d044fa355f697085a4964aa25ad975df761e4b1d
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define IS_TNODE(n) ((n)->bits)
91 #define IS_LEAF(n) (!(n)->bits)
92
93 #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
94
95 struct tnode {
96 t_key key;
97 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 struct tnode __rcu *parent;
100 struct rcu_head rcu;
101 union {
102 /* The fields in this struct are valid if bits > 0 (TNODE) */
103 struct {
104 unsigned int full_children; /* KEYLENGTH bits needed */
105 unsigned int empty_children; /* KEYLENGTH bits needed */
106 struct tnode __rcu *child[0];
107 };
108 /* This list pointer if valid if bits == 0 (LEAF) */
109 struct hlist_head list;
110 };
111 };
112
113 struct leaf_info {
114 struct hlist_node hlist;
115 int plen;
116 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
117 struct list_head falh;
118 struct rcu_head rcu;
119 };
120
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
129 };
130 #endif
131
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141
142 struct trie {
143 struct tnode __rcu *trie;
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
147 };
148
149 static void tnode_put_child_reorg(struct tnode *tn, unsigned long i,
150 struct tnode *n, int wasfull);
151 static struct tnode *resize(struct trie *t, struct tnode *tn);
152 /* tnodes to free after resize(); protected by RTNL */
153 static struct callback_head *tnode_free_head;
154 static size_t tnode_free_size;
155
156 /*
157 * synchronize_rcu after call_rcu for that many pages; it should be especially
158 * useful before resizing the root node with PREEMPT_NONE configs; the value was
159 * obtained experimentally, aiming to avoid visible slowdown.
160 */
161 static const int sync_pages = 128;
162
163 static struct kmem_cache *fn_alias_kmem __read_mostly;
164 static struct kmem_cache *trie_leaf_kmem __read_mostly;
165
166 /* caller must hold RTNL */
167 #define node_parent(n) rtnl_dereference((n)->parent)
168
169 /* caller must hold RCU read lock or RTNL */
170 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
171
172 /* wrapper for rcu_assign_pointer */
173 static inline void node_set_parent(struct tnode *n, struct tnode *tp)
174 {
175 if (n)
176 rcu_assign_pointer(n->parent, tp);
177 }
178
179 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
180
181 /* This provides us with the number of children in this node, in the case of a
182 * leaf this will return 0 meaning none of the children are accessible.
183 */
184 static inline unsigned long tnode_child_length(const struct tnode *tn)
185 {
186 return (1ul << tn->bits) & ~(1ul);
187 }
188
189 /* caller must hold RTNL */
190 static inline struct tnode *tnode_get_child(const struct tnode *tn,
191 unsigned long i)
192 {
193 BUG_ON(i >= tnode_child_length(tn));
194
195 return rtnl_dereference(tn->child[i]);
196 }
197
198 /* caller must hold RCU read lock or RTNL */
199 static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
200 unsigned long i)
201 {
202 BUG_ON(i >= tnode_child_length(tn));
203
204 return rcu_dereference_rtnl(tn->child[i]);
205 }
206
207 /* To understand this stuff, an understanding of keys and all their bits is
208 * necessary. Every node in the trie has a key associated with it, but not
209 * all of the bits in that key are significant.
210 *
211 * Consider a node 'n' and its parent 'tp'.
212 *
213 * If n is a leaf, every bit in its key is significant. Its presence is
214 * necessitated by path compression, since during a tree traversal (when
215 * searching for a leaf - unless we are doing an insertion) we will completely
216 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
217 * a potentially successful search, that we have indeed been walking the
218 * correct key path.
219 *
220 * Note that we can never "miss" the correct key in the tree if present by
221 * following the wrong path. Path compression ensures that segments of the key
222 * that are the same for all keys with a given prefix are skipped, but the
223 * skipped part *is* identical for each node in the subtrie below the skipped
224 * bit! trie_insert() in this implementation takes care of that.
225 *
226 * if n is an internal node - a 'tnode' here, the various parts of its key
227 * have many different meanings.
228 *
229 * Example:
230 * _________________________________________________________________
231 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
232 * -----------------------------------------------------------------
233 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
234 *
235 * _________________________________________________________________
236 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
237 * -----------------------------------------------------------------
238 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
239 *
240 * tp->pos = 22
241 * tp->bits = 3
242 * n->pos = 13
243 * n->bits = 4
244 *
245 * First, let's just ignore the bits that come before the parent tp, that is
246 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
247 * point we do not use them for anything.
248 *
249 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
250 * index into the parent's child array. That is, they will be used to find
251 * 'n' among tp's children.
252 *
253 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
254 * for the node n.
255 *
256 * All the bits we have seen so far are significant to the node n. The rest
257 * of the bits are really not needed or indeed known in n->key.
258 *
259 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
260 * n's child array, and will of course be different for each child.
261 *
262 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
263 * at this point.
264 */
265
266 static const int halve_threshold = 25;
267 static const int inflate_threshold = 50;
268 static const int halve_threshold_root = 15;
269 static const int inflate_threshold_root = 30;
270
271 static void __alias_free_mem(struct rcu_head *head)
272 {
273 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
274 kmem_cache_free(fn_alias_kmem, fa);
275 }
276
277 static inline void alias_free_mem_rcu(struct fib_alias *fa)
278 {
279 call_rcu(&fa->rcu, __alias_free_mem);
280 }
281
282 #define TNODE_KMALLOC_MAX \
283 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
284
285 static void __node_free_rcu(struct rcu_head *head)
286 {
287 struct tnode *n = container_of(head, struct tnode, rcu);
288
289 if (IS_LEAF(n))
290 kmem_cache_free(trie_leaf_kmem, n);
291 else if (n->bits <= TNODE_KMALLOC_MAX)
292 kfree(n);
293 else
294 vfree(n);
295 }
296
297 #define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
298
299 static inline void free_leaf_info(struct leaf_info *leaf)
300 {
301 kfree_rcu(leaf, rcu);
302 }
303
304 static struct tnode *tnode_alloc(size_t size)
305 {
306 if (size <= PAGE_SIZE)
307 return kzalloc(size, GFP_KERNEL);
308 else
309 return vzalloc(size);
310 }
311
312 static void tnode_free_safe(struct tnode *tn)
313 {
314 BUG_ON(IS_LEAF(tn));
315 tn->rcu.next = tnode_free_head;
316 tnode_free_head = &tn->rcu;
317 }
318
319 static void tnode_free_flush(void)
320 {
321 struct callback_head *head;
322
323 while ((head = tnode_free_head)) {
324 struct tnode *tn = container_of(head, struct tnode, rcu);
325
326 tnode_free_head = head->next;
327 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
328
329 node_free(tn);
330 }
331
332 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
333 tnode_free_size = 0;
334 synchronize_rcu();
335 }
336 }
337
338 static struct tnode *leaf_new(t_key key)
339 {
340 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
341 if (l) {
342 l->parent = NULL;
343 /* set key and pos to reflect full key value
344 * any trailing zeros in the key should be ignored
345 * as the nodes are searched
346 */
347 l->key = key;
348 l->pos = 0;
349 /* set bits to 0 indicating we are not a tnode */
350 l->bits = 0;
351
352 INIT_HLIST_HEAD(&l->list);
353 }
354 return l;
355 }
356
357 static struct leaf_info *leaf_info_new(int plen)
358 {
359 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
360 if (li) {
361 li->plen = plen;
362 li->mask_plen = ntohl(inet_make_mask(plen));
363 INIT_LIST_HEAD(&li->falh);
364 }
365 return li;
366 }
367
368 static struct tnode *tnode_new(t_key key, int pos, int bits)
369 {
370 size_t sz = offsetof(struct tnode, child[1 << bits]);
371 struct tnode *tn = tnode_alloc(sz);
372 unsigned int shift = pos + bits;
373
374 /* verify bits and pos their msb bits clear and values are valid */
375 BUG_ON(!bits || (shift > KEYLENGTH));
376
377 if (tn) {
378 tn->parent = NULL;
379 tn->pos = pos;
380 tn->bits = bits;
381 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
382 tn->full_children = 0;
383 tn->empty_children = 1<<bits;
384 }
385
386 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
387 sizeof(struct tnode *) << bits);
388 return tn;
389 }
390
391 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
392 * and no bits are skipped. See discussion in dyntree paper p. 6
393 */
394 static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
395 {
396 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
397 }
398
399 static inline void put_child(struct tnode *tn, unsigned long i,
400 struct tnode *n)
401 {
402 tnode_put_child_reorg(tn, i, n, -1);
403 }
404
405 /*
406 * Add a child at position i overwriting the old value.
