Merge branch 'for-davem' into for-next
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include <net/switchdev.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define KEY_MAX ((t_key)~0)
89
90 typedef unsigned int t_key;
91
92 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
93 #define IS_TNODE(n) ((n)->bits)
94 #define IS_LEAF(n) (!(n)->bits)
95
96 struct key_vector {
97 t_key key;
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
100 unsigned char slen;
101 union {
102 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
103 struct hlist_head leaf;
104 /* This array is valid if (pos | bits) > 0 (TNODE) */
105 struct key_vector __rcu *tnode[0];
106 };
107 };
108
109 struct tnode {
110 struct rcu_head rcu;
111 t_key empty_children; /* KEYLENGTH bits needed */
112 t_key full_children; /* KEYLENGTH bits needed */
113 struct key_vector __rcu *parent;
114 struct key_vector kv[1];
115 #define tn_bits kv[0].bits
116 };
117
118 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
119 #define LEAF_SIZE TNODE_SIZE(1)
120
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
129 };
130 #endif
131
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141
142 struct trie {
143 struct key_vector kv[1];
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
147 };
148
149 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
150 static size_t tnode_free_size;
151
152 /*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157 static const int sync_pages = 128;
158
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161
162 static inline struct tnode *tn_info(struct key_vector *kv)
163 {
164 return container_of(kv, struct tnode, kv[0]);
165 }
166
167 /* caller must hold RTNL */
168 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
169 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
170
171 /* caller must hold RCU read lock or RTNL */
172 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
173 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
174
175 /* wrapper for rcu_assign_pointer */
176 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
177 {
178 if (n)
179 rcu_assign_pointer(tn_info(n)->parent, tp);
180 }
181
182 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
183
184 /* This provides us with the number of children in this node, in the case of a
185 * leaf this will return 0 meaning none of the children are accessible.
186 */
187 static inline unsigned long child_length(const struct key_vector *tn)
188 {
189 return (1ul << tn->bits) & ~(1ul);
190 }
191
192 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
193
194 static inline unsigned long get_index(t_key key, struct key_vector *kv)
195 {
196 unsigned long index = key ^ kv->key;
197
198 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
199 return 0;
200
201 return index >> kv->pos;
202 }
203
204 /* To understand this stuff, an understanding of keys and all their bits is
205 * necessary. Every node in the trie has a key associated with it, but not
206 * all of the bits in that key are significant.
207 *
208 * Consider a node 'n' and its parent 'tp'.
209 *
210 * If n is a leaf, every bit in its key is significant. Its presence is
211 * necessitated by path compression, since during a tree traversal (when
212 * searching for a leaf - unless we are doing an insertion) we will completely
213 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
214 * a potentially successful search, that we have indeed been walking the
215 * correct key path.
216 *
217 * Note that we can never "miss" the correct key in the tree if present by
218 * following the wrong path. Path compression ensures that segments of the key
219 * that are the same for all keys with a given prefix are skipped, but the
220 * skipped part *is* identical for each node in the subtrie below the skipped
221 * bit! trie_insert() in this implementation takes care of that.
222 *
223 * if n is an internal node - a 'tnode' here, the various parts of its key
224 * have many different meanings.
225 *
226 * Example:
227 * _________________________________________________________________
228 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
229 * -----------------------------------------------------------------
230 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
231 *
232 * _________________________________________________________________
233 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
234 * -----------------------------------------------------------------
235 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
236 *
237 * tp->pos = 22
238 * tp->bits = 3
239 * n->pos = 13
240 * n->bits = 4
241 *
242 * First, let's just ignore the bits that come before the parent tp, that is
243 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
244 * point we do not use them for anything.
245 *
246 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
247 * index into the parent's child array. That is, they will be used to find
248 * 'n' among tp's children.
249 *
250 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
251 * for the node n.
252 *
253 * All the bits we have seen so far are significant to the node n. The rest
254 * of the bits are really not needed or indeed known in n->key.
255 *
256 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
257 * n's child array, and will of course be different for each child.
258 *
259 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
260 * at this point.
261 */
262
263 static const int halve_threshold = 25;
264 static const int inflate_threshold = 50;
265 static const int halve_threshold_root = 15;
266 static const int inflate_threshold_root = 30;
267
268 static void __alias_free_mem(struct rcu_head *head)
269 {
270 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
271 kmem_cache_free(fn_alias_kmem, fa);
272 }
273
274 static inline void alias_free_mem_rcu(struct fib_alias *fa)
275 {
276 call_rcu(&fa->rcu, __alias_free_mem);
277 }
278
279 #define TNODE_KMALLOC_MAX \
280 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
281 #define TNODE_VMALLOC_MAX \
282 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
283
284 static void __node_free_rcu(struct rcu_head *head)
285 {
286 struct tnode *n = container_of(head, struct tnode, rcu);
287
288 if (!n->tn_bits)
289 kmem_cache_free(trie_leaf_kmem, n);
290 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
291 kfree(n);
292 else
293 vfree(n);
294 }
295
296 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
297
298 static struct tnode *tnode_alloc(int bits)
299 {
300 size_t size;
301
302 /* verify bits is within bounds */
303 if (bits > TNODE_VMALLOC_MAX)
304 return NULL;
305
306 /* determine size and verify it is non-zero and didn't overflow */
307 size = TNODE_SIZE(1ul << bits);
308
309 if (size <= PAGE_SIZE)
310 return kzalloc(size, GFP_KERNEL);
311 else
312 return vzalloc(size);
313 }
314
315 static inline void empty_child_inc(struct key_vector *n)
316 {
317 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
318 }
319
320 static inline void empty_child_dec(struct key_vector *n)
321 {
322 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
323 }
324
325 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
326 {
327 struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
328 struct key_vector *l = kv->kv;
329
330 if (!kv)
331 return NULL;
332
333 /* initialize key vector */
334 l->key = key;
335 l->pos = 0;
336 l->bits = 0;
337 l->slen = fa->fa_slen;
338
339 /* link leaf to fib alias */
340 INIT_HLIST_HEAD(&l->leaf);
341 hlist_add_head(&fa->fa_list, &l->leaf);
342
343 return l;
344 }
345
346 static struct key_vector *tnode_new(t_key key, int pos, int bits)
347 {
348 struct tnode *tnode = tnode_alloc(bits);
349 unsigned int shift = pos + bits;
350 struct key_vector *tn = tnode->kv;
351
352 /* verify bits and pos their msb bits clear and values are valid */
353 BUG_ON(!bits || (shift > KEYLENGTH));
354
355 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
356 sizeof(struct key_vector *) << bits);
357
358 if (!tnode)
359 return NULL;
360
361 if (bits == KEYLENGTH)
362 tnode->full_children = 1;
363 else
364 tnode->empty_children = 1ul << bits;
365
366 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
367 tn->pos = pos;
368 tn->bits = bits;
369 tn->slen = pos;
370
371 return tn;
372 }
373
374 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
375 * and no bits are skipped. See discussion in dyntree paper p. 6
376 */
377 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
378 {
379 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
380 }
381
382 /* Add a child at position i overwriting the old value.
383 * Update the value of full_children and empty_children.
384 */
385 static void put_child(struct key_vector *tn, unsigned long i,
386 struct key_vector *n)
387 {
388 struct key_vector *chi = get_child(tn, i);
389 int isfull, wasfull;
390
391 BUG_ON(i >= child_length(tn));
392
393 /* update emptyChildren, overflow into fullChildren */
394 if (!n && chi)
395 empty_child_inc(tn);
396 if (n && !chi)
397 empty_child_dec(tn);
398
399 /* update fullChildren */
400 wasfull = tnode_full(tn, chi);
401 isfull = tnode_full(tn, n);
402
403 if (wasfull && !isfull)
404 tn_info(tn)->full_children--;
405 else if (!wasfull && isfull)
406 tn_info(tn)->full_children++;
407
408 if (n && (tn->slen < n->slen))
409 tn->slen = n->slen;
410
411 rcu_assign_pointer(tn->tnode[i], n);
412 }
413
414 static void update_children(struct key_vector *tn)
415 {
416 unsigned long i;
417
418 /* update all of the child parent pointers */
419 for (i = child_length(tn); i;) {
420 struct key_vector *inode = get_child(tn, --i);
421
422 if (!inode)
423 continue;
424
425 /* Either update the children of a tnode that
426 * already belongs to us or update the child
427 * to point to ourselves.
