head *head)
304 {
305 kfree(container_of(head, struct leaf, rcu));
306 }
307
308 static inline void free_leaf(struct leaf *leaf)
309 {
310 call_rcu(&leaf->rcu, __leaf_free_rcu);
311 }
312
313 static void __leaf_info_free_rcu(struct rcu_head *head)
314 {
315 kfree(container_of(head, struct leaf_info, rcu));
316 }
317
318 static inline void free_leaf_info(struct leaf_info *leaf)
319 {
320 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
321 }
322
323 static struct tnode *tnode_alloc(unsigned int size)
324 {
325 struct page *pages;
326
327 if (size <= PAGE_SIZE)
328 return kcalloc(size, 1, GFP_KERNEL);
329
330 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
331 if (!pages)
332 return NULL;
333
334 return page_address(pages);
335 }
336
337 static void __tnode_free_rcu(struct rcu_head *head)
338 {
339 struct tnode *tn = container_of(head, struct tnode, rcu);
340 unsigned int size = sizeof(struct tnode) +
341 (1 << tn->bits) * sizeof(struct node *);
342
343 if (size <= PAGE_SIZE)
344 kfree(tn);
345 else
346 free_pages((unsigned long)tn, get_order(size));
347 }
348
349 static inline void tnode_free(struct tnode *tn)
350 {
351 call_rcu(&tn->rcu, __tnode_free_rcu);
352 }
353
354 static struct leaf *leaf_new(void)
355 {
356 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
357 if (l) {
358 l->parent = T_LEAF;
359 INIT_HLIST_HEAD(&l->list);
360 }
361 return l;
362 }
363
364 static struct leaf_info *leaf_info_new(int plen)
365 {
366 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
367 if (li) {
368 li->plen = plen;
369 INIT_LIST_HEAD(&li->falh);
370 }
371 return li;
372 }
373
374 static struct tnode* tnode_new(t_key key, int pos, int bits)
375 {
376 int nchildren = 1<<bits;
377 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
378 struct tnode *tn = tnode_alloc(sz);
379
380 if (tn) {
381 memset(tn, 0, sz);
382 tn->parent = T_TNODE;
383 tn->pos = pos;
384 tn->bits = bits;
385 tn->key = key;
386 tn->full_children = 0;
387 tn->empty_children = 1<<bits;
388 }
389
390 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
391 (unsigned int) (sizeof(struct node) * 1<<bits));
392 return tn;
393 }
394
395 /*
396 * Check whether a tnode 'n' is "full", i.e. it is an internal node
397 * and no bits are skipped. See discussion in dyntree paper p. 6
398 */
399
400 static inline int tnode_full(const struct tnode *tn, const struct node *n)
401 {
402 if (n == NULL || IS_LEAF(n))
403 return 0;
404
405 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
406 }
407
408 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
409 {
410 tnode_put_child_reorg(tn, i, n, -1);
411 }
412
413 /*
414 * Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
416 */
417
418 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
419 {
420 struct node *chi = tn->child[i];
421 int isfull;
422
423 BUG_ON(i >= 1<<tn->bits);
424
425
426 /* update emptyChildren */
427 if (n == NULL && chi != NULL)
428 tn->empty_children++;
429 else if (n != NULL && chi == NULL)
430 tn->empty_children--;
431
432 /* update fullChildren */
433 if (wasfull == -1)
434 wasfull = tnode_full(tn, chi);
435
436 isfull = tnode_full(tn, n);
437 if (wasfull && !isfull)
438 tn->full_children--;
439 else if (!wasfull && isfull)
440 tn->full_children++;
441
442 if (n)
443 NODE_SET_PARENT(n, tn);
444
445 rcu_assign_pointer(tn->child[i], n);
446 }
447
448 static struct node *resize(struct trie *t, struct tnode *tn)
449 {
450 int i;
451 int err = 0;
452 struct tnode *old_tn;
453
454 if (!tn)
455 return NULL;
456
457 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
458 tn, inflate_threshold, halve_threshold);
459
460 /* No children */
461 if (tn->empty_children == tnode_child_length(tn)) {
462 tnode_free(tn);
463 return NULL;
464 }
465 /* One child */
466 if (tn->empty_children == tnode_child_length(tn) - 1)
467 for (i = 0; i < tnode_child_length(tn); i++) {
468 struct node *n;
469
470 n = tn->child[i];
471 if (!n)
472 continue;
473
474 /* compress one level */
475 NODE_SET_PARENT(n, NULL);
476 tnode_free(tn);
477 return n;
478 }
479 /*
480 * Double as long as the resulting node has a number of
481 * nonempty nodes that are above the threshold.
482 */
483
484 /*
485 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
486 * the Helsinki University of Technology and Matti Tikkanen of Nokia
487 * Telecommunications, page 6:
488 * "A node is doubled if the ratio of non-empty children to all
489 * children in the *doubled* node is at least 'high'."
490 *
491 * 'high' in this instance is the variable 'inflate_threshold'. It
492 * is expressed as a percentage, so we multiply it with
493 * tnode_child_length() and instead of multiplying by 2 (since the
494 * child array will be doubled by inflate()) and multiplying
495 * the left-hand side by 100 (to handle the percentage thing) we
496 * multiply the left-hand side by 50.
497 *
498 * The left-hand side may look a bit weird: tnode_child_length(tn)
499 * - tn->empty_children is of course the number of non-null children
500 * in the current node. tn->full_children is the number of "full"
501 * children, that is non-null tnodes with a skip value of 0.
502 * All of those will be doubled in the resulting inflated tnode, so
503 * we just count them one extra time here.
504 *
505 * A clearer way to write this would be:
506 *
507 * to_be_doubled = tn->full_children;
508 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
509 * tn->full_children;
510 *
511 * new_child_length = tnode_child_length(tn) * 2;
512 *
513 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
514 * new_child_length;
515 * if (new_fill_factor >= inflate_threshold)
516 *
517 * ...and so on, tho it would mess up the while () loop.
518 *
519 * anyway,
520 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
521 * inflate_threshold
522 *
523 * avoid a division:
524 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
525 * inflate_threshold * new_child_length
526 *
527 * expand not_to_be_doubled and to_be_doubled, and shorten:
528 * 100 * (tnode_child_length(tn) - tn->empty_children +
529 * tn->full_children) >= inflate_threshold * new_child_length
530 *
531 * expand new_child_length:
532 * 100 * (tnode_child_length(tn) - tn->empty_children +
533 * tn->full_children) >=
534 * inflate_threshold * tnode_child_length(tn) * 2
535 *
536 * shorten again:
537 * 50 * (tn->full_children + tnode_child_length(tn) -
538 * tn->empty_children) >= inflate_threshold *
539 * tnode_child_length(tn)
540 *
541 */
542
543 check_tnode(tn);
544
545 err = 0;
546 while ((tn->full_children > 0 &&
547 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
548 inflate_threshold * tnode_child_length(tn))) {
549
550 old_tn = tn;
551 tn = inflate(t, tn);
552 if (IS_ERR(tn)) {
553 tn = old_tn;
554 #ifdef CONFIG_IP_FIB_TRIE_STATS
555 t->stats.resize_node_skipped++;
556 #endif
557 break;
558 }
559 }
560
561 check_tnode(tn);
562
563 /*
564 * Halve as long as the number of empty children in this
565 * node is above threshold.