407 * Update the value of full_children and empty_children.
408 */
409
410 static void tnode_put_child_reorg(struct tnode *tn, unsigned long i,
411 struct tnode *n, int wasfull)
412 {
413 struct tnode *chi = rtnl_dereference(tn->child[i]);
414 int isfull;
415
416 BUG_ON(i >= tnode_child_length(tn));
417
418 /* update emptyChildren */
419 if (n == NULL && chi != NULL)
420 tn->empty_children++;
421 else if (n != NULL && chi == NULL)
422 tn->empty_children--;
423
424 /* update fullChildren */
425 if (wasfull == -1)
426 wasfull = tnode_full(tn, chi);
427
428 isfull = tnode_full(tn, n);
429 if (wasfull && !isfull)
430 tn->full_children--;
431 else if (!wasfull && isfull)
432 tn->full_children++;
433
434 node_set_parent(n, tn);
435
436 rcu_assign_pointer(tn->child[i], n);
437 }
438
439 static void put_child_root(struct tnode *tp, struct trie *t,
440 t_key key, struct tnode *n)
441 {
442 if (tp)
443 put_child(tp, get_index(key, tp), n);
444 else
445 rcu_assign_pointer(t->trie, n);
446 }
447
448 static void tnode_clean_free(struct tnode *tn)
449 {
450 struct tnode *tofree;
451 unsigned long i;
452
453 for (i = 0; i < tnode_child_length(tn); i++) {
454 tofree = tnode_get_child(tn, i);
455 if (tofree)
456 node_free(tofree);
457 }
458 node_free(tn);
459 }
460
461 static struct tnode *inflate(struct trie *t, struct tnode *oldtnode)
462 {
463 unsigned long olen = tnode_child_length(oldtnode);
464 struct tnode *tn;
465 unsigned long i;
466 t_key m;
467
468 pr_debug("In inflate\n");
469
470 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
471
472 if (!tn)
473 return ERR_PTR(-ENOMEM);
474
475 /*
476 * Preallocate and store tnodes before the actual work so we
477 * don't get into an inconsistent state if memory allocation
478 * fails. In case of failure we return the oldnode and inflate
479 * of tnode is ignored.
480 */
481 for (i = 0, m = 1u << tn->pos; i < olen; i++) {
482 struct tnode *inode = tnode_get_child(oldtnode, i);
483
484 if (tnode_full(oldtnode, inode) && (inode->bits > 1)) {
485 struct tnode *left, *right;
486
487 left = tnode_new(inode->key & ~m, inode->pos,
488 inode->bits - 1);
489 if (!left)
490 goto nomem;
491
492 right = tnode_new(inode->key | m, inode->pos,
493 inode->bits - 1);
494
495 if (!right) {
496 node_free(left);
497 goto nomem;
498 }
499
500 put_child(tn, 2*i, left);
501 put_child(tn, 2*i+1, right);
502 }
503 }
504
505 for (i = 0; i < olen; i++) {
506 struct tnode *inode = tnode_get_child(oldtnode, i);
507 struct tnode *left, *right;
508 unsigned long size, j;
509
510 /* An empty child */
511 if (inode == NULL)
512 continue;
513
514 /* A leaf or an internal node with skipped bits */
515 if (!tnode_full(oldtnode, inode)) {
516 put_child(tn, get_index(inode->key, tn), inode);
517 continue;
518 }
519
520 /* An internal node with two children */
521 if (inode->bits == 1) {
522 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
523 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
524
525 tnode_free_safe(inode);
526 continue;
527 }
528
529 /* An internal node with more than two children */
530
531 /* We will replace this node 'inode' with two new
532 * ones, 'left' and 'right', each with half of the
533 * original children. The two new nodes will have
534 * a position one bit further down the key and this
535 * means that the "significant" part of their keys
536 * (see the discussion near the top of this file)
537 * will differ by one bit, which will be "0" in
538 * left's key and "1" in right's key. Since we are
539 * moving the key position by one step, the bit that
540 * we are moving away from - the bit at position
541 * (inode->pos) - is the one that will differ between
542 * left and right. So... we synthesize that bit in the
543 * two new keys.
544 * The mask 'm' below will be a single "one" bit at
545 * the position (inode->pos)
546 */
547
548 /* Use the old key, but set the new significant
549 * bit to zero.
550 */
551
552 left = tnode_get_child(tn, 2*i);
553 put_child(tn, 2*i, NULL);
554
555 BUG_ON(!left);
556
557 right = tnode_get_child(tn, 2*i+1);
558 put_child(tn, 2*i+1, NULL);
559
560 BUG_ON(!right);
561
562 size = tnode_child_length(left);
563 for (j = 0; j < size; j++) {
564 put_child(left, j, rtnl_dereference(inode->child[j]));
565 put_child(right, j, rtnl_dereference(inode->child[j + size]));
566 }
567 put_child(tn, 2*i, resize(t, left));
568 put_child(tn, 2*i+1, resize(t, right));
569
570 tnode_free_safe(inode);
571 }
572 tnode_free_safe(oldtnode);
573 return tn;
574 nomem:
575 tnode_clean_free(tn);
576 return ERR_PTR(-ENOMEM);
577 }
578
579 static struct tnode *halve(struct trie *t, struct tnode *oldtnode)
580 {
581 unsigned long olen = tnode_child_length(oldtnode);
582 struct tnode *tn, *left, *right;
583 int i;
584
585 pr_debug("In halve\n");
586
587 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
588
589 if (!tn)
590 return ERR_PTR(-ENOMEM);
591
592 /*
593 * Preallocate and store tnodes before the actual work so we
594 * don't get into an inconsistent state if memory allocation
595 * fails. In case of failure we return the oldnode and halve
596 * of tnode is ignored.
597 */
598
599 for (i = 0; i < olen; i += 2) {
600 left = tnode_get_child(oldtnode, i);
601 right = tnode_get_child(oldtnode, i+1);
602
603 /* Two nonempty children */
604 if (left && right) {
605 struct tnode *newn;
606
607 newn = tnode_new(left->key, oldtnode->pos, 1);
608
609 if (!newn)
610 goto nomem;
611
612 put_child(tn, i/2, newn);
613 }
614
615 }
616
617 for (i = 0; i < olen; i += 2) {
618 struct tnode *newBinNode;
619
620 left = tnode_get_child(oldtnode, i);
621 right = tnode_get_child(oldtnode, i+1);
622
623 /* At least one of the children is empty */
624 if (left == NULL) {
625 if (right == NULL) /* Both are empty */
626 continue;
627 put_child(tn, i/2, right);
628 continue;
629 }
630
631 if (right == NULL) {
632 put_child(tn, i/2, left);
633 continue;
634 }
635
636 /* Two nonempty children */
637 newBinNode = tnode_get_child(tn, i/2);
638 put_child(tn, i/2, NULL);
639 put_child(newBinNode, 0, left);
640 put_child(newBinNode, 1, right);
641 put_child(tn, i/2, resize(t, newBinNode));
642 }
643 tnode_free_safe(oldtnode);
644 return tn;
645 nomem:
646 tnode_clean_free(tn);
647 return ERR_PTR(-ENOMEM);
648 }
649
650 #define MAX_WORK 10
651 static struct tnode *resize(struct trie *t, struct tnode *tn)
652 {
653 struct tnode *old_tn, *n = NULL;
654 int inflate_threshold_use;
655 int halve_threshold_use;
656 int max_work;
657
658 if (!tn)
659 return NULL;
660
661 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
662 tn, inflate_threshold, halve_threshold);
663
664 /* No children */
665 if (tn->empty_children > (tnode_child_length(tn) - 1))
666 goto no_children;
667
668 /* One child */
669 if (tn->empty_children == (tnode_child_length(tn) - 1))
670 goto one_child;
671 /*
672 * Double as long as the resulting node has a number of
673 * nonempty nodes that are above the threshold.