428 */
429 if (node_parent(inode) == tn)
430 update_children(inode);
431 else
432 node_set_parent(inode, tn);
433 }
434 }
435
436 static inline void put_child_root(struct key_vector *tp, t_key key,
437 struct key_vector *n)
438 {
439 if (IS_TRIE(tp))
440 rcu_assign_pointer(tp->tnode[0], n);
441 else
442 put_child(tp, get_index(key, tp), n);
443 }
444
445 static inline void tnode_free_init(struct key_vector *tn)
446 {
447 tn_info(tn)->rcu.next = NULL;
448 }
449
450 static inline void tnode_free_append(struct key_vector *tn,
451 struct key_vector *n)
452 {
453 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
454 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
455 }
456
457 static void tnode_free(struct key_vector *tn)
458 {
459 struct callback_head *head = &tn_info(tn)->rcu;
460
461 while (head) {
462 head = head->next;
463 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
464 node_free(tn);
465
466 tn = container_of(head, struct tnode, rcu)->kv;
467 }
468
469 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
470 tnode_free_size = 0;
471 synchronize_rcu();
472 }
473 }
474
475 static struct key_vector *replace(struct trie *t,
476 struct key_vector *oldtnode,
477 struct key_vector *tn)
478 {
479 struct key_vector *tp = node_parent(oldtnode);
480 unsigned long i;
481
482 /* setup the parent pointer out of and back into this node */
483 NODE_INIT_PARENT(tn, tp);
484 put_child_root(tp, tn->key, tn);
485
486 /* update all of the child parent pointers */
487 update_children(tn);
488
489 /* all pointers should be clean so we are done */
490 tnode_free(oldtnode);
491
492 /* resize children now that oldtnode is freed */
493 for (i = child_length(tn); i;) {
494 struct key_vector *inode = get_child(tn, --i);
495
496 /* resize child node */
497 if (tnode_full(tn, inode))
498 tn = resize(t, inode);
499 }
500
501 return tp;
502 }
503
504 static struct key_vector *inflate(struct trie *t,
505 struct key_vector *oldtnode)
506 {
507 struct key_vector *tn;
508 unsigned long i;
509 t_key m;
510
511 pr_debug("In inflate\n");
512
513 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
514 if (!tn)
515 goto notnode;
516
517 /* prepare oldtnode to be freed */
518 tnode_free_init(oldtnode);
519
520 /* Assemble all of the pointers in our cluster, in this case that
521 * represents all of the pointers out of our allocated nodes that
522 * point to existing tnodes and the links between our allocated
523 * nodes.
524 */
525 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
526 struct key_vector *inode = get_child(oldtnode, --i);
527 struct key_vector *node0, *node1;
528 unsigned long j, k;
529
530 /* An empty child */
531 if (!inode)
532 continue;
533
534 /* A leaf or an internal node with skipped bits */
535 if (!tnode_full(oldtnode, inode)) {
536 put_child(tn, get_index(inode->key, tn), inode);
537 continue;
538 }
539
540 /* drop the node in the old tnode free list */
541 tnode_free_append(oldtnode, inode);
542
543 /* An internal node with two children */
544 if (inode->bits == 1) {
545 put_child(tn, 2 * i + 1, get_child(inode, 1));
546 put_child(tn, 2 * i, get_child(inode, 0));
547 continue;
548 }
549
550 /* We will replace this node 'inode' with two new
551 * ones, 'node0' and 'node1', each with half of the
552 * original children. The two new nodes will have
553 * a position one bit further down the key and this
554 * means that the "significant" part of their keys
555 * (see the discussion near the top of this file)
556 * will differ by one bit, which will be "0" in
557 * node0's key and "1" in node1's key. Since we are
558 * moving the key position by one step, the bit that
559 * we are moving away from - the bit at position
560 * (tn->pos) - is the one that will differ between
561 * node0 and node1. So... we synthesize that bit in the
562 * two new keys.
563 */
564 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
565 if (!node1)
566 goto nomem;
567 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
568
569 tnode_free_append(tn, node1);
570 if (!node0)
571 goto nomem;
572 tnode_free_append(tn, node0);
573
574 /* populate child pointers in new nodes */
575 for (k = child_length(inode), j = k / 2; j;) {
576 put_child(node1, --j, get_child(inode, --k));
577 put_child(node0, j, get_child(inode, j));
578 put_child(node1, --j, get_child(inode, --k));
579 put_child(node0, j, get_child(inode, j));
580 }
581
582 /* link new nodes to parent */
583 NODE_INIT_PARENT(node1, tn);
584 NODE_INIT_PARENT(node0, tn);
585
586 /* link parent to nodes */
587 put_child(tn, 2 * i + 1, node1);
588 put_child(tn, 2 * i, node0);
589 }
590
591 /* setup the parent pointers into and out of this node */
592 return replace(t, oldtnode, tn);
593 nomem:
594 /* all pointers should be clean so we are done */
595 tnode_free(tn);
596 notnode:
597 return NULL;
598 }
599
600 static struct key_vector *halve(struct trie *t,
601 struct key_vector *oldtnode)
602 {
603 struct key_vector *tn;
604 unsigned long i;
605
606 pr_debug("In halve\n");
607
608 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
609 if (!tn)
610 goto notnode;
611
612 /* prepare oldtnode to be freed */
613 tnode_free_init(oldtnode);
614
615 /* Assemble all of the pointers in our cluster, in this case that
616 * represents all of the pointers out of our allocated nodes that
617 * point to existing tnodes and the links between our allocated
618 * nodes.
619 */
620 for (i = child_length(oldtnode); i;) {
621 struct key_vector *node1 = get_child(oldtnode, --i);
622 struct key_vector *node0 = get_child(oldtnode, --i);
623 struct key_vector *inode;
624
625 /* At least one of the children is empty */
626 if (!node1 || !node0) {
627 put_child(tn, i / 2, node1 ? : node0);
628 continue;
629 }
630
631 /* Two nonempty children */
632 inode = tnode_new(node0->key, oldtnode->pos, 1);
633 if (!inode)
634 goto nomem;
635 tnode_free_append(tn, inode);
636
637 /* initialize pointers out of node */
638 put_child(inode, 1, node1);
639 put_child(inode, 0, node0);
640 NODE_INIT_PARENT(inode, tn);
641
642 /* link parent to node */
643 put_child(tn, i / 2, inode);
644 }
645
646 /* setup the parent pointers into and out of this node */
647 return replace(t, oldtnode, tn);
648 nomem:
649 /* all pointers should be clean so we are done */
650 tnode_free(tn);
651 notnode:
652 return NULL;
653 }
654
655 static struct key_vector *collapse(struct trie *t,
656 struct key_vector *oldtnode)
657 {
658 struct key_vector *n, *tp;
659 unsigned long i;
660
661 /* scan the tnode looking for that one child that might still exist */
662 for (n = NULL, i = child_length(oldtnode); !n && i;)
663 n = get_child(oldtnode, --i);
664
665 /* compress one level */
666 tp = node_parent(oldtnode);
667 put_child_root(tp, oldtnode->key, n);
668 node_set_parent(n, tp);
669
670 /* drop dead node */
671 node_free(oldtnode);
672
673 return tp;
674 }
675
676 static unsigned char update_suffix(struct key_vector *tn)
677 {
678 unsigned char slen = tn->pos;
679 unsigned long stride, i;
680
681 /* search though the list of children looking for nodes that might
682 * have a suffix greater than the one we currently have. This is
683 * why we start with a stride of 2 since a stride of 1 would
684 * represent the nodes with suffix length equal to tn->pos
685 */
686 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
687 struct key_vector *n = get_child(tn, i);
688
689 if (!n || (n->slen <= slen))
690 continue;
691
692 /* update stride and slen based on new value */
693 stride <<= (n->slen - slen);
694 slen = n->slen;
695 i &= ~(stride - 1);
696
697 /* if slen covers all but the last bit we can stop here
698 * there will be nothing longer than that since only node
699 * 0 and 1 << (bits - 1) could have that as their suffix
700 * length.
701 */
702 if ((slen + 1) >= (tn->pos + tn->bits))
703 break;
704 }
705
706 tn->slen = slen;
707
708 return slen;
709 }
710
711 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
712 * the Helsinki University of Technology and Matti Tikkanen of Nokia
713 * Telecommunications, page 6:
714 * "A node is doubled if the ratio of non-empty children to all
715 * children in the *doubled* node is at least 'high'."
716 *
717 * 'high' in this instance is the variable 'inflate_threshold'. It
718 * is expressed as a percentage, so we multiply it with
719 * child_length() and instead of multiplying by 2 (since the
720 * child array will be doubled by inflate()) and multiplying
721 * the left-hand side by 100 (to handle the percentage thing) we
722 * multiply the left-hand side by 50.
723 *
724 * The left-hand side may look a bit weird: child_length(tn)
725 * - tn->empty_children is of course the number of non-null children
726 * in the current node. tn->full_children is the number of "full"
727 * children, that is non-null tnodes with a skip value of 0.
728 * All of those will be doubled in the resulting inflated tnode, so
729 * we just count them one extra time here.
730 *
731 * A clearer way to write this would be:
732 *
733 * to_be_doubled = tn->full_children;
734 * not_to_be_doubled = child_length(tn) - tn->empty_children -
735 * tn->full_children;
736 *
737 * new_child_length = child_length(tn) * 2;
738 *
739 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
740 * new_child_length;
741 * if (new_fill_factor >= inflate_threshold)
742 *
743 * ...and so on, tho it would mess up the while () loop.