566 */
567
568 err = 0;
569 while (tn->bits > 1 &&
570 100 * (tnode_child_length(tn) - tn->empty_children) <
571 halve_threshold * tnode_child_length(tn)) {
572
573 old_tn = tn;
574 tn = halve(t, tn);
575 if (IS_ERR(tn)) {
576 tn = old_tn;
577 #ifdef CONFIG_IP_FIB_TRIE_STATS
578 t->stats.resize_node_skipped++;
579 #endif
580 break;
581 }
582 }
583
584
585 /* Only one child remains */
586 if (tn->empty_children == tnode_child_length(tn) - 1)
587 for (i = 0; i < tnode_child_length(tn); i++) {
588 struct node *n;
589
590 n = tn->child[i];
591 if (!n)
592 continue;
593
594 /* compress one level */
595
596 NODE_SET_PARENT(n, NULL);
597 tnode_free(tn);
598 return n;
599 }
600
601 return (struct node *) tn;
602 }
603
604 static struct tnode *inflate(struct trie *t, struct tnode *tn)
605 {
606 struct tnode *inode;
607 struct tnode *oldtnode = tn;
608 int olen = tnode_child_length(tn);
609 int i;
610
611 pr_debug("In inflate\n");
612
613 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
614
615 if (!tn)
616 return ERR_PTR(-ENOMEM);
617
618 /*
619 * Preallocate and store tnodes before the actual work so we
620 * don't get into an inconsistent state if memory allocation
621 * fails. In case of failure we return the oldnode and inflate
622 * of tnode is ignored.
623 */
624
625 for (i = 0; i < olen; i++) {
626 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
627
628 if (inode &&
629 IS_TNODE(inode) &&
630 inode->pos == oldtnode->pos + oldtnode->bits &&
631 inode->bits > 1) {
632 struct tnode *left, *right;
633 t_key m = TKEY_GET_MASK(inode->pos, 1);
634
635 left = tnode_new(inode->key&(~m), inode->pos + 1,
636 inode->bits - 1);
637 if (!left)
638 goto nomem;
639
640 right = tnode_new(inode->key|m, inode->pos + 1,
641 inode->bits - 1);
642
643 if (!right) {
644 tnode_free(left);
645 goto nomem;
646 }
647
648 put_child(t, tn, 2*i, (struct node *) left);
649 put_child(t, tn, 2*i+1, (struct node *) right);
650 }
651 }
652
653 for (i = 0; i < olen; i++) {
654 struct node *node = tnode_get_child(oldtnode, i);
655 struct tnode *left, *right;
656 int size, j;
657
658 /* An empty child */
659 if (node == NULL)
660 continue;
661
662 /* A leaf or an internal node with skipped bits */
663
664 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
665 tn->pos + tn->bits - 1) {
666 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
667 1) == 0)
668 put_child(t, tn, 2*i, node);
669 else
670 put_child(t, tn, 2*i+1, node);
671 continue;
672 }
673
674 /* An internal node with two children */
675 inode = (struct tnode *) node;
676
677 if (inode->bits == 1) {
678 put_child(t, tn, 2*i, inode->child[0]);
679 put_child(t, tn, 2*i+1, inode->child[1]);
680
681 tnode_free(inode);
682 continue;
683 }
684
685 /* An internal node with more than two children */
686
687 /* We will replace this node 'inode' with two new
688 * ones, 'left' and 'right', each with half of the
689 * original children. The two new nodes will have
690 * a position one bit further down the key and this
691 * means that the "significant" part of their keys
692 * (see the discussion near the top of this file)
693 * will differ by one bit, which will be "0" in
694 * left's key and "1" in right's key. Since we are
695 * moving the key position by one step, the bit that
696 * we are moving away from - the bit at position
697 * (inode->pos) - is the one that will differ between
698 * left and right. So... we synthesize that bit in the
699 * two new keys.
700 * The mask 'm' below will be a single "one" bit at
701 * the position (inode->pos)
702 */
703
704 /* Use the old key, but set the new significant
705 * bit to zero.
706 */
707
708 left = (struct tnode *) tnode_get_child(tn, 2*i);
709 put_child(t, tn, 2*i, NULL);
710
711 BUG_ON(!left);
712
713 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
714 put_child(t, tn, 2*i+1, NULL);
715
716 BUG_ON(!right);
717
718 size = tnode_child_length(left);
719 for (j = 0; j < size; j++) {
720 put_child(t, left, j, inode->child[j]);
721 put_child(t, right, j, inode->child[j + size]);
722 }
723 put_child(t, tn, 2*i, resize(t, left));
724 put_child(t, tn, 2*i+1, resize(t, right));
725
726 tnode_free(inode);
727 }
728 tnode_free(oldtnode);
729 return tn;
730 nomem:
731 {
732 int size = tnode_child_length(tn);
733 int j;
734
735 for (j = 0; j < size; j++)
736 if (tn->child[j])
737 tnode_free((struct tnode *)tn->child[j]);
738
739 tnode_free(tn);
740
741 return ERR_PTR(-ENOMEM);
742 }
743 }
744
745 static struct tnode *halve(struct trie *t, struct tnode *tn)
746 {
747 struct tnode *oldtnode = tn;
748 struct node *left, *right;
749 int i;
750 int olen = tnode_child_length(tn);
751
752 pr_debug("In halve\n");
753
754 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
755
756 if (!tn)
757 return ERR_PTR(-ENOMEM);
758
759 /*
760 * Preallocate and store tnodes before the actual work so we
761 * don't get into an inconsistent state if memory allocation
762 * fails. In case of failure we return the oldnode and halve
763 * of tnode is ignored.
764 */
765
766 for (i = 0; i < olen; i += 2) {
767 left = tnode_get_child(oldtnode, i);
768 right = tnode_get_child(oldtnode, i+1);
769
770 /* Two nonempty children */
771 if (left && right) {
772 struct tnode *newn;
773
774 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
775
776 if (!newn)
777 goto nomem;
778
779 put_child(t, tn, i/2, (struct node *)newn);
780 }
781
782 }
783
784 for (i = 0; i < olen; i += 2) {
785 struct tnode *newBinNode;
786
787 left = tnode_get_child(oldtnode, i);
788 right = tnode_get_child(oldtnode, i+1);
789
790 /* At least one of the children is empty */
791 if (left == NULL) {
792 if (right == NULL) /* Both are empty */
793 continue;
794 put_child(t, tn, i/2, right);
795 continue;
796 }
797
798 if (right == NULL) {
799 put_child(t, tn, i/2, left);
800 continue;
801 }
802
803 /* Two nonempty children */
804 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
805 put_child(t, tn, i/2, NULL);
806 put_child(t, newBinNode, 0, left);
807 put_child(t, newBinNode, 1, right);
808 put_child(t, tn, i/2, resize(t, newBinNode));
809 }
810 tnode_free(oldtnode);
811 return tn;
812 nomem:
813 {
814 int size = tnode_child_length(tn);
815 int j;
816
817 for (j = 0; j < size; j++)
818 if (tn->child[j])
819 tnode_free((struct tnode *)tn->child[j]);
820
821 tnode_free(tn);
822
823 return ERR_PTR(-ENOMEM);
824 }
825 }
826
827 static void trie_init(struct trie *t)
828 {
829 if (!t)
830 return;
831
832 t->size = 0;
833 rcu_assign_pointer(t->trie, NULL);
834 t->revision = 0;
835 #ifdef CONFIG_IP_FIB_TRIE_STATS
836 memset(&t->stats, 0, sizeof(struct trie_use_stats));
837 #endif
838 }
839
840 /* readside most use rcu_read_lock currently dump routines
841 via get_fa_head and dump */
842
843 static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen)
844 {
845 struct hlist_node *node;
846 struct leaf_info *li;
847
848 hlist_for_each_entry_rcu(li, node, head, hlist)
849 if (li->plen == plen)
850 return li;
851
852 return NULL;
853 }
854
855 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
856 {
857 struct leaf_info *li = find_leaf_info(&l->list, plen);
858
859 if (!li)
860 return NULL;
861
862 return &li->falh;
863 }
864
865 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
866 {
867 struct leaf_info *li = NULL, *last = NULL;
868 struct hlist_node *node;
869
870 if (hlist_empty(head)) {
871 hlist_add_head_rcu(&new->hlist, head);
872 } else {
873 hlist_for_each_entry(li, node, head, hlist) {
874 if (new->plen > li->plen)
875 break;
876
877 last = li;
878 }
879 if (last)
880 hlist_add_after_rcu(&last->hlist, &new->hlist);
881 else
882 hlist_add_before_rcu(&new->hlist, &li->hlist);
883 }
884 }
885
886 /* rcu_read_lock needs to be hold by caller from readside */
887
888 static struct leaf *
889 fib_find_node(struct trie *t, u32 key)
890 {
891 int pos;
892 struct tnode *tn;
893 struct node *n;
894
895 pos = 0;
896 n = rcu_dereference(t->trie);
897
898 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
899 tn = (struct tnode *) n;
900
901 check_tnode(tn);
902
903 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
904 pos = tn->pos + tn->bits;
905 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
906 } else
907 break;
908 }
909 /* Case we have found a leaf. Compare prefixes */
910
911 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
912 return (struct leaf *)n;
913
914 return NULL;
915 }
916
917 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
918 {
919 int wasfull;
920 t_key cindex, key;
921 struct tnode *tp = NULL;
922
923 key = tn->key;
924
925 while (tn != NULL && NODE_PARENT(tn) != NULL) {
926
927 tp = NODE_PARENT(tn);
928 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
929 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
930 tn = (struct tnode *) resize (t, (struct tnode *)tn);
931 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
932
933 if (!NODE_PARENT(tn))
934 break;
935
936 tn = NODE_PARENT(tn);
937 }
938 /* Handle last (top) tnode */
939 if (IS_TNODE(tn))
940 tn = (struct tnode*) resize(t, (struct tnode *)tn);
941
942 return (struct node*) tn;
943 }
944
945 /* only used from updater-side */
946
947 static struct list_head *
948 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
949 {
950 int pos, newpos;
951 struct tnode *tp = NULL, *tn = NULL;
952 struct node *n;
953 struct leaf *l;
954 int missbit;
955 struct list_head *fa_head = NULL;
956 struct leaf_info *li;
957 t_key cindex;
958
959 pos = 0;
960 n = t->trie;
961
962 /* If we point to NULL, stop. Either the tree is empty and we should
963 * just put a new leaf in if, or we have reached an empty child slot,
964 * and we should just put our new leaf in that.