674 */
675
676 /*
677 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
678 * the Helsinki University of Technology and Matti Tikkanen of Nokia
679 * Telecommunications, page 6:
680 * "A node is doubled if the ratio of non-empty children to all
681 * children in the *doubled* node is at least 'high'."
682 *
683 * 'high' in this instance is the variable 'inflate_threshold'. It
684 * is expressed as a percentage, so we multiply it with
685 * tnode_child_length() and instead of multiplying by 2 (since the
686 * child array will be doubled by inflate()) and multiplying
687 * the left-hand side by 100 (to handle the percentage thing) we
688 * multiply the left-hand side by 50.
689 *
690 * The left-hand side may look a bit weird: tnode_child_length(tn)
691 * - tn->empty_children is of course the number of non-null children
692 * in the current node. tn->full_children is the number of "full"
693 * children, that is non-null tnodes with a skip value of 0.
694 * All of those will be doubled in the resulting inflated tnode, so
695 * we just count them one extra time here.
696 *
697 * A clearer way to write this would be:
698 *
699 * to_be_doubled = tn->full_children;
700 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
701 * tn->full_children;
702 *
703 * new_child_length = tnode_child_length(tn) * 2;
704 *
705 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
706 * new_child_length;
707 * if (new_fill_factor >= inflate_threshold)
708 *
709 * ...and so on, tho it would mess up the while () loop.
710 *
711 * anyway,
712 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
713 * inflate_threshold
714 *
715 * avoid a division:
716 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
717 * inflate_threshold * new_child_length
718 *
719 * expand not_to_be_doubled and to_be_doubled, and shorten:
720 * 100 * (tnode_child_length(tn) - tn->empty_children +
721 * tn->full_children) >= inflate_threshold * new_child_length
722 *
723 * expand new_child_length:
724 * 100 * (tnode_child_length(tn) - tn->empty_children +
725 * tn->full_children) >=
726 * inflate_threshold * tnode_child_length(tn) * 2
727 *
728 * shorten again:
729 * 50 * (tn->full_children + tnode_child_length(tn) -
730 * tn->empty_children) >= inflate_threshold *
731 * tnode_child_length(tn)
732 *
733 */
734
735 /* Keep root node larger */
736
737 if (!node_parent(tn)) {
738 inflate_threshold_use = inflate_threshold_root;
739 halve_threshold_use = halve_threshold_root;
740 } else {
741 inflate_threshold_use = inflate_threshold;
742 halve_threshold_use = halve_threshold;
743 }
744
745 max_work = MAX_WORK;
746 while ((tn->full_children > 0 && max_work-- &&
747 50 * (tn->full_children + tnode_child_length(tn)
748 - tn->empty_children)
749 >= inflate_threshold_use * tnode_child_length(tn))) {
750
751 old_tn = tn;
752 tn = inflate(t, tn);
753
754 if (IS_ERR(tn)) {
755 tn = old_tn;
756 #ifdef CONFIG_IP_FIB_TRIE_STATS
757 this_cpu_inc(t->stats->resize_node_skipped);
758 #endif
759 break;
760 }
761 }
762
763 /* Return if at least one inflate is run */
764 if (max_work != MAX_WORK)
765 return tn;
766
767 /*
768 * Halve as long as the number of empty children in this
769 * node is above threshold.
770 */
771
772 max_work = MAX_WORK;
773 while (tn->bits > 1 && max_work-- &&
774 100 * (tnode_child_length(tn) - tn->empty_children) <
775 halve_threshold_use * tnode_child_length(tn)) {
776
777 old_tn = tn;
778 tn = halve(t, tn);
779 if (IS_ERR(tn)) {
780 tn = old_tn;
781 #ifdef CONFIG_IP_FIB_TRIE_STATS
782 this_cpu_inc(t->stats->resize_node_skipped);
783 #endif
784 break;
785 }
786 }
787
788
789 /* Only one child remains */
790 if (tn->empty_children == (tnode_child_length(tn) - 1)) {
791 unsigned long i;
792 one_child:
793 for (i = tnode_child_length(tn); !n && i;)
794 n = tnode_get_child(tn, --i);
795 no_children:
796 /* compress one level */
797 node_set_parent(n, NULL);
798 tnode_free_safe(tn);
799 return n;
800 }
801 return tn;
802 }
803
804 /* readside must use rcu_read_lock currently dump routines
805 via get_fa_head and dump */
806
807 static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
808 {
809 struct hlist_head *head = &l->list;
810 struct leaf_info *li;
811
812 hlist_for_each_entry_rcu(li, head, hlist)
813 if (li->plen == plen)
814 return li;
815
816 return NULL;
817 }
818
819 static inline struct list_head *get_fa_head(struct tnode *l, int plen)
820 {
821 struct leaf_info *li = find_leaf_info(l, plen);
822
823 if (!li)
824 return NULL;
825
826 return &li->falh;
827 }
828
829 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
830 {
831 struct leaf_info *li = NULL, *last = NULL;
832
833 if (hlist_empty(head)) {
834 hlist_add_head_rcu(&new->hlist, head);
835 } else {
836 hlist_for_each_entry(li, head, hlist) {
837 if (new->plen > li->plen)
838 break;
839
840 last = li;
841 }
842 if (last)
843 hlist_add_behind_rcu(&new->hlist, &last->hlist);
844 else
845 hlist_add_before_rcu(&new->hlist, &li->hlist);
846 }
847 }
848
849 /* rcu_read_lock needs to be hold by caller from readside */
850 static struct tnode *fib_find_node(struct trie *t, u32 key)
851 {
852 struct tnode *n = rcu_dereference_rtnl(t->trie);
853
854 while (n) {
855 unsigned long index = get_index(key, n);
856
857 /* This bit of code is a bit tricky but it combines multiple
858 * checks into a single check. The prefix consists of the
859 * prefix plus zeros for the bits in the cindex. The index
860 * is the difference between the key and this value. From
861 * this we can actually derive several pieces of data.
862 * if !(index >> bits)
863 * we know the value is cindex
864 * else
865 * we have a mismatch in skip bits and failed
866 */
867 if (index >> n->bits)
868 return NULL;
869
870 /* we have found a leaf. Prefixes have already been compared */
871 if (IS_LEAF(n))
872 break;
873
874 n = rcu_dereference_rtnl(n->child[index]);
875 }
876
877 return n;
878 }
879
880 static void trie_rebalance(struct trie *t, struct tnode *tn)
881 {
882 int wasfull;
883 t_key cindex, key;
884 struct tnode *tp;
885
886 key = tn->key;
887
888 while (tn != NULL && (tp = node_parent(tn)) != NULL) {
889 cindex = get_index(key, tp);
890 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
891 tn = resize(t, tn);
892
893 tnode_put_child_reorg(tp, cindex, tn, wasfull);
894
895 tp = node_parent(tn);
896 if (!tp)
897 rcu_assign_pointer(t->trie, tn);
898
899 tnode_free_flush();
900 if (!tp)
901 break;
902 tn = tp;
903 }
904
905 /* Handle last (top) tnode */
906 if (IS_TNODE(tn))
907 tn = resize(t, tn);
908
909 rcu_assign_pointer(t->trie, tn);
910 tnode_free_flush();
911 }
912
913 /* only used from updater-side */
914
915 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
916 {
917 struct list_head *fa_head = NULL;
918 struct tnode *l, *n, *tp = NULL;
919 struct leaf_info *li;
920
921 li = leaf_info_new(plen);
922 if (!li)
923 return NULL;
924 fa_head = &li->falh;
925
926 n = rtnl_dereference(t->trie);
927
928 /* If we point to NULL, stop. Either the tree is empty and we should
929 * just put a new leaf in if, or we have reached an empty child slot,
930 * and we should just put our new leaf in that.
931 *
932 * If we hit a node with a key that does't match then we should stop
933 * and create a new tnode to replace that node and insert ourselves
934 * and the other node into the new tnode.
935 */
936 while (n) {
937 unsigned long index = get_index(key, n);
938
939 /* This bit of code is a bit tricky but it combines multiple
940 * checks into a single check. The prefix consists of the
941 * prefix plus zeros for the "bits" in the prefix. The index
942 * is the difference between the key and this value. From
943 * this we can actually derive several pieces of data.