744 *
745 * anyway,
746 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
747 * inflate_threshold
748 *
749 * avoid a division:
750 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
751 * inflate_threshold * new_child_length
752 *
753 * expand not_to_be_doubled and to_be_doubled, and shorten:
754 * 100 * (child_length(tn) - tn->empty_children +
755 * tn->full_children) >= inflate_threshold * new_child_length
756 *
757 * expand new_child_length:
758 * 100 * (child_length(tn) - tn->empty_children +
759 * tn->full_children) >=
760 * inflate_threshold * child_length(tn) * 2
761 *
762 * shorten again:
763 * 50 * (tn->full_children + child_length(tn) -
764 * tn->empty_children) >= inflate_threshold *
765 * child_length(tn)
766 *
767 */
768 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
769 {
770 unsigned long used = child_length(tn);
771 unsigned long threshold = used;
772
773 /* Keep root node larger */
774 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
775 used -= tn_info(tn)->empty_children;
776 used += tn_info(tn)->full_children;
777
778 /* if bits == KEYLENGTH then pos = 0, and will fail below */
779
780 return (used > 1) && tn->pos && ((50 * used) >= threshold);
781 }
782
783 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
784 {
785 unsigned long used = child_length(tn);
786 unsigned long threshold = used;
787
788 /* Keep root node larger */
789 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
790 used -= tn_info(tn)->empty_children;
791
792 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
793
794 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
795 }
796
797 static inline bool should_collapse(struct key_vector *tn)
798 {
799 unsigned long used = child_length(tn);
800
801 used -= tn_info(tn)->empty_children;
802
803 /* account for bits == KEYLENGTH case */
804 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
805 used -= KEY_MAX;
806
807 /* One child or none, time to drop us from the trie */
808 return used < 2;
809 }
810
811 #define MAX_WORK 10
812 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
813 {
814 #ifdef CONFIG_IP_FIB_TRIE_STATS
815 struct trie_use_stats __percpu *stats = t->stats;
816 #endif
817 struct key_vector *tp = node_parent(tn);
818 unsigned long cindex = get_index(tn->key, tp);
819 int max_work = MAX_WORK;
820
821 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
822 tn, inflate_threshold, halve_threshold);
823
824 /* track the tnode via the pointer from the parent instead of
825 * doing it ourselves. This way we can let RCU fully do its
826 * thing without us interfering
827 */
828 BUG_ON(tn != get_child(tp, cindex));
829
830 /* Double as long as the resulting node has a number of
831 * nonempty nodes that are above the threshold.
832 */
833 while (should_inflate(tp, tn) && max_work) {
834 tp = inflate(t, tn);
835 if (!tp) {
836 #ifdef CONFIG_IP_FIB_TRIE_STATS
837 this_cpu_inc(stats->resize_node_skipped);
838 #endif
839 break;
840 }
841
842 max_work--;
843 tn = get_child(tp, cindex);
844 }
845
846 /* update parent in case inflate failed */
847 tp = node_parent(tn);
848
849 /* Return if at least one inflate is run */
850 if (max_work != MAX_WORK)
851 return tp;
852
853 /* Halve as long as the number of empty children in this
854 * node is above threshold.
855 */
856 while (should_halve(tp, tn) && max_work) {
857 tp = halve(t, tn);
858 if (!tp) {
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 this_cpu_inc(stats->resize_node_skipped);
861 #endif
862 break;
863 }
864
865 max_work--;
866 tn = get_child(tp, cindex);
867 }
868
869 /* Only one child remains */
870 if (should_collapse(tn))
871 return collapse(t, tn);
872
873 /* update parent in case halve failed */
874 tp = node_parent(tn);
875
876 /* Return if at least one deflate was run */
877 if (max_work != MAX_WORK)
878 return tp;
879
880 /* push the suffix length to the parent node */
881 if (tn->slen > tn->pos) {
882 unsigned char slen = update_suffix(tn);
883
884 if (slen > tp->slen)
885 tp->slen = slen;
886 }
887
888 return tp;
889 }
890
891 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
892 {
893 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
894 if (update_suffix(tp) > l->slen)
895 break;
896 tp = node_parent(tp);
897 }
898 }
899
900 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
901 {
902 /* if this is a new leaf then tn will be NULL and we can sort
903 * out parent suffix lengths as a part of trie_rebalance
904 */
905 while (tn->slen < l->slen) {
906 tn->slen = l->slen;
907 tn = node_parent(tn);
908 }
909 }
910
911 /* rcu_read_lock needs to be hold by caller from readside */
912 static struct key_vector *fib_find_node(struct trie *t,
913 struct key_vector **tp, u32 key)
914 {
915 struct key_vector *pn, *n = t->kv;
916 unsigned long index = 0;
917
918 do {
919 pn = n;
920 n = get_child_rcu(n, index);
921
922 if (!n)
923 break;
924
925 index = get_cindex(key, n);
926
927 /* This bit of code is a bit tricky but it combines multiple
928 * checks into a single check. The prefix consists of the
929 * prefix plus zeros for the bits in the cindex. The index
930 * is the difference between the key and this value. From
931 * this we can actually derive several pieces of data.
932 * if (index >= (1ul << bits))
933 * we have a mismatch in skip bits and failed
934 * else
935 * we know the value is cindex
936 *
937 * This check is safe even if bits == KEYLENGTH due to the
938 * fact that we can only allocate a node with 32 bits if a
939 * long is greater than 32 bits.
940 */
941 if (index >= (1ul << n->bits)) {
942 n = NULL;
943 break;
944 }
945
946 /* keep searching until we find a perfect match leaf or NULL */
947 } while (IS_TNODE(n));
948
949 *tp = pn;
950
951 return n;
952 }
953
954 /* Return the first fib alias matching TOS with
955 * priority less than or equal to PRIO.
956 */
957 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
958 u8 tos, u32 prio, u32 tb_id)
959 {
960 struct fib_alias *fa;
961
962 if (!fah)
963 return NULL;
964
965 hlist_for_each_entry(fa, fah, fa_list) {
966 if (fa->fa_slen < slen)
967 continue;
968 if (fa->fa_slen != slen)
969 break;
970 if (fa->tb_id > tb_id)
971 continue;
972 if (fa->tb_id != tb_id)
973 break;
974 if (fa->fa_tos > tos)
975 continue;
976 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
977 return fa;
978 }
979
980 return NULL;
981 }
982
983 static void trie_rebalance(struct trie *t, struct key_vector *tn)
984 {
985 while (!IS_TRIE(tn))
986 tn = resize(t, tn);
987 }
988
989 static int fib_insert_node(struct trie *t, struct key_vector *tp,
990 struct fib_alias *new, t_key key)
991 {
992 struct key_vector *n, *l;
993
994 l = leaf_new(key, new);
995 if (!l)
996 goto noleaf;
997
998 /* retrieve child from parent node */
999 n = get_child(tp, get_index(key, tp));
1000
1001 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1002 *
1003 * Add a new tnode here
1004 * first tnode need some special handling
1005 * leaves us in position for handling as case 3
1006 */
1007 if (n) {
1008 struct key_vector *tn;
1009
1010 tn = tnode_new(key, __fls(key ^ n->key), 1);
1011 if (!tn)
1012 goto notnode;
1013
1014 /* initialize routes out of node */
1015 NODE_INIT_PARENT(tn, tp);
1016 put_child(tn, get_index(key, tn) ^ 1, n);
1017
1018 /* start adding routes into the node */
1019 put_child_root(tp, key, tn);
1020 node_set_parent(n, tn);
1021
1022 /* parent now has a NULL spot where the leaf can go */
1023 tp = tn;
1024 }
1025
1026 /* Case 3: n is NULL, and will just insert a new leaf */
1027 NODE_INIT_PARENT(l, tp);
1028 put_child_root(tp, key, l);
1029 trie_rebalance(t, tp);
1030
1031 return 0;
1032 notnode:
1033 node_free(l);
1034 noleaf:
1035 return -ENOMEM;
1036 }
1037
1038 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1039 struct key_vector *l, struct fib_alias *new,
1040 struct fib_alias *fa, t_key key)
1041 {
1042 if (!l)
1043 return fib_insert_node(t, tp, new, key);
1044
1045 if (fa) {
1046 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1047 } else {
1048 struct fib_alias *last;
1049
1050 hlist_for_each_entry(last, &l->leaf, fa_list) {
1051 if (new->fa_slen < last->fa_slen)
1052 break;
1053 if ((new->fa_slen == last->fa_slen) &&
1054 (new->tb_id > last->tb_id))
1055 break;
1056 fa = last;
1057 }
1058
1059 if (fa)
1060 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1061 else
1062 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1063 }
1064
1065 /* if we added to the tail node then we need to update slen */
1066 if (l->slen < new->fa_slen) {
1067 l->slen = new->fa_slen;
1068 leaf_push_suffix(tp, l);
1069 }
1070
1071 return 0;
1072 }
1073
1074 /* Caller must hold RTNL. */
1075 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1076 {
1077 struct trie *t = (struct trie *)tb->tb_data;
1078 struct fib_alias *fa, *new_fa;
1079 struct key_vector *l, *tp;
1080 struct fib_info *fi;
1081 u8 plen = cfg->fc_dst_len;
1082 u8 slen = KEYLENGTH - plen;
1083 u8 tos = cfg->fc_tos;
1084 u32 key;
1085 int err;
1086
1087 if (plen > KEYLENGTH)
1088 return -EINVAL;
1089
1090 key = ntohl(cfg->fc_dst);
1091
1092 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1093
1094 if ((plen < KEYLENGTH) && (key << plen))
1095 return -EINVAL;
1096
1097 fi = fib_create_info(cfg);
1098 if (IS_ERR(fi)) {
1099 err = PTR_ERR(fi);
1100 goto err;
1101 }
1102
1103 l = fib_find_node(t, &tp, key);
1104 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1105 tb->tb_id) : NULL;
1106
1107 /* Now fa, if non-NULL, points to the first fib alias
1108 * with the same keys [prefix,tos,priority], if such key already
1109 * exists or to the node before which we will insert new one.
