Merge branch 'linux-2.6' into merge
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
127 };
128
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
137 };
138 #endif
139
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int prefixes;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
148 };
149
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
155 };
156
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
160 static struct node *resize(struct trie *t, struct tnode *tn);
161 static struct tnode *inflate(struct trie *t, struct tnode *tn);
162 static struct tnode *halve(struct trie *t, struct tnode *tn);
163 static void tnode_free(struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 /* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
183 static inline void node_set_parent(struct node *node, struct tnode *ptr)
184 {
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
187 }
188
189 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190 {
191 BUG_ON(i >= 1U << tn->bits);
192
193 return tn->child[i];
194 }
195
196 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
197 {
198 struct node *ret = tnode_get_child(tn, i);
199
200 return rcu_dereference(ret);
201 }
202
203 static inline int tnode_child_length(const struct tnode *tn)
204 {
205 return 1 << tn->bits;
206 }
207
208 static inline t_key mask_pfx(t_key k, unsigned short l)
209 {
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211 }
212
213 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214 {
215 if (offset < KEYLENGTH)
216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
217 else
218 return 0;
219 }
220
221 static inline int tkey_equals(t_key a, t_key b)
222 {
223 return a == b;
224 }
225
226 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227 {
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
232 }
233
234 static inline int tkey_mismatch(t_key a, int offset, t_key b)
235 {
236 t_key diff = a ^ b;
237 int i = offset;
238
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
242 i++;
243 return i;
244 }
245
246 /*
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
258 correct key path.
259
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
265 call to tkey_sub_equals() in trie_insert().
266
267 if n is an internal node - a 'tnode' here, the various parts of its key
268 have many different meanings.
269
270 Example:
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
284 n->bits = 4
285
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
291 index into the parent's child array. That is, they will be used to find
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
297 All the bits we have seen so far are significant to the node n. The rest
298 of the bits are really not needed or indeed known in n->key.
299
300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
301 n's child array, and will of course be different for each child.
302
303
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307 */
308
309 static inline void check_tnode(const struct tnode *tn)
310 {
311 WARN_ON(tn && tn->pos+tn->bits > 32);
312 }
313
314 static const int halve_threshold = 25;
315 static const int inflate_threshold = 50;
316 static const int halve_threshold_root = 8;
317 static const int inflate_threshold_root = 15;
318
319
320 static void __alias_free_mem(struct rcu_head *head)
321 {
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
324 }
325
326 static inline void alias_free_mem_rcu(struct fib_alias *fa)
327 {
328 call_rcu(&fa->rcu, __alias_free_mem);
329 }
330
331 static void __leaf_free_rcu(struct rcu_head *head)
332 {
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
335 }
336
337 static void __leaf_info_free_rcu(struct rcu_head *head)
338 {
339 kfree(container_of(head, struct leaf_info, rcu));
340 }
341
342 static inline void free_leaf_info(struct leaf_info *leaf)
343 {
344 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
345 }
346
347 static struct tnode *tnode_alloc(size_t size)
348 {
349 struct page *pages;
350
351 if (size <= PAGE_SIZE)
352 return kzalloc(size, GFP_KERNEL);
353
354 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
355 if (!pages)
356 return NULL;
357
358 return page_address(pages);
359 }
360
361 static void __tnode_free_rcu(struct rcu_head *head)
362 {
363 struct tnode *tn = container_of(head, struct tnode, rcu);
364 size_t size = sizeof(struct tnode) +
365 (sizeof(struct node *) << tn->bits);
366
367 if (size <= PAGE_SIZE)
368 kfree(tn);
369 else
370 free_pages((unsigned long)tn, get_order(size));
371 }
372
373 static inline void tnode_free(struct tnode *tn)
374 {
375 if (IS_LEAF(tn)) {
376 struct leaf *l = (struct leaf *) tn;
377 call_rcu_bh(&l->rcu, __leaf_free_rcu);
378 } else
379 call_rcu(&tn->rcu, __tnode_free_rcu);
380 }
381
382 static struct leaf *leaf_new(void)
383 {
384 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
385 if (l) {
386 l->parent = T_LEAF;
387 INIT_HLIST_HEAD(&l->list);
388 }
389 return l;
390 }
391
392 static struct leaf_info *leaf_info_new(int plen)
393 {
394 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
395 if (li) {
396 li->plen = plen;
397 INIT_LIST_HEAD(&li->falh);
398 }
399 return li;
400 }
401
402 static struct tnode *tnode_new(t_key key, int pos, int bits)
403 {
404 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
405 struct tnode *tn = tnode_alloc(sz);
406
407 if (tn) {
408 tn->parent = T_TNODE;
409 tn->pos = pos;
410 tn->bits = bits;
411 tn->key = key;
412 tn->full_children = 0;
413 tn->empty_children = 1<<bits;
414 }
415
416 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
417 (unsigned long) (sizeof(struct node) << bits));
418 return tn;
419 }
420
421 /*
422 * Check whether a tnode 'n' is "full", i.e. it is an internal node
423 * and no bits are skipped. See discussion in dyntree paper p. 6
424 */
425
426 static inline int tnode_full(const struct tnode *tn, const struct node *n)
427 {
428 if (n == NULL || IS_LEAF(n))
429 return 0;
430
431 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
432 }
433
434 static inline void put_child(struct trie *t, struct tnode *tn, int i,
435 struct node *n)
436 {
437 tnode_put_child_reorg(tn, i, n, -1);
438 }
439
440 /*
441 * Add a child at position i overwriting the old value.
442 * Update the value of full_children and empty_children.
443 */
444
445 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
446 int wasfull)
447 {
448 struct node *chi = tn->child[i];
449 int isfull;
450
451 BUG_ON(i >= 1<<tn->bits);
452
453 /* update emptyChildren */
454 if (n == NULL && chi != NULL)
455 tn->empty_children++;
456 else if (n != NULL && chi == NULL)
457 tn->empty_children--;
458
459 /* update fullChildren */
460 if (wasfull == -1)
461 wasfull = tnode_full(tn, chi);
462
463 isfull = tnode_full(tn, n);
464 if (wasfull && !isfull)
465 tn->full_children--;
466 else if (!wasfull && isfull)
467 tn->full_children++;
468
469 if (n)
470 node_set_parent(n, tn);
471
472 rcu_assign_pointer(tn->child[i], n);
473 }
474
475 static struct node *resize(struct trie *t, struct tnode *tn)
476 {
477 int i;
478 int err = 0;
479 struct tnode *old_tn;
480 int inflate_threshold_use;
481 int halve_threshold_use;
482 int max_resize;
483
484 if (!tn)
485 return NULL;
486
487 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
488 tn, inflate_threshold, halve_threshold);
489
490 /* No children */
491 if (tn->empty_children == tnode_child_length(tn)) {
492 tnode_free(tn);
493 return NULL;
494 }
495 /* One child */
496 if (tn->empty_children == tnode_child_length(tn) - 1)
497 for (i = 0; i < tnode_child_length(tn); i++) {
498 struct node *n;
499
500 n = tn->child[i];
501 if (!n)
502 continue;
503
504 /* compress one level */
505 node_set_parent(n, NULL);
506 tnode_free(tn);
507 return n;
508 }
509 /*
510 * Double as long as the resulting node has a number of
511 * nonempty nodes that are above the threshold.