944 * if !(index >> bits)
945 * we know the value is child index
946 * else
947 * we have a mismatch in skip bits and failed
948 */
949 if (index >> n->bits)
950 break;
951
952 /* we have found a leaf. Prefixes have already been compared */
953 if (IS_LEAF(n)) {
954 /* Case 1: n is a leaf, and prefixes match*/
955 insert_leaf_info(&n->list, li);
956 return fa_head;
957 }
958
959 tp = n;
960 n = rcu_dereference_rtnl(n->child[index]);
961 }
962
963 l = leaf_new(key);
964 if (!l) {
965 free_leaf_info(li);
966 return NULL;
967 }
968
969 insert_leaf_info(&l->list, li);
970
971 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
972 *
973 * Add a new tnode here
974 * first tnode need some special handling
975 * leaves us in position for handling as case 3
976 */
977 if (n) {
978 struct tnode *tn;
979
980 tn = tnode_new(key, __fls(key ^ n->key), 1);
981 if (!tn) {
982 free_leaf_info(li);
983 node_free(l);
984 return NULL;
985 }
986
987 /* initialize routes out of node */
988 NODE_INIT_PARENT(tn, tp);
989 put_child(tn, get_index(key, tn) ^ 1, n);
990
991 /* start adding routes into the node */
992 put_child_root(tp, t, key, tn);
993 node_set_parent(n, tn);
994
995 /* parent now has a NULL spot where the leaf can go */
996 tp = tn;
997 }
998
999 /* Case 3: n is NULL, and will just insert a new leaf */
1000 if (tp) {
1001 NODE_INIT_PARENT(l, tp);
1002 put_child(tp, get_index(key, tp), l);
1003 trie_rebalance(t, tp);
1004 } else {
1005 rcu_assign_pointer(t->trie, l);
1006 }
1007
1008 return fa_head;
1009 }
1010
1011 /*
1012 * Caller must hold RTNL.
1013 */
1014 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1015 {
1016 struct trie *t = (struct trie *) tb->tb_data;
1017 struct fib_alias *fa, *new_fa;
1018 struct list_head *fa_head = NULL;
1019 struct fib_info *fi;
1020 int plen = cfg->fc_dst_len;
1021 u8 tos = cfg->fc_tos;
1022 u32 key, mask;
1023 int err;
1024 struct tnode *l;
1025
1026 if (plen > 32)
1027 return -EINVAL;
1028
1029 key = ntohl(cfg->fc_dst);
1030
1031 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1032
1033 mask = ntohl(inet_make_mask(plen));
1034
1035 if (key & ~mask)
1036 return -EINVAL;
1037
1038 key = key & mask;
1039
1040 fi = fib_create_info(cfg);
1041 if (IS_ERR(fi)) {
1042 err = PTR_ERR(fi);
1043 goto err;
1044 }
1045
1046 l = fib_find_node(t, key);
1047 fa = NULL;
1048
1049 if (l) {
1050 fa_head = get_fa_head(l, plen);
1051 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1052 }
1053
1054 /* Now fa, if non-NULL, points to the first fib alias
1055 * with the same keys [prefix,tos,priority], if such key already
1056 * exists or to the node before which we will insert new one.
1057 *
1058 * If fa is NULL, we will need to allocate a new one and
1059 * insert to the head of f.
1060 *
1061 * If f is NULL, no fib node matched the destination key
1062 * and we need to allocate a new one of those as well.
1063 */
1064
1065 if (fa && fa->fa_tos == tos &&
1066 fa->fa_info->fib_priority == fi->fib_priority) {
1067 struct fib_alias *fa_first, *fa_match;
1068
1069 err = -EEXIST;
1070 if (cfg->fc_nlflags & NLM_F_EXCL)
1071 goto out;
1072
1073 /* We have 2 goals:
1074 * 1. Find exact match for type, scope, fib_info to avoid
1075 * duplicate routes
1076 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1077 */
1078 fa_match = NULL;
1079 fa_first = fa;
1080 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1081 list_for_each_entry_continue(fa, fa_head, fa_list) {
1082 if (fa->fa_tos != tos)
1083 break;
1084 if (fa->fa_info->fib_priority != fi->fib_priority)
1085 break;
1086 if (fa->fa_type == cfg->fc_type &&
1087 fa->fa_info == fi) {
1088 fa_match = fa;
1089 break;
1090 }
1091 }
1092
1093 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1094 struct fib_info *fi_drop;
1095 u8 state;
1096
1097 fa = fa_first;
1098 if (fa_match) {
1099 if (fa == fa_match)
1100 err = 0;
1101 goto out;
1102 }
1103 err = -ENOBUFS;
1104 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1105 if (new_fa == NULL)
1106 goto out;
1107
1108 fi_drop = fa->fa_info;
1109 new_fa->fa_tos = fa->fa_tos;
1110 new_fa->fa_info = fi;
1111 new_fa->fa_type = cfg->fc_type;
1112 state = fa->fa_state;
1113 new_fa->fa_state = state & ~FA_S_ACCESSED;
1114
1115 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1116 alias_free_mem_rcu(fa);
1117
1118 fib_release_info(fi_drop);
1119 if (state & FA_S_ACCESSED)
1120 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1121 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1122 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1123
1124 goto succeeded;
1125 }
1126 /* Error if we find a perfect match which
1127 * uses the same scope, type, and nexthop
1128 * information.
1129 */
1130 if (fa_match)
1131 goto out;
1132
1133 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1134 fa = fa_first;
1135 }
1136 err = -ENOENT;
1137 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1138 goto out;
1139
1140 err = -ENOBUFS;
1141 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1142 if (new_fa == NULL)
1143 goto out;
1144
1145 new_fa->fa_info = fi;
1146 new_fa->fa_tos = tos;
1147 new_fa->fa_type = cfg->fc_type;
1148 new_fa->fa_state = 0;
1149 /*
1150 * Insert new entry to the list.
1151 */
1152
1153 if (!fa_head) {
1154 fa_head = fib_insert_node(t, key, plen);
1155 if (unlikely(!fa_head)) {
1156 err = -ENOMEM;
1157 goto out_free_new_fa;
1158 }
1159 }
1160
1161 if (!plen)
1162 tb->tb_num_default++;
1163
1164 list_add_tail_rcu(&new_fa->fa_list,
1165 (fa ? &fa->fa_list : fa_head));
1166
1167 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1168 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1169 &cfg->fc_nlinfo, 0);
1170 succeeded:
1171 return 0;
1172
1173 out_free_new_fa:
1174 kmem_cache_free(fn_alias_kmem, new_fa);
1175 out:
1176 fib_release_info(fi);
1177 err:
1178 return err;
1179 }
1180
1181 static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1182 {
1183 t_key prefix = n->key;
1184
1185 return (key ^ prefix) & (prefix | -prefix);
1186 }
1187
1188 /* should be called with rcu_read_lock */
1189 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1190 struct fib_result *res, int fib_flags)
1191 {
1192 struct trie *t = (struct trie *)tb->tb_data;
1193 #ifdef CONFIG_IP_FIB_TRIE_STATS
1194 struct trie_use_stats __percpu *stats = t->stats;
1195 #endif
1196 const t_key key = ntohl(flp->daddr);
1197 struct tnode *n, *pn;
1198 struct leaf_info *li;
1199 t_key cindex;
1200
1201 n = rcu_dereference(t->trie);
1202 if (!n)
1203 return -EAGAIN;
1204
1205 #ifdef CONFIG_IP_FIB_TRIE_STATS
1206 this_cpu_inc(stats->gets);
1207 #endif
1208
1209 pn = n;
1210 cindex = 0;
1211
1212 /* Step 1: Travel to the longest prefix match in the trie */
1213 for (;;) {
1214 unsigned long index = get_index(key, n);
1215
1216 /* This bit of code is a bit tricky but it combines multiple
1217 * checks into a single check. The prefix consists of the
1218 * prefix plus zeros for the "bits" in the prefix. The index
1219 * is the difference between the key and this value. From
1220 * this we can actually derive several pieces of data.
1221 * if !(index >> bits)
1222 * we know the value is child index
1223 * else
1224 * we have a mismatch in skip bits and failed
1225 */
1226 if (index >> n->bits)
1227 break;
1228
1229 /* we have found a leaf. Prefixes have already been compared */
1230 if (IS_LEAF(n))
1231 goto found;
1232
1233 /* only record pn and cindex if we are going to be chopping
1234 * bits later. Otherwise we are just wasting cycles.