965 * If we point to a T_TNODE, check if it matches our key. Note that
966 * a T_TNODE might be skipping any number of bits - its 'pos' need
967 * not be the parent's 'pos'+'bits'!
968 *
969 * If it does match the current key, get pos/bits from it, extract
970 * the index from our key, push the T_TNODE and walk the tree.
971 *
972 * If it doesn't, we have to replace it with a new T_TNODE.
973 *
974 * If we point to a T_LEAF, it might or might not have the same key
975 * as we do. If it does, just change the value, update the T_LEAF's
976 * value, and return it.
977 * If it doesn't, we need to replace it with a T_TNODE.
978 */
979
980 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
981 tn = (struct tnode *) n;
982
983 check_tnode(tn);
984
985 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
986 tp = tn;
987 pos = tn->pos + tn->bits;
988 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
989
990 BUG_ON(n && NODE_PARENT(n) != tn);
991 } else
992 break;
993 }
994
995 /*
996 * n ----> NULL, LEAF or TNODE
997 *
998 * tp is n's (parent) ----> NULL or TNODE
999 */
1000
1001 BUG_ON(tp && IS_LEAF(tp));
1002
1003 /* Case 1: n is a leaf. Compare prefixes */
1004
1005 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1006 struct leaf *l = (struct leaf *) n;
1007
1008 li = leaf_info_new(plen);
1009
1010 if (!li) {
1011 *err = -ENOMEM;
1012 goto err;
1013 }
1014
1015 fa_head = &li->falh;
1016 insert_leaf_info(&l->list, li);
1017 goto done;
1018 }
1019 t->size++;
1020 l = leaf_new();
1021
1022 if (!l) {
1023 *err = -ENOMEM;
1024 goto err;
1025 }
1026
1027 l->key = key;
1028 li = leaf_info_new(plen);
1029
1030 if (!li) {
1031 tnode_free((struct tnode *) l);
1032 *err = -ENOMEM;
1033 goto err;
1034 }
1035
1036 fa_head = &li->falh;
1037 insert_leaf_info(&l->list, li);
1038
1039 if (t->trie && n == NULL) {
1040 /* Case 2: n is NULL, and will just insert a new leaf */
1041
1042 NODE_SET_PARENT(l, tp);
1043
1044 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1045 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1046 } else {
1047 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1048 /*
1049 * Add a new tnode here
1050 * first tnode need some special handling
1051 */
1052
1053 if (tp)
1054 pos = tp->pos+tp->bits;
1055 else
1056 pos = 0;
1057
1058 if (n) {
1059 newpos = tkey_mismatch(key, pos, n->key);
1060 tn = tnode_new(n->key, newpos, 1);
1061 } else {
1062 newpos = 0;
1063 tn = tnode_new(key, newpos, 1); /* First tnode */
1064 }
1065
1066 if (!tn) {
1067 free_leaf_info(li);
1068 tnode_free((struct tnode *) l);
1069 *err = -ENOMEM;
1070 goto err;
1071 }
1072
1073 NODE_SET_PARENT(tn, tp);
1074
1075 missbit = tkey_extract_bits(key, newpos, 1);
1076 put_child(t, tn, missbit, (struct node *)l);
1077 put_child(t, tn, 1-missbit, n);
1078
1079 if (tp) {
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1082 } else {
1083 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1084 tp = tn;
1085 }
1086 }
1087
1088 if (tp && tp->pos + tp->bits > 32)
1089 printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1090 tp, tp->pos, tp->bits, key, plen);
1091
1092 /* Rebalance the trie */
1093
1094 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1095 done:
1096 t->revision++;
1097 err:
1098 return fa_head;
1099 }
1100
1101 static int
1102 fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1103 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1104 {
1105 struct trie *t = (struct trie *) tb->tb_data;
1106 struct fib_alias *fa, *new_fa;
1107 struct list_head *fa_head = NULL;
1108 struct fib_info *fi;
1109 int plen = r->rtm_dst_len;
1110 int type = r->rtm_type;
1111 u8 tos = r->rtm_tos;
1112 u32 key, mask;
1113 int err;
1114 struct leaf *l;
1115
1116 if (plen > 32)
1117 return -EINVAL;
1118
1119 key = 0;
1120 if (rta->rta_dst)
1121 memcpy(&key, rta->rta_dst, 4);
1122
1123 key = ntohl(key);
1124
1125 pr_debug("Insert table=%d %08x/%d\n", tb->tb_id, key, plen);
1126
1127 mask = ntohl(inet_make_mask(plen));
1128
1129 if (key & ~mask)
1130 return -EINVAL;
1131
1132 key = key & mask;
1133
1134 fi = fib_create_info(r, rta, nlhdr, &err);
1135
1136 if (!fi)
1137 goto err;
1138
1139 l = fib_find_node(t, key);
1140 fa = NULL;
1141
1142 if (l) {
1143 fa_head = get_fa_head(l, plen);
1144 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1145 }
1146
1147 /* Now fa, if non-NULL, points to the first fib alias
1148 * with the same keys [prefix,tos,priority], if such key already
1149 * exists or to the node before which we will insert new one.
1150 *
1151 * If fa is NULL, we will need to allocate a new one and
1152 * insert to the head of f.
1153 *
1154 * If f is NULL, no fib node matched the destination key
1155 * and we need to allocate a new one of those as well.
1156 */
1157
1158 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1159 struct fib_alias *fa_orig;
1160
1161 err = -EEXIST;
1162 if (nlhdr->nlmsg_flags & NLM_F_EXCL)
1163 goto out;
1164
1165 if (nlhdr->nlmsg_flags & NLM_F_REPLACE) {
1166 struct fib_info *fi_drop;
1167 u8 state;
1168
1169 err = -ENOBUFS;
1170 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1171 if (new_fa == NULL)
1172 goto out;
1173
1174 fi_drop = fa->fa_info;
1175 new_fa->fa_tos = fa->fa_tos;
1176 new_fa->fa_info = fi;
1177 new_fa->fa_type = type;
1178 new_fa->fa_scope = r->rtm_scope;
1179 state = fa->fa_state;
1180 new_fa->fa_state &= ~FA_S_ACCESSED;
1181
1182 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1183 alias_free_mem_rcu(fa);
1184
1185 fib_release_info(fi_drop);
1186 if (state & FA_S_ACCESSED)
1187 rt_cache_flush(-1);
1188
1189 goto succeeded;
1190 }
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1193 * information.