1110 *
1111 * If fa is NULL, we will need to allocate a new one and
1112 * insert to the tail of the section matching the suffix length
1113 * of the new alias.
1114 */
1115
1116 if (fa && fa->fa_tos == tos &&
1117 fa->fa_info->fib_priority == fi->fib_priority) {
1118 struct fib_alias *fa_first, *fa_match;
1119
1120 err = -EEXIST;
1121 if (cfg->fc_nlflags & NLM_F_EXCL)
1122 goto out;
1123
1124 /* We have 2 goals:
1125 * 1. Find exact match for type, scope, fib_info to avoid
1126 * duplicate routes
1127 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1128 */
1129 fa_match = NULL;
1130 fa_first = fa;
1131 hlist_for_each_entry_from(fa, fa_list) {
1132 if ((fa->fa_slen != slen) ||
1133 (fa->tb_id != tb->tb_id) ||
1134 (fa->fa_tos != tos))
1135 break;
1136 if (fa->fa_info->fib_priority != fi->fib_priority)
1137 break;
1138 if (fa->fa_type == cfg->fc_type &&
1139 fa->fa_info == fi) {
1140 fa_match = fa;
1141 break;
1142 }
1143 }
1144
1145 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1146 struct fib_info *fi_drop;
1147 u8 state;
1148
1149 fa = fa_first;
1150 if (fa_match) {
1151 if (fa == fa_match)
1152 err = 0;
1153 goto out;
1154 }
1155 err = -ENOBUFS;
1156 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1157 if (!new_fa)
1158 goto out;
1159
1160 fi_drop = fa->fa_info;
1161 new_fa->fa_tos = fa->fa_tos;
1162 new_fa->fa_info = fi;
1163 new_fa->fa_type = cfg->fc_type;
1164 state = fa->fa_state;
1165 new_fa->fa_state = state & ~FA_S_ACCESSED;
1166 new_fa->fa_slen = fa->fa_slen;
1167
1168 err = netdev_switch_fib_ipv4_add(key, plen, fi,
1169 new_fa->fa_tos,
1170 cfg->fc_type,
1171 cfg->fc_nlflags,
1172 tb->tb_id);
1173 if (err) {
1174 netdev_switch_fib_ipv4_abort(fi);
1175 kmem_cache_free(fn_alias_kmem, new_fa);
1176 goto out;
1177 }
1178
1179 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1180
1181 alias_free_mem_rcu(fa);
1182
1183 fib_release_info(fi_drop);
1184 if (state & FA_S_ACCESSED)
1185 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1186 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1187 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1188
1189 goto succeeded;
1190 }
1191 /* Error if we find a perfect match which
1192 * uses the same scope, type, and nexthop
1193 * information.
1194 */
1195 if (fa_match)
1196 goto out;
1197
1198 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1199 fa = fa_first;
1200 }
1201 err = -ENOENT;
1202 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1203 goto out;
1204
1205 err = -ENOBUFS;
1206 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1207 if (!new_fa)
1208 goto out;
1209
1210 new_fa->fa_info = fi;
1211 new_fa->fa_tos = tos;
1212 new_fa->fa_type = cfg->fc_type;
1213 new_fa->fa_state = 0;
1214 new_fa->fa_slen = slen;
1215 new_fa->tb_id = tb->tb_id;
1216
1217 /* (Optionally) offload fib entry to switch hardware. */
1218 err = netdev_switch_fib_ipv4_add(key, plen, fi, tos,
1219 cfg->fc_type,
1220 cfg->fc_nlflags,
1221 tb->tb_id);
1222 if (err) {
1223 netdev_switch_fib_ipv4_abort(fi);
1224 goto out_free_new_fa;
1225 }
1226
1227 /* Insert new entry to the list. */
1228 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1229 if (err)
1230 goto out_sw_fib_del;
1231
1232 if (!plen)
1233 tb->tb_num_default++;
1234
1235 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1236 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1237 &cfg->fc_nlinfo, 0);
1238 succeeded:
1239 return 0;
1240
1241 out_sw_fib_del:
1242 netdev_switch_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1243 out_free_new_fa:
1244 kmem_cache_free(fn_alias_kmem, new_fa);
1245 out:
1246 fib_release_info(fi);
1247 err:
1248 return err;
1249 }
1250
1251 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1252 {
1253 t_key prefix = n->key;
1254
1255 return (key ^ prefix) & (prefix | -prefix);
1256 }
1257
1258 /* should be called with rcu_read_lock */
1259 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1260 struct fib_result *res, int fib_flags)
1261 {
1262 struct trie *t = (struct trie *) tb->tb_data;
1263 #ifdef CONFIG_IP_FIB_TRIE_STATS
1264 struct trie_use_stats __percpu *stats = t->stats;
1265 #endif
1266 const t_key key = ntohl(flp->daddr);
1267 struct key_vector *n, *pn;
1268 struct fib_alias *fa;
1269 unsigned long index;
1270 t_key cindex;
1271
1272 pn = t->kv;
1273 cindex = 0;
1274
1275 n = get_child_rcu(pn, cindex);
1276 if (!n)
1277 return -EAGAIN;
1278
1279 #ifdef CONFIG_IP_FIB_TRIE_STATS
1280 this_cpu_inc(stats->gets);
1281 #endif
1282
1283 /* Step 1: Travel to the longest prefix match in the trie */
1284 for (;;) {
1285 index = get_cindex(key, n);
1286
1287 /* This bit of code is a bit tricky but it combines multiple
1288 * checks into a single check. The prefix consists of the
1289 * prefix plus zeros for the "bits" in the prefix. The index
1290 * is the difference between the key and this value. From
1291 * this we can actually derive several pieces of data.
1292 * if (index >= (1ul << bits))
1293 * we have a mismatch in skip bits and failed
1294 * else
1295 * we know the value is cindex
1296 *
1297 * This check is safe even if bits == KEYLENGTH due to the
1298 * fact that we can only allocate a node with 32 bits if a
1299 * long is greater than 32 bits.
1300 */
1301 if (index >= (1ul << n->bits))
1302 break;
1303
1304 /* we have found a leaf. Prefixes have already been compared */
1305 if (IS_LEAF(n))
1306 goto found;
1307
1308 /* only record pn and cindex if we are going to be chopping
1309 * bits later. Otherwise we are just wasting cycles.
1310 */
1311 if (n->slen > n->pos) {
1312 pn = n;
1313 cindex = index;
1314 }
1315
1316 n = get_child_rcu(n, index);
1317 if (unlikely(!n))
1318 goto backtrace;
1319 }
1320
1321 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1322 for (;;) {
1323 /* record the pointer where our next node pointer is stored */
1324 struct key_vector __rcu **cptr = n->tnode;
1325
1326 /* This test verifies that none of the bits that differ
1327 * between the key and the prefix exist in the region of
1328 * the lsb and higher in the prefix.
1329 */
1330 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1331 goto backtrace;
1332
1333 /* exit out and process leaf */
1334 if (unlikely(IS_LEAF(n)))
1335 break;
1336
1337 /* Don't bother recording parent info. Since we are in
1338 * prefix match mode we will have to come back to wherever
1339 * we started this traversal anyway
1340 */
1341
1342 while ((n = rcu_dereference(*cptr)) == NULL) {
1343 backtrace:
1344 #ifdef CONFIG_IP_FIB_TRIE_STATS
1345 if (!n)
1346 this_cpu_inc(stats->null_node_hit);
1347 #endif
1348 /* If we are at cindex 0 there are no more bits for
1349 * us to strip at this level so we must ascend back
1350 * up one level to see if there are any more bits to
1351 * be stripped there.
1352 */
1353 while (!cindex) {
1354 t_key pkey = pn->key;
1355
1356 /* If we don't have a parent then there is
1357 * nothing for us to do as we do not have any
1358 * further nodes to parse.