1235 */
1236 if (index) {
1237 pn = n;
1238 cindex = index;
1239 }
1240
1241 n = rcu_dereference(n->child[index]);
1242 if (unlikely(!n))
1243 goto backtrace;
1244 }
1245
1246 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1247 for (;;) {
1248 /* record the pointer where our next node pointer is stored */
1249 struct tnode __rcu **cptr = n->child;
1250
1251 /* This test verifies that none of the bits that differ
1252 * between the key and the prefix exist in the region of
1253 * the lsb and higher in the prefix.
1254 */
1255 if (unlikely(prefix_mismatch(key, n)))
1256 goto backtrace;
1257
1258 /* exit out and process leaf */
1259 if (unlikely(IS_LEAF(n)))
1260 break;
1261
1262 /* Don't bother recording parent info. Since we are in
1263 * prefix match mode we will have to come back to wherever
1264 * we started this traversal anyway
1265 */
1266
1267 while ((n = rcu_dereference(*cptr)) == NULL) {
1268 backtrace:
1269 #ifdef CONFIG_IP_FIB_TRIE_STATS
1270 if (!n)
1271 this_cpu_inc(stats->null_node_hit);
1272 #endif
1273 /* If we are at cindex 0 there are no more bits for
1274 * us to strip at this level so we must ascend back
1275 * up one level to see if there are any more bits to
1276 * be stripped there.
1277 */
1278 while (!cindex) {
1279 t_key pkey = pn->key;
1280
1281 pn = node_parent_rcu(pn);
1282 if (unlikely(!pn))
1283 return -EAGAIN;
1284 #ifdef CONFIG_IP_FIB_TRIE_STATS
1285 this_cpu_inc(stats->backtrack);
1286 #endif
1287 /* Get Child's index */
1288 cindex = get_index(pkey, pn);
1289 }
1290
1291 /* strip the least significant bit from the cindex */
1292 cindex &= cindex - 1;
1293
1294 /* grab pointer for next child node */
1295 cptr = &pn->child[cindex];
1296 }
1297 }
1298
1299 found:
1300 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1301 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1302 struct fib_alias *fa;
1303
1304 if ((key ^ n->key) & li->mask_plen)
1305 continue;
1306
1307 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1308 struct fib_info *fi = fa->fa_info;
1309 int nhsel, err;
1310
1311 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1312 continue;
1313 if (fi->fib_dead)
1314 continue;
1315 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1316 continue;
1317 fib_alias_accessed(fa);
1318 err = fib_props[fa->fa_type].error;
1319 if (unlikely(err < 0)) {
1320 #ifdef CONFIG_IP_FIB_TRIE_STATS
1321 this_cpu_inc(stats->semantic_match_passed);
1322 #endif
1323 return err;
1324 }
1325 if (fi->fib_flags & RTNH_F_DEAD)
1326 continue;
1327 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1328 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1329
1330 if (nh->nh_flags & RTNH_F_DEAD)
1331 continue;
1332 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1333 continue;
1334
1335 if (!(fib_flags & FIB_LOOKUP_NOREF))
1336 atomic_inc(&fi->fib_clntref);
1337
1338 res->prefixlen = li->plen;
1339 res->nh_sel = nhsel;
1340 res->type = fa->fa_type;
1341 res->scope = fi->fib_scope;
1342 res->fi = fi;
1343 res->table = tb;
1344 res->fa_head = &li->falh;
1345 #ifdef CONFIG_IP_FIB_TRIE_STATS
1346 this_cpu_inc(stats->semantic_match_passed);
1347 #endif
1348 return err;
1349 }
1350 }
1351
1352 #ifdef CONFIG_IP_FIB_TRIE_STATS
1353 this_cpu_inc(stats->semantic_match_miss);
1354 #endif
1355 }
1356 goto backtrace;
1357 }
1358 EXPORT_SYMBOL_GPL(fib_table_lookup);
1359
1360 /*
1361 * Remove the leaf and return parent.
1362 */
1363 static void trie_leaf_remove(struct trie *t, struct tnode *l)
1364 {
1365 struct tnode *tp = node_parent(l);
1366
1367 pr_debug("entering trie_leaf_remove(%p)\n", l);
1368
1369 if (tp) {
1370 put_child(tp, get_index(l->key, tp), NULL);
1371 trie_rebalance(t, tp);
1372 } else {
1373 RCU_INIT_POINTER(t->trie, NULL);
1374 }
1375
1376 node_free(l);
1377 }
1378
1379 /*
1380 * Caller must hold RTNL.
1381 */
1382 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1383 {
1384 struct trie *t = (struct trie *) tb->tb_data;
1385 u32 key, mask;
1386 int plen = cfg->fc_dst_len;
1387 u8 tos = cfg->fc_tos;
1388 struct fib_alias *fa, *fa_to_delete;
1389 struct list_head *fa_head;
1390 struct tnode *l;
1391 struct leaf_info *li;
1392
1393 if (plen > 32)
1394 return -EINVAL;
1395
1396 key = ntohl(cfg->fc_dst);
1397 mask = ntohl(inet_make_mask(plen));
1398
1399 if (key & ~mask)
1400 return -EINVAL;
1401
1402 key = key & mask;
1403 l = fib_find_node(t, key);
1404
1405 if (!l)
1406 return -ESRCH;
1407
1408 li = find_leaf_info(l, plen);
1409
1410 if (!li)
1411 return -ESRCH;
1412
1413 fa_head = &li->falh;
1414 fa = fib_find_alias(fa_head, tos, 0);
1415
1416 if (!fa)
1417 return -ESRCH;
1418
1419 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1420
1421 fa_to_delete = NULL;
1422 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1423 list_for_each_entry_continue(fa, fa_head, fa_list) {
1424 struct fib_info *fi = fa->fa_info;
1425
1426 if (fa->fa_tos != tos)
1427 break;
1428
1429 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1430 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1431 fa->fa_info->fib_scope == cfg->fc_scope) &&
1432 (!cfg->fc_prefsrc ||
1433 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1434 (!cfg->fc_protocol ||
1435 fi->fib_protocol == cfg->fc_protocol) &&
1436 fib_nh_match(cfg, fi) == 0) {
1437 fa_to_delete = fa;
1438 break;
1439 }
1440 }
1441
1442 if (!fa_to_delete)
1443 return -ESRCH;
1444
1445 fa = fa_to_delete;
1446 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1447 &cfg->fc_nlinfo, 0);
1448
1449 list_del_rcu(&fa->fa_list);
1450
1451 if (!plen)
1452 tb->tb_num_default--;
1453
1454 if (list_empty(fa_head)) {
1455 hlist_del_rcu(&li->hlist);
1456 free_leaf_info(li);
1457 }
1458
1459 if (hlist_empty(&l->list))
1460 trie_leaf_remove(t, l);
1461
1462 if (fa->fa_state & FA_S_ACCESSED)
1463 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1464
1465 fib_release_info(fa->fa_info);
1466 alias_free_mem_rcu(fa);
1467 return 0;
1468 }
1469
1470 static int trie_flush_list(struct list_head *head)
1471 {
1472 struct fib_alias *fa, *fa_node;
1473 int found = 0;
1474
1475 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1476 struct fib_info *fi = fa->fa_info;
1477
1478 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1479 list_del_rcu(&fa->fa_list);
1480 fib_release_info(fa->fa_info);
1481 alias_free_mem_rcu(fa);
1482 found++;
1483 }
1484 }
1485 return found;
1486 }
1487
1488 static int trie_flush_leaf(struct tnode *l)
1489 {
1490 int found = 0;
1491 struct hlist_head *lih = &l->list;
1492 struct hlist_node *tmp;
1493 struct leaf_info *li = NULL;
1494
1495 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1496 found += trie_flush_list(&li->falh);
1497
1498 if (list_empty(&li->falh)) {
1499 hlist_del_rcu(&li->hlist);
1500 free_leaf_info(li);
1501 }
1502 }
1503 return found;
1504 }
1505
1506 /*
1507 * Scan for the next right leaf starting at node p->child[idx]
1508 * Since we have back pointer, no recursion necessary.