512 */
513
514 /*
515 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
516 * the Helsinki University of Technology and Matti Tikkanen of Nokia
517 * Telecommunications, page 6:
518 * "A node is doubled if the ratio of non-empty children to all
519 * children in the *doubled* node is at least 'high'."
520 *
521 * 'high' in this instance is the variable 'inflate_threshold'. It
522 * is expressed as a percentage, so we multiply it with
523 * tnode_child_length() and instead of multiplying by 2 (since the
524 * child array will be doubled by inflate()) and multiplying
525 * the left-hand side by 100 (to handle the percentage thing) we
526 * multiply the left-hand side by 50.
527 *
528 * The left-hand side may look a bit weird: tnode_child_length(tn)
529 * - tn->empty_children is of course the number of non-null children
530 * in the current node. tn->full_children is the number of "full"
531 * children, that is non-null tnodes with a skip value of 0.
532 * All of those will be doubled in the resulting inflated tnode, so
533 * we just count them one extra time here.
534 *
535 * A clearer way to write this would be:
536 *
537 * to_be_doubled = tn->full_children;
538 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
539 * tn->full_children;
540 *
541 * new_child_length = tnode_child_length(tn) * 2;
542 *
543 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
544 * new_child_length;
545 * if (new_fill_factor >= inflate_threshold)
546 *
547 * ...and so on, tho it would mess up the while () loop.
548 *
549 * anyway,
550 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
551 * inflate_threshold
552 *
553 * avoid a division:
554 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
555 * inflate_threshold * new_child_length
556 *
557 * expand not_to_be_doubled and to_be_doubled, and shorten:
558 * 100 * (tnode_child_length(tn) - tn->empty_children +
559 * tn->full_children) >= inflate_threshold * new_child_length
560 *
561 * expand new_child_length:
562 * 100 * (tnode_child_length(tn) - tn->empty_children +
563 * tn->full_children) >=
564 * inflate_threshold * tnode_child_length(tn) * 2
565 *
566 * shorten again:
567 * 50 * (tn->full_children + tnode_child_length(tn) -
568 * tn->empty_children) >= inflate_threshold *
569 * tnode_child_length(tn)
570 *
571 */
572
573 check_tnode(tn);
574
575 /* Keep root node larger */
576
577 if (!tn->parent)
578 inflate_threshold_use = inflate_threshold_root;
579 else
580 inflate_threshold_use = inflate_threshold;
581
582 err = 0;
583 max_resize = 10;
584 while ((tn->full_children > 0 && max_resize-- &&
585 50 * (tn->full_children + tnode_child_length(tn)
586 - tn->empty_children)
587 >= inflate_threshold_use * tnode_child_length(tn))) {
588
589 old_tn = tn;
590 tn = inflate(t, tn);
591
592 if (IS_ERR(tn)) {
593 tn = old_tn;
594 #ifdef CONFIG_IP_FIB_TRIE_STATS
595 t->stats.resize_node_skipped++;
596 #endif
597 break;
598 }
599 }
600
601 if (max_resize < 0) {
602 if (!tn->parent)
603 pr_warning("Fix inflate_threshold_root."
604 " Now=%d size=%d bits\n",
605 inflate_threshold_root, tn->bits);
606 else
607 pr_warning("Fix inflate_threshold."
608 " Now=%d size=%d bits\n",
609 inflate_threshold, tn->bits);
610 }
611
612 check_tnode(tn);
613
614 /*
615 * Halve as long as the number of empty children in this
616 * node is above threshold.
617 */
618
619
620 /* Keep root node larger */
621
622 if (!tn->parent)
623 halve_threshold_use = halve_threshold_root;
624 else
625 halve_threshold_use = halve_threshold;
626
627 err = 0;
628 max_resize = 10;
629 while (tn->bits > 1 && max_resize-- &&
630 100 * (tnode_child_length(tn) - tn->empty_children) <
631 halve_threshold_use * tnode_child_length(tn)) {
632
633 old_tn = tn;
634 tn = halve(t, tn);
635 if (IS_ERR(tn)) {
636 tn = old_tn;
637 #ifdef CONFIG_IP_FIB_TRIE_STATS
638 t->stats.resize_node_skipped++;
639 #endif
640 break;
641 }
642 }
643
644 if (max_resize < 0) {
645 if (!tn->parent)
646 pr_warning("Fix halve_threshold_root."
647 " Now=%d size=%d bits\n",
648 halve_threshold_root, tn->bits);
649 else
650 pr_warning("Fix halve_threshold."
651 " Now=%d size=%d bits\n",
652 halve_threshold, tn->bits);
653 }
654
655 /* Only one child remains */
656 if (tn->empty_children == tnode_child_length(tn) - 1)
657 for (i = 0; i < tnode_child_length(tn); i++) {
658 struct node *n;
659
660 n = tn->child[i];
661 if (!n)
662 continue;
663
664 /* compress one level */
665
666 node_set_parent(n, NULL);
667 tnode_free(tn);
668 return n;
669 }
670
671 return (struct node *) tn;
672 }
673
674 static struct tnode *inflate(struct trie *t, struct tnode *tn)
675 {
676 struct tnode *oldtnode = tn;
677 int olen = tnode_child_length(tn);
678 int i;
679
680 pr_debug("In inflate\n");
681
682 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
683
684 if (!tn)
685 return ERR_PTR(-ENOMEM);
686
687 /*
688 * Preallocate and store tnodes before the actual work so we
689 * don't get into an inconsistent state if memory allocation
690 * fails. In case of failure we return the oldnode and inflate
691 * of tnode is ignored.