1359 */
1360 if (IS_TRIE(pn))
1361 return -EAGAIN;
1362 #ifdef CONFIG_IP_FIB_TRIE_STATS
1363 this_cpu_inc(stats->backtrack);
1364 #endif
1365 /* Get Child's index */
1366 pn = node_parent_rcu(pn);
1367 cindex = get_index(pkey, pn);
1368 }
1369
1370 /* strip the least significant bit from the cindex */
1371 cindex &= cindex - 1;
1372
1373 /* grab pointer for next child node */
1374 cptr = &pn->tnode[cindex];
1375 }
1376 }
1377
1378 found:
1379 /* this line carries forward the xor from earlier in the function */
1380 index = key ^ n->key;
1381
1382 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1383 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1384 struct fib_info *fi = fa->fa_info;
1385 int nhsel, err;
1386
1387 if ((index >= (1ul << fa->fa_slen)) &&
1388 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1389 continue;
1390 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1391 continue;
1392 if (fi->fib_dead)
1393 continue;
1394 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1395 continue;
1396 fib_alias_accessed(fa);
1397 err = fib_props[fa->fa_type].error;
1398 if (unlikely(err < 0)) {
1399 #ifdef CONFIG_IP_FIB_TRIE_STATS
1400 this_cpu_inc(stats->semantic_match_passed);
1401 #endif
1402 return err;
1403 }
1404 if (fi->fib_flags & RTNH_F_DEAD)
1405 continue;
1406 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1407 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1408
1409 if (nh->nh_flags & RTNH_F_DEAD)
1410 continue;
1411 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1412 continue;
1413
1414 if (!(fib_flags & FIB_LOOKUP_NOREF))
1415 atomic_inc(&fi->fib_clntref);
1416
1417 res->prefixlen = KEYLENGTH - fa->fa_slen;
1418 res->nh_sel = nhsel;
1419 res->type = fa->fa_type;
1420 res->scope = fi->fib_scope;
1421 res->fi = fi;
1422 res->table = tb;
1423 res->fa_head = &n->leaf;
1424 #ifdef CONFIG_IP_FIB_TRIE_STATS
1425 this_cpu_inc(stats->semantic_match_passed);
1426 #endif
1427 return err;
1428 }
1429 }
1430 #ifdef CONFIG_IP_FIB_TRIE_STATS
1431 this_cpu_inc(stats->semantic_match_miss);
1432 #endif
1433 goto backtrace;
1434 }
1435 EXPORT_SYMBOL_GPL(fib_table_lookup);
1436
1437 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1438 struct key_vector *l, struct fib_alias *old)
1439 {
1440 /* record the location of the previous list_info entry */
1441 struct hlist_node **pprev = old->fa_list.pprev;
1442 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1443
1444 /* remove the fib_alias from the list */
1445 hlist_del_rcu(&old->fa_list);
1446
1447 /* if we emptied the list this leaf will be freed and we can sort
1448 * out parent suffix lengths as a part of trie_rebalance
1449 */
1450 if (hlist_empty(&l->leaf)) {
1451 put_child_root(tp, l->key, NULL);
1452 node_free(l);
1453 trie_rebalance(t, tp);
1454 return;
1455 }
1456
1457 /* only access fa if it is pointing at the last valid hlist_node */
1458 if (*pprev)
1459 return;
1460
1461 /* update the trie with the latest suffix length */
1462 l->slen = fa->fa_slen;
1463 leaf_pull_suffix(tp, l);
1464 }
1465
1466 /* Caller must hold RTNL. */
1467 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1468 {
1469 struct trie *t = (struct trie *) tb->tb_data;
1470 struct fib_alias *fa, *fa_to_delete;
1471 struct key_vector *l, *tp;
1472 u8 plen = cfg->fc_dst_len;
1473 u8 slen = KEYLENGTH - plen;
1474 u8 tos = cfg->fc_tos;
1475 u32 key;
1476
1477 if (plen > KEYLENGTH)
1478 return -EINVAL;
1479
1480 key = ntohl(cfg->fc_dst);
1481
1482 if ((plen < KEYLENGTH) && (key << plen))
1483 return -EINVAL;
1484
1485 l = fib_find_node(t, &tp, key);
1486 if (!l)
1487 return -ESRCH;
1488
1489 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1490 if (!fa)
1491 return -ESRCH;
1492
1493 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1494
1495 fa_to_delete = NULL;
1496 hlist_for_each_entry_from(fa, fa_list) {
1497 struct fib_info *fi = fa->fa_info;
1498
1499 if ((fa->fa_slen != slen) ||
1500 (fa->tb_id != tb->tb_id) ||
1501 (fa->fa_tos != tos))
1502 break;
1503
1504 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1505 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1506 fa->fa_info->fib_scope == cfg->fc_scope) &&
1507 (!cfg->fc_prefsrc ||
1508 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1509 (!cfg->fc_protocol ||
1510 fi->fib_protocol == cfg->fc_protocol) &&
1511 fib_nh_match(cfg, fi) == 0) {
1512 fa_to_delete = fa;
1513 break;
1514 }
1515 }
1516
1517 if (!fa_to_delete)
1518 return -ESRCH;
1519
1520 netdev_switch_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1521 cfg->fc_type, tb->tb_id);
1522
1523 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1524 &cfg->fc_nlinfo, 0);
1525
1526 if (!plen)
1527 tb->tb_num_default--;
1528
1529 fib_remove_alias(t, tp, l, fa_to_delete);
1530
1531 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1532 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1533
1534 fib_release_info(fa_to_delete->fa_info);
1535 alias_free_mem_rcu(fa_to_delete);
1536 return 0;
1537 }
1538
1539 /* Scan for the next leaf starting at the provided key value */
1540 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1541 {
1542 struct key_vector *pn, *n = *tn;
1543 unsigned long cindex;
1544
1545 /* this loop is meant to try and find the key in the trie */
1546 do {
1547 /* record parent and next child index */
1548 pn = n;
1549 cindex = key ? get_index(key, pn) : 0;
1550
1551 if (cindex >> pn->bits)
1552 break;
1553
1554 /* descend into the next child */
1555 n = get_child_rcu(pn, cindex++);
1556 if (!n)
1557 break;
1558
1559 /* guarantee forward progress on the keys */
1560 if (IS_LEAF(n) && (n->key >= key))
1561 goto found;
1562 } while (IS_TNODE(n));
1563
1564 /* this loop will search for the next leaf with a greater key */
1565 while (!IS_TRIE(pn)) {
1566 /* if we exhausted the parent node we will need to climb */
1567 if (cindex >= (1ul << pn->bits)) {
1568 t_key pkey = pn->key;
1569
1570 pn = node_parent_rcu(pn);
1571 cindex = get_index(pkey, pn) + 1;
1572 continue;
1573 }
1574
1575 /* grab the next available node */
1576 n = get_child_rcu(pn, cindex++);
1577 if (!n)
1578 continue;
1579
1580 /* no need to compare keys since we bumped the index */
1581 if (IS_LEAF(n))
1582 goto found;
1583
1584 /* Rescan start scanning in new node */
1585 pn = n;
1586 cindex = 0;
1587 }
1588
1589 *tn = pn;
1590 return NULL; /* Root of trie */
1591 found:
1592 /* if we are at the limit for keys just return NULL for the tnode */
1593 *tn = pn;
1594 return n;
1595 }
1596
1597 static void fib_trie_free(struct fib_table *tb)
1598 {
1599 struct trie *t = (struct trie *)tb->tb_data;
1600 struct key_vector *pn = t->kv;
1601 unsigned long cindex = 1;
1602 struct hlist_node *tmp;
1603 struct fib_alias *fa;
1604
1605 /* walk trie in reverse order and free everything */
1606 for (;;) {
1607 struct key_vector *n;
1608
1609 if (!(cindex--)) {
1610 t_key pkey = pn->key;
1611
1612 if (IS_TRIE(pn))
1613 break;
1614
1615 n = pn;
1616 pn = node_parent(pn);
1617
1618 /* drop emptied tnode */
1619 put_child_root(pn, n->key, NULL);