1509 */
1510 static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1511 {
1512 do {
1513 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
1514
1515 while (idx < tnode_child_length(p)) {
1516 c = tnode_get_child_rcu(p, idx++);
1517 if (!c)
1518 continue;
1519
1520 if (IS_LEAF(c))
1521 return c;
1522
1523 /* Rescan start scanning in new node */
1524 p = c;
1525 idx = 0;
1526 }
1527
1528 /* Node empty, walk back up to parent */
1529 c = p;
1530 } while ((p = node_parent_rcu(c)) != NULL);
1531
1532 return NULL; /* Root of trie */
1533 }
1534
1535 static struct tnode *trie_firstleaf(struct trie *t)
1536 {
1537 struct tnode *n = rcu_dereference_rtnl(t->trie);
1538
1539 if (!n)
1540 return NULL;
1541
1542 if (IS_LEAF(n)) /* trie is just a leaf */
1543 return n;
1544
1545 return leaf_walk_rcu(n, NULL);
1546 }
1547
1548 static struct tnode *trie_nextleaf(struct tnode *l)
1549 {
1550 struct tnode *p = node_parent_rcu(l);
1551
1552 if (!p)
1553 return NULL; /* trie with just one leaf */
1554
1555 return leaf_walk_rcu(p, l);
1556 }
1557
1558 static struct tnode *trie_leafindex(struct trie *t, int index)
1559 {
1560 struct tnode *l = trie_firstleaf(t);
1561
1562 while (l && index-- > 0)
1563 l = trie_nextleaf(l);
1564
1565 return l;
1566 }
1567
1568
1569 /*
1570 * Caller must hold RTNL.
1571 */
1572 int fib_table_flush(struct fib_table *tb)
1573 {
1574 struct trie *t = (struct trie *) tb->tb_data;
1575 struct tnode *l, *ll = NULL;
1576 int found = 0;
1577
1578 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1579 found += trie_flush_leaf(l);
1580
1581 if (ll && hlist_empty(&ll->list))
1582 trie_leaf_remove(t, ll);
1583 ll = l;
1584 }
1585
1586 if (ll && hlist_empty(&ll->list))
1587 trie_leaf_remove(t, ll);
1588
1589 pr_debug("trie_flush found=%d\n", found);
1590 return found;
1591 }
1592
1593 void fib_free_table(struct fib_table *tb)
1594 {
1595 #ifdef CONFIG_IP_FIB_TRIE_STATS
1596 struct trie *t = (struct trie *)tb->tb_data;
1597
1598 free_percpu(t->stats);
1599 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1600 kfree(tb);
1601 }
1602
1603 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1604 struct fib_table *tb,
1605 struct sk_buff *skb, struct netlink_callback *cb)
1606 {
1607 int i, s_i;
1608 struct fib_alias *fa;
1609 __be32 xkey = htonl(key);
1610
1611 s_i = cb->args[5];
1612 i = 0;
1613
1614 /* rcu_read_lock is hold by caller */
1615
1616 list_for_each_entry_rcu(fa, fah, fa_list) {
1617 if (i < s_i) {
1618 i++;
1619 continue;
1620 }
1621
1622 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1623 cb->nlh->nlmsg_seq,
1624 RTM_NEWROUTE,
1625 tb->tb_id,
1626 fa->fa_type,
1627 xkey,
1628 plen,
1629 fa->fa_tos,
1630 fa->fa_info, NLM_F_MULTI) < 0) {
1631 cb->args[5] = i;
1632 return -1;
1633 }
1634 i++;
1635 }
1636 cb->args[5] = i;
1637 return skb->len;
1638 }
1639
1640 static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1641 struct sk_buff *skb, struct netlink_callback *cb)
1642 {
1643 struct leaf_info *li;
1644 int i, s_i;
1645
1646 s_i = cb->args[4];
1647 i = 0;
1648
1649 /* rcu_read_lock is hold by caller */
1650 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1651 if (i < s_i) {
1652 i++;
1653 continue;
1654 }
1655
1656 if (i > s_i)
1657 cb->args[5] = 0;
1658
1659 if (list_empty(&li->falh))
1660 continue;
1661
1662 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1663 cb->args[4] = i;
1664 return -1;
1665 }
1666 i++;
1667 }
1668
1669 cb->args[4] = i;
1670 return skb->len;
1671 }
1672
1673 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1674 struct netlink_callback *cb)
1675 {
1676 struct tnode *l;
1677 struct trie *t = (struct trie *) tb->tb_data;
1678 t_key key = cb->args[2];
1679 int count = cb->args[3];
1680
1681 rcu_read_lock();
1682 /* Dump starting at last key.
1683 * Note: 0.0.0.0/0 (ie default) is first key.
1684 */
1685 if (count == 0)
1686 l = trie_firstleaf(t);
1687 else {
1688 /* Normally, continue from last key, but if that is missing
1689 * fallback to using slow rescan
1690 */
1691 l = fib_find_node(t, key);
1692 if (!l)
1693 l = trie_leafindex(t, count);
1694 }
1695
1696 while (l) {
1697 cb->args[2] = l->key;
1698 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1699 cb->args[3] = count;
1700 rcu_read_unlock();
1701 return -1;
1702 }
1703
1704 ++count;
1705 l = trie_nextleaf(l);
1706 memset(&cb->args[4], 0,
1707 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1708 }
1709 cb->args[3] = count;
1710 rcu_read_unlock();
1711
1712 return skb->len;
1713 }
1714
1715 void __init fib_trie_init(void)
1716 {
1717 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1718 sizeof(struct fib_alias),
1719 0, SLAB_PANIC, NULL);
1720
1721 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1722 max(sizeof(struct tnode),
1723 sizeof(struct leaf_info)),
1724 0, SLAB_PANIC, NULL);
1725 }
1726
1727
1728 struct fib_table *fib_trie_table(u32 id)
1729 {
1730 struct fib_table *tb;
1731 struct trie *t;
1732
1733 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1734 GFP_KERNEL);
1735 if (tb == NULL)
1736 return NULL;
1737
1738 tb->tb_id = id;
1739 tb->tb_default = -1;
1740 tb->tb_num_default = 0;
1741
1742 t = (struct trie *) tb->tb_data;
1743 RCU_INIT_POINTER(t->trie, NULL);
1744 #ifdef CONFIG_IP_FIB_TRIE_STATS
1745 t->stats = alloc_percpu(struct trie_use_stats);
1746 if (!t->stats) {
1747 kfree(tb);
1748 tb = NULL;
1749 }
1750 #endif
1751
1752 return tb;
1753 }
1754
1755 #ifdef CONFIG_PROC_FS
1756 /* Depth first Trie walk iterator */
1757 struct fib_trie_iter {
1758 struct seq_net_private p;
1759 struct fib_table *tb;
1760 struct tnode *tnode;
1761 unsigned int index;
1762 unsigned int depth;
1763 };
1764
1765 static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1766 {
1767 unsigned long cindex = iter->index;
1768 struct tnode *tn = iter->tnode;
1769 struct tnode *p;
1770
1771 /* A single entry routing table */
1772 if (!tn)
1773 return NULL;
1774
1775 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1776 iter->tnode, iter->index, iter->depth);
1777 rescan:
1778 while (cindex < tnode_child_length(tn)) {
1779 struct tnode *n = tnode_get_child_rcu(tn, cindex);
1780
1781 if (n) {
1782 if (IS_LEAF(n)) {
1783 iter->tnode = tn;
1784 iter->index = cindex + 1;
1785 } else {
1786 /* push down one level */
1787 iter->tnode = n;
1788 iter->index = 0;
1789 ++iter->depth;
1790 }
1791 return n;
1792 }
1793
1794 ++cindex;
1795 }
1796
1797 /* Current node exhausted, pop back up */
1798 p = node_parent_rcu(tn);
1799 if (p) {
1800 cindex = get_index(tn->key, p) + 1;
1801 tn = p;
1802 --iter->depth;
1803 goto rescan;
1804 }
1805
1806 /* got root? */
1807 return NULL;
1808 }
1809
1810 static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1811 struct trie *t)
1812 {
1813 struct tnode *n;
1814
1815 if (!t)
1816 return NULL;
1817
1818 n = rcu_dereference(t->trie);
1819 if (!n)
1820 return NULL;
1821
1822 if (IS_TNODE(n)) {
1823 iter->tnode = n;
1824 iter->index = 0;
1825 iter->depth = 1;
1826 } else {
1827 iter->tnode = NULL;
1828 iter->index = 0;
1829 iter->depth = 0;
1830 }
1831
1832 return n;
1833 }
1834
1835 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1836 {
1837 struct tnode *n;
1838 struct fib_trie_iter iter;
1839
1840 memset(s, 0, sizeof(*s));
1841
1842 rcu_read_lock();
1843 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1844 if (IS_LEAF(n)) {