692 */
693
694 for (i = 0; i < olen; i++) {
695 struct tnode *inode;
696
697 inode = (struct tnode *) tnode_get_child(oldtnode, i);
698 if (inode &&
699 IS_TNODE(inode) &&
700 inode->pos == oldtnode->pos + oldtnode->bits &&
701 inode->bits > 1) {
702 struct tnode *left, *right;
703 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
704
705 left = tnode_new(inode->key&(~m), inode->pos + 1,
706 inode->bits - 1);
707 if (!left)
708 goto nomem;
709
710 right = tnode_new(inode->key|m, inode->pos + 1,
711 inode->bits - 1);
712
713 if (!right) {
714 tnode_free(left);
715 goto nomem;
716 }
717
718 put_child(t, tn, 2*i, (struct node *) left);
719 put_child(t, tn, 2*i+1, (struct node *) right);
720 }
721 }
722
723 for (i = 0; i < olen; i++) {
724 struct tnode *inode;
725 struct node *node = tnode_get_child(oldtnode, i);
726 struct tnode *left, *right;
727 int size, j;
728
729 /* An empty child */
730 if (node == NULL)
731 continue;
732
733 /* A leaf or an internal node with skipped bits */
734
735 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
736 tn->pos + tn->bits - 1) {
737 if (tkey_extract_bits(node->key,
738 oldtnode->pos + oldtnode->bits,
739 1) == 0)
740 put_child(t, tn, 2*i, node);
741 else
742 put_child(t, tn, 2*i+1, node);
743 continue;
744 }
745
746 /* An internal node with two children */
747 inode = (struct tnode *) node;
748
749 if (inode->bits == 1) {
750 put_child(t, tn, 2*i, inode->child[0]);
751 put_child(t, tn, 2*i+1, inode->child[1]);
752
753 tnode_free(inode);
754 continue;
755 }
756
757 /* An internal node with more than two children */
758
759 /* We will replace this node 'inode' with two new
760 * ones, 'left' and 'right', each with half of the
761 * original children. The two new nodes will have
762 * a position one bit further down the key and this
763 * means that the "significant" part of their keys
764 * (see the discussion near the top of this file)
765 * will differ by one bit, which will be "0" in
766 * left's key and "1" in right's key. Since we are
767 * moving the key position by one step, the bit that
768 * we are moving away from - the bit at position
769 * (inode->pos) - is the one that will differ between
770 * left and right. So... we synthesize that bit in the
771 * two new keys.
772 * The mask 'm' below will be a single "one" bit at
773 * the position (inode->pos)
774 */
775
776 /* Use the old key, but set the new significant
777 * bit to zero.
778 */
779
780 left = (struct tnode *) tnode_get_child(tn, 2*i);
781 put_child(t, tn, 2*i, NULL);
782
783 BUG_ON(!left);
784
785 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
786 put_child(t, tn, 2*i+1, NULL);
787
788 BUG_ON(!right);
789
790 size = tnode_child_length(left);
791 for (j = 0; j < size; j++) {
792 put_child(t, left, j, inode->child[j]);
793 put_child(t, right, j, inode->child[j + size]);
794 }
795 put_child(t, tn, 2*i, resize(t, left));
796 put_child(t, tn, 2*i+1, resize(t, right));
797
798 tnode_free(inode);
799 }
800 tnode_free(oldtnode);
801 return tn;
802 nomem:
803 {
804 int size = tnode_child_length(tn);
805 int j;
806
807 for (j = 0; j < size; j++)
808 if (tn->child[j])
809 tnode_free((struct tnode *)tn->child[j]);
810
811 tnode_free(tn);
812
813 return ERR_PTR(-ENOMEM);
814 }
815 }
816
817 static struct tnode *halve(struct trie *t, struct tnode *tn)
818 {
819 struct tnode *oldtnode = tn;
820 struct node *left, *right;
821 int i;
822 int olen = tnode_child_length(tn);
823
824 pr_debug("In halve\n");
825
826 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
827
828 if (!tn)
829 return ERR_PTR(-ENOMEM);
830
831 /*
832 * Preallocate and store tnodes before the actual work so we
833 * don't get into an inconsistent state if memory allocation
834 * fails. In case of failure we return the oldnode and halve
835 * of tnode is ignored.
836 */
837
838 for (i = 0; i < olen; i += 2) {
839 left = tnode_get_child(oldtnode, i);
840 right = tnode_get_child(oldtnode, i+1);
841
842 /* Two nonempty children */
843 if (left && right) {
844 struct tnode *newn;
845
846 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
847
848 if (!newn)
849 goto nomem;
850
851 put_child(t, tn, i/2, (struct node *)newn);
852 }
853
854 }
855
856 for (i = 0; i < olen; i += 2) {
857 struct tnode *newBinNode;
858
859 left = tnode_get_child(oldtnode, i);
860 right = tnode_get_child(oldtnode, i+1);
861
862 /* At least one of the children is empty */
863 if (left == NULL) {
864 if (right == NULL) /* Both are empty */
865 continue;
866 put_child(t, tn, i/2, right);
867 continue;
868 }
869
870 if (right == NULL) {
871 put_child(t, tn, i/2, left);
872 continue;
873 }
874
875 /* Two nonempty children */
876 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
877 put_child(t, tn, i/2, NULL);
878 put_child(t, newBinNode, 0, left);
879 put_child(t, newBinNode, 1, right);
880 put_child(t, tn, i/2, resize(t, newBinNode));
881 }
882 tnode_free(oldtnode);
883 return tn;
884 nomem:
885 {
886 int size = tnode_child_length(tn);
887 int j;
888
889 for (j = 0; j < size; j++)
890 if (tn->child[j])
891 tnode_free((struct tnode *)tn->child[j]);
892
893 tnode_free(tn);
894
895 return ERR_PTR(-ENOMEM);
896 }
897 }
898
899 /* readside must use rcu_read_lock currently dump routines
900 via get_fa_head and dump */
901
902 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
903 {
904 struct hlist_head *head = &l->list;
905 struct hlist_node *node;
906 struct leaf_info *li;
907
908 hlist_for_each_entry_rcu(li, node, head, hlist)
909 if (li->plen == plen)
910 return li;
911
912 return NULL;
913 }
914
915 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
916 {
917 struct leaf_info *li = find_leaf_info(l, plen);
918
919 if (!li)
920 return NULL;
921
922 return &li->falh;
923 }
924
925 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
926 {
927 struct leaf_info *li = NULL, *last = NULL;
928 struct hlist_node *node;
929
930 if (hlist_empty(head)) {
931 hlist_add_head_rcu(&new->hlist, head);
932 } else {
933 hlist_for_each_entry(li, node, head, hlist) {
934 if (new->plen > li->plen)
935 break;
936
937 last = li;
938 }
939 if (last)
940 hlist_add_after_rcu(&last->hlist, &new->hlist);
941 else
942 hlist_add_before_rcu(&new->hlist, &li->hlist);
943 }
944 }
945
946 /* rcu_read_lock needs to be hold by caller from readside */
947
948 static struct leaf *
949 fib_find_node(struct trie *t, u32 key)
950 {
951 int pos;
952 struct tnode *tn;
953 struct node *n;
954
955 pos = 0;
956 n = rcu_dereference(t->trie);
957
958 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
959 tn = (struct tnode *) n;
960
961 check_tnode(tn);
962
963 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
964 pos = tn->pos + tn->bits;
965 n = tnode_get_child_rcu(tn,
966 tkey_extract_bits(key,
967 tn->pos,
968 tn->bits));
969 } else
970 break;
971 }
972 /* Case we have found a leaf. Compare prefixes */
973
974 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
975 return (struct leaf *)n;
976
977 return NULL;
978 }
979
980 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
981 {
982 int wasfull;
983 t_key cindex, key = tn->key;
984 struct tnode *tp;
985
986 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
987 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
988 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
989 tn = (struct tnode *) resize(t, (struct tnode *)tn);
990
991 tnode_put_child_reorg((struct tnode *)tp, cindex,
992 (struct node *)tn, wasfull);
993
994 tp = node_parent((struct node *) tn);
995 if (!tp)
996 break;
997 tn = tp;
998 }
999
1000 /* Handle last (top) tnode */
1001 if (IS_TNODE(tn))
1002 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1003
1004 return (struct node *)tn;
1005 }
1006
1007 /* only used from updater-side */
1008
1009 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1010 {
1011 int pos, newpos;
1012 struct tnode *tp = NULL, *tn = NULL;
1013 struct node *n;
1014 struct leaf *l;
1015 int missbit;
1016 struct list_head *fa_head = NULL;
1017 struct leaf_info *li;
1018 t_key cindex;
1019
1020 pos = 0;
1021 n = t->trie;
1022
1023 /* If we point to NULL, stop. Either the tree is empty and we should
1024 * just put a new leaf in if, or we have reached an empty child slot,
1025 * and we should just put our new leaf in that.
