Merge branch 'vhost' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 struct tnode *tnode_free;
127 };
128 struct node *child[0];
129 };
130
131 #ifdef CONFIG_IP_FIB_TRIE_STATS
132 struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
138 unsigned int resize_node_skipped;
139 };
140 #endif
141
142 struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
148 unsigned int prefixes;
149 unsigned int nodesizes[MAX_STAT_DEPTH];
150 };
151
152 struct trie {
153 struct node *trie;
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156 #endif
157 };
158
159 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
162 static struct node *resize(struct trie *t, struct tnode *tn);
163 static struct tnode *inflate(struct trie *t, struct tnode *tn);
164 static struct tnode *halve(struct trie *t, struct tnode *tn);
165 /* tnodes to free after resize(); protected by RTNL */
166 static struct tnode *tnode_free_head;
167 static size_t tnode_free_size;
168
169 /*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174 static const int sync_pages = 128;
175
176 static struct kmem_cache *fn_alias_kmem __read_mostly;
177 static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179 static inline struct tnode *node_parent(struct node *node)
180 {
181 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
182 }
183
184 static inline struct tnode *node_parent_rcu(struct node *node)
185 {
186 struct tnode *ret = node_parent(node);
187
188 return rcu_dereference(ret);
189 }
190
191 /* Same as rcu_assign_pointer
192 * but that macro() assumes that value is a pointer.
193 */
194 static inline void node_set_parent(struct node *node, struct tnode *ptr)
195 {
196 smp_wmb();
197 node->parent = (unsigned long)ptr | NODE_TYPE(node);
198 }
199
200 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
201 {
202 BUG_ON(i >= 1U << tn->bits);
203
204 return tn->child[i];
205 }
206
207 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
208 {
209 struct node *ret = tnode_get_child(tn, i);
210
211 return rcu_dereference(ret);
212 }
213
214 static inline int tnode_child_length(const struct tnode *tn)
215 {
216 return 1 << tn->bits;
217 }
218
219 static inline t_key mask_pfx(t_key k, unsigned short l)
220 {
221 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
222 }
223
224 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
225 {
226 if (offset < KEYLENGTH)
227 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
228 else
229 return 0;
230 }
231
232 static inline int tkey_equals(t_key a, t_key b)
233 {
234 return a == b;
235 }
236
237 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
238 {
239 if (bits == 0 || offset >= KEYLENGTH)
240 return 1;
241 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
242 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
243 }
244
245 static inline int tkey_mismatch(t_key a, int offset, t_key b)
246 {
247 t_key diff = a ^ b;
248 int i = offset;
249
250 if (!diff)
251 return 0;
252 while ((diff << i) >> (KEYLENGTH-1) == 0)
253 i++;
254 return i;
255 }
256
257 /*
258 To understand this stuff, an understanding of keys and all their bits is
259 necessary. Every node in the trie has a key associated with it, but not
260 all of the bits in that key are significant.
261
262 Consider a node 'n' and its parent 'tp'.
263
264 If n is a leaf, every bit in its key is significant. Its presence is
265 necessitated by path compression, since during a tree traversal (when
266 searching for a leaf - unless we are doing an insertion) we will completely
267 ignore all skipped bits we encounter. Thus we need to verify, at the end of
268 a potentially successful search, that we have indeed been walking the
269 correct key path.
270
271 Note that we can never "miss" the correct key in the tree if present by
272 following the wrong path. Path compression ensures that segments of the key
273 that are the same for all keys with a given prefix are skipped, but the
274 skipped part *is* identical for each node in the subtrie below the skipped
275 bit! trie_insert() in this implementation takes care of that - note the
276 call to tkey_sub_equals() in trie_insert().
277
278 if n is an internal node - a 'tnode' here, the various parts of its key
279 have many different meanings.
280
281 Example:
282 _________________________________________________________________
283 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
284 -----------------------------------------------------------------
285 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
286
287 _________________________________________________________________
288 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
289 -----------------------------------------------------------------
290 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
291
292 tp->pos = 7
293 tp->bits = 3
294 n->pos = 15
295 n->bits = 4
296
297 First, let's just ignore the bits that come before the parent tp, that is
298 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
299 not use them for anything.
300
301 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
302 index into the parent's child array. That is, they will be used to find
303 'n' among tp's children.
304
305 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
306 for the node n.
307
308 All the bits we have seen so far are significant to the node n. The rest
309 of the bits are really not needed or indeed known in n->key.
310
311 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
312 n's child array, and will of course be different for each child.
313
314
315 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
316 at this point.
317
318 */
319
320 static inline void check_tnode(const struct tnode *tn)
321 {
322 WARN_ON(tn && tn->pos+tn->bits > 32);
323 }
324
325 static const int halve_threshold = 25;
326 static const int inflate_threshold = 50;
327 static const int halve_threshold_root = 15;
328 static const int inflate_threshold_root = 30;
329
330 static void __alias_free_mem(struct rcu_head *head)
331 {
332 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
333 kmem_cache_free(fn_alias_kmem, fa);
334 }
335
336 static inline void alias_free_mem_rcu(struct fib_alias *fa)
337 {
338 call_rcu(&fa->rcu, __alias_free_mem);
339 }
340
341 static void __leaf_free_rcu(struct rcu_head *head)
342 {
343 struct leaf *l = container_of(head, struct leaf, rcu);
344 kmem_cache_free(trie_leaf_kmem, l);
345 }
346
347 static inline void free_leaf(struct leaf *l)
348 {
349 call_rcu_bh(&l->rcu, __leaf_free_rcu);
350 }
351
352 static void __leaf_info_free_rcu(struct rcu_head *head)
353 {
354 kfree(container_of(head, struct leaf_info, rcu));
355 }
356
357 static inline void free_leaf_info(struct leaf_info *leaf)
358 {
359 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
360 }
361
362 static struct tnode *tnode_alloc(size_t size)
363 {
364 if (size <= PAGE_SIZE)
365 return kzalloc(size, GFP_KERNEL);
366 else
367 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
368 }
369
370 static void __tnode_vfree(struct work_struct *arg)
371 {
372 struct tnode *tn = container_of(arg, struct tnode, work);
373 vfree(tn);
374 }
375
376 static void __tnode_free_rcu(struct rcu_head *head)
377 {
378 struct tnode *tn = container_of(head, struct tnode, rcu);
379 size_t size = sizeof(struct tnode) +
380 (sizeof(struct node *) << tn->bits);
381
382 if (size <= PAGE_SIZE)
383 kfree(tn);
384 else {
385 INIT_WORK(&tn->work, __tnode_vfree);
386 schedule_work(&tn->work);
387 }
388 }
389
390 static inline void tnode_free(struct tnode *tn)
391 {
392 if (IS_LEAF(tn))
393 free_leaf((struct leaf *) tn);
394 else
395 call_rcu(&tn->rcu, __tnode_free_rcu);
396 }
397
398 static void tnode_free_safe(struct tnode *tn)
399 {
400 BUG_ON(IS_LEAF(tn));
401 tn->tnode_free = tnode_free_head;
402 tnode_free_head = tn;
403 tnode_free_size += sizeof(struct tnode) +
404 (sizeof(struct node *) << tn->bits);
405 }
406
407 static void tnode_free_flush(void)
408 {
409 struct tnode *tn;
410
411 while ((tn = tnode_free_head)) {
412 tnode_free_head = tn->tnode_free;
413 tn->tnode_free = NULL;
414 tnode_free(tn);
415 }
416
417 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
418 tnode_free_size = 0;
419 synchronize_rcu();
420 }
421 }
422
423 static struct leaf *leaf_new(void)
424 {
425 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
426 if (l) {
427 l->parent = T_LEAF;
428 INIT_HLIST_HEAD(&l->list);
429 }
430 return l;
431 }
432
433 static struct leaf_info *leaf_info_new(int plen)
434 {
435 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
436 if (li) {
437 li->plen = plen;
438 INIT_LIST_HEAD(&li->falh);
439 }
440 return li;
441 }
442
443 static struct tnode *tnode_new(t_key key, int pos, int bits)
444 {
445 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
446 struct tnode *tn = tnode_alloc(sz);
447
448 if (tn) {
449 tn->parent = T_TNODE;
450 tn->pos = pos;
451 tn->bits = bits;
452 tn->key = key;
453 tn->full_children = 0;
454 tn->empty_children = 1<<bits;
455 }
456
457 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
458 (unsigned long) (sizeof(struct node) << bits));
459 return tn;
460 }
461
462 /*
463 * Check whether a tnode 'n' is "full", i.e. it is an internal node
464 * and no bits are skipped. See discussion in dyntree paper p. 6
465 */
466
467 static inline int tnode_full(const struct tnode *tn, const struct node *n)
468 {
469 if (n == NULL || IS_LEAF(n))
470 return 0;
471
472 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
473 }
474
475 static inline void put_child(struct trie *t, struct tnode *tn, int i,
476 struct node *n)
477 {
478 tnode_put_child_reorg(tn, i, n, -1);
479 }
480
481 /*
482 * Add a child at position i overwriting the old value.