1620 node_free(n);
1621
1622 cindex = get_index(pkey, pn);
1623
1624 continue;
1625 }
1626
1627 /* grab the next available node */
1628 n = get_child(pn, cindex);
1629 if (!n)
1630 continue;
1631
1632 if (IS_TNODE(n)) {
1633 /* record pn and cindex for leaf walking */
1634 pn = n;
1635 cindex = 1ul << n->bits;
1636
1637 continue;
1638 }
1639
1640 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1641 hlist_del_rcu(&fa->fa_list);
1642 alias_free_mem_rcu(fa);
1643 }
1644
1645 put_child_root(pn, n->key, NULL);
1646 node_free(n);
1647 }
1648
1649 #ifdef CONFIG_IP_FIB_TRIE_STATS
1650 free_percpu(t->stats);
1651 #endif
1652 kfree(tb);
1653 }
1654
1655 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1656 {
1657 struct trie *ot = (struct trie *)oldtb->tb_data;
1658 struct key_vector *l, *tp = ot->kv;
1659 struct fib_table *local_tb;
1660 struct fib_alias *fa;
1661 struct trie *lt;
1662 t_key key = 0;
1663
1664 if (oldtb->tb_data == oldtb->__data)
1665 return oldtb;
1666
1667 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1668 if (!local_tb)
1669 return NULL;
1670
1671 lt = (struct trie *)local_tb->tb_data;
1672
1673 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1674 struct key_vector *local_l = NULL, *local_tp;
1675
1676 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1677 struct fib_alias *new_fa;
1678
1679 if (local_tb->tb_id != fa->tb_id)
1680 continue;
1681
1682 /* clone fa for new local table */
1683 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1684 if (!new_fa)
1685 goto out;
1686
1687 memcpy(new_fa, fa, sizeof(*fa));
1688
1689 /* insert clone into table */
1690 if (!local_l)
1691 local_l = fib_find_node(lt, &local_tp, l->key);
1692
1693 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1694 NULL, l->key))
1695 goto out;
1696 }
1697
1698 /* stop loop if key wrapped back to 0 */
1699 key = l->key + 1;
1700 if (key < l->key)
1701 break;
1702 }
1703
1704 return local_tb;
1705 out:
1706 fib_trie_free(local_tb);
1707
1708 return NULL;
1709 }
1710
1711 /* Caller must hold RTNL */
1712 void fib_table_flush_external(struct fib_table *tb)
1713 {
1714 struct trie *t = (struct trie *)tb->tb_data;
1715 struct key_vector *pn = t->kv;
1716 unsigned long cindex = 1;
1717 struct hlist_node *tmp;
1718 struct fib_alias *fa;
1719
1720 /* walk trie in reverse order */
1721 for (;;) {
1722 unsigned char slen = 0;
1723 struct key_vector *n;
1724
1725 if (!(cindex--)) {
1726 t_key pkey = pn->key;
1727
1728 /* cannot resize the trie vector */
1729 if (IS_TRIE(pn))
1730 break;
1731
1732 /* resize completed node */
1733 pn = resize(t, pn);
1734 cindex = get_index(pkey, pn);
1735
1736 continue;
1737 }
1738
1739 /* grab the next available node */
1740 n = get_child(pn, cindex);
1741 if (!n)
1742 continue;
1743
1744 if (IS_TNODE(n)) {
1745 /* record pn and cindex for leaf walking */
1746 pn = n;
1747 cindex = 1ul << n->bits;
1748
1749 continue;
1750 }
1751
1752 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1753 struct fib_info *fi = fa->fa_info;
1754
1755 /* if alias was cloned to local then we just
1756 * need to remove the local copy from main
1757 */
1758 if (tb->tb_id != fa->tb_id) {
1759 hlist_del_rcu(&fa->fa_list);
1760 alias_free_mem_rcu(fa);
1761 continue;
1762 }
1763
1764 /* record local slen */
1765 slen = fa->fa_slen;
1766
1767 if (!fi || !(fi->fib_flags & RTNH_F_EXTERNAL))
1768 continue;
1769
1770 netdev_switch_fib_ipv4_del(n->key,
1771 KEYLENGTH - fa->fa_slen,
1772 fi, fa->fa_tos,
1773 fa->fa_type, tb->tb_id);
1774 }
1775
1776 /* update leaf slen */
1777 n->slen = slen;
1778
1779 if (hlist_empty(&n->leaf)) {
1780 put_child_root(pn, n->key, NULL);
1781 node_free(n);
1782 } else {
1783 leaf_pull_suffix(pn, n);
1784 }
1785 }
1786 }
1787
1788 /* Caller must hold RTNL. */
1789 int fib_table_flush(struct fib_table *tb)
1790 {
1791 struct trie *t = (struct trie *)tb->tb_data;
1792 struct key_vector *pn = t->kv;
1793 unsigned long cindex = 1;
1794 struct hlist_node *tmp;
1795 struct fib_alias *fa;
1796 int found = 0;
1797
1798 /* walk trie in reverse order */
1799 for (;;) {
1800 unsigned char slen = 0;
1801 struct key_vector *n;
1802
1803 if (!(cindex--)) {
1804 t_key pkey = pn->key;
1805
1806 /* cannot resize the trie vector */
1807 if (IS_TRIE(pn))
1808 break;
1809
1810 /* resize completed node */
1811 pn = resize(t, pn);
1812 cindex = get_index(pkey, pn);
1813
1814 continue;
1815 }
1816
1817 /* grab the next available node */
1818 n = get_child(pn, cindex);
1819 if (!n)
1820 continue;
1821
1822 if (IS_TNODE(n)) {
1823 /* record pn and cindex for leaf walking */
1824 pn = n;
1825 cindex = 1ul << n->bits;
1826
1827 continue;
1828 }
1829
1830 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1831 struct fib_info *fi = fa->fa_info;
1832
1833 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1834 slen = fa->fa_slen;
1835 continue;
1836 }
1837
1838 netdev_switch_fib_ipv4_del(n->key,
1839 KEYLENGTH - fa->fa_slen,
1840 fi, fa->fa_tos,
1841 fa->fa_type, tb->tb_id);
1842 hlist_del_rcu(&fa->fa_list);
1843 fib_release_info(fa->fa_info);
1844 alias_free_mem_rcu(fa);
1845 found++;
1846 }
1847
1848 /* update leaf slen */
1849 n->slen = slen;
1850
1851 if (hlist_empty(&n->leaf)) {
1852 put_child_root(pn, n->key, NULL);
1853 node_free(n);
1854 } else {
1855 leaf_pull_suffix(pn, n);
1856 }
1857 }
1858
1859 pr_debug("trie_flush found=%d\n", found);
1860 return found;
1861 }
1862
1863 static void __trie_free_rcu(struct rcu_head *head)
1864 {
1865 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1866 #ifdef CONFIG_IP_FIB_TRIE_STATS
1867 struct trie *t = (struct trie *)tb->tb_data;
1868
1869 if (tb->tb_data == tb->__data)
1870 free_percpu(t->stats);
1871 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1872 kfree(tb);
1873 }
1874
1875 void fib_free_table(struct fib_table *tb)
1876 {
1877 call_rcu(&tb->rcu, __trie_free_rcu);
1878 }
1879
1880 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1881 struct sk_buff *skb, struct netlink_callback *cb)
1882 {
1883 __be32 xkey = htonl(l->key);
1884 struct fib_alias *fa;
1885 int i, s_i;
1886
1887 s_i = cb->args[4];
1888 i = 0;
1889
1890 /* rcu_read_lock is hold by caller */
1891 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1892 if (i < s_i) {
1893 i++;
1894 continue;
1895 }
1896
1897 if (tb->tb_id != fa->tb_id) {
1898 i++;
1899 continue;
1900 }
1901
1902 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1903 cb->nlh->nlmsg_seq,
1904 RTM_NEWROUTE,
1905 tb->tb_id,
1906 fa->fa_type,
1907 xkey,
1908 KEYLENGTH - fa->fa_slen,
1909 fa->fa_tos,
1910 fa->fa_info, NLM_F_MULTI) < 0) {
1911 cb->args[4] = i;
1912 return -1;
1913 }
1914 i++;
1915 }
1916
1917 cb->args[4] = i;
1918 return skb->len;
1919 }
1920
1921 /* rcu_read_lock needs to be hold by caller from readside */
1922 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1923 struct netlink_callback *cb)
1924 {
1925 struct trie *t = (struct trie *)tb->tb_data;
1926 struct key_vector *l, *tp = t->kv;
1927 /* Dump starting at last key.
1928 * Note: 0.0.0.0/0 (ie default) is first key.