1026 * If we point to a T_TNODE, check if it matches our key. Note that
1027 * a T_TNODE might be skipping any number of bits - its 'pos' need
1028 * not be the parent's 'pos'+'bits'!
1029 *
1030 * If it does match the current key, get pos/bits from it, extract
1031 * the index from our key, push the T_TNODE and walk the tree.
1032 *
1033 * If it doesn't, we have to replace it with a new T_TNODE.
1034 *
1035 * If we point to a T_LEAF, it might or might not have the same key
1036 * as we do. If it does, just change the value, update the T_LEAF's
1037 * value, and return it.
1038 * If it doesn't, we need to replace it with a T_TNODE.
1039 */
1040
1041 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1042 tn = (struct tnode *) n;
1043
1044 check_tnode(tn);
1045
1046 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1047 tp = tn;
1048 pos = tn->pos + tn->bits;
1049 n = tnode_get_child(tn,
1050 tkey_extract_bits(key,
1051 tn->pos,
1052 tn->bits));
1053
1054 BUG_ON(n && node_parent(n) != tn);
1055 } else
1056 break;
1057 }
1058
1059 /*
1060 * n ----> NULL, LEAF or TNODE
1061 *
1062 * tp is n's (parent) ----> NULL or TNODE
1063 */
1064
1065 BUG_ON(tp && IS_LEAF(tp));
1066
1067 /* Case 1: n is a leaf. Compare prefixes */
1068
1069 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1070 l = (struct leaf *) n;
1071 li = leaf_info_new(plen);
1072
1073 if (!li)
1074 return NULL;
1075
1076 fa_head = &li->falh;
1077 insert_leaf_info(&l->list, li);
1078 goto done;
1079 }
1080 l = leaf_new();
1081
1082 if (!l)
1083 return NULL;
1084
1085 l->key = key;
1086 li = leaf_info_new(plen);
1087
1088 if (!li) {
1089 tnode_free((struct tnode *) l);
1090 return NULL;
1091 }
1092
1093 fa_head = &li->falh;
1094 insert_leaf_info(&l->list, li);
1095
1096 if (t->trie && n == NULL) {
1097 /* Case 2: n is NULL, and will just insert a new leaf */
1098
1099 node_set_parent((struct node *)l, tp);
1100
1101 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1102 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1103 } else {
1104 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1105 /*
1106 * Add a new tnode here
1107 * first tnode need some special handling
1108 */
1109
1110 if (tp)
1111 pos = tp->pos+tp->bits;
1112 else
1113 pos = 0;
1114
1115 if (n) {
1116 newpos = tkey_mismatch(key, pos, n->key);
1117 tn = tnode_new(n->key, newpos, 1);
1118 } else {
1119 newpos = 0;
1120 tn = tnode_new(key, newpos, 1); /* First tnode */
1121 }
1122
1123 if (!tn) {
1124 free_leaf_info(li);
1125 tnode_free((struct tnode *) l);
1126 return NULL;
1127 }
1128
1129 node_set_parent((struct node *)tn, tp);
1130
1131 missbit = tkey_extract_bits(key, newpos, 1);
1132 put_child(t, tn, missbit, (struct node *)l);
1133 put_child(t, tn, 1-missbit, n);
1134
1135 if (tp) {
1136 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1137 put_child(t, (struct tnode *)tp, cindex,
1138 (struct node *)tn);
1139 } else {
1140 rcu_assign_pointer(t->trie, (struct node *)tn);
1141 tp = tn;
1142 }
1143 }
1144
1145 if (tp && tp->pos + tp->bits > 32)
1146 pr_warning("fib_trie"
1147 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1148 tp, tp->pos, tp->bits, key, plen);
1149
1150 /* Rebalance the trie */
1151
1152 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1153 done:
1154 return fa_head;
1155 }
1156
1157 /*
1158 * Caller must hold RTNL.
1159 */
1160 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1161 {
1162 struct trie *t = (struct trie *) tb->tb_data;
1163 struct fib_alias *fa, *new_fa;
1164 struct list_head *fa_head = NULL;
1165 struct fib_info *fi;
1166 int plen = cfg->fc_dst_len;
1167 u8 tos = cfg->fc_tos;
1168 u32 key, mask;
1169 int err;
1170 struct leaf *l;
1171
1172 if (plen > 32)
1173 return -EINVAL;
1174
1175 key = ntohl(cfg->fc_dst);
1176
1177 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1178
1179 mask = ntohl(inet_make_mask(plen));
1180
1181 if (key & ~mask)
1182 return -EINVAL;
1183
1184 key = key & mask;
1185
1186 fi = fib_create_info(cfg);
1187 if (IS_ERR(fi)) {
1188 err = PTR_ERR(fi);
1189 goto err;
1190 }
1191
1192 l = fib_find_node(t, key);
1193 fa = NULL;
1194
1195 if (l) {
1196 fa_head = get_fa_head(l, plen);
1197 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1198 }
1199
1200 /* Now fa, if non-NULL, points to the first fib alias
1201 * with the same keys [prefix,tos,priority], if such key already
1202 * exists or to the node before which we will insert new one.
1203 *
1204 * If fa is NULL, we will need to allocate a new one and
1205 * insert to the head of f.
1206 *
1207 * If f is NULL, no fib node matched the destination key
1208 * and we need to allocate a new one of those as well.