1194 */
1195 fa_orig = fa;
1196 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1197 if (fa->fa_tos != tos)
1198 break;
1199 if (fa->fa_info->fib_priority != fi->fib_priority)
1200 break;
1201 if (fa->fa_type == type &&
1202 fa->fa_scope == r->rtm_scope &&
1203 fa->fa_info == fi) {
1204 goto out;
1205 }
1206 }
1207 if (!(nlhdr->nlmsg_flags & NLM_F_APPEND))
1208 fa = fa_orig;
1209 }
1210 err = -ENOENT;
1211 if (!(nlhdr->nlmsg_flags & NLM_F_CREATE))
1212 goto out;
1213
1214 err = -ENOBUFS;
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL);
1216 if (new_fa == NULL)
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = type;
1222 new_fa->fa_scope = r->rtm_scope;
1223 new_fa->fa_state = 0;
1224 /*
1225 * Insert new entry to the list.
1226 */
1227
1228 if (!fa_head) {
1229 fa_head = fib_insert_node(t, &err, key, plen);
1230 err = 0;
1231 if (err)
1232 goto out_free_new_fa;
1233 }
1234
1235 list_add_tail_rcu(&new_fa->fa_list,
1236 (fa ? &fa->fa_list : fa_head));
1237
1238 rt_cache_flush(-1);
1239 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req);
1240 succeeded:
1241 return 0;
1242
1243 out_free_new_fa:
1244 kmem_cache_free(fn_alias_kmem, new_fa);
1245 out:
1246 fib_release_info(fi);
1247 err:
1248 return err;
1249 }
1250
1251
1252 /* should be clalled with rcu_read_lock */
1253 static inline int check_leaf(struct trie *t, struct leaf *l,
1254 t_key key, int *plen, const struct flowi *flp,
1255 struct fib_result *res)
1256 {
1257 int err, i;
1258 t_key mask;
1259 struct leaf_info *li;
1260 struct hlist_head *hhead = &l->list;
1261 struct hlist_node *node;
1262
1263 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1264 i = li->plen;
1265 mask = ntohl(inet_make_mask(i));
1266 if (l->key != (key & mask))
1267 continue;
1268
1269 if ((err = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) <= 0) {
1270 *plen = i;
1271 #ifdef CONFIG_IP_FIB_TRIE_STATS
1272 t->stats.semantic_match_passed++;
1273 #endif
1274 return err;
1275 }
1276 #ifdef CONFIG_IP_FIB_TRIE_STATS
1277 t->stats.semantic_match_miss++;
1278 #endif
1279 }
1280 return 1;
1281 }
1282
1283 static int
1284 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1285 {
1286 struct trie *t = (struct trie *) tb->tb_data;
1287 int plen, ret = 0;
1288 struct node *n;
1289 struct tnode *pn;
1290 int pos, bits;
1291 t_key key = ntohl(flp->fl4_dst);
1292 int chopped_off;
1293 t_key cindex = 0;
1294 int current_prefix_length = KEYLENGTH;
1295 struct tnode *cn;
1296 t_key node_prefix, key_prefix, pref_mismatch;
1297 int mp;
1298
1299 rcu_read_lock();
1300
1301 n = rcu_dereference(t->trie);
1302 if (!n)
1303 goto failed;
1304
1305 #ifdef CONFIG_IP_FIB_TRIE_STATS
1306 t->stats.gets++;
1307 #endif
1308
1309 /* Just a leaf? */
1310 if (IS_LEAF(n)) {
1311 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1312 goto found;
1313 goto failed;
1314 }
1315 pn = (struct tnode *) n;
1316 chopped_off = 0;
1317
1318 while (pn) {
1319 pos = pn->pos;
1320 bits = pn->bits;
1321
1322 if (!chopped_off)
1323 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1324
1325 n = tnode_get_child(pn, cindex);
1326
1327 if (n == NULL) {
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.null_node_hit++;
1330 #endif
1331 goto backtrace;
1332 }
1333
1334 if (IS_LEAF(n)) {
1335 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1336 goto found;
1337 else
1338 goto backtrace;
1339 }
1340
1341 #define HL_OPTIMIZE
1342 #ifdef HL_OPTIMIZE
1343 cn = (struct tnode *)n;
1344
1345 /*
1346 * It's a tnode, and we can do some extra checks here if we
1347 * like, to avoid descending into a dead-end branch.
1348 * This tnode is in the parent's child array at index
1349 * key[p_pos..p_pos+p_bits] but potentially with some bits
1350 * chopped off, so in reality the index may be just a
1351 * subprefix, padded with zero at the end.
1352 * We can also take a look at any skipped bits in this
1353 * tnode - everything up to p_pos is supposed to be ok,
1354 * and the non-chopped bits of the index (se previous
1355 * paragraph) are also guaranteed ok, but the rest is
1356 * considered unknown.
1357 *
1358 * The skipped bits are key[pos+bits..cn->pos].
1359 */
1360
1361 /* If current_prefix_length < pos+bits, we are already doing
1362 * actual prefix matching, which means everything from
1363 * pos+(bits-chopped_off) onward must be zero along some
1364 * branch of this subtree - otherwise there is *no* valid
1365 * prefix present. Here we can only check the skipped
1366 * bits. Remember, since we have already indexed into the
1367 * parent's child array, we know that the bits we chopped of
1368 * *are* zero.
1369 */
1370
1371 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1372
1373 if (current_prefix_length < pos+bits) {
1374 if (tkey_extract_bits(cn->key, current_prefix_length,
1375 cn->pos - current_prefix_length) != 0 ||
1376 !(cn->child[0]))
1377 goto backtrace;
1378 }
1379
1380 /*
1381 * If chopped_off=0, the index is fully validated and we
1382 * only need to look at the skipped bits for this, the new,
1383 * tnode. What we actually want to do is to find out if
1384 * these skipped bits match our key perfectly, or if we will
1385 * have to count on finding a matching prefix further down,
1386 * because if we do, we would like to have some way of
1387 * verifying the existence of such a prefix at this point.
1388 */
1389
1390 /* The only thing we can do at this point is to verify that
1391 * any such matching prefix can indeed be a prefix to our
1392 * key, and if the bits in the node we are inspecting that
1393 * do not match our key are not ZERO, this cannot be true.
1394 * Thus, find out where there is a mismatch (before cn->pos)
1395 * and verify that all the mismatching bits are zero in the
1396 * new tnode's key.
1397 */
1398
1399 /* Note: We aren't very concerned about the piece of the key
1400 * that precede pn->pos+pn->bits, since these have already been
1401 * checked. The bits after cn->pos aren't checked since these are
1402 * by definition "unknown" at this point. Thus, what we want to
1403 * see is if we are about to enter the "prefix matching" state,
1404 * and in that case verify that the skipped bits that will prevail
1405 * throughout this subtree are zero, as they have to be if we are
1406 * to find a matching prefix.
1407 */
1408
1409 node_prefix = MASK_PFX(cn->key, cn->pos);
1410 key_prefix = MASK_PFX(key, cn->pos);
1411 pref_mismatch = key_prefix^node_prefix;
1412 mp = 0;
1413
1414 /* In short: If skipped bits in this node do not match the search
1415 * key, enter the "prefix matching" state.directly.