483 * Update the value of full_children and empty_children.
484 */
485
486 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
487 int wasfull)
488 {
489 struct node *chi = tn->child[i];
490 int isfull;
491
492 BUG_ON(i >= 1<<tn->bits);
493
494 /* update emptyChildren */
495 if (n == NULL && chi != NULL)
496 tn->empty_children++;
497 else if (n != NULL && chi == NULL)
498 tn->empty_children--;
499
500 /* update fullChildren */
501 if (wasfull == -1)
502 wasfull = tnode_full(tn, chi);
503
504 isfull = tnode_full(tn, n);
505 if (wasfull && !isfull)
506 tn->full_children--;
507 else if (!wasfull && isfull)
508 tn->full_children++;
509
510 if (n)
511 node_set_parent(n, tn);
512
513 rcu_assign_pointer(tn->child[i], n);
514 }
515
516 #define MAX_WORK 10
517 static struct node *resize(struct trie *t, struct tnode *tn)
518 {
519 int i;
520 struct tnode *old_tn;
521 int inflate_threshold_use;
522 int halve_threshold_use;
523 int max_work;
524
525 if (!tn)
526 return NULL;
527
528 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
529 tn, inflate_threshold, halve_threshold);
530
531 /* No children */
532 if (tn->empty_children == tnode_child_length(tn)) {
533 tnode_free_safe(tn);
534 return NULL;
535 }
536 /* One child */
537 if (tn->empty_children == tnode_child_length(tn) - 1)
538 goto one_child;
539 /*
540 * Double as long as the resulting node has a number of
541 * nonempty nodes that are above the threshold.
542 */
543
544 /*
545 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
546 * the Helsinki University of Technology and Matti Tikkanen of Nokia
547 * Telecommunications, page 6:
548 * "A node is doubled if the ratio of non-empty children to all
549 * children in the *doubled* node is at least 'high'."
550 *
551 * 'high' in this instance is the variable 'inflate_threshold'. It
552 * is expressed as a percentage, so we multiply it with
553 * tnode_child_length() and instead of multiplying by 2 (since the
554 * child array will be doubled by inflate()) and multiplying
555 * the left-hand side by 100 (to handle the percentage thing) we
556 * multiply the left-hand side by 50.
557 *
558 * The left-hand side may look a bit weird: tnode_child_length(tn)
559 * - tn->empty_children is of course the number of non-null children
560 * in the current node. tn->full_children is the number of "full"
561 * children, that is non-null tnodes with a skip value of 0.
562 * All of those will be doubled in the resulting inflated tnode, so
563 * we just count them one extra time here.
564 *
565 * A clearer way to write this would be:
566 *
567 * to_be_doubled = tn->full_children;
568 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
569 * tn->full_children;
570 *
571 * new_child_length = tnode_child_length(tn) * 2;
572 *
573 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
574 * new_child_length;
575 * if (new_fill_factor >= inflate_threshold)
576 *
577 * ...and so on, tho it would mess up the while () loop.
578 *
579 * anyway,
580 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
581 * inflate_threshold
582 *
583 * avoid a division:
584 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
585 * inflate_threshold * new_child_length
586 *
587 * expand not_to_be_doubled and to_be_doubled, and shorten:
588 * 100 * (tnode_child_length(tn) - tn->empty_children +
589 * tn->full_children) >= inflate_threshold * new_child_length
590 *
591 * expand new_child_length:
592 * 100 * (tnode_child_length(tn) - tn->empty_children +
593 * tn->full_children) >=
594 * inflate_threshold * tnode_child_length(tn) * 2
595 *
596 * shorten again:
597 * 50 * (tn->full_children + tnode_child_length(tn) -
598 * tn->empty_children) >= inflate_threshold *
599 * tnode_child_length(tn)
600 *
601 */
602
603 check_tnode(tn);
604
605 /* Keep root node larger */
606
607 if (!node_parent((struct node*) tn)) {
608 inflate_threshold_use = inflate_threshold_root;
609 halve_threshold_use = halve_threshold_root;
610 }
611 else {
612 inflate_threshold_use = inflate_threshold;
613 halve_threshold_use = halve_threshold;
614 }
615
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
621
622 old_tn = tn;
623 tn = inflate(t, tn);
624
625 if (IS_ERR(tn)) {
626 tn = old_tn;
627 #ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629 #endif
630 break;
631 }
632 }
633
634 check_tnode(tn);
635
636 /* Return if at least one inflate is run */
637 if( max_work != MAX_WORK)
638 return (struct node *) tn;
639
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
644
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
647 100 * (tnode_child_length(tn) - tn->empty_children) <
648 halve_threshold_use * tnode_child_length(tn)) {
649
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
654 #ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656 #endif
657 break;
658 }
659 }
660
661
662 /* Only one child remains */
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664 one_child:
665 for (i = 0; i < tnode_child_length(tn); i++) {
666 struct node *n;
667
668 n = tn->child[i];
669 if (!n)
670 continue;
671
672 /* compress one level */
673
674 node_set_parent(n, NULL);
675 tnode_free_safe(tn);
676 return n;
677 }
678 }
679 return (struct node *) tn;
680 }
681
682 static struct tnode *inflate(struct trie *t, struct tnode *tn)
683 {
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
688 pr_debug("In inflate\n");
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
692 if (!tn)
693 return ERR_PTR(-ENOMEM);
694
695 /*
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
699 * of tnode is ignored.
700 */
701
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
704
705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
712
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
715 if (!left)
716 goto nomem;
717
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
721 if (!right) {
722 tnode_free(left);
723 goto nomem;
724 }
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
731 for (i = 0; i < olen; i++) {
732 struct tnode *inode;
733 struct node *node = tnode_get_child(oldtnode, i);
734 struct tnode *left, *right;
735 int size, j;
736
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
744 tn->pos + tn->bits - 1) {
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
761 tnode_free_safe(inode);
762 continue;
763 }
764
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
783
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
787
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
790
791 BUG_ON(!left);
792
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
795
796 BUG_ON(!right);
797
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
802 }
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
806 tnode_free_safe(inode);
807 }
808 tnode_free_safe(oldtnode);
809 return tn;
810 nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
815 for (j = 0; j < size; j++)
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
820
821 return ERR_PTR(-ENOMEM);
822 }
823 }
824
825 static struct tnode *halve(struct trie *t, struct tnode *tn)
826 {
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
832 pr_debug("In halve\n");
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
835
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
838
839 /*
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
843 * of tnode is ignored.