1209 */
1210
1211 if (fa && fa->fa_tos == tos &&
1212 fa->fa_info->fib_priority == fi->fib_priority) {
1213 struct fib_alias *fa_first, *fa_match;
1214
1215 err = -EEXIST;
1216 if (cfg->fc_nlflags & NLM_F_EXCL)
1217 goto out;
1218
1219 /* We have 2 goals:
1220 * 1. Find exact match for type, scope, fib_info to avoid
1221 * duplicate routes
1222 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1223 */
1224 fa_match = NULL;
1225 fa_first = fa;
1226 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1227 list_for_each_entry_continue(fa, fa_head, fa_list) {
1228 if (fa->fa_tos != tos)
1229 break;
1230 if (fa->fa_info->fib_priority != fi->fib_priority)
1231 break;
1232 if (fa->fa_type == cfg->fc_type &&
1233 fa->fa_scope == cfg->fc_scope &&
1234 fa->fa_info == fi) {
1235 fa_match = fa;
1236 break;
1237 }
1238 }
1239
1240 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1241 struct fib_info *fi_drop;
1242 u8 state;
1243
1244 fa = fa_first;
1245 if (fa_match) {
1246 if (fa == fa_match)
1247 err = 0;
1248 goto out;
1249 }
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (new_fa == NULL)
1253 goto out;
1254
1255 fi_drop = fa->fa_info;
1256 new_fa->fa_tos = fa->fa_tos;
1257 new_fa->fa_info = fi;
1258 new_fa->fa_type = cfg->fc_type;
1259 new_fa->fa_scope = cfg->fc_scope;
1260 state = fa->fa_state;
1261 new_fa->fa_state = state & ~FA_S_ACCESSED;
1262
1263 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1264 alias_free_mem_rcu(fa);
1265
1266 fib_release_info(fi_drop);
1267 if (state & FA_S_ACCESSED)
1268 rt_cache_flush(-1);
1269 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1270 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1271
1272 goto succeeded;
1273 }
1274 /* Error if we find a perfect match which
1275 * uses the same scope, type, and nexthop
1276 * information.
1277 */
1278 if (fa_match)
1279 goto out;
1280
1281 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1282 fa = fa_first;
1283 }
1284 err = -ENOENT;
1285 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1286 goto out;
1287
1288 err = -ENOBUFS;
1289 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1290 if (new_fa == NULL)
1291 goto out;
1292
1293 new_fa->fa_info = fi;
1294 new_fa->fa_tos = tos;
1295 new_fa->fa_type = cfg->fc_type;
1296 new_fa->fa_scope = cfg->fc_scope;
1297 new_fa->fa_state = 0;
1298 /*
1299 * Insert new entry to the list.
1300 */
1301
1302 if (!fa_head) {
1303 fa_head = fib_insert_node(t, key, plen);
1304 if (unlikely(!fa_head)) {
1305 err = -ENOMEM;
1306 goto out_free_new_fa;
1307 }
1308 }
1309
1310 list_add_tail_rcu(&new_fa->fa_list,
1311 (fa ? &fa->fa_list : fa_head));
1312
1313 rt_cache_flush(-1);
1314 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1315 &cfg->fc_nlinfo, 0);
1316 succeeded:
1317 return 0;
1318
1319 out_free_new_fa:
1320 kmem_cache_free(fn_alias_kmem, new_fa);
1321 out:
1322 fib_release_info(fi);
1323 err:
1324 return err;
1325 }
1326
1327 /* should be called with rcu_read_lock */
1328 static int check_leaf(struct trie *t, struct leaf *l,
1329 t_key key, const struct flowi *flp,
1330 struct fib_result *res)
1331 {
1332 struct leaf_info *li;
1333 struct hlist_head *hhead = &l->list;
1334 struct hlist_node *node;
1335
1336 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1337 int err;
1338 int plen = li->plen;
1339 __be32 mask = inet_make_mask(plen);
1340
1341 if (l->key != (key & ntohl(mask)))
1342 continue;
1343
1344 err = fib_semantic_match(&li->falh, flp, res,
1345 htonl(l->key), mask, plen);
1346
1347 #ifdef CONFIG_IP_FIB_TRIE_STATS
1348 if (err <= 0)
1349 t->stats.semantic_match_passed++;
1350 else
1351 t->stats.semantic_match_miss++;
1352 #endif
1353 if (err <= 0)
1354 return plen;
1355 }
1356
1357 return -1;
1358 }
1359
1360 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1361 struct fib_result *res)
1362 {
1363 struct trie *t = (struct trie *) tb->tb_data;
1364 int plen, ret = 0;
1365 struct node *n;
1366 struct tnode *pn;
1367 int pos, bits;
1368 t_key key = ntohl(flp->fl4_dst);
1369 int chopped_off;
1370 t_key cindex = 0;
1371 int current_prefix_length = KEYLENGTH;
1372 struct tnode *cn;
1373 t_key node_prefix, key_prefix, pref_mismatch;
1374 int mp;
1375
1376 rcu_read_lock();
1377
1378 n = rcu_dereference(t->trie);
1379 if (!n)
1380 goto failed;
1381
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 t->stats.gets++;
1384 #endif
1385
1386 /* Just a leaf? */
1387 if (IS_LEAF(n)) {
1388 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1389 if (plen < 0)
1390 goto failed;
1391 ret = 0;
1392 goto found;
1393 }
1394
1395 pn = (struct tnode *) n;
1396 chopped_off = 0;
1397
1398 while (pn) {
1399 pos = pn->pos;
1400 bits = pn->bits;
1401
1402 if (!chopped_off)
1403 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1404 pos, bits);
1405
1406 n = tnode_get_child(pn, cindex);
1407
1408 if (n == NULL) {
1409 #ifdef CONFIG_IP_FIB_TRIE_STATS
1410 t->stats.null_node_hit++;
1411 #endif
1412 goto backtrace;
1413 }
1414
1415 if (IS_LEAF(n)) {
1416 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1417 if (plen < 0)
1418 goto backtrace;
1419
1420 ret = 0;
1421 goto found;
1422 }
1423
1424 cn = (struct tnode *)n;
1425
1426 /*
1427 * It's a tnode, and we can do some extra checks here if we
1428 * like, to avoid descending into a dead-end branch.
1429 * This tnode is in the parent's child array at index
1430 * key[p_pos..p_pos+p_bits] but potentially with some bits
1431 * chopped off, so in reality the index may be just a
1432 * subprefix, padded with zero at the end.
1433 * We can also take a look at any skipped bits in this
1434 * tnode - everything up to p_pos is supposed to be ok,
1435 * and the non-chopped bits of the index (se previous
1436 * paragraph) are also guaranteed ok, but the rest is
1437 * considered unknown.
1438 *
1439 * The skipped bits are key[pos+bits..cn->pos].
1440 */
1441
1442 /* If current_prefix_length < pos+bits, we are already doing
1443 * actual prefix matching, which means everything from
1444 * pos+(bits-chopped_off) onward must be zero along some
1445 * branch of this subtree - otherwise there is *no* valid
1446 * prefix present. Here we can only check the skipped
1447 * bits. Remember, since we have already indexed into the
1448 * parent's child array, we know that the bits we chopped of
1449 * *are* zero.
1450 */
1451
1452 /* NOTA BENE: Checking only skipped bits
1453 for the new node here */
1454
1455 if (current_prefix_length < pos+bits) {
1456 if (tkey_extract_bits(cn->key, current_prefix_length,
1457 cn->pos - current_prefix_length)
1458 || !(cn->child[0]))
1459 goto backtrace;
1460 }
1461
1462 /*
1463 * If chopped_off=0, the index is fully validated and we
1464 * only need to look at the skipped bits for this, the new,
1465 * tnode. What we actually want to do is to find out if
1466 * these skipped bits match our key perfectly, or if we will
1467 * have to count on finding a matching prefix further down,
1468 * because if we do, we would like to have some way of
1469 * verifying the existence of such a prefix at this point.