1416 */
1417 if (pref_mismatch) {
1418 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1419 mp++;
1420 pref_mismatch = pref_mismatch <<1;
1421 }
1422 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1423
1424 if (key_prefix != 0)
1425 goto backtrace;
1426
1427 if (current_prefix_length >= cn->pos)
1428 current_prefix_length = mp;
1429 }
1430 #endif
1431 pn = (struct tnode *)n; /* Descend */
1432 chopped_off = 0;
1433 continue;
1434
1435 backtrace:
1436 chopped_off++;
1437
1438 /* As zero don't change the child key (cindex) */
1439 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1440 chopped_off++;
1441
1442 /* Decrease current_... with bits chopped off */
1443 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1444 current_prefix_length = pn->pos + pn->bits - chopped_off;
1445
1446 /*
1447 * Either we do the actual chop off according or if we have
1448 * chopped off all bits in this tnode walk up to our parent.
1449 */
1450
1451 if (chopped_off <= pn->bits) {
1452 cindex &= ~(1 << (chopped_off-1));
1453 } else {
1454 if (NODE_PARENT(pn) == NULL)
1455 goto failed;
1456
1457 /* Get Child's index */
1458 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1459 pn = NODE_PARENT(pn);
1460 chopped_off = 0;
1461
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 t->stats.backtrack++;
1464 #endif
1465 goto backtrace;
1466 }
1467 }
1468 failed:
1469 ret = 1;
1470 found:
1471 rcu_read_unlock();
1472 return ret;
1473 }
1474
1475 /* only called from updater side */
1476 static int trie_leaf_remove(struct trie *t, t_key key)
1477 {
1478 t_key cindex;
1479 struct tnode *tp = NULL;
1480 struct node *n = t->trie;
1481 struct leaf *l;
1482
1483 pr_debug("entering trie_leaf_remove(%p)\n", n);
1484
1485 /* Note that in the case skipped bits, those bits are *not* checked!
1486 * When we finish this, we will have NULL or a T_LEAF, and the
1487 * T_LEAF may or may not match our key.
1488 */
1489
1490 while (n != NULL && IS_TNODE(n)) {
1491 struct tnode *tn = (struct tnode *) n;
1492 check_tnode(tn);
1493 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1494
1495 BUG_ON(n && NODE_PARENT(n) != tn);
1496 }
1497 l = (struct leaf *) n;
1498
1499 if (!n || !tkey_equals(l->key, key))
1500 return 0;
1501
1502 /*
1503 * Key found.
1504 * Remove the leaf and rebalance the tree
1505 */
1506
1507 t->revision++;
1508 t->size--;
1509
1510 preempt_disable();
1511 tp = NODE_PARENT(n);
1512 tnode_free((struct tnode *) n);
1513
1514 if (tp) {
1515 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1516 put_child(t, (struct tnode *)tp, cindex, NULL);
1517 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1518 } else
1519 rcu_assign_pointer(t->trie, NULL);
1520 preempt_enable();
1521
1522 return 1;
1523 }
1524
1525 static int
1526 fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta,
1527 struct nlmsghdr *nlhdr, struct netlink_skb_parms *req)
1528 {
1529 struct trie *t = (struct trie *) tb->tb_data;
1530 u32 key, mask;
1531 int plen = r->rtm_dst_len;
1532 u8 tos = r->rtm_tos;
1533 struct fib_alias *fa, *fa_to_delete;
1534 struct list_head *fa_head;
1535 struct leaf *l;
1536 struct leaf_info *li;
1537
1538
1539 if (plen > 32)
1540 return -EINVAL;
1541
1542 key = 0;
1543 if (rta->rta_dst)
1544 memcpy(&key, rta->rta_dst, 4);
1545
1546 key = ntohl(key);
1547 mask = ntohl(inet_make_mask(plen));
1548
1549 if (key & ~mask)
1550 return -EINVAL;
1551
1552 key = key & mask;
1553 l = fib_find_node(t, key);
1554
1555 if (!l)
1556 return -ESRCH;
1557
1558 fa_head = get_fa_head(l, plen);
1559 fa = fib_find_alias(fa_head, tos, 0);
1560
1561 if (!fa)
1562 return -ESRCH;
1563
1564 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1565
1566 fa_to_delete = NULL;
1567 fa_head = fa->fa_list.prev;
1568
1569 list_for_each_entry(fa, fa_head, fa_list) {
1570 struct fib_info *fi = fa->fa_info;
1571
1572 if (fa->fa_tos != tos)
1573 break;
1574
1575 if ((!r->rtm_type ||
1576 fa->fa_type == r->rtm_type) &&
1577 (r->rtm_scope == RT_SCOPE_NOWHERE ||
1578 fa->fa_scope == r->rtm_scope) &&
1579 (!r->rtm_protocol ||
1580 fi->fib_protocol == r->rtm_protocol) &&
1581 fib_nh_match(r, nlhdr, rta, fi) == 0) {
1582 fa_to_delete = fa;
1583 break;
1584 }
1585 }
1586
1587 if (!fa_to_delete)
1588 return -ESRCH;
1589
1590 fa = fa_to_delete;
1591 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req);
1592
1593 l = fib_find_node(t, key);
1594 li = find_leaf_info(&l->list, plen);
1595
1596 list_del_rcu(&fa->fa_list);
1597
1598 if (list_empty(fa_head)) {
1599 hlist_del_rcu(&li->hlist);
1600 free_leaf_info(li);
1601 }
1602
1603 if (hlist_empty(&l->list))
1604 trie_leaf_remove(t, key);
1605
1606 if (fa->fa_state & FA_S_ACCESSED)
1607 rt_cache_flush(-1);
1608
1609 fib_release_info(fa->fa_info);
1610 alias_free_mem_rcu(fa);
1611 return 0;
1612 }
1613
1614 static int trie_flush_list(struct trie *t, struct list_head *head)
1615 {
1616 struct fib_alias *fa, *fa_node;
1617 int found = 0;
1618
1619 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1620 struct fib_info *fi = fa->fa_info;
1621
1622 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1623 list_del_rcu(&fa->fa_list);
1624 fib_release_info(fa->fa_info);
1625 alias_free_mem_rcu(fa);
1626 found++;
1627 }
1628 }
1629 return found;
1630 }
1631
1632 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1633 {
1634 int found = 0;
1635 struct hlist_head *lih = &l->list;
1636 struct hlist_node *node, *tmp;
1637 struct leaf_info *li = NULL;
1638
1639 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1640 found += trie_flush_list(t, &li->falh);
1641
1642 if (list_empty(&li->falh)) {
1643 hlist_del_rcu(&li->hlist);
1644 free_leaf_info(li);
1645 }
1646 }
1647 return found;
1648 }
1649
1650 /* rcu_read_lock needs to be hold by caller from readside */
1651
1652 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1653 {
1654 struct node *c = (struct node *) thisleaf;
1655 struct tnode *p;
1656 int idx;
1657 struct node *trie = rcu_dereference(t->trie);
1658
1659 if (c == NULL) {
1660 if (trie == NULL)
1661 return NULL;
1662
1663 if (IS_LEAF(trie)) /* trie w. just a leaf */
1664 return (struct leaf *) trie;
1665
1666 p = (struct tnode*) trie; /* Start */
1667 } else
1668 p = (struct tnode *) NODE_PARENT(c);
1669
1670 while (p) {
1671 int pos, last;
1672
1673 /* Find the next child of the parent */
1674 if (c)
1675 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1676 else
1677 pos = 0;
1678
1679 last = 1 << p->bits;
1680 for (idx = pos; idx < last ; idx++) {
1681 c = rcu_dereference(p->child[idx]);
1682
1683 if (!c)
1684 continue;
1685
1686 /* Decend if tnode */
1687 while (IS_TNODE(c)) {
1688 p = (struct tnode *) c;
1689 idx = 0;
1690
1691 /* Rightmost non-NULL branch */
1692 if (p && IS_TNODE(p))
1693 while (!(c = rcu_dereference(p->child[idx]))
1694 && idx < (1<<p->bits)) idx++;
1695
1696 /* Done with this tnode? */