844 */
845
846 for (i = 0; i < olen; i += 2) {
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
849
850 /* Two nonempty children */
851 if (left && right) {
852 struct tnode *newn;
853
854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
855
856 if (!newn)
857 goto nomem;
858
859 put_child(t, tn, i/2, (struct node *)newn);
860 }
861
862 }
863
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
869
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
875 continue;
876 }
877
878 if (right == NULL) {
879 put_child(t, tn, i/2, left);
880 continue;
881 }
882
883 /* Two nonempty children */
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
889 }
890 tnode_free_safe(oldtnode);
891 return tn;
892 nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
897 for (j = 0; j < size; j++)
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
902
903 return ERR_PTR(-ENOMEM);
904 }
905 }
906
907 /* readside must use rcu_read_lock currently dump routines
908 via get_fa_head and dump */
909
910 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
911 {
912 struct hlist_head *head = &l->list;
913 struct hlist_node *node;
914 struct leaf_info *li;
915
916 hlist_for_each_entry_rcu(li, node, head, hlist)
917 if (li->plen == plen)
918 return li;
919
920 return NULL;
921 }
922
923 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
924 {
925 struct leaf_info *li = find_leaf_info(l, plen);
926
927 if (!li)
928 return NULL;
929
930 return &li->falh;
931 }
932
933 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934 {
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
952 }
953
954 /* rcu_read_lock needs to be hold by caller from readside */
955
956 static struct leaf *
957 fib_find_node(struct trie *t, u32 key)
958 {
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
964 n = rcu_dereference_check(t->trie,
965 rcu_read_lock_held() ||
966 lockdep_rtnl_is_held());
967
968 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
969 tn = (struct tnode *) n;
970
971 check_tnode(tn);
972
973 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
974 pos = tn->pos + tn->bits;
975 n = tnode_get_child_rcu(tn,
976 tkey_extract_bits(key,
977 tn->pos,
978 tn->bits));
979 } else
980 break;
981 }
982 /* Case we have found a leaf. Compare prefixes */
983
984 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
985 return (struct leaf *)n;
986
987 return NULL;
988 }
989
990 static void trie_rebalance(struct trie *t, struct tnode *tn)
991 {
992 int wasfull;
993 t_key cindex, key;
994 struct tnode *tp;
995
996 key = tn->key;
997
998 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
999 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1000 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1001 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1002
1003 tnode_put_child_reorg((struct tnode *)tp, cindex,
1004 (struct node *)tn, wasfull);
1005
1006 tp = node_parent((struct node *) tn);
1007 if (!tp)
1008 rcu_assign_pointer(t->trie, (struct node *)tn);
1009
1010 tnode_free_flush();
1011 if (!tp)
1012 break;
1013 tn = tp;
1014 }
1015
1016 /* Handle last (top) tnode */
1017 if (IS_TNODE(tn))
1018 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1019
1020 rcu_assign_pointer(t->trie, (struct node *)tn);
1021 tnode_free_flush();
1022
1023 return;
1024 }
1025
1026 /* only used from updater-side */
1027
1028 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1029 {
1030 int pos, newpos;
1031 struct tnode *tp = NULL, *tn = NULL;
1032 struct node *n;
1033 struct leaf *l;
1034 int missbit;
1035 struct list_head *fa_head = NULL;
1036 struct leaf_info *li;
1037 t_key cindex;
1038
1039 pos = 0;
1040 n = t->trie;
1041
1042 /* If we point to NULL, stop. Either the tree is empty and we should
1043 * just put a new leaf in if, or we have reached an empty child slot,
1044 * and we should just put our new leaf in that.
1045 * If we point to a T_TNODE, check if it matches our key. Note that
1046 * a T_TNODE might be skipping any number of bits - its 'pos' need
1047 * not be the parent's 'pos'+'bits'!
1048 *
1049 * If it does match the current key, get pos/bits from it, extract
1050 * the index from our key, push the T_TNODE and walk the tree.
1051 *
1052 * If it doesn't, we have to replace it with a new T_TNODE.
1053 *
1054 * If we point to a T_LEAF, it might or might not have the same key
1055 * as we do. If it does, just change the value, update the T_LEAF's
1056 * value, and return it.
1057 * If it doesn't, we need to replace it with a T_TNODE.
1058 */
1059
1060 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1061 tn = (struct tnode *) n;
1062
1063 check_tnode(tn);
1064
1065 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1066 tp = tn;
1067 pos = tn->pos + tn->bits;
1068 n = tnode_get_child(tn,
1069 tkey_extract_bits(key,
1070 tn->pos,
1071 tn->bits));
1072
1073 BUG_ON(n && node_parent(n) != tn);
1074 } else
1075 break;
1076 }
1077
1078 /*
1079 * n ----> NULL, LEAF or TNODE
1080 *
1081 * tp is n's (parent) ----> NULL or TNODE
1082 */
1083
1084 BUG_ON(tp && IS_LEAF(tp));
1085
1086 /* Case 1: n is a leaf. Compare prefixes */
1087
1088 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1089 l = (struct leaf *) n;
1090 li = leaf_info_new(plen);
1091
1092 if (!li)
1093 return NULL;
1094
1095 fa_head = &li->falh;
1096 insert_leaf_info(&l->list, li);
1097 goto done;
1098 }
1099 l = leaf_new();
1100
1101 if (!l)
1102 return NULL;
1103
1104 l->key = key;
1105 li = leaf_info_new(plen);
1106
1107 if (!li) {
1108 free_leaf(l);
1109 return NULL;
1110 }
1111
1112 fa_head = &li->falh;
1113 insert_leaf_info(&l->list, li);
1114
1115 if (t->trie && n == NULL) {
1116 /* Case 2: n is NULL, and will just insert a new leaf */
1117
1118 node_set_parent((struct node *)l, tp);
1119
1120 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1121 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1122 } else {
1123 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1124 /*
1125 * Add a new tnode here
1126 * first tnode need some special handling
1127 */
1128
1129 if (tp)
1130 pos = tp->pos+tp->bits;
1131 else
1132 pos = 0;
1133
1134 if (n) {
1135 newpos = tkey_mismatch(key, pos, n->key);
1136 tn = tnode_new(n->key, newpos, 1);
1137 } else {
1138 newpos = 0;
1139 tn = tnode_new(key, newpos, 1); /* First tnode */
1140 }
1141
1142 if (!tn) {
1143 free_leaf_info(li);
1144 free_leaf(l);
1145 return NULL;
1146 }
1147
1148 node_set_parent((struct node *)tn, tp);
1149
1150 missbit = tkey_extract_bits(key, newpos, 1);
1151 put_child(t, tn, missbit, (struct node *)l);
1152 put_child(t, tn, 1-missbit, n);
1153
1154 if (tp) {
1155 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1156 put_child(t, (struct tnode *)tp, cindex,
1157 (struct node *)tn);
1158 } else {
1159 rcu_assign_pointer(t->trie, (struct node *)tn);
1160 tp = tn;
1161 }
1162 }
1163
1164 if (tp && tp->pos + tp->bits > 32)
1165 pr_warning("fib_trie"
1166 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1167 tp, tp->pos, tp->bits, key, plen);
1168
1169 /* Rebalance the trie */
1170
1171 trie_rebalance(t, tp);
1172 done:
1173 return fa_head;
1174 }
1175
1176 /*
1177 * Caller must hold RTNL.
1178 */
1179 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1180 {
1181 struct trie *t = (struct trie *) tb->tb_data;
1182 struct fib_alias *fa, *new_fa;
1183 struct list_head *fa_head = NULL;
1184 struct fib_info *fi;
1185 int plen = cfg->fc_dst_len;
1186 u8 tos = cfg->fc_tos;
1187 u32 key, mask;
1188 int err;
1189 struct leaf *l;
1190
1191 if (plen > 32)
1192 return -EINVAL;
1193
1194 key = ntohl(cfg->fc_dst);
1195
1196 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1197
1198 mask = ntohl(inet_make_mask(plen));
1199
1200 if (key & ~mask)
1201 return -EINVAL;
1202
1203 key = key & mask;
1204
1205 fi = fib_create_info(cfg);
1206 if (IS_ERR(fi)) {
1207 err = PTR_ERR(fi);
1208 goto err;
1209 }
1210
1211 l = fib_find_node(t, key);
1212 fa = NULL;
1213
1214 if (l) {
1215 fa_head = get_fa_head(l, plen);
1216 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1217 }
1218
1219 /* Now fa, if non-NULL, points to the first fib alias
1220 * with the same keys [prefix,tos,priority], if such key already
1221 * exists or to the node before which we will insert new one.
1222 *
1223 * If fa is NULL, we will need to allocate a new one and
1224 * insert to the head of f.
1225 *
1226 * If f is NULL, no fib node matched the destination key
1227 * and we need to allocate a new one of those as well.