1470 */
1471
1472 /* The only thing we can do at this point is to verify that
1473 * any such matching prefix can indeed be a prefix to our
1474 * key, and if the bits in the node we are inspecting that
1475 * do not match our key are not ZERO, this cannot be true.
1476 * Thus, find out where there is a mismatch (before cn->pos)
1477 * and verify that all the mismatching bits are zero in the
1478 * new tnode's key.
1479 */
1480
1481 /*
1482 * Note: We aren't very concerned about the piece of
1483 * the key that precede pn->pos+pn->bits, since these
1484 * have already been checked. The bits after cn->pos
1485 * aren't checked since these are by definition
1486 * "unknown" at this point. Thus, what we want to see
1487 * is if we are about to enter the "prefix matching"
1488 * state, and in that case verify that the skipped
1489 * bits that will prevail throughout this subtree are
1490 * zero, as they have to be if we are to find a
1491 * matching prefix.
1492 */
1493
1494 node_prefix = mask_pfx(cn->key, cn->pos);
1495 key_prefix = mask_pfx(key, cn->pos);
1496 pref_mismatch = key_prefix^node_prefix;
1497 mp = 0;
1498
1499 /*
1500 * In short: If skipped bits in this node do not match
1501 * the search key, enter the "prefix matching"
1502 * state.directly.
1503 */
1504 if (pref_mismatch) {
1505 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1506 mp++;
1507 pref_mismatch = pref_mismatch << 1;
1508 }
1509 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1510
1511 if (key_prefix != 0)
1512 goto backtrace;
1513
1514 if (current_prefix_length >= cn->pos)
1515 current_prefix_length = mp;
1516 }
1517
1518 pn = (struct tnode *)n; /* Descend */
1519 chopped_off = 0;
1520 continue;
1521
1522 backtrace:
1523 chopped_off++;
1524
1525 /* As zero don't change the child key (cindex) */
1526 while ((chopped_off <= pn->bits)
1527 && !(cindex & (1<<(chopped_off-1))))
1528 chopped_off++;
1529
1530 /* Decrease current_... with bits chopped off */
1531 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1532 current_prefix_length = pn->pos + pn->bits
1533 - chopped_off;
1534
1535 /*
1536 * Either we do the actual chop off according or if we have
1537 * chopped off all bits in this tnode walk up to our parent.
1538 */
1539
1540 if (chopped_off <= pn->bits) {
1541 cindex &= ~(1 << (chopped_off-1));
1542 } else {
1543 struct tnode *parent = node_parent((struct node *) pn);
1544 if (!parent)
1545 goto failed;
1546
1547 /* Get Child's index */
1548 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1549 pn = parent;
1550 chopped_off = 0;
1551
1552 #ifdef CONFIG_IP_FIB_TRIE_STATS
1553 t->stats.backtrack++;
1554 #endif
1555 goto backtrace;
1556 }
1557 }
1558 failed:
1559 ret = 1;
1560 found:
1561 rcu_read_unlock();
1562 return ret;
1563 }
1564
1565 /*
1566 * Remove the leaf and return parent.
1567 */
1568 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1569 {
1570 struct tnode *tp = node_parent((struct node *) l);
1571
1572 pr_debug("entering trie_leaf_remove(%p)\n", l);
1573
1574 if (tp) {
1575 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1576 put_child(t, (struct tnode *)tp, cindex, NULL);
1577 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1578 } else
1579 rcu_assign_pointer(t->trie, NULL);
1580
1581 tnode_free((struct tnode *) l);
1582 }
1583
1584 /*
1585 * Caller must hold RTNL.
1586 */
1587 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1588 {
1589 struct trie *t = (struct trie *) tb->tb_data;
1590 u32 key, mask;
1591 int plen = cfg->fc_dst_len;
1592 u8 tos = cfg->fc_tos;
1593 struct fib_alias *fa, *fa_to_delete;
1594 struct list_head *fa_head;
1595 struct leaf *l;
1596 struct leaf_info *li;
1597
1598 if (plen > 32)
1599 return -EINVAL;
1600
1601 key = ntohl(cfg->fc_dst);
1602 mask = ntohl(inet_make_mask(plen));
1603
1604 if (key & ~mask)
1605 return -EINVAL;
1606
1607 key = key & mask;
1608 l = fib_find_node(t, key);
1609
1610 if (!l)
1611 return -ESRCH;
1612
1613 fa_head = get_fa_head(l, plen);
1614 fa = fib_find_alias(fa_head, tos, 0);
1615
1616 if (!fa)
1617 return -ESRCH;
1618
1619 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1620
1621 fa_to_delete = NULL;
1622 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1623 list_for_each_entry_continue(fa, fa_head, fa_list) {
1624 struct fib_info *fi = fa->fa_info;
1625
1626 if (fa->fa_tos != tos)
1627 break;
1628
1629 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1630 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1631 fa->fa_scope == cfg->fc_scope) &&
1632 (!cfg->fc_protocol ||
1633 fi->fib_protocol == cfg->fc_protocol) &&
1634 fib_nh_match(cfg, fi) == 0) {
1635 fa_to_delete = fa;
1636 break;
1637 }
1638 }
1639
1640 if (!fa_to_delete)
1641 return -ESRCH;
1642
1643 fa = fa_to_delete;
1644 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1645 &cfg->fc_nlinfo, 0);
1646
1647 l = fib_find_node(t, key);
1648 li = find_leaf_info(l, plen);
1649
1650 list_del_rcu(&fa->fa_list);
1651
1652 if (list_empty(fa_head)) {
1653 hlist_del_rcu(&li->hlist);
1654 free_leaf_info(li);
1655 }
1656
1657 if (hlist_empty(&l->list))
1658 trie_leaf_remove(t, l);
1659
1660 if (fa->fa_state & FA_S_ACCESSED)
1661 rt_cache_flush(-1);
1662
1663 fib_release_info(fa->fa_info);
1664 alias_free_mem_rcu(fa);
1665 return 0;
1666 }
1667
1668 static int trie_flush_list(struct trie *t, struct list_head *head)
1669 {
1670 struct fib_alias *fa, *fa_node;
1671 int found = 0;
1672
1673 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1674 struct fib_info *fi = fa->fa_info;
1675
1676 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1677 list_del_rcu(&fa->fa_list);
1678 fib_release_info(fa->fa_info);
1679 alias_free_mem_rcu(fa);
1680 found++;
1681 }
1682 }
1683 return found;
1684 }
1685
1686 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1687 {
1688 int found = 0;
1689 struct hlist_head *lih = &l->list;
1690 struct hlist_node *node, *tmp;
1691 struct leaf_info *li = NULL;
1692
1693 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1694 found += trie_flush_list(t, &li->falh);
1695
1696 if (list_empty(&li->falh)) {
1697 hlist_del_rcu(&li->hlist);
1698 free_leaf_info(li);
1699 }
1700 }
1701 return found;
1702 }
1703
1704 /*
1705 * Scan for the next right leaf starting at node p->child[idx]
1706 * Since we have back pointer, no recursion necessary.