1697 if (idx >= (1 << p->bits) || !c)
1698 goto up;
1699 }
1700 return (struct leaf *) c;
1701 }
1702 up:
1703 /* No more children go up one step */
1704 c = (struct node *) p;
1705 p = (struct tnode *) NODE_PARENT(p);
1706 }
1707 return NULL; /* Ready. Root of trie */
1708 }
1709
1710 static int fn_trie_flush(struct fib_table *tb)
1711 {
1712 struct trie *t = (struct trie *) tb->tb_data;
1713 struct leaf *ll = NULL, *l = NULL;
1714 int found = 0, h;
1715
1716 t->revision++;
1717
1718 rcu_read_lock();
1719 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1720 found += trie_flush_leaf(t, l);
1721
1722 if (ll && hlist_empty(&ll->list))
1723 trie_leaf_remove(t, ll->key);
1724 ll = l;
1725 }
1726 rcu_read_unlock();
1727
1728 if (ll && hlist_empty(&ll->list))
1729 trie_leaf_remove(t, ll->key);
1730
1731 pr_debug("trie_flush found=%d\n", found);
1732 return found;
1733 }
1734
1735 static int trie_last_dflt = -1;
1736
1737 static void
1738 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1739 {
1740 struct trie *t = (struct trie *) tb->tb_data;
1741 int order, last_idx;
1742 struct fib_info *fi = NULL;
1743 struct fib_info *last_resort;
1744 struct fib_alias *fa = NULL;
1745 struct list_head *fa_head;
1746 struct leaf *l;
1747
1748 last_idx = -1;
1749 last_resort = NULL;
1750 order = -1;
1751
1752 rcu_read_lock();
1753
1754 l = fib_find_node(t, 0);
1755 if (!l)
1756 goto out;
1757
1758 fa_head = get_fa_head(l, 0);
1759 if (!fa_head)
1760 goto out;
1761
1762 if (list_empty(fa_head))
1763 goto out;
1764
1765 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1766 struct fib_info *next_fi = fa->fa_info;
1767
1768 if (fa->fa_scope != res->scope ||
1769 fa->fa_type != RTN_UNICAST)
1770 continue;
1771
1772 if (next_fi->fib_priority > res->fi->fib_priority)
1773 break;
1774 if (!next_fi->fib_nh[0].nh_gw ||
1775 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1776 continue;
1777 fa->fa_state |= FA_S_ACCESSED;
1778
1779 if (fi == NULL) {
1780 if (next_fi != res->fi)
1781 break;
1782 } else if (!fib_detect_death(fi, order, &last_resort,
1783 &last_idx, &trie_last_dflt)) {
1784 if (res->fi)
1785 fib_info_put(res->fi);
1786 res->fi = fi;
1787 atomic_inc(&fi->fib_clntref);
1788 trie_last_dflt = order;
1789 goto out;
1790 }
1791 fi = next_fi;
1792 order++;
1793 }
1794 if (order <= 0 || fi == NULL) {
1795 trie_last_dflt = -1;
1796 goto out;
1797 }
1798
1799 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1800 if (res->fi)
1801 fib_info_put(res->fi);
1802 res->fi = fi;
1803 atomic_inc(&fi->fib_clntref);
1804 trie_last_dflt = order;
1805 goto out;
1806 }
1807 if (last_idx >= 0) {
1808 if (res->fi)
1809 fib_info_put(res->fi);
1810 res->fi = last_resort;
1811 if (last_resort)
1812 atomic_inc(&last_resort->fib_clntref);
1813 }
1814 trie_last_dflt = last_idx;
1815 out:;
1816 rcu_read_unlock();
1817 }
1818
1819 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1820 struct sk_buff *skb, struct netlink_callback *cb)
1821 {
1822 int i, s_i;
1823 struct fib_alias *fa;
1824
1825 u32 xkey = htonl(key);
1826
1827 s_i = cb->args[3];
1828 i = 0;
1829
1830 /* rcu_read_lock is hold by caller */
1831
1832 list_for_each_entry_rcu(fa, fah, fa_list) {
1833 if (i < s_i) {
1834 i++;
1835 continue;
1836 }
1837 if (fa->fa_info->fib_nh == NULL) {
1838 printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1839 i++;
1840 continue;
1841 }
1842 if (fa->fa_info == NULL) {
1843 printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen);
1844 i++;
1845 continue;
1846 }
1847
1848 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1849 cb->nlh->nlmsg_seq,
1850 RTM_NEWROUTE,
1851 tb->tb_id,
1852 fa->fa_type,
1853 fa->fa_scope,
1854 &xkey,
1855 plen,
1856 fa->fa_tos,
1857 fa->fa_info, 0) < 0) {
1858 cb->args[3] = i;
1859 return -1;
1860 }
1861 i++;
1862 }
1863 cb->args[3] = i;
1864 return skb->len;
1865 }
1866
1867 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1868 struct netlink_callback *cb)
1869 {
1870 int h, s_h;
1871 struct list_head *fa_head;
1872 struct leaf *l = NULL;
1873
1874 s_h = cb->args[2];
1875
1876 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1877 if (h < s_h)
1878 continue;
1879 if (h > s_h)
1880 memset(&cb->args[3], 0,
1881 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1882
1883 fa_head = get_fa_head(l, plen);
1884
1885 if (!fa_head)
1886 continue;
1887
1888 if (list_empty(fa_head))
1889 continue;
1890
1891 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1892 cb->args[2] = h;
1893 return -1;
1894 }
1895 }
1896 cb->args[2] = h;
1897 return skb->len;
1898 }
1899
1900 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1901 {
1902 int m, s_m;
1903 struct trie *t = (struct trie *) tb->tb_data;
1904
1905 s_m = cb->args[1];
1906
1907 rcu_read_lock();
1908 for (m = 0; m <= 32; m++) {
1909 if (m < s_m)
1910 continue;
1911 if (m > s_m)
1912 memset(&cb->args[2], 0,
1913 sizeof(cb->args) - 2*sizeof(cb->args[0]));
1914
1915 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1916 cb->args[1] = m;
1917 goto out;
1918 }
1919 }
1920 rcu_read_unlock();
1921 cb->args[1] = m;
1922 return skb->len;
1923 out:
1924 rcu_read_unlock();
1925 return -1;
1926 }
1927
1928 /* Fix more generic FIB names for init later */
1929
1930 #ifdef CONFIG_IP_MULTIPLE_TABLES
1931 struct fib_table * fib_hash_init(int id)
1932 #else
1933 struct fib_table * __init fib_hash_init(int id)
1934 #endif
1935 {
1936 struct fib_table *tb;
1937 struct trie *t;
1938
1939 if (fn_alias_kmem == NULL)
1940 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1941 sizeof(struct fib_alias),
1942 0, SLAB_HWCACHE_ALIGN,
1943 NULL, NULL);
1944
1945 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1946 GFP_KERNEL);
1947 if (tb == NULL)
1948 return NULL;
1949
1950 tb->tb_id = id;
1951 tb->tb_lookup = fn_trie_lookup;
1952 tb->tb_insert = fn_trie_insert;
1953 tb->tb_delete = fn_trie_delete;
1954 tb->tb_flush = fn_trie_flush;
1955 tb->tb_select_default = fn_trie_select_default;
1956 tb->tb_dump = fn_trie_dump;
1957 memset(tb->tb_data, 0, sizeof(struct trie));
1958
1959 t = (struct trie *) tb->tb_data;
1960
1961 trie_init(t);
1962
1963 if (id == RT_TABLE_LOCAL)
1964 trie_local = t;
1965 else if (id == RT_TABLE_MAIN)
1966 trie_main = t;
1967
1968 if (id == RT_TABLE_LOCAL)
1969 printk("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1970
1971 return tb;
1972 }
1973
1974 /* Trie dump functions */
1975
1976 static void putspace_seq(struct seq_file *seq, int n)
1977 {
1978 while (n--)
1979 seq_printf(seq, " ");
1980 }
1981
1982 static void printbin_seq(struct seq_file *seq, unsigned int v, int bits)
1983 {
1984 while (bits--)
1985 seq_printf(seq, "%s", (v & (1<<bits))?"1":"0");
1986 }
1987
1988 static void printnode_seq(struct seq_file *seq, int indent, struct node *n,
1989 int pend, int cindex, int bits)
1990 {
1991 putspace_seq(seq, indent);
1992 if (IS_LEAF(n))