1228 */
1229
1230 if (fa && fa->fa_tos == tos &&
1231 fa->fa_info->fib_priority == fi->fib_priority) {
1232 struct fib_alias *fa_first, *fa_match;
1233
1234 err = -EEXIST;
1235 if (cfg->fc_nlflags & NLM_F_EXCL)
1236 goto out;
1237
1238 /* We have 2 goals:
1239 * 1. Find exact match for type, scope, fib_info to avoid
1240 * duplicate routes
1241 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1242 */
1243 fa_match = NULL;
1244 fa_first = fa;
1245 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1246 list_for_each_entry_continue(fa, fa_head, fa_list) {
1247 if (fa->fa_tos != tos)
1248 break;
1249 if (fa->fa_info->fib_priority != fi->fib_priority)
1250 break;
1251 if (fa->fa_type == cfg->fc_type &&
1252 fa->fa_scope == cfg->fc_scope &&
1253 fa->fa_info == fi) {
1254 fa_match = fa;
1255 break;
1256 }
1257 }
1258
1259 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1260 struct fib_info *fi_drop;
1261 u8 state;
1262
1263 fa = fa_first;
1264 if (fa_match) {
1265 if (fa == fa_match)
1266 err = 0;
1267 goto out;
1268 }
1269 err = -ENOBUFS;
1270 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1271 if (new_fa == NULL)
1272 goto out;
1273
1274 fi_drop = fa->fa_info;
1275 new_fa->fa_tos = fa->fa_tos;
1276 new_fa->fa_info = fi;
1277 new_fa->fa_type = cfg->fc_type;
1278 new_fa->fa_scope = cfg->fc_scope;
1279 state = fa->fa_state;
1280 new_fa->fa_state = state & ~FA_S_ACCESSED;
1281
1282 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1283 alias_free_mem_rcu(fa);
1284
1285 fib_release_info(fi_drop);
1286 if (state & FA_S_ACCESSED)
1287 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1288 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1289 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1290
1291 goto succeeded;
1292 }
1293 /* Error if we find a perfect match which
1294 * uses the same scope, type, and nexthop
1295 * information.
1296 */
1297 if (fa_match)
1298 goto out;
1299
1300 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1301 fa = fa_first;
1302 }
1303 err = -ENOENT;
1304 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1305 goto out;
1306
1307 err = -ENOBUFS;
1308 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1309 if (new_fa == NULL)
1310 goto out;
1311
1312 new_fa->fa_info = fi;
1313 new_fa->fa_tos = tos;
1314 new_fa->fa_type = cfg->fc_type;
1315 new_fa->fa_scope = cfg->fc_scope;
1316 new_fa->fa_state = 0;
1317 /*
1318 * Insert new entry to the list.
1319 */
1320
1321 if (!fa_head) {
1322 fa_head = fib_insert_node(t, key, plen);
1323 if (unlikely(!fa_head)) {
1324 err = -ENOMEM;
1325 goto out_free_new_fa;
1326 }
1327 }
1328
1329 list_add_tail_rcu(&new_fa->fa_list,
1330 (fa ? &fa->fa_list : fa_head));
1331
1332 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1333 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1334 &cfg->fc_nlinfo, 0);
1335 succeeded:
1336 return 0;
1337
1338 out_free_new_fa:
1339 kmem_cache_free(fn_alias_kmem, new_fa);
1340 out:
1341 fib_release_info(fi);
1342 err:
1343 return err;
1344 }
1345
1346 /* should be called with rcu_read_lock */
1347 static int check_leaf(struct trie *t, struct leaf *l,
1348 t_key key, const struct flowi *flp,
1349 struct fib_result *res)
1350 {
1351 struct leaf_info *li;
1352 struct hlist_head *hhead = &l->list;
1353 struct hlist_node *node;
1354
1355 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1356 int err;
1357 int plen = li->plen;
1358 __be32 mask = inet_make_mask(plen);
1359
1360 if (l->key != (key & ntohl(mask)))
1361 continue;
1362
1363 err = fib_semantic_match(&li->falh, flp, res, plen);
1364
1365 #ifdef CONFIG_IP_FIB_TRIE_STATS
1366 if (err <= 0)
1367 t->stats.semantic_match_passed++;
1368 else
1369 t->stats.semantic_match_miss++;
1370 #endif
1371 if (err <= 0)
1372 return err;
1373 }
1374
1375 return 1;
1376 }
1377
1378 int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1379 struct fib_result *res)
1380 {
1381 struct trie *t = (struct trie *) tb->tb_data;
1382 int ret;
1383 struct node *n;
1384 struct tnode *pn;
1385 int pos, bits;
1386 t_key key = ntohl(flp->fl4_dst);
1387 int chopped_off;
1388 t_key cindex = 0;
1389 int current_prefix_length = KEYLENGTH;
1390 struct tnode *cn;
1391 t_key node_prefix, key_prefix, pref_mismatch;
1392 int mp;
1393
1394 rcu_read_lock();
1395
1396 n = rcu_dereference(t->trie);
1397 if (!n)
1398 goto failed;
1399
1400 #ifdef CONFIG_IP_FIB_TRIE_STATS
1401 t->stats.gets++;
1402 #endif
1403
1404 /* Just a leaf? */
1405 if (IS_LEAF(n)) {
1406 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1407 goto found;
1408 }
1409
1410 pn = (struct tnode *) n;
1411 chopped_off = 0;
1412
1413 while (pn) {
1414 pos = pn->pos;
1415 bits = pn->bits;
1416
1417 if (!chopped_off)
1418 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1419 pos, bits);
1420
1421 n = tnode_get_child_rcu(pn, cindex);
1422
1423 if (n == NULL) {
1424 #ifdef CONFIG_IP_FIB_TRIE_STATS
1425 t->stats.null_node_hit++;
1426 #endif
1427 goto backtrace;
1428 }
1429
1430 if (IS_LEAF(n)) {
1431 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1432 if (ret > 0)
1433 goto backtrace;
1434 goto found;
1435 }
1436
1437 cn = (struct tnode *)n;
1438
1439 /*
1440 * It's a tnode, and we can do some extra checks here if we
1441 * like, to avoid descending into a dead-end branch.
1442 * This tnode is in the parent's child array at index
1443 * key[p_pos..p_pos+p_bits] but potentially with some bits
1444 * chopped off, so in reality the index may be just a
1445 * subprefix, padded with zero at the end.
1446 * We can also take a look at any skipped bits in this
1447 * tnode - everything up to p_pos is supposed to be ok,
1448 * and the non-chopped bits of the index (se previous
1449 * paragraph) are also guaranteed ok, but the rest is
1450 * considered unknown.
1451 *
1452 * The skipped bits are key[pos+bits..cn->pos].
1453 */
1454
1455 /* If current_prefix_length < pos+bits, we are already doing
1456 * actual prefix matching, which means everything from
1457 * pos+(bits-chopped_off) onward must be zero along some
1458 * branch of this subtree - otherwise there is *no* valid
1459 * prefix present. Here we can only check the skipped
1460 * bits. Remember, since we have already indexed into the
1461 * parent's child array, we know that the bits we chopped of
1462 * *are* zero.
1463 */
1464
1465 /* NOTA BENE: Checking only skipped bits
1466 for the new node here */
1467
1468 if (current_prefix_length < pos+bits) {
1469 if (tkey_extract_bits(cn->key, current_prefix_length,
1470 cn->pos - current_prefix_length)
1471 || !(cn->child[0]))
1472 goto backtrace;
1473 }
1474
1475 /*
1476 * If chopped_off=0, the index is fully validated and we
1477 * only need to look at the skipped bits for this, the new,
1478 * tnode. What we actually want to do is to find out if
1479 * these skipped bits match our key perfectly, or if we will
1480 * have to count on finding a matching prefix further down,
1481 * because if we do, we would like to have some way of
1482 * verifying the existence of such a prefix at this point.
1483 */
1484
1485 /* The only thing we can do at this point is to verify that
1486 * any such matching prefix can indeed be a prefix to our
1487 * key, and if the bits in the node we are inspecting that
1488 * do not match our key are not ZERO, this cannot be true.
1489 * Thus, find out where there is a mismatch (before cn->pos)
1490 * and verify that all the mismatching bits are zero in the
1491 * new tnode's key.
1492 */
1493
1494 /*
1495 * Note: We aren't very concerned about the piece of
1496 * the key that precede pn->pos+pn->bits, since these
1497 * have already been checked. The bits after cn->pos
1498 * aren't checked since these are by definition
1499 * "unknown" at this point. Thus, what we want to see
1500 * is if we are about to enter the "prefix matching"
1501 * state, and in that case verify that the skipped
1502 * bits that will prevail throughout this subtree are
1503 * zero, as they have to be if we are to find a
1504 * matching prefix.