1845 struct leaf_info *li;
1846
1847 s->leaves++;
1848 s->totdepth += iter.depth;
1849 if (iter.depth > s->maxdepth)
1850 s->maxdepth = iter.depth;
1851
1852 hlist_for_each_entry_rcu(li, &n->list, hlist)
1853 ++s->prefixes;
1854 } else {
1855 unsigned long i;
1856
1857 s->tnodes++;
1858 if (n->bits < MAX_STAT_DEPTH)
1859 s->nodesizes[n->bits]++;
1860
1861 for (i = 0; i < tnode_child_length(n); i++) {
1862 if (!rcu_access_pointer(n->child[i]))
1863 s->nullpointers++;
1864 }
1865 }
1866 }
1867 rcu_read_unlock();
1868 }
1869
1870 /*
1871 * This outputs /proc/net/fib_triestats
1872 */
1873 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1874 {
1875 unsigned int i, max, pointers, bytes, avdepth;
1876
1877 if (stat->leaves)
1878 avdepth = stat->totdepth*100 / stat->leaves;
1879 else
1880 avdepth = 0;
1881
1882 seq_printf(seq, "\tAver depth: %u.%02d\n",
1883 avdepth / 100, avdepth % 100);
1884 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
1885
1886 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
1887 bytes = sizeof(struct tnode) * stat->leaves;
1888
1889 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1890 bytes += sizeof(struct leaf_info) * stat->prefixes;
1891
1892 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1893 bytes += sizeof(struct tnode) * stat->tnodes;
1894
1895 max = MAX_STAT_DEPTH;
1896 while (max > 0 && stat->nodesizes[max-1] == 0)
1897 max--;
1898
1899 pointers = 0;
1900 for (i = 1; i < max; i++)
1901 if (stat->nodesizes[i] != 0) {
1902 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
1903 pointers += (1<<i) * stat->nodesizes[i];
1904 }
1905 seq_putc(seq, '\n');
1906 seq_printf(seq, "\tPointers: %u\n", pointers);
1907
1908 bytes += sizeof(struct tnode *) * pointers;
1909 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1910 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
1911 }
1912
1913 #ifdef CONFIG_IP_FIB_TRIE_STATS
1914 static void trie_show_usage(struct seq_file *seq,
1915 const struct trie_use_stats __percpu *stats)
1916 {
1917 struct trie_use_stats s = { 0 };
1918 int cpu;
1919
1920 /* loop through all of the CPUs and gather up the stats */
1921 for_each_possible_cpu(cpu) {
1922 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1923
1924 s.gets += pcpu->gets;
1925 s.backtrack += pcpu->backtrack;
1926 s.semantic_match_passed += pcpu->semantic_match_passed;
1927 s.semantic_match_miss += pcpu->semantic_match_miss;
1928 s.null_node_hit += pcpu->null_node_hit;
1929 s.resize_node_skipped += pcpu->resize_node_skipped;
1930 }
1931
1932 seq_printf(seq, "\nCounters:\n---------\n");
1933 seq_printf(seq, "gets = %u\n", s.gets);
1934 seq_printf(seq, "backtracks = %u\n", s.backtrack);
1935 seq_printf(seq, "semantic match passed = %u\n",
1936 s.semantic_match_passed);
1937 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1938 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1939 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1940 }
1941 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1942
1943 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1944 {
1945 if (tb->tb_id == RT_TABLE_LOCAL)
1946 seq_puts(seq, "Local:\n");
1947 else if (tb->tb_id == RT_TABLE_MAIN)
1948 seq_puts(seq, "Main:\n");
1949 else
1950 seq_printf(seq, "Id %d:\n", tb->tb_id);
1951 }
1952
1953
1954 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1955 {
1956 struct net *net = (struct net *)seq->private;
1957 unsigned int h;
1958
1959 seq_printf(seq,
1960 "Basic info: size of leaf:"
1961 " %Zd bytes, size of tnode: %Zd bytes.\n",
1962 sizeof(struct tnode), sizeof(struct tnode));
1963
1964 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1965 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1966 struct fib_table *tb;
1967
1968 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1969 struct trie *t = (struct trie *) tb->tb_data;
1970 struct trie_stat stat;
1971
1972 if (!t)
1973 continue;
1974
1975 fib_table_print(seq, tb);
1976
1977 trie_collect_stats(t, &stat);
1978 trie_show_stats(seq, &stat);
1979 #ifdef CONFIG_IP_FIB_TRIE_STATS
1980 trie_show_usage(seq, t->stats);
1981 #endif
1982 }
1983 }
1984
1985 return 0;
1986 }
1987
1988 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1989 {
1990 return single_open_net(inode, file, fib_triestat_seq_show);
1991 }
1992
1993 static const struct file_operations fib_triestat_fops = {
1994 .owner = THIS_MODULE,
1995 .open = fib_triestat_seq_open,
1996 .read = seq_read,
1997 .llseek = seq_lseek,
1998 .release = single_release_net,
1999 };
2000
2001 static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2002 {
2003 struct fib_trie_iter *iter = seq->private;
2004 struct net *net = seq_file_net(seq);
2005 loff_t idx = 0;
2006 unsigned int h;
2007
2008 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2009 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2010 struct fib_table *tb;
2011
2012 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2013 struct tnode *n;
2014
2015 for (n = fib_trie_get_first(iter,
2016 (struct trie *) tb->tb_data);
2017 n; n = fib_trie_get_next(iter))
2018 if (pos == idx++) {
2019 iter->tb = tb;
2020 return n;
2021 }
2022 }
2023 }
2024
2025 return NULL;
2026 }
2027
2028 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2029 __acquires(RCU)
2030 {
2031 rcu_read_lock();
2032 return fib_trie_get_idx(seq, *pos);
2033 }
2034
2035 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2036 {
2037 struct fib_trie_iter *iter = seq->private;
2038 struct net *net = seq_file_net(seq);
2039 struct fib_table *tb = iter->tb;
2040 struct hlist_node *tb_node;
2041 unsigned int h;
2042 struct tnode *n;
2043
2044 ++*pos;
2045 /* next node in same table */
2046 n = fib_trie_get_next(iter);
2047 if (n)
2048 return n;
2049
2050 /* walk rest of this hash chain */
2051 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2052 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2053 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2054 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2055 if (n)
2056 goto found;
2057 }
2058
2059 /* new hash chain */
2060 while (++h < FIB_TABLE_HASHSZ) {
2061 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2062 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2063 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2064 if (n)
2065 goto found;
2066 }
2067 }
2068 return NULL;
2069
2070 found:
2071 iter->tb = tb;
2072 return n;
2073 }
2074
2075 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2076 __releases(RCU)
2077 {
2078 rcu_read_unlock();
2079 }
2080
2081 static void seq_indent(struct seq_file *seq, int n)
2082 {
2083 while (n-- > 0)
2084 seq_puts(seq, " ");
2085 }
2086
2087 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2088 {
2089 switch (s) {
2090 case RT_SCOPE_UNIVERSE: return "universe";
2091 case RT_SCOPE_SITE: return "site";
2092 case RT_SCOPE_LINK: return "link";
2093 case RT_SCOPE_HOST: return "host";
2094 case RT_SCOPE_NOWHERE: return "nowhere";
2095 default:
2096 snprintf(buf, len, "scope=%d", s);
2097 return buf;
2098 }
2099 }
2100
2101 static const char *const rtn_type_names[__RTN_MAX] = {
2102 [RTN_UNSPEC] = "UNSPEC",
2103 [RTN_UNICAST] = "UNICAST",
2104 [RTN_LOCAL] = "LOCAL",
2105 [RTN_BROADCAST] = "BROADCAST",
2106 [RTN_ANYCAST] = "ANYCAST",
2107 [RTN_MULTICAST] = "MULTICAST",