1707 */
1708 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1709 {
1710 do {
1711 t_key idx;
1712
1713 if (c)
1714 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1715 else
1716 idx = 0;
1717
1718 while (idx < 1u << p->bits) {
1719 c = tnode_get_child_rcu(p, idx++);
1720 if (!c)
1721 continue;
1722
1723 if (IS_LEAF(c)) {
1724 prefetch(p->child[idx]);
1725 return (struct leaf *) c;
1726 }
1727
1728 /* Rescan start scanning in new node */
1729 p = (struct tnode *) c;
1730 idx = 0;
1731 }
1732
1733 /* Node empty, walk back up to parent */
1734 c = (struct node *) p;
1735 } while ( (p = node_parent_rcu(c)) != NULL);
1736
1737 return NULL; /* Root of trie */
1738 }
1739
1740 static struct leaf *trie_firstleaf(struct trie *t)
1741 {
1742 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1743
1744 if (!n)
1745 return NULL;
1746
1747 if (IS_LEAF(n)) /* trie is just a leaf */
1748 return (struct leaf *) n;
1749
1750 return leaf_walk_rcu(n, NULL);
1751 }
1752
1753 static struct leaf *trie_nextleaf(struct leaf *l)
1754 {
1755 struct node *c = (struct node *) l;
1756 struct tnode *p = node_parent(c);
1757
1758 if (!p)
1759 return NULL; /* trie with just one leaf */
1760
1761 return leaf_walk_rcu(p, c);
1762 }
1763
1764 static struct leaf *trie_leafindex(struct trie *t, int index)
1765 {
1766 struct leaf *l = trie_firstleaf(t);
1767
1768 while (l && index-- > 0)
1769 l = trie_nextleaf(l);
1770
1771 return l;
1772 }
1773
1774
1775 /*
1776 * Caller must hold RTNL.
1777 */
1778 static int fn_trie_flush(struct fib_table *tb)
1779 {
1780 struct trie *t = (struct trie *) tb->tb_data;
1781 struct leaf *l, *ll = NULL;
1782 int found = 0;
1783
1784 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1785 found += trie_flush_leaf(t, l);
1786
1787 if (ll && hlist_empty(&ll->list))
1788 trie_leaf_remove(t, ll);
1789 ll = l;
1790 }
1791
1792 if (ll && hlist_empty(&ll->list))
1793 trie_leaf_remove(t, ll);
1794
1795 pr_debug("trie_flush found=%d\n", found);
1796 return found;
1797 }
1798
1799 static void fn_trie_select_default(struct fib_table *tb,
1800 const struct flowi *flp,
1801 struct fib_result *res)
1802 {
1803 struct trie *t = (struct trie *) tb->tb_data;
1804 int order, last_idx;
1805 struct fib_info *fi = NULL;
1806 struct fib_info *last_resort;
1807 struct fib_alias *fa = NULL;
1808 struct list_head *fa_head;
1809 struct leaf *l;
1810
1811 last_idx = -1;
1812 last_resort = NULL;
1813 order = -1;
1814
1815 rcu_read_lock();
1816
1817 l = fib_find_node(t, 0);
1818 if (!l)
1819 goto out;
1820
1821 fa_head = get_fa_head(l, 0);
1822 if (!fa_head)
1823 goto out;
1824
1825 if (list_empty(fa_head))
1826 goto out;
1827
1828 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1829 struct fib_info *next_fi = fa->fa_info;
1830
1831 if (fa->fa_scope != res->scope ||
1832 fa->fa_type != RTN_UNICAST)
1833 continue;
1834
1835 if (next_fi->fib_priority > res->fi->fib_priority)
1836 break;
1837 if (!next_fi->fib_nh[0].nh_gw ||
1838 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1839 continue;
1840 fa->fa_state |= FA_S_ACCESSED;
1841
1842 if (fi == NULL) {
1843 if (next_fi != res->fi)
1844 break;
1845 } else if (!fib_detect_death(fi, order, &last_resort,
1846 &last_idx, tb->tb_default)) {
1847 fib_result_assign(res, fi);
1848 tb->tb_default = order;
1849 goto out;
1850 }
1851 fi = next_fi;
1852 order++;
1853 }
1854 if (order <= 0 || fi == NULL) {
1855 tb->tb_default = -1;
1856 goto out;
1857 }
1858
1859 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1860 tb->tb_default)) {
1861 fib_result_assign(res, fi);
1862 tb->tb_default = order;
1863 goto out;
1864 }
1865 if (last_idx >= 0)
1866 fib_result_assign(res, last_resort);
1867 tb->tb_default = last_idx;
1868 out:
1869 rcu_read_unlock();
1870 }
1871
1872 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1873 struct fib_table *tb,
1874 struct sk_buff *skb, struct netlink_callback *cb)
1875 {
1876 int i, s_i;
1877 struct fib_alias *fa;
1878 __be32 xkey = htonl(key);
1879
1880 s_i = cb->args[5];
1881 i = 0;
1882
1883 /* rcu_read_lock is hold by caller */
1884
1885 list_for_each_entry_rcu(fa, fah, fa_list) {
1886 if (i < s_i) {
1887 i++;
1888 continue;
1889 }
1890
1891 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1892 cb->nlh->nlmsg_seq,
1893 RTM_NEWROUTE,
1894 tb->tb_id,
1895 fa->fa_type,
1896 fa->fa_scope,
1897 xkey,
1898 plen,
1899 fa->fa_tos,
1900 fa->fa_info, NLM_F_MULTI) < 0) {
1901 cb->args[5] = i;
1902 return -1;
1903 }
1904 i++;
1905 }
1906 cb->args[5] = i;
1907 return skb->len;
1908 }
1909
1910 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1911 struct sk_buff *skb, struct netlink_callback *cb)
1912 {
1913 struct leaf_info *li;
1914 struct hlist_node *node;
1915 int i, s_i;
1916
1917 s_i = cb->args[4];
1918 i = 0;
1919
1920 /* rcu_read_lock is hold by caller */
1921 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1922 if (i < s_i) {
1923 i++;
1924 continue;
1925 }
1926
1927 if (i > s_i)
1928 cb->args[5] = 0;
1929
1930 if (list_empty(&li->falh))
1931 continue;
1932
1933 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1934 cb->args[4] = i;
1935 return -1;
1936 }
1937 i++;
1938 }
1939
1940 cb->args[4] = i;
1941 return skb->len;
1942 }
1943
1944 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1945 struct netlink_callback *cb)
1946 {
1947 struct leaf *l;
1948 struct trie *t = (struct trie *) tb->tb_data;
1949 t_key key = cb->args[2];
1950 int count = cb->args[3];
1951
1952 rcu_read_lock();
1953 /* Dump starting at last key.
1954 * Note: 0.0.0.0/0 (ie default) is first key.