1505 */
1506
1507 node_prefix = mask_pfx(cn->key, cn->pos);
1508 key_prefix = mask_pfx(key, cn->pos);
1509 pref_mismatch = key_prefix^node_prefix;
1510 mp = 0;
1511
1512 /*
1513 * In short: If skipped bits in this node do not match
1514 * the search key, enter the "prefix matching"
1515 * state.directly.
1516 */
1517 if (pref_mismatch) {
1518 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1519 mp++;
1520 pref_mismatch = pref_mismatch << 1;
1521 }
1522 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1523
1524 if (key_prefix != 0)
1525 goto backtrace;
1526
1527 if (current_prefix_length >= cn->pos)
1528 current_prefix_length = mp;
1529 }
1530
1531 pn = (struct tnode *)n; /* Descend */
1532 chopped_off = 0;
1533 continue;
1534
1535 backtrace:
1536 chopped_off++;
1537
1538 /* As zero don't change the child key (cindex) */
1539 while ((chopped_off <= pn->bits)
1540 && !(cindex & (1<<(chopped_off-1))))
1541 chopped_off++;
1542
1543 /* Decrease current_... with bits chopped off */
1544 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1545 current_prefix_length = pn->pos + pn->bits
1546 - chopped_off;
1547
1548 /*
1549 * Either we do the actual chop off according or if we have
1550 * chopped off all bits in this tnode walk up to our parent.
1551 */
1552
1553 if (chopped_off <= pn->bits) {
1554 cindex &= ~(1 << (chopped_off-1));
1555 } else {
1556 struct tnode *parent = node_parent_rcu((struct node *) pn);
1557 if (!parent)
1558 goto failed;
1559
1560 /* Get Child's index */
1561 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1562 pn = parent;
1563 chopped_off = 0;
1564
1565 #ifdef CONFIG_IP_FIB_TRIE_STATS
1566 t->stats.backtrack++;
1567 #endif
1568 goto backtrace;
1569 }
1570 }
1571 failed:
1572 ret = 1;
1573 found:
1574 rcu_read_unlock();
1575 return ret;
1576 }
1577
1578 /*
1579 * Remove the leaf and return parent.
1580 */
1581 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1582 {
1583 struct tnode *tp = node_parent((struct node *) l);
1584
1585 pr_debug("entering trie_leaf_remove(%p)\n", l);
1586
1587 if (tp) {
1588 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1589 put_child(t, (struct tnode *)tp, cindex, NULL);
1590 trie_rebalance(t, tp);
1591 } else
1592 rcu_assign_pointer(t->trie, NULL);
1593
1594 free_leaf(l);
1595 }
1596
1597 /*
1598 * Caller must hold RTNL.
1599 */
1600 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1601 {
1602 struct trie *t = (struct trie *) tb->tb_data;
1603 u32 key, mask;
1604 int plen = cfg->fc_dst_len;
1605 u8 tos = cfg->fc_tos;
1606 struct fib_alias *fa, *fa_to_delete;
1607 struct list_head *fa_head;
1608 struct leaf *l;
1609 struct leaf_info *li;
1610
1611 if (plen > 32)
1612 return -EINVAL;
1613
1614 key = ntohl(cfg->fc_dst);
1615 mask = ntohl(inet_make_mask(plen));
1616
1617 if (key & ~mask)
1618 return -EINVAL;
1619
1620 key = key & mask;
1621 l = fib_find_node(t, key);
1622
1623 if (!l)
1624 return -ESRCH;
1625
1626 fa_head = get_fa_head(l, plen);
1627 fa = fib_find_alias(fa_head, tos, 0);
1628
1629 if (!fa)
1630 return -ESRCH;
1631
1632 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1633
1634 fa_to_delete = NULL;
1635 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1636 list_for_each_entry_continue(fa, fa_head, fa_list) {
1637 struct fib_info *fi = fa->fa_info;
1638
1639 if (fa->fa_tos != tos)
1640 break;
1641
1642 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1643 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1644 fa->fa_scope == cfg->fc_scope) &&
1645 (!cfg->fc_protocol ||
1646 fi->fib_protocol == cfg->fc_protocol) &&
1647 fib_nh_match(cfg, fi) == 0) {
1648 fa_to_delete = fa;
1649 break;
1650 }
1651 }
1652
1653 if (!fa_to_delete)
1654 return -ESRCH;
1655
1656 fa = fa_to_delete;
1657 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1658 &cfg->fc_nlinfo, 0);
1659
1660 l = fib_find_node(t, key);
1661 li = find_leaf_info(l, plen);
1662
1663 list_del_rcu(&fa->fa_list);
1664
1665 if (list_empty(fa_head)) {
1666 hlist_del_rcu(&li->hlist);
1667 free_leaf_info(li);
1668 }
1669
1670 if (hlist_empty(&l->list))
1671 trie_leaf_remove(t, l);
1672
1673 if (fa->fa_state & FA_S_ACCESSED)
1674 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1675
1676 fib_release_info(fa->fa_info);
1677 alias_free_mem_rcu(fa);
1678 return 0;
1679 }
1680
1681 static int trie_flush_list(struct list_head *head)
1682 {
1683 struct fib_alias *fa, *fa_node;
1684 int found = 0;
1685
1686 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1687 struct fib_info *fi = fa->fa_info;
1688
1689 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1690 list_del_rcu(&fa->fa_list);
1691 fib_release_info(fa->fa_info);
1692 alias_free_mem_rcu(fa);
1693 found++;
1694 }
1695 }
1696 return found;
1697 }
1698
1699 static int trie_flush_leaf(struct leaf *l)
1700 {
1701 int found = 0;
1702 struct hlist_head *lih = &l->list;
1703 struct hlist_node *node, *tmp;
1704 struct leaf_info *li = NULL;
1705
1706 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1707 found += trie_flush_list(&li->falh);
1708
1709 if (list_empty(&li->falh)) {
1710 hlist_del_rcu(&li->hlist);
1711 free_leaf_info(li);
1712 }
1713 }
1714 return found;
1715 }
1716
1717 /*
1718 * Scan for the next right leaf starting at node p->child[idx]
1719 * Since we have back pointer, no recursion necessary.
1720 */
1721 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1722 {
1723 do {
1724 t_key idx;
1725
1726 if (c)
1727 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1728 else
1729 idx = 0;
1730
1731 while (idx < 1u << p->bits) {
1732 c = tnode_get_child_rcu(p, idx++);
1733 if (!c)
1734 continue;
1735
1736 if (IS_LEAF(c)) {
1737 prefetch(p->child[idx]);
1738 return (struct leaf *) c;
1739 }
1740
1741 /* Rescan start scanning in new node */
1742 p = (struct tnode *) c;
1743 idx = 0;
1744 }
1745
1746 /* Node empty, walk back up to parent */
1747 c = (struct node *) p;
1748 } while ( (p = node_parent_rcu(c)) != NULL);
1749
1750 return NULL; /* Root of trie */
1751 }
1752
1753 static struct leaf *trie_firstleaf(struct trie *t)
1754 {
1755 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1756
1757 if (!n)
1758 return NULL;
1759
1760 if (IS_LEAF(n)) /* trie is just a leaf */
1761 return (struct leaf *) n;
1762
1763 return leaf_walk_rcu(n, NULL);
1764 }
1765
1766 static struct leaf *trie_nextleaf(struct leaf *l)
1767 {
1768 struct node *c = (struct node *) l;
1769 struct tnode *p = node_parent_rcu(c);
1770
1771 if (!p)
1772 return NULL; /* trie with just one leaf */
1773
1774 return leaf_walk_rcu(p, c);
1775 }
1776
1777 static struct leaf *trie_leafindex(struct trie *t, int index)
1778 {
1779 struct leaf *l = trie_firstleaf(t);
1780
1781 while (l && index-- > 0)
1782 l = trie_nextleaf(l);
1783
1784 return l;
1785 }
1786
1787
1788 /*
1789 * Caller must hold RTNL.