1929 */
1930 int count = cb->args[2];
1931 t_key key = cb->args[3];
1932
1933 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1934 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1935 cb->args[3] = key;
1936 cb->args[2] = count;
1937 return -1;
1938 }
1939
1940 ++count;
1941 key = l->key + 1;
1942
1943 memset(&cb->args[4], 0,
1944 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1945
1946 /* stop loop if key wrapped back to 0 */
1947 if (key < l->key)
1948 break;
1949 }
1950
1951 cb->args[3] = key;
1952 cb->args[2] = count;
1953
1954 return skb->len;
1955 }
1956
1957 void __init fib_trie_init(void)
1958 {
1959 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1960 sizeof(struct fib_alias),
1961 0, SLAB_PANIC, NULL);
1962
1963 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1964 LEAF_SIZE,
1965 0, SLAB_PANIC, NULL);
1966 }
1967
1968 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1969 {
1970 struct fib_table *tb;
1971 struct trie *t;
1972 size_t sz = sizeof(*tb);
1973
1974 if (!alias)
1975 sz += sizeof(struct trie);
1976
1977 tb = kzalloc(sz, GFP_KERNEL);
1978 if (!tb)
1979 return NULL;
1980
1981 tb->tb_id = id;
1982 tb->tb_default = -1;
1983 tb->tb_num_default = 0;
1984 tb->tb_data = (alias ? alias->__data : tb->__data);
1985
1986 if (alias)
1987 return tb;
1988
1989 t = (struct trie *) tb->tb_data;
1990 t->kv[0].pos = KEYLENGTH;
1991 t->kv[0].slen = KEYLENGTH;
1992 #ifdef CONFIG_IP_FIB_TRIE_STATS
1993 t->stats = alloc_percpu(struct trie_use_stats);
1994 if (!t->stats) {
1995 kfree(tb);
1996 tb = NULL;
1997 }
1998 #endif
1999
2000 return tb;
2001 }
2002
2003 #ifdef CONFIG_PROC_FS
2004 /* Depth first Trie walk iterator */
2005 struct fib_trie_iter {
2006 struct seq_net_private p;
2007 struct fib_table *tb;
2008 struct key_vector *tnode;
2009 unsigned int index;
2010 unsigned int depth;
2011 };
2012
2013 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2014 {
2015 unsigned long cindex = iter->index;
2016 struct key_vector *pn = iter->tnode;
2017 t_key pkey;
2018
2019 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2020 iter->tnode, iter->index, iter->depth);
2021
2022 while (!IS_TRIE(pn)) {
2023 while (cindex < child_length(pn)) {
2024 struct key_vector *n = get_child_rcu(pn, cindex++);
2025
2026 if (!n)
2027 continue;
2028
2029 if (IS_LEAF(n)) {
2030 iter->tnode = pn;
2031 iter->index = cindex;
2032 } else {
2033 /* push down one level */
2034 iter->tnode = n;
2035 iter->index = 0;
2036 ++iter->depth;
2037 }
2038
2039 return n;
2040 }
2041
2042 /* Current node exhausted, pop back up */
2043 pkey = pn->key;
2044 pn = node_parent_rcu(pn);
2045 cindex = get_index(pkey, pn) + 1;
2046 --iter->depth;
2047 }
2048
2049 /* record root node so further searches know we are done */
2050 iter->tnode = pn;
2051 iter->index = 0;
2052
2053 return NULL;
2054 }
2055
2056 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2057 struct trie *t)
2058 {
2059 struct key_vector *n, *pn = t->kv;
2060
2061 if (!t)
2062 return NULL;
2063
2064 n = rcu_dereference(pn->tnode[0]);
2065 if (!n)
2066 return NULL;
2067
2068 if (IS_TNODE(n)) {
2069 iter->tnode = n;
2070 iter->index = 0;
2071 iter->depth = 1;
2072 } else {
2073 iter->tnode = pn;
2074 iter->index = 0;
2075 iter->depth = 0;
2076 }
2077
2078 return n;
2079 }
2080
2081 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2082 {
2083 struct key_vector *n;
2084 struct fib_trie_iter iter;
2085
2086 memset(s, 0, sizeof(*s));
2087
2088 rcu_read_lock();
2089 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2090 if (IS_LEAF(n)) {
2091 struct fib_alias *fa;
2092
2093 s->leaves++;
2094 s->totdepth += iter.depth;
2095 if (iter.depth > s->maxdepth)
2096 s->maxdepth = iter.depth;
2097
2098 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2099 ++s->prefixes;
2100 } else {
2101 s->tnodes++;
2102 if (n->bits < MAX_STAT_DEPTH)
2103 s->nodesizes[n->bits]++;
2104 s->nullpointers += tn_info(n)->empty_children;
2105 }
2106 }
2107 rcu_read_unlock();
2108 }
2109
2110 /*
2111 * This outputs /proc/net/fib_triestats
2112 */
2113 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2114 {
2115 unsigned int i, max, pointers, bytes, avdepth;
2116
2117 if (stat->leaves)
2118 avdepth = stat->totdepth*100 / stat->leaves;
2119 else
2120 avdepth = 0;
2121
2122 seq_printf(seq, "\tAver depth: %u.%02d\n",
2123 avdepth / 100, avdepth % 100);
2124 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2125
2126 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2127 bytes = LEAF_SIZE * stat->leaves;
2128
2129 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2130 bytes += sizeof(struct fib_alias) * stat->prefixes;
2131
2132 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2133 bytes += TNODE_SIZE(0) * stat->tnodes;
2134
2135 max = MAX_STAT_DEPTH;
2136 while (max > 0 && stat->nodesizes[max-1] == 0)
2137 max--;
2138
2139 pointers = 0;
2140 for (i = 1; i < max; i++)
2141 if (stat->nodesizes[i] != 0) {
2142 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2143 pointers += (1<<i) * stat->nodesizes[i];
2144 }
2145 seq_putc(seq, '\n');
2146 seq_printf(seq, "\tPointers: %u\n", pointers);
2147
2148 bytes += sizeof(struct key_vector *) * pointers;
2149 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2150 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2151 }
2152
2153 #ifdef CONFIG_IP_FIB_TRIE_STATS
2154 static void trie_show_usage(struct seq_file *seq,
2155 const struct trie_use_stats __percpu *stats)
2156 {
2157 struct trie_use_stats s = { 0 };
2158 int cpu;
2159
2160 /* loop through all of the CPUs and gather up the stats */
2161 for_each_possible_cpu(cpu) {
2162 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2163
2164 s.gets += pcpu->gets;
2165 s.backtrack += pcpu->backtrack;
2166 s.semantic_match_passed += pcpu->semantic_match_passed;
2167 s.semantic_match_miss += pcpu->semantic_match_miss;
2168 s.null_node_hit += pcpu->null_node_hit;
2169 s.resize_node_skipped += pcpu->resize_node_skipped;
2170 }
2171
2172 seq_printf(seq, "\nCounters:\n---------\n");
2173 seq_printf(seq, "gets = %u\n", s.gets);
2174 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2175 seq_printf(seq, "semantic match passed = %u\n",
2176 s.semantic_match_passed);
2177 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2178 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2179 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2180 }
2181 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2182
2183 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2184 {
2185 if (tb->tb_id == RT_TABLE_LOCAL)
2186 seq_puts(seq, "Local:\n");
2187 else if (tb->tb_id == RT_TABLE_MAIN)
2188 seq_puts(seq, "Main:\n");
2189 else
2190 seq_printf(seq, "Id %d:\n", tb->tb_id);
2191 }
2192
2193
2194 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2195 {
2196 struct net *net = (struct net *)seq->private;
2197 unsigned int h;
2198
2199 seq_printf(seq,
2200 "Basic info: size of leaf:"
2201 " %Zd bytes, size of tnode: %Zd bytes.\n",
2202 LEAF_SIZE, TNODE_SIZE(0));
2203
2204 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2205 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2206 struct fib_table *tb;
2207
2208 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2209 struct trie *t = (struct trie *) tb->tb_data;
2210 struct trie_stat stat;
2211
2212 if (!t)
2213 continue;
2214
2215 fib_table_print(seq, tb);
2216
2217 trie_collect_stats(t, &stat);
2218 trie_show_stats(seq, &stat);
2219 #ifdef CONFIG_IP_FIB_TRIE_STATS
2220 trie_show_usage(seq, t->stats);
2221 #endif
2222 }
2223 }
2224
2225 return 0;
2226 }
2227
2228 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2229 {
2230 return single_open_net(inode, file, fib_triestat_seq_show);
2231 }
2232
2233 static const struct file_operations fib_triestat_fops = {
2234 .owner = THIS_MODULE,
2235 .open = fib_triestat_seq_open,
2236 .read = seq_read,
2237 .llseek = seq_lseek,
2238 .release = single_release_net,
2239 };
2240
2241 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2242 {
2243 struct fib_trie_iter *iter = seq->private;
2244 struct net *net = seq_file_net(seq);
2245 loff_t idx = 0;
2246 unsigned int h;
2247
2248 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2249 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2250 struct fib_table *tb;
2251
2252 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2253 struct key_vector *n;
2254
2255 for (n = fib_trie_get_first(iter,
2256 (struct trie *) tb->tb_data);
2257 n; n = fib_trie_get_next(iter))
2258 if (pos == idx++) {
2259 iter->tb = tb;
2260 return n;
2261 }
2262 }
2263 }
2264
2265 return NULL;
2266 }
2267
2268 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2269 __acquires(RCU)
2270 {
2271 rcu_read_lock();
2272 return fib_trie_get_idx(seq, *pos);
2273 }
2274
2275 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2276 {
2277 struct fib_trie_iter *iter = seq->private;
2278 struct net *net = seq_file_net(seq);
2279 struct fib_table *tb = iter->tb;
2280 struct hlist_node *tb_node;
2281 unsigned int h;
2282 struct key_vector *n;
2283
2284 ++*pos;
2285 /* next node in same table */
2286 n = fib_trie_get_next(iter);
2287 if (n)
2288 return n;
2289
2290 /* walk rest of this hash chain */