2108 [RTN_BLACKHOLE] = "BLACKHOLE",
2109 [RTN_UNREACHABLE] = "UNREACHABLE",
2110 [RTN_PROHIBIT] = "PROHIBIT",
2111 [RTN_THROW] = "THROW",
2112 [RTN_NAT] = "NAT",
2113 [RTN_XRESOLVE] = "XRESOLVE",
2114 };
2115
2116 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2117 {
2118 if (t < __RTN_MAX && rtn_type_names[t])
2119 return rtn_type_names[t];
2120 snprintf(buf, len, "type %u", t);
2121 return buf;
2122 }
2123
2124 /* Pretty print the trie */
2125 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2126 {
2127 const struct fib_trie_iter *iter = seq->private;
2128 struct tnode *n = v;
2129
2130 if (!node_parent_rcu(n))
2131 fib_table_print(seq, iter->tb);
2132
2133 if (IS_TNODE(n)) {
2134 __be32 prf = htonl(n->key);
2135
2136 seq_indent(seq, iter->depth-1);
2137 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2138 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2139 n->full_children, n->empty_children);
2140 } else {
2141 struct leaf_info *li;
2142 __be32 val = htonl(n->key);
2143
2144 seq_indent(seq, iter->depth);
2145 seq_printf(seq, " |-- %pI4\n", &val);
2146
2147 hlist_for_each_entry_rcu(li, &n->list, hlist) {
2148 struct fib_alias *fa;
2149
2150 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2151 char buf1[32], buf2[32];
2152
2153 seq_indent(seq, iter->depth+1);
2154 seq_printf(seq, " /%d %s %s", li->plen,
2155 rtn_scope(buf1, sizeof(buf1),
2156 fa->fa_info->fib_scope),
2157 rtn_type(buf2, sizeof(buf2),
2158 fa->fa_type));
2159 if (fa->fa_tos)
2160 seq_printf(seq, " tos=%d", fa->fa_tos);
2161 seq_putc(seq, '\n');
2162 }
2163 }
2164 }
2165
2166 return 0;
2167 }
2168
2169 static const struct seq_operations fib_trie_seq_ops = {
2170 .start = fib_trie_seq_start,
2171 .next = fib_trie_seq_next,
2172 .stop = fib_trie_seq_stop,
2173 .show = fib_trie_seq_show,
2174 };
2175
2176 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2177 {
2178 return seq_open_net(inode, file, &fib_trie_seq_ops,
2179 sizeof(struct fib_trie_iter));
2180 }
2181
2182 static const struct file_operations fib_trie_fops = {
2183 .owner = THIS_MODULE,
2184 .open = fib_trie_seq_open,
2185 .read = seq_read,
2186 .llseek = seq_lseek,
2187 .release = seq_release_net,
2188 };
2189
2190 struct fib_route_iter {
2191 struct seq_net_private p;
2192 struct trie *main_trie;
2193 loff_t pos;
2194 t_key key;
2195 };
2196
2197 static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2198 {
2199 struct tnode *l = NULL;
2200 struct trie *t = iter->main_trie;
2201
2202 /* use cache location of last found key */
2203 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2204 pos -= iter->pos;
2205 else {
2206 iter->pos = 0;
2207 l = trie_firstleaf(t);
2208 }
2209
2210 while (l && pos-- > 0) {
2211 iter->pos++;
2212 l = trie_nextleaf(l);
2213 }
2214
2215 if (l)
2216 iter->key = pos; /* remember it */
2217 else
2218 iter->pos = 0; /* forget it */
2219
2220 return l;
2221 }
2222
2223 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2224 __acquires(RCU)
2225 {
2226 struct fib_route_iter *iter = seq->private;
2227 struct fib_table *tb;
2228
2229 rcu_read_lock();
2230 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2231 if (!tb)
2232 return NULL;
2233
2234 iter->main_trie = (struct trie *) tb->tb_data;
2235 if (*pos == 0)
2236 return SEQ_START_TOKEN;
2237 else
2238 return fib_route_get_idx(iter, *pos - 1);
2239 }
2240
2241 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2242 {
2243 struct fib_route_iter *iter = seq->private;
2244 struct tnode *l = v;
2245
2246 ++*pos;
2247 if (v == SEQ_START_TOKEN) {
2248 iter->pos = 0;
2249 l = trie_firstleaf(iter->main_trie);
2250 } else {
2251 iter->pos++;
2252 l = trie_nextleaf(l);
2253 }
2254
2255 if (l)
2256 iter->key = l->key;
2257 else
2258 iter->pos = 0;
2259 return l;
2260 }
2261
2262 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2263 __releases(RCU)
2264 {
2265 rcu_read_unlock();
2266 }
2267
2268 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2269 {
2270 unsigned int flags = 0;
2271
2272 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2273 flags = RTF_REJECT;
2274 if (fi && fi->fib_nh->nh_gw)
2275 flags |= RTF_GATEWAY;
2276 if (mask == htonl(0xFFFFFFFF))
2277 flags |= RTF_HOST;
2278 flags |= RTF_UP;
2279 return flags;
2280 }
2281
2282 /*
2283 * This outputs /proc/net/route.
2284 * The format of the file is not supposed to be changed
2285 * and needs to be same as fib_hash output to avoid breaking
2286 * legacy utilities
2287 */
2288 static int fib_route_seq_show(struct seq_file *seq, void *v)
2289 {
2290 struct tnode *l = v;
2291 struct leaf_info *li;
2292
2293 if (v == SEQ_START_TOKEN) {
2294 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2295 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2296 "\tWindow\tIRTT");
2297 return 0;
2298 }
2299
2300 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2301 struct fib_alias *fa;
2302 __be32 mask, prefix;
2303
2304 mask = inet_make_mask(li->plen);
2305 prefix = htonl(l->key);
2306
2307 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2308 const struct fib_info *fi = fa->fa_info;
2309 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2310
2311 if (fa->fa_type == RTN_BROADCAST
2312 || fa->fa_type == RTN_MULTICAST)
2313 continue;
2314
2315 seq_setwidth(seq, 127);
2316
2317 if (fi)
2318 seq_printf(seq,
2319 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2320 "%d\t%08X\t%d\t%u\t%u",
2321 fi->fib_dev ? fi->fib_dev->name : "*",
2322 prefix,
2323 fi->fib_nh->nh_gw, flags, 0, 0,
2324 fi->fib_priority,
2325 mask,
2326 (fi->fib_advmss ?
2327 fi->fib_advmss + 40 : 0),
2328 fi->fib_window,
2329 fi->fib_rtt >> 3);
2330 else
2331 seq_printf(seq,
2332 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2333 "%d\t%08X\t%d\t%u\t%u",
2334 prefix, 0, flags, 0, 0, 0,
2335 mask, 0, 0, 0);
2336
2337 seq_pad(seq, '\n');
2338 }
2339 }
2340
2341 return 0;
2342 }
2343
2344 static const struct seq_operations fib_route_seq_ops = {
2345 .start = fib_route_seq_start,
2346 .next = fib_route_seq_next,
2347 .stop = fib_route_seq_stop,
2348 .show = fib_route_seq_show,
2349 };
2350
2351 static int fib_route_seq_open(struct inode *inode, struct file *file)
2352 {
2353 return seq_open_net(inode, file, &fib_route_seq_ops,
2354 sizeof(struct fib_route_iter));
2355 }
2356
2357 static const struct file_operations fib_route_fops = {
2358 .owner = THIS_MODULE,
2359 .open = fib_route_seq_open,
2360 .read = seq_read,
2361 .llseek = seq_lseek,
2362 .release = seq_release_net,
2363 };
2364
2365 int __net_init fib_proc_init(struct net *net)
2366 {
2367 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2368 goto out1;
2369
2370 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2371 &fib_triestat_fops))
2372 goto out2;
2373
2374 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2375 goto out3;
2376
2377 return 0;
2378
2379 out3:
2380 remove_proc_entry("fib_triestat", net->proc_net);
2381 out2:
2382 remove_proc_entry("fib_trie", net->proc_net);
2383 out1:
2384 return -ENOMEM;
2385 }
2386
2387 void __net_exit fib_proc_exit(struct net *net)
2388 {
2389 remove_proc_entry("fib_trie", net->proc_net);
2390 remove_proc_entry("fib_triestat", net->proc_net);
2391 remove_proc_entry("route", net->proc_net);
2392 }
2393
2394 #endif /* CONFIG_PROC_FS */
This page took 0.107827 seconds and 4 git commands to generate.