1790 */
1791 int fib_table_flush(struct fib_table *tb)
1792 {
1793 struct trie *t = (struct trie *) tb->tb_data;
1794 struct leaf *l, *ll = NULL;
1795 int found = 0;
1796
1797 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1798 found += trie_flush_leaf(l);
1799
1800 if (ll && hlist_empty(&ll->list))
1801 trie_leaf_remove(t, ll);
1802 ll = l;
1803 }
1804
1805 if (ll && hlist_empty(&ll->list))
1806 trie_leaf_remove(t, ll);
1807
1808 pr_debug("trie_flush found=%d\n", found);
1809 return found;
1810 }
1811
1812 void fib_table_select_default(struct fib_table *tb,
1813 const struct flowi *flp,
1814 struct fib_result *res)
1815 {
1816 struct trie *t = (struct trie *) tb->tb_data;
1817 int order, last_idx;
1818 struct fib_info *fi = NULL;
1819 struct fib_info *last_resort;
1820 struct fib_alias *fa = NULL;
1821 struct list_head *fa_head;
1822 struct leaf *l;
1823
1824 last_idx = -1;
1825 last_resort = NULL;
1826 order = -1;
1827
1828 rcu_read_lock();
1829
1830 l = fib_find_node(t, 0);
1831 if (!l)
1832 goto out;
1833
1834 fa_head = get_fa_head(l, 0);
1835 if (!fa_head)
1836 goto out;
1837
1838 if (list_empty(fa_head))
1839 goto out;
1840
1841 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1842 struct fib_info *next_fi = fa->fa_info;
1843
1844 if (fa->fa_scope != res->scope ||
1845 fa->fa_type != RTN_UNICAST)
1846 continue;
1847
1848 if (next_fi->fib_priority > res->fi->fib_priority)
1849 break;
1850 if (!next_fi->fib_nh[0].nh_gw ||
1851 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1852 continue;
1853 fa->fa_state |= FA_S_ACCESSED;
1854
1855 if (fi == NULL) {
1856 if (next_fi != res->fi)
1857 break;
1858 } else if (!fib_detect_death(fi, order, &last_resort,
1859 &last_idx, tb->tb_default)) {
1860 fib_result_assign(res, fi);
1861 tb->tb_default = order;
1862 goto out;
1863 }
1864 fi = next_fi;
1865 order++;
1866 }
1867 if (order <= 0 || fi == NULL) {
1868 tb->tb_default = -1;
1869 goto out;
1870 }
1871
1872 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1873 tb->tb_default)) {
1874 fib_result_assign(res, fi);
1875 tb->tb_default = order;
1876 goto out;
1877 }
1878 if (last_idx >= 0)
1879 fib_result_assign(res, last_resort);
1880 tb->tb_default = last_idx;
1881 out:
1882 rcu_read_unlock();
1883 }
1884
1885 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1886 struct fib_table *tb,
1887 struct sk_buff *skb, struct netlink_callback *cb)
1888 {
1889 int i, s_i;
1890 struct fib_alias *fa;
1891 __be32 xkey = htonl(key);
1892
1893 s_i = cb->args[5];
1894 i = 0;
1895
1896 /* rcu_read_lock is hold by caller */
1897
1898 list_for_each_entry_rcu(fa, fah, fa_list) {
1899 if (i < s_i) {
1900 i++;
1901 continue;
1902 }
1903
1904 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1905 cb->nlh->nlmsg_seq,
1906 RTM_NEWROUTE,
1907 tb->tb_id,
1908 fa->fa_type,
1909 fa->fa_scope,
1910 xkey,
1911 plen,
1912 fa->fa_tos,
1913 fa->fa_info, NLM_F_MULTI) < 0) {
1914 cb->args[5] = i;
1915 return -1;
1916 }
1917 i++;
1918 }
1919 cb->args[5] = i;
1920 return skb->len;
1921 }
1922
1923 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1924 struct sk_buff *skb, struct netlink_callback *cb)
1925 {
1926 struct leaf_info *li;
1927 struct hlist_node *node;
1928 int i, s_i;
1929
1930 s_i = cb->args[4];
1931 i = 0;
1932
1933 /* rcu_read_lock is hold by caller */
1934 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1935 if (i < s_i) {
1936 i++;
1937 continue;
1938 }
1939
1940 if (i > s_i)
1941 cb->args[5] = 0;
1942
1943 if (list_empty(&li->falh))
1944 continue;
1945
1946 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1947 cb->args[4] = i;
1948 return -1;
1949 }
1950 i++;
1951 }
1952
1953 cb->args[4] = i;
1954 return skb->len;
1955 }
1956
1957 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1958 struct netlink_callback *cb)
1959 {
1960 struct leaf *l;
1961 struct trie *t = (struct trie *) tb->tb_data;
1962 t_key key = cb->args[2];
1963 int count = cb->args[3];
1964
1965 rcu_read_lock();
1966 /* Dump starting at last key.
1967 * Note: 0.0.0.0/0 (ie default) is first key.
1968 */
1969 if (count == 0)
1970 l = trie_firstleaf(t);
1971 else {
1972 /* Normally, continue from last key, but if that is missing
1973 * fallback to using slow rescan
1974 */
1975 l = fib_find_node(t, key);
1976 if (!l)
1977 l = trie_leafindex(t, count);
1978 }
1979
1980 while (l) {
1981 cb->args[2] = l->key;
1982 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1983 cb->args[3] = count;
1984 rcu_read_unlock();
1985 return -1;
1986 }
1987
1988 ++count;
1989 l = trie_nextleaf(l);
1990 memset(&cb->args[4], 0,
1991 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1992 }
1993 cb->args[3] = count;
1994 rcu_read_unlock();
1995
1996 return skb->len;
1997 }
1998
1999 void __init fib_hash_init(void)
2000 {
2001 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2002 sizeof(struct fib_alias),
2003 0, SLAB_PANIC, NULL);
2004
2005 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2006 max(sizeof(struct leaf),
2007 sizeof(struct leaf_info)),
2008 0, SLAB_PANIC, NULL);
2009 }
2010
2011
2012 /* Fix more generic FIB names for init later */
2013 struct fib_table *fib_hash_table(u32 id)
2014 {
2015 struct fib_table *tb;
2016 struct trie *t;
2017
2018 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2019 GFP_KERNEL);
2020 if (tb == NULL)
2021 return NULL;
2022
2023 tb->tb_id = id;
2024 tb->tb_default = -1;
2025
2026 t = (struct trie *) tb->tb_data;
2027 memset(t, 0, sizeof(*t));
2028
2029 if (id == RT_TABLE_LOCAL)
2030 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2031
2032 return tb;
2033 }
2034
2035 #ifdef CONFIG_PROC_FS
2036 /* Depth first Trie walk iterator */
2037 struct fib_trie_iter {
2038 struct seq_net_private p;
2039 struct fib_table *tb;
2040 struct tnode *tnode;
2041 unsigned index;
2042 unsigned depth;
2043 };
2044
2045 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2046 {
2047 struct tnode *tn = iter->tnode;
2048 unsigned cindex = iter->index;
2049 struct tnode *p;
2050
2051 /* A single entry routing table */
2052 if (!tn)
2053 return NULL;
2054
2055 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2056 iter->tnode, iter->index, iter->depth);
2057 rescan:
2058 while (cindex < (1<<tn->bits)) {
2059 struct node *n = tnode_get_child_rcu(tn, cindex);
2060
2061 if (n) {
2062 if (IS_LEAF(n)) {
2063 iter->tnode = tn;
2064 iter->index = cindex + 1;
2065 } else {
2066 /* push down one level */
2067 iter->tnode = (struct tnode *) n;
2068 iter->index = 0;
2069 ++iter->depth;
2070 }
2071 return n;
2072 }
2073
2074 ++cindex;
2075 }
2076
2077 /* Current node exhausted, pop back up */
2078 p = node_parent_rcu((struct node *)tn);
2079 if (p) {
2080 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2081 tn = p;
2082 --iter->depth;
2083 goto rescan;
2084 }
2085
2086 /* got root? */
2087 return NULL;
2088 }
2089
2090 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2091 struct trie *t)
2092 {
2093 struct node *n;
2094
2095 if (!t)
2096 return NULL;
2097
2098 n = rcu_dereference(t->trie);
2099 if (!n)
2100 return NULL;
2101
2102 if (IS_TNODE(n)) {
2103 iter->tnode = (struct tnode *) n;
2104 iter->index = 0;
2105 iter->depth = 1;
2106 } else {
2107 iter->tnode = NULL;
2108 iter->index = 0;
2109 iter->depth = 0;
2110 }
2111
2112 return n;
2113 }
2114
2115 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2116 {