1993 seq_printf(seq, "|");
1994 else
1995 seq_printf(seq, "+");
1996 if (bits) {
1997 seq_printf(seq, "%d/", cindex);
1998 printbin_seq(seq, cindex, bits);
1999 seq_printf(seq, ": ");
2000 } else
2001 seq_printf(seq, "<root>: ");
2002 seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n);
2003
2004 if (IS_LEAF(n)) {
2005 struct leaf *l = (struct leaf *)n;
2006 struct fib_alias *fa;
2007 int i;
2008
2009 seq_printf(seq, "key=%d.%d.%d.%d\n",
2010 n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256);
2011
2012 for (i = 32; i >= 0; i--)
2013 if (find_leaf_info(&l->list, i)) {
2014 struct list_head *fa_head = get_fa_head(l, i);
2015
2016 if (!fa_head)
2017 continue;
2018
2019 if (list_empty(fa_head))
2020 continue;
2021
2022 putspace_seq(seq, indent+2);
2023 seq_printf(seq, "{/%d...dumping}\n", i);
2024
2025 list_for_each_entry_rcu(fa, fa_head, fa_list) {
2026 putspace_seq(seq, indent+2);
2027 if (fa->fa_info == NULL) {
2028 seq_printf(seq, "Error fa_info=NULL\n");
2029 continue;
2030 }
2031 if (fa->fa_info->fib_nh == NULL) {
2032 seq_printf(seq, "Error _fib_nh=NULL\n");
2033 continue;
2034 }
2035
2036 seq_printf(seq, "{type=%d scope=%d TOS=%d}\n",
2037 fa->fa_type,
2038 fa->fa_scope,
2039 fa->fa_tos);
2040 }
2041 }
2042 } else {
2043 struct tnode *tn = (struct tnode *)n;
2044 int plen = ((struct tnode *)n)->pos;
2045 t_key prf = MASK_PFX(n->key, plen);
2046
2047 seq_printf(seq, "key=%d.%d.%d.%d/%d\n",
2048 prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen);
2049
2050 putspace_seq(seq, indent); seq_printf(seq, "| ");
2051 seq_printf(seq, "{key prefix=%08x/", tn->key & TKEY_GET_MASK(0, tn->pos));
2052 printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos);
2053 seq_printf(seq, "}\n");
2054 putspace_seq(seq, indent); seq_printf(seq, "| ");
2055 seq_printf(seq, "{pos=%d", tn->pos);
2056 seq_printf(seq, " (skip=%d bits)", tn->pos - pend);
2057 seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits));
2058 putspace_seq(seq, indent); seq_printf(seq, "| ");
2059 seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children);
2060 }
2061 }
2062
2063 static void trie_dump_seq(struct seq_file *seq, struct trie *t)
2064 {
2065 struct node *n;
2066 int cindex = 0;
2067 int indent = 1;
2068 int pend = 0;
2069 int depth = 0;
2070 struct tnode *tn;
2071
2072 rcu_read_lock();
2073 n = rcu_dereference(t->trie);
2074 seq_printf(seq, "------ trie_dump of t=%p ------\n", t);
2075
2076 if (!n) {
2077 seq_printf(seq, "------ trie is empty\n");
2078
2079 rcu_read_unlock();
2080 return;
2081 }
2082
2083 printnode_seq(seq, indent, n, pend, cindex, 0);
2084
2085 if (!IS_TNODE(n)) {
2086 rcu_read_unlock();
2087 return;
2088 }
2089
2090 tn = (struct tnode *)n;
2091 pend = tn->pos+tn->bits;
2092 putspace_seq(seq, indent); seq_printf(seq, "\\--\n");
2093 indent += 3;
2094 depth++;
2095
2096 while (tn && cindex < (1 << tn->bits)) {
2097 struct node *child = rcu_dereference(tn->child[cindex]);
2098 if (!child)
2099 cindex++;
2100 else {
2101 /* Got a child */
2102 printnode_seq(seq, indent, child, pend,
2103 cindex, tn->bits);
2104
2105 if (IS_LEAF(child))
2106 cindex++;
2107
2108 else {
2109 /*
2110 * New tnode. Decend one level
2111 */
2112
2113 depth++;
2114 n = child;
2115 tn = (struct tnode *)n;
2116 pend = tn->pos+tn->bits;
2117 putspace_seq(seq, indent);
2118 seq_printf(seq, "\\--\n");
2119 indent += 3;
2120 cindex = 0;
2121 }
2122 }
2123
2124 /*
2125 * Test if we are done
2126 */
2127
2128 while (cindex >= (1 << tn->bits)) {
2129 /*
2130 * Move upwards and test for root
2131 * pop off all traversed nodes
2132 */
2133
2134 if (NODE_PARENT(tn) == NULL) {
2135 tn = NULL;
2136 break;
2137 }
2138
2139 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2140 cindex++;
2141 tn = NODE_PARENT(tn);
2142 pend = tn->pos + tn->bits;
2143 indent -= 3;
2144 depth--;
2145 }
2146 }
2147 rcu_read_unlock();
2148 }
2149
2150 static struct trie_stat *trie_stat_new(void)
2151 {
2152 struct trie_stat *s;
2153 int i;
2154
2155 s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL);
2156 if (!s)
2157 return NULL;
2158
2159 s->totdepth = 0;
2160 s->maxdepth = 0;
2161 s->tnodes = 0;
2162 s->leaves = 0;
2163 s->nullpointers = 0;
2164
2165 for (i = 0; i < MAX_CHILDS; i++)
2166 s->nodesizes[i] = 0;
2167
2168 return s;
2169 }
2170
2171 static struct trie_stat *trie_collect_stats(struct trie *t)
2172 {
2173 struct node *n;
2174 struct trie_stat *s = trie_stat_new();
2175 int cindex = 0;
2176 int pend = 0;
2177 int depth = 0;
2178
2179 if (!s)
2180 return NULL;
2181
2182 rcu_read_lock();
2183 n = rcu_dereference(t->trie);
2184
2185 if (!n)
2186 return s;
2187
2188 if (IS_TNODE(n)) {
2189 struct tnode *tn = (struct tnode *)n;
2190 pend = tn->pos+tn->bits;
2191 s->nodesizes[tn->bits]++;
2192 depth++;
2193
2194 while (tn && cindex < (1 << tn->bits)) {
2195 struct node *ch = rcu_dereference(tn->child[cindex]);
2196 if (ch) {
2197
2198 /* Got a child */
2199
2200 if (IS_LEAF(tn->child[cindex])) {
2201 cindex++;
2202
2203 /* stats */
2204 if (depth > s->maxdepth)
2205 s->maxdepth = depth;
2206 s->totdepth += depth;
2207 s->leaves++;
2208 } else {
2209 /*
2210 * New tnode. Decend one level
2211 */
2212
2213 s->tnodes++;
2214 s->nodesizes[tn->bits]++;
2215 depth++;
2216
2217 n = ch;
2218 tn = (struct tnode *)n;
2219 pend = tn->pos+tn->bits;
2220
2221 cindex = 0;
2222 }
2223 } else {
2224 cindex++;
2225 s->nullpointers++;
2226 }
2227
2228 /*
2229 * Test if we are done
2230 */
2231
2232 while (cindex >= (1 << tn->bits)) {
2233 /*
2234 * Move upwards and test for root
2235 * pop off all traversed nodes
2236 */
2237
2238 if (NODE_PARENT(tn) == NULL) {
2239 tn = NULL;
2240 n = NULL;
2241 break;
2242 }
2243
2244 cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits);
2245 tn = NODE_PARENT(tn);
2246 cindex++;
2247 n = (struct node *)tn;
2248 pend = tn->pos+tn->bits;
2249 depth--;
2250 }
2251 }
2252 }
2253
2254 rcu_read_unlock();
2255 return s;
2256 }
2257
2258 #ifdef CONFIG_PROC_FS
2259
2260 static struct fib_alias *fib_triestat_get_first(struct seq_file *seq)
2261 {
2262 return NULL;
2263 }
2264
2265 static struct fib_alias *fib_triestat_get_next(struct seq_file *seq)
2266 {
2267 return NULL;
2268 }
2269
2270 static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos)
2271 {
2272 if (!ip_fib_main_table)
2273 return NULL;
2274
2275 if (*pos)
2276 return fib_triestat_get_next(seq);
2277 else
2278 return SEQ_START_TOKEN;
2279 }
2280
2281 static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2282 {
2283 ++*pos;
2284 if (v == SEQ_START_TOKEN)
2285 return fib_triestat_get_first(seq);
2286 else
2287 return fib_triestat_get_next(seq);
2288 }
2289
2290 static void fib_triestat_seq_stop(struct seq_file *seq, void *v)
2291 {
2292
2293 }
2294
2295 /*
2296 * This outputs /proc/net/fib_triestats
2297 *
2298 * It always works in backward compatibility mode.