2291 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2292 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2293 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2294 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2295 if (n)
2296 goto found;
2297 }
2298
2299 /* new hash chain */
2300 while (++h < FIB_TABLE_HASHSZ) {
2301 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2302 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2303 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2304 if (n)
2305 goto found;
2306 }
2307 }
2308 return NULL;
2309
2310 found:
2311 iter->tb = tb;
2312 return n;
2313 }
2314
2315 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2316 __releases(RCU)
2317 {
2318 rcu_read_unlock();
2319 }
2320
2321 static void seq_indent(struct seq_file *seq, int n)
2322 {
2323 while (n-- > 0)
2324 seq_puts(seq, " ");
2325 }
2326
2327 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2328 {
2329 switch (s) {
2330 case RT_SCOPE_UNIVERSE: return "universe";
2331 case RT_SCOPE_SITE: return "site";
2332 case RT_SCOPE_LINK: return "link";
2333 case RT_SCOPE_HOST: return "host";
2334 case RT_SCOPE_NOWHERE: return "nowhere";
2335 default:
2336 snprintf(buf, len, "scope=%d", s);
2337 return buf;
2338 }
2339 }
2340
2341 static const char *const rtn_type_names[__RTN_MAX] = {
2342 [RTN_UNSPEC] = "UNSPEC",
2343 [RTN_UNICAST] = "UNICAST",
2344 [RTN_LOCAL] = "LOCAL",
2345 [RTN_BROADCAST] = "BROADCAST",
2346 [RTN_ANYCAST] = "ANYCAST",
2347 [RTN_MULTICAST] = "MULTICAST",
2348 [RTN_BLACKHOLE] = "BLACKHOLE",
2349 [RTN_UNREACHABLE] = "UNREACHABLE",
2350 [RTN_PROHIBIT] = "PROHIBIT",
2351 [RTN_THROW] = "THROW",
2352 [RTN_NAT] = "NAT",
2353 [RTN_XRESOLVE] = "XRESOLVE",
2354 };
2355
2356 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2357 {
2358 if (t < __RTN_MAX && rtn_type_names[t])
2359 return rtn_type_names[t];
2360 snprintf(buf, len, "type %u", t);
2361 return buf;
2362 }
2363
2364 /* Pretty print the trie */
2365 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2366 {
2367 const struct fib_trie_iter *iter = seq->private;
2368 struct key_vector *n = v;
2369
2370 if (IS_TRIE(node_parent_rcu(n)))
2371 fib_table_print(seq, iter->tb);
2372
2373 if (IS_TNODE(n)) {
2374 __be32 prf = htonl(n->key);
2375
2376 seq_indent(seq, iter->depth-1);
2377 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2378 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2379 tn_info(n)->full_children,
2380 tn_info(n)->empty_children);
2381 } else {
2382 __be32 val = htonl(n->key);
2383 struct fib_alias *fa;
2384
2385 seq_indent(seq, iter->depth);
2386 seq_printf(seq, " |-- %pI4\n", &val);
2387
2388 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2389 char buf1[32], buf2[32];
2390
2391 seq_indent(seq, iter->depth + 1);
2392 seq_printf(seq, " /%zu %s %s",
2393 KEYLENGTH - fa->fa_slen,
2394 rtn_scope(buf1, sizeof(buf1),
2395 fa->fa_info->fib_scope),
2396 rtn_type(buf2, sizeof(buf2),
2397 fa->fa_type));
2398 if (fa->fa_tos)
2399 seq_printf(seq, " tos=%d", fa->fa_tos);
2400 seq_putc(seq, '\n');
2401 }
2402 }
2403
2404 return 0;
2405 }
2406
2407 static const struct seq_operations fib_trie_seq_ops = {
2408 .start = fib_trie_seq_start,
2409 .next = fib_trie_seq_next,
2410 .stop = fib_trie_seq_stop,
2411 .show = fib_trie_seq_show,
2412 };
2413
2414 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2415 {
2416 return seq_open_net(inode, file, &fib_trie_seq_ops,
2417 sizeof(struct fib_trie_iter));
2418 }
2419
2420 static const struct file_operations fib_trie_fops = {
2421 .owner = THIS_MODULE,
2422 .open = fib_trie_seq_open,
2423 .read = seq_read,
2424 .llseek = seq_lseek,
2425 .release = seq_release_net,
2426 };
2427
2428 struct fib_route_iter {
2429 struct seq_net_private p;
2430 struct fib_table *main_tb;
2431 struct key_vector *tnode;
2432 loff_t pos;
2433 t_key key;
2434 };
2435
2436 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2437 loff_t pos)
2438 {
2439 struct fib_table *tb = iter->main_tb;
2440 struct key_vector *l, **tp = &iter->tnode;
2441 struct trie *t;
2442 t_key key;
2443
2444 /* use cache location of next-to-find key */
2445 if (iter->pos > 0 && pos >= iter->pos) {
2446 pos -= iter->pos;
2447 key = iter->key;
2448 } else {
2449 t = (struct trie *)tb->tb_data;
2450 iter->tnode = t->kv;
2451 iter->pos = 0;
2452 key = 0;
2453 }
2454
2455 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2456 key = l->key + 1;
2457 iter->pos++;
2458
2459 if (pos-- <= 0)
2460 break;
2461
2462 l = NULL;
2463
2464 /* handle unlikely case of a key wrap */
2465 if (!key)
2466 break;
2467 }
2468
2469 if (l)
2470 iter->key = key; /* remember it */
2471 else
2472 iter->pos = 0; /* forget it */
2473
2474 return l;
2475 }
2476
2477 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2478 __acquires(RCU)
2479 {
2480 struct fib_route_iter *iter = seq->private;
2481 struct fib_table *tb;
2482 struct trie *t;
2483
2484 rcu_read_lock();
2485
2486 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2487 if (!tb)
2488 return NULL;
2489
2490 iter->main_tb = tb;
2491
2492 if (*pos != 0)
2493 return fib_route_get_idx(iter, *pos);
2494
2495 t = (struct trie *)tb->tb_data;
2496 iter->tnode = t->kv;
2497 iter->pos = 0;
2498 iter->key = 0;
2499
2500 return SEQ_START_TOKEN;
2501 }
2502
2503 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2504 {
2505 struct fib_route_iter *iter = seq->private;
2506 struct key_vector *l = NULL;
2507 t_key key = iter->key;
2508
2509 ++*pos;
2510
2511 /* only allow key of 0 for start of sequence */
2512 if ((v == SEQ_START_TOKEN) || key)
2513 l = leaf_walk_rcu(&iter->tnode, key);
2514
2515 if (l) {
2516 iter->key = l->key + 1;
2517 iter->pos++;
2518 } else {
2519 iter->pos = 0;
2520 }
2521
2522 return l;
2523 }
2524
2525 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2526 __releases(RCU)
2527 {
2528 rcu_read_unlock();
2529 }
2530
2531 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2532 {
2533 unsigned int flags = 0;
2534
2535 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2536 flags = RTF_REJECT;
2537 if (fi && fi->fib_nh->nh_gw)
2538 flags |= RTF_GATEWAY;
2539 if (mask == htonl(0xFFFFFFFF))
2540 flags |= RTF_HOST;
2541 flags |= RTF_UP;
2542 return flags;
2543 }
2544
2545 /*
2546 * This outputs /proc/net/route.
2547 * The format of the file is not supposed to be changed
2548 * and needs to be same as fib_hash output to avoid breaking
2549 * legacy utilities
2550 */
2551 static int fib_route_seq_show(struct seq_file *seq, void *v)
2552 {
2553 struct fib_route_iter *iter = seq->private;
2554 struct fib_table *tb = iter->main_tb;
2555 struct fib_alias *fa;
2556 struct key_vector *l = v;
2557 __be32 prefix;
2558
2559 if (v == SEQ_START_TOKEN) {
2560 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2561 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2562 "\tWindow\tIRTT");
2563 return 0;
2564 }
2565
2566 prefix = htonl(l->key);
2567
2568 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2569 const struct fib_info *fi = fa->fa_info;
2570 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2571 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2572
2573 if ((fa->fa_type == RTN_BROADCAST) ||
2574 (fa->fa_type == RTN_MULTICAST))
2575 continue;
2576
2577 if (fa->tb_id != tb->tb_id)
2578 continue;
2579
2580 seq_setwidth(seq, 127);
2581
2582 if (fi)
2583 seq_printf(seq,
2584 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2585 "%d\t%08X\t%d\t%u\t%u",
2586 fi->fib_dev ? fi->fib_dev->name : "*",
2587 prefix,
2588 fi->fib_nh->nh_gw, flags, 0, 0,
2589 fi->fib_priority,
2590 mask,
2591 (fi->fib_advmss ?
2592 fi->fib_advmss + 40 : 0),
2593 fi->fib_window,
2594 fi->fib_rtt >> 3);
2595 else
2596 seq_printf(seq,
2597 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2598 "%d\t%08X\t%d\t%u\t%u",
2599 prefix, 0, flags, 0, 0, 0,
2600 mask, 0, 0, 0);
2601
2602 seq_pad(seq, '\n');
2603 }
2604
2605 return 0;
2606 }
2607
2608 static const struct seq_operations fib_route_seq_ops = {
2609 .start = fib_route_seq_start,
2610 .next = fib_route_seq_next,
2611 .stop = fib_route_seq_stop,
2612 .show = fib_route_seq_show,
2613 };
2614
2615 static int fib_route_seq_open(struct inode *inode, struct file *file)
2616 {
2617 return seq_open_net(inode, file, &fib_route_seq_ops,
2618 sizeof(struct fib_route_iter));
2619 }
2620
2621 static const struct file_operations fib_route_fops = {
2622 .owner = THIS_MODULE,
2623 .open = fib_route_seq_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = seq_release_net,
2627 };
2628
2629 int __net_init fib_proc_init(struct net *net)
2630 {
2631 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2632 goto out1;
2633
2634 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2635 &fib_triestat_fops))
2636 goto out2;
2637
2638 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2639 goto out3;
2640
2641 return 0;
2642
2643 out3:
2644 remove_proc_entry("fib_triestat", net->proc_net);
2645 out2:
2646 remove_proc_entry("fib_trie", net->proc_net);
2647 out1:
2648 return -ENOMEM;
2649 }
2650
2651 void __net_exit fib_proc_exit(struct net *net)
2652 {
2653 remove_proc_entry("fib_trie", net->proc_net);
2654 remove_proc_entry("fib_triestat", net->proc_net);
2655 remove_proc_entry("route", net->proc_net);
2656 }
2657
2658 #endif /* CONFIG_PROC_FS */
This page took 0.108709 seconds and 5 git commands to generate.