2117 struct node *n;
2118 struct fib_trie_iter iter;
2119
2120 memset(s, 0, sizeof(*s));
2121
2122 rcu_read_lock();
2123 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2124 if (IS_LEAF(n)) {
2125 struct leaf *l = (struct leaf *)n;
2126 struct leaf_info *li;
2127 struct hlist_node *tmp;
2128
2129 s->leaves++;
2130 s->totdepth += iter.depth;
2131 if (iter.depth > s->maxdepth)
2132 s->maxdepth = iter.depth;
2133
2134 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2135 ++s->prefixes;
2136 } else {
2137 const struct tnode *tn = (const struct tnode *) n;
2138 int i;
2139
2140 s->tnodes++;
2141 if (tn->bits < MAX_STAT_DEPTH)
2142 s->nodesizes[tn->bits]++;
2143
2144 for (i = 0; i < (1<<tn->bits); i++)
2145 if (!tn->child[i])
2146 s->nullpointers++;
2147 }
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * This outputs /proc/net/fib_triestats
2154 */
2155 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2156 {
2157 unsigned i, max, pointers, bytes, avdepth;
2158
2159 if (stat->leaves)
2160 avdepth = stat->totdepth*100 / stat->leaves;
2161 else
2162 avdepth = 0;
2163
2164 seq_printf(seq, "\tAver depth: %u.%02d\n",
2165 avdepth / 100, avdepth % 100);
2166 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2167
2168 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2169 bytes = sizeof(struct leaf) * stat->leaves;
2170
2171 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2172 bytes += sizeof(struct leaf_info) * stat->prefixes;
2173
2174 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2175 bytes += sizeof(struct tnode) * stat->tnodes;
2176
2177 max = MAX_STAT_DEPTH;
2178 while (max > 0 && stat->nodesizes[max-1] == 0)
2179 max--;
2180
2181 pointers = 0;
2182 for (i = 1; i <= max; i++)
2183 if (stat->nodesizes[i] != 0) {
2184 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2185 pointers += (1<<i) * stat->nodesizes[i];
2186 }
2187 seq_putc(seq, '\n');
2188 seq_printf(seq, "\tPointers: %u\n", pointers);
2189
2190 bytes += sizeof(struct node *) * pointers;
2191 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2192 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2193 }
2194
2195 #ifdef CONFIG_IP_FIB_TRIE_STATS
2196 static void trie_show_usage(struct seq_file *seq,
2197 const struct trie_use_stats *stats)
2198 {
2199 seq_printf(seq, "\nCounters:\n---------\n");
2200 seq_printf(seq, "gets = %u\n", stats->gets);
2201 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2202 seq_printf(seq, "semantic match passed = %u\n",
2203 stats->semantic_match_passed);
2204 seq_printf(seq, "semantic match miss = %u\n",
2205 stats->semantic_match_miss);
2206 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2207 seq_printf(seq, "skipped node resize = %u\n\n",
2208 stats->resize_node_skipped);
2209 }
2210 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2211
2212 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2213 {
2214 if (tb->tb_id == RT_TABLE_LOCAL)
2215 seq_puts(seq, "Local:\n");
2216 else if (tb->tb_id == RT_TABLE_MAIN)
2217 seq_puts(seq, "Main:\n");
2218 else
2219 seq_printf(seq, "Id %d:\n", tb->tb_id);
2220 }
2221
2222
2223 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2224 {
2225 struct net *net = (struct net *)seq->private;
2226 unsigned int h;
2227
2228 seq_printf(seq,
2229 "Basic info: size of leaf:"
2230 " %Zd bytes, size of tnode: %Zd bytes.\n",
2231 sizeof(struct leaf), sizeof(struct tnode));
2232
2233 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2234 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2235 struct hlist_node *node;
2236 struct fib_table *tb;
2237
2238 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2239 struct trie *t = (struct trie *) tb->tb_data;
2240 struct trie_stat stat;
2241
2242 if (!t)
2243 continue;
2244
2245 fib_table_print(seq, tb);
2246
2247 trie_collect_stats(t, &stat);
2248 trie_show_stats(seq, &stat);
2249 #ifdef CONFIG_IP_FIB_TRIE_STATS
2250 trie_show_usage(seq, &t->stats);
2251 #endif
2252 }
2253 }
2254
2255 return 0;
2256 }
2257
2258 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2259 {
2260 return single_open_net(inode, file, fib_triestat_seq_show);
2261 }
2262
2263 static const struct file_operations fib_triestat_fops = {
2264 .owner = THIS_MODULE,
2265 .open = fib_triestat_seq_open,
2266 .read = seq_read,
2267 .llseek = seq_lseek,
2268 .release = single_release_net,
2269 };
2270
2271 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2272 {
2273 struct fib_trie_iter *iter = seq->private;
2274 struct net *net = seq_file_net(seq);
2275 loff_t idx = 0;
2276 unsigned int h;
2277
2278 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2279 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2280 struct hlist_node *node;
2281 struct fib_table *tb;
2282
2283 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2284 struct node *n;
2285
2286 for (n = fib_trie_get_first(iter,
2287 (struct trie *) tb->tb_data);
2288 n; n = fib_trie_get_next(iter))
2289 if (pos == idx++) {
2290 iter->tb = tb;
2291 return n;
2292 }
2293 }
2294 }
2295
2296 return NULL;
2297 }
2298
2299 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2300 __acquires(RCU)
2301 {
2302 rcu_read_lock();
2303 return fib_trie_get_idx(seq, *pos);
2304 }
2305
2306 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2307 {
2308 struct fib_trie_iter *iter = seq->private;
2309 struct net *net = seq_file_net(seq);
2310 struct fib_table *tb = iter->tb;
2311 struct hlist_node *tb_node;
2312 unsigned int h;
2313 struct node *n;
2314
2315 ++*pos;
2316 /* next node in same table */
2317 n = fib_trie_get_next(iter);
2318 if (n)
2319 return n;
2320
2321 /* walk rest of this hash chain */
2322 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2323 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2324 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2325 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2326 if (n)
2327 goto found;
2328 }
2329
2330 /* new hash chain */
2331 while (++h < FIB_TABLE_HASHSZ) {
2332 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2333 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2334 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2335 if (n)
2336 goto found;
2337 }
2338 }
2339 return NULL;
2340
2341 found:
2342 iter->tb = tb;
2343 return n;
2344 }
2345
2346 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2347 __releases(RCU)
2348 {
2349 rcu_read_unlock();
2350 }
2351
2352 static void seq_indent(struct seq_file *seq, int n)
2353 {
2354 while (n-- > 0) seq_puts(seq, " ");
2355 }
2356
2357 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2358 {
2359 switch (s) {
2360 case RT_SCOPE_UNIVERSE: return "universe";
2361 case RT_SCOPE_SITE: return "site";
2362 case RT_SCOPE_LINK: return "link";
2363 case RT_SCOPE_HOST: return "host";
2364 case RT_SCOPE_NOWHERE: return "nowhere";
2365 default:
2366 snprintf(buf, len, "scope=%d", s);
2367 return buf;
2368 }
2369 }
2370
2371 static const char *const rtn_type_names[__RTN_MAX] = {
2372 [RTN_UNSPEC] = "UNSPEC",
2373 [RTN_UNICAST] = "UNICAST",
2374 [RTN_LOCAL] = "LOCAL",
2375 [RTN_BROADCAST] = "BROADCAST",
2376 [RTN_ANYCAST] = "ANYCAST",
2377 [RTN_MULTICAST] = "MULTICAST",
2378 [RTN_BLACKHOLE] = "BLACKHOLE",
2379 [RTN_UNREACHABLE] = "UNREACHABLE",
2380 [RTN_PROHIBIT] = "PROHIBIT",