2299 * The format of the file is not supposed to be changed.
2300 */
2301
2302 static void collect_and_show(struct trie *t, struct seq_file *seq)
2303 {
2304 int bytes = 0; /* How many bytes are used, a ref is 4 bytes */
2305 int i, max, pointers;
2306 struct trie_stat *stat;
2307 int avdepth;
2308
2309 stat = trie_collect_stats(t);
2310
2311 bytes = 0;
2312 seq_printf(seq, "trie=%p\n", t);
2313
2314 if (stat) {
2315 if (stat->leaves)
2316 avdepth = stat->totdepth*100 / stat->leaves;
2317 else
2318 avdepth = 0;
2319 seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100);
2320 seq_printf(seq, "Max depth: %4d\n", stat->maxdepth);
2321
2322 seq_printf(seq, "Leaves: %d\n", stat->leaves);
2323 bytes += sizeof(struct leaf) * stat->leaves;
2324 seq_printf(seq, "Internal nodes: %d\n", stat->tnodes);
2325 bytes += sizeof(struct tnode) * stat->tnodes;
2326
2327 max = MAX_CHILDS-1;
2328
2329 while (max >= 0 && stat->nodesizes[max] == 0)
2330 max--;
2331 pointers = 0;
2332
2333 for (i = 1; i <= max; i++)
2334 if (stat->nodesizes[i] != 0) {
2335 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2336 pointers += (1<<i) * stat->nodesizes[i];
2337 }
2338 seq_printf(seq, "\n");
2339 seq_printf(seq, "Pointers: %d\n", pointers);
2340 bytes += sizeof(struct node *) * pointers;
2341 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2342 seq_printf(seq, "Total size: %d kB\n", bytes / 1024);
2343
2344 kfree(stat);
2345 }
2346
2347 #ifdef CONFIG_IP_FIB_TRIE_STATS
2348 seq_printf(seq, "Counters:\n---------\n");
2349 seq_printf(seq,"gets = %d\n", t->stats.gets);
2350 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2351 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2352 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2353 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2354 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2355 #ifdef CLEAR_STATS
2356 memset(&(t->stats), 0, sizeof(t->stats));
2357 #endif
2358 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2359 }
2360
2361 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2362 {
2363 char bf[128];
2364
2365 if (v == SEQ_START_TOKEN) {
2366 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2367 sizeof(struct leaf), sizeof(struct tnode));
2368 if (trie_local)
2369 collect_and_show(trie_local, seq);
2370
2371 if (trie_main)
2372 collect_and_show(trie_main, seq);
2373 } else {
2374 snprintf(bf, sizeof(bf), "*\t%08X\t%08X", 200, 400);
2375
2376 seq_printf(seq, "%-127s\n", bf);
2377 }
2378 return 0;
2379 }
2380
2381 static struct seq_operations fib_triestat_seq_ops = {
2382 .start = fib_triestat_seq_start,
2383 .next = fib_triestat_seq_next,
2384 .stop = fib_triestat_seq_stop,
2385 .show = fib_triestat_seq_show,
2386 };
2387
2388 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2389 {
2390 struct seq_file *seq;
2391 int rc = -ENOMEM;
2392
2393 rc = seq_open(file, &fib_triestat_seq_ops);
2394 if (rc)
2395 goto out_kfree;
2396
2397 seq = file->private_data;
2398 out:
2399 return rc;
2400 out_kfree:
2401 goto out;
2402 }
2403
2404 static struct file_operations fib_triestat_seq_fops = {
2405 .owner = THIS_MODULE,
2406 .open = fib_triestat_seq_open,
2407 .read = seq_read,
2408 .llseek = seq_lseek,
2409 .release = seq_release_private,
2410 };
2411
2412 int __init fib_stat_proc_init(void)
2413 {
2414 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops))
2415 return -ENOMEM;
2416 return 0;
2417 }
2418
2419 void __init fib_stat_proc_exit(void)
2420 {
2421 proc_net_remove("fib_triestat");
2422 }
2423
2424 static struct fib_alias *fib_trie_get_first(struct seq_file *seq)
2425 {
2426 return NULL;
2427 }
2428
2429 static struct fib_alias *fib_trie_get_next(struct seq_file *seq)
2430 {
2431 return NULL;
2432 }
2433
2434 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2435 {
2436 if (!ip_fib_main_table)
2437 return NULL;
2438
2439 if (*pos)
2440 return fib_trie_get_next(seq);
2441 else
2442 return SEQ_START_TOKEN;
2443 }
2444
2445 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2446 {
2447 ++*pos;
2448 if (v == SEQ_START_TOKEN)
2449 return fib_trie_get_first(seq);
2450 else
2451 return fib_trie_get_next(seq);
2452
2453 }
2454
2455 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2456 {
2457 }
2458
2459 /*
2460 * This outputs /proc/net/fib_trie.
2461 *
2462 * It always works in backward compatibility mode.
2463 * The format of the file is not supposed to be changed.
2464 */
2465
2466 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2467 {
2468 char bf[128];
2469
2470 if (v == SEQ_START_TOKEN) {
2471 if (trie_local)
2472 trie_dump_seq(seq, trie_local);
2473
2474 if (trie_main)
2475 trie_dump_seq(seq, trie_main);
2476 } else {
2477 snprintf(bf, sizeof(bf),
2478 "*\t%08X\t%08X", 200, 400);
2479 seq_printf(seq, "%-127s\n", bf);
2480 }
2481
2482 return 0;
2483 }
2484
2485 static struct seq_operations fib_trie_seq_ops = {
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_trie_seq_show,
2490 };
2491
2492 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2493 {
2494 struct seq_file *seq;
2495 int rc = -ENOMEM;
2496
2497 rc = seq_open(file, &fib_trie_seq_ops);
2498 if (rc)
2499 goto out_kfree;
2500
2501 seq = file->private_data;
2502 out:
2503 return rc;
2504 out_kfree:
2505 goto out;
2506 }
2507
2508 static struct file_operations fib_trie_seq_fops = {
2509 .owner = THIS_MODULE,
2510 .open = fib_trie_seq_open,
2511 .read = seq_read,
2512 .llseek = seq_lseek,
2513 .release= seq_release_private,
2514 };
2515
2516 int __init fib_proc_init(void)
2517 {
2518 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops))
2519 return -ENOMEM;
2520 return 0;
2521 }
2522
2523 void __init fib_proc_exit(void)
2524 {
2525 proc_net_remove("fib_trie");
2526 }
2527
2528 #endif /* CONFIG_PROC_FS */
This page took 0.094969 seconds and 5 git commands to generate.