2381 [RTN_THROW] = "THROW",
2382 [RTN_NAT] = "NAT",
2383 [RTN_XRESOLVE] = "XRESOLVE",
2384 };
2385
2386 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2387 {
2388 if (t < __RTN_MAX && rtn_type_names[t])
2389 return rtn_type_names[t];
2390 snprintf(buf, len, "type %u", t);
2391 return buf;
2392 }
2393
2394 /* Pretty print the trie */
2395 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2396 {
2397 const struct fib_trie_iter *iter = seq->private;
2398 struct node *n = v;
2399
2400 if (!node_parent_rcu(n))
2401 fib_table_print(seq, iter->tb);
2402
2403 if (IS_TNODE(n)) {
2404 struct tnode *tn = (struct tnode *) n;
2405 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2406
2407 seq_indent(seq, iter->depth-1);
2408 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2409 &prf, tn->pos, tn->bits, tn->full_children,
2410 tn->empty_children);
2411
2412 } else {
2413 struct leaf *l = (struct leaf *) n;
2414 struct leaf_info *li;
2415 struct hlist_node *node;
2416 __be32 val = htonl(l->key);
2417
2418 seq_indent(seq, iter->depth);
2419 seq_printf(seq, " |-- %pI4\n", &val);
2420
2421 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2422 struct fib_alias *fa;
2423
2424 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2425 char buf1[32], buf2[32];
2426
2427 seq_indent(seq, iter->depth+1);
2428 seq_printf(seq, " /%d %s %s", li->plen,
2429 rtn_scope(buf1, sizeof(buf1),
2430 fa->fa_scope),
2431 rtn_type(buf2, sizeof(buf2),
2432 fa->fa_type));
2433 if (fa->fa_tos)
2434 seq_printf(seq, " tos=%d", fa->fa_tos);
2435 seq_putc(seq, '\n');
2436 }
2437 }
2438 }
2439
2440 return 0;
2441 }
2442
2443 static const struct seq_operations fib_trie_seq_ops = {
2444 .start = fib_trie_seq_start,
2445 .next = fib_trie_seq_next,
2446 .stop = fib_trie_seq_stop,
2447 .show = fib_trie_seq_show,
2448 };
2449
2450 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2451 {
2452 return seq_open_net(inode, file, &fib_trie_seq_ops,
2453 sizeof(struct fib_trie_iter));
2454 }
2455
2456 static const struct file_operations fib_trie_fops = {
2457 .owner = THIS_MODULE,
2458 .open = fib_trie_seq_open,
2459 .read = seq_read,
2460 .llseek = seq_lseek,
2461 .release = seq_release_net,
2462 };
2463
2464 struct fib_route_iter {
2465 struct seq_net_private p;
2466 struct trie *main_trie;
2467 loff_t pos;
2468 t_key key;
2469 };
2470
2471 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2472 {
2473 struct leaf *l = NULL;
2474 struct trie *t = iter->main_trie;
2475
2476 /* use cache location of last found key */
2477 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2478 pos -= iter->pos;
2479 else {
2480 iter->pos = 0;
2481 l = trie_firstleaf(t);
2482 }
2483
2484 while (l && pos-- > 0) {
2485 iter->pos++;
2486 l = trie_nextleaf(l);
2487 }
2488
2489 if (l)
2490 iter->key = pos; /* remember it */
2491 else
2492 iter->pos = 0; /* forget it */
2493
2494 return l;
2495 }
2496
2497 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2498 __acquires(RCU)
2499 {
2500 struct fib_route_iter *iter = seq->private;
2501 struct fib_table *tb;
2502
2503 rcu_read_lock();
2504 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2505 if (!tb)
2506 return NULL;
2507
2508 iter->main_trie = (struct trie *) tb->tb_data;
2509 if (*pos == 0)
2510 return SEQ_START_TOKEN;
2511 else
2512 return fib_route_get_idx(iter, *pos - 1);
2513 }
2514
2515 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2516 {
2517 struct fib_route_iter *iter = seq->private;
2518 struct leaf *l = v;
2519
2520 ++*pos;
2521 if (v == SEQ_START_TOKEN) {
2522 iter->pos = 0;
2523 l = trie_firstleaf(iter->main_trie);
2524 } else {
2525 iter->pos++;
2526 l = trie_nextleaf(l);
2527 }
2528
2529 if (l)
2530 iter->key = l->key;
2531 else
2532 iter->pos = 0;
2533 return l;
2534 }
2535
2536 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2537 __releases(RCU)
2538 {
2539 rcu_read_unlock();
2540 }
2541
2542 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2543 {
2544 static unsigned type2flags[RTN_MAX + 1] = {
2545 [7] = RTF_REJECT, [8] = RTF_REJECT,
2546 };
2547 unsigned flags = type2flags[type];
2548
2549 if (fi && fi->fib_nh->nh_gw)
2550 flags |= RTF_GATEWAY;
2551 if (mask == htonl(0xFFFFFFFF))
2552 flags |= RTF_HOST;
2553 flags |= RTF_UP;
2554 return flags;
2555 }
2556
2557 /*
2558 * This outputs /proc/net/route.
2559 * The format of the file is not supposed to be changed
2560 * and needs to be same as fib_hash output to avoid breaking
2561 * legacy utilities
2562 */
2563 static int fib_route_seq_show(struct seq_file *seq, void *v)
2564 {
2565 struct leaf *l = v;
2566 struct leaf_info *li;
2567 struct hlist_node *node;
2568
2569 if (v == SEQ_START_TOKEN) {
2570 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2571 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2572 "\tWindow\tIRTT");
2573 return 0;
2574 }
2575
2576 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2577 struct fib_alias *fa;
2578 __be32 mask, prefix;
2579
2580 mask = inet_make_mask(li->plen);
2581 prefix = htonl(l->key);
2582
2583 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2584 const struct fib_info *fi = fa->fa_info;
2585 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2586 int len;
2587
2588 if (fa->fa_type == RTN_BROADCAST
2589 || fa->fa_type == RTN_MULTICAST)
2590 continue;
2591
2592 if (fi)
2593 seq_printf(seq,
2594 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2595 "%d\t%08X\t%d\t%u\t%u%n",
2596 fi->fib_dev ? fi->fib_dev->name : "*",
2597 prefix,
2598 fi->fib_nh->nh_gw, flags, 0, 0,
2599 fi->fib_priority,
2600 mask,
2601 (fi->fib_advmss ?
2602 fi->fib_advmss + 40 : 0),
2603 fi->fib_window,
2604 fi->fib_rtt >> 3, &len);
2605 else
2606 seq_printf(seq,
2607 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2608 "%d\t%08X\t%d\t%u\t%u%n",
2609 prefix, 0, flags, 0, 0, 0,
2610 mask, 0, 0, 0, &len);
2611
2612 seq_printf(seq, "%*s\n", 127 - len, "");
2613 }
2614 }
2615
2616 return 0;
2617 }
2618
2619 static const struct seq_operations fib_route_seq_ops = {
2620 .start = fib_route_seq_start,
2621 .next = fib_route_seq_next,
2622 .stop = fib_route_seq_stop,
2623 .show = fib_route_seq_show,
2624 };
2625
2626 static int fib_route_seq_open(struct inode *inode, struct file *file)
2627 {
2628 return seq_open_net(inode, file, &fib_route_seq_ops,
2629 sizeof(struct fib_route_iter));
2630 }
2631
2632 static const struct file_operations fib_route_fops = {
2633 .owner = THIS_MODULE,
2634 .open = fib_route_seq_open,
2635 .read = seq_read,
2636 .llseek = seq_lseek,
2637 .release = seq_release_net,
2638 };
2639
2640 int __net_init fib_proc_init(struct net *net)
2641 {
2642 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2643 goto out1;
2644
2645 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2646 &fib_triestat_fops))
2647 goto out2;
2648
2649 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2650 goto out3;
2651
2652 return 0;
2653
2654 out3:
2655 proc_net_remove(net, "fib_triestat");
2656 out2:
2657 proc_net_remove(net, "fib_trie");
2658 out1:
2659 return -ENOMEM;
2660 }
2661
2662 void __net_exit fib_proc_exit(struct net *net)
2663 {
2664 proc_net_remove(net, "fib_trie");
2665 proc_net_remove(net, "fib_triestat");
2666 proc_net_remove(net, "route");
2667 }
2668
2669 #endif /* CONFIG_PROC_FS */
This page took 0.083893 seconds and 6 git commands to generate.