1955 */
1956 if (count == 0)
1957 l = trie_firstleaf(t);
1958 else {
1959 /* Normally, continue from last key, but if that is missing
1960 * fallback to using slow rescan
1961 */
1962 l = fib_find_node(t, key);
1963 if (!l)
1964 l = trie_leafindex(t, count);
1965 }
1966
1967 while (l) {
1968 cb->args[2] = l->key;
1969 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1970 cb->args[3] = count;
1971 rcu_read_unlock();
1972 return -1;
1973 }
1974
1975 ++count;
1976 l = trie_nextleaf(l);
1977 memset(&cb->args[4], 0,
1978 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1979 }
1980 cb->args[3] = count;
1981 rcu_read_unlock();
1982
1983 return skb->len;
1984 }
1985
1986 void __init fib_hash_init(void)
1987 {
1988 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1989 sizeof(struct fib_alias),
1990 0, SLAB_PANIC, NULL);
1991
1992 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1993 max(sizeof(struct leaf),
1994 sizeof(struct leaf_info)),
1995 0, SLAB_PANIC, NULL);
1996 }
1997
1998
1999 /* Fix more generic FIB names for init later */
2000 struct fib_table *fib_hash_table(u32 id)
2001 {
2002 struct fib_table *tb;
2003 struct trie *t;
2004
2005 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2006 GFP_KERNEL);
2007 if (tb == NULL)
2008 return NULL;
2009
2010 tb->tb_id = id;
2011 tb->tb_default = -1;
2012 tb->tb_lookup = fn_trie_lookup;
2013 tb->tb_insert = fn_trie_insert;
2014 tb->tb_delete = fn_trie_delete;
2015 tb->tb_flush = fn_trie_flush;
2016 tb->tb_select_default = fn_trie_select_default;
2017 tb->tb_dump = fn_trie_dump;
2018
2019 t = (struct trie *) tb->tb_data;
2020 memset(t, 0, sizeof(*t));
2021
2022 if (id == RT_TABLE_LOCAL)
2023 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2024
2025 return tb;
2026 }
2027
2028 #ifdef CONFIG_PROC_FS
2029 /* Depth first Trie walk iterator */
2030 struct fib_trie_iter {
2031 struct seq_net_private p;
2032 struct trie *trie_local, *trie_main;
2033 struct tnode *tnode;
2034 struct trie *trie;
2035 unsigned index;
2036 unsigned depth;
2037 };
2038
2039 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2040 {
2041 struct tnode *tn = iter->tnode;
2042 unsigned cindex = iter->index;
2043 struct tnode *p;
2044
2045 /* A single entry routing table */
2046 if (!tn)
2047 return NULL;
2048
2049 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2050 iter->tnode, iter->index, iter->depth);
2051 rescan:
2052 while (cindex < (1<<tn->bits)) {
2053 struct node *n = tnode_get_child_rcu(tn, cindex);
2054
2055 if (n) {
2056 if (IS_LEAF(n)) {
2057 iter->tnode = tn;
2058 iter->index = cindex + 1;
2059 } else {
2060 /* push down one level */
2061 iter->tnode = (struct tnode *) n;
2062 iter->index = 0;
2063 ++iter->depth;
2064 }
2065 return n;
2066 }
2067
2068 ++cindex;
2069 }
2070
2071 /* Current node exhausted, pop back up */
2072 p = node_parent_rcu((struct node *)tn);
2073 if (p) {
2074 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2075 tn = p;
2076 --iter->depth;
2077 goto rescan;
2078 }
2079
2080 /* got root? */
2081 return NULL;
2082 }
2083
2084 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2085 struct trie *t)
2086 {
2087 struct node *n ;
2088
2089 if (!t)
2090 return NULL;
2091
2092 n = rcu_dereference(t->trie);
2093
2094 if (!iter)
2095 return NULL;
2096
2097 if (n) {
2098 if (IS_TNODE(n)) {
2099 iter->tnode = (struct tnode *) n;
2100 iter->trie = t;
2101 iter->index = 0;
2102 iter->depth = 1;
2103 } else {
2104 iter->tnode = NULL;
2105 iter->trie = t;
2106 iter->index = 0;
2107 iter->depth = 0;
2108 }
2109 return n;
2110 }
2111 return NULL;
2112 }
2113
2114 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2115 {
2116 struct node *n;
2117 struct fib_trie_iter iter;
2118
2119 memset(s, 0, sizeof(*s));
2120
2121 rcu_read_lock();
2122 for (n = fib_trie_get_first(&iter, t); n;
2123 n = fib_trie_get_next(&iter)) {
2124 if (IS_LEAF(n)) {
2125 struct leaf *l = (struct leaf *)n;
2126 struct leaf_info *li;
2127 struct hlist_node *tmp;
2128
2129 s->leaves++;
2130 s->totdepth += iter.depth;
2131 if (iter.depth > s->maxdepth)
2132 s->maxdepth = iter.depth;
2133
2134 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2135 ++s->prefixes;
2136 } else {
2137 const struct tnode *tn = (const struct tnode *) n;
2138 int i;
2139
2140 s->tnodes++;
2141 if (tn->bits < MAX_STAT_DEPTH)
2142 s->nodesizes[tn->bits]++;
2143
2144 for (i = 0; i < (1<<tn->bits); i++)
2145 if (!tn->child[i])
2146 s->nullpointers++;
2147 }
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /*
2153 * This outputs /proc/net/fib_triestats
2154 */
2155 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2156 {
2157 unsigned i, max, pointers, bytes, avdepth;
2158
2159 if (stat->leaves)
2160 avdepth = stat->totdepth*100 / stat->leaves;
2161 else
2162 avdepth = 0;
2163
2164 seq_printf(seq, "\tAver depth: %u.%02d\n",
2165 avdepth / 100, avdepth % 100);
2166 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2167
2168 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2169 bytes = sizeof(struct leaf) * stat->leaves;
2170
2171 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2172 bytes += sizeof(struct leaf_info) * stat->prefixes;
2173
2174 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2175 bytes += sizeof(struct tnode) * stat->tnodes;
2176
2177 max = MAX_STAT_DEPTH;
2178 while (max > 0 && stat->nodesizes[max-1] == 0)
2179 max--;
2180
2181 pointers = 0;
2182 for (i = 1; i <= max; i++)
2183 if (stat->nodesizes[i] != 0) {
2184 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2185 pointers += (1<<i) * stat->nodesizes[i];
2186 }
2187 seq_putc(seq, '\n');
2188 seq_printf(seq, "\tPointers: %u\n", pointers);
2189
2190 bytes += sizeof(struct node *) * pointers;
2191 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2192 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2193 }
2194
2195 #ifdef CONFIG_IP_FIB_TRIE_STATS
2196 static void trie_show_usage(struct seq_file *seq,
2197 const struct trie_use_stats *stats)
2198 {
2199 seq_printf(seq, "\nCounters:\n---------\n");
2200 seq_printf(seq, "gets = %u\n", stats->gets);
2201 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2202 seq_printf(seq, "semantic match passed = %u\n",
2203 stats->semantic_match_passed);
2204 seq_printf(seq, "semantic match miss = %u\n",
2205 stats->semantic_match_miss);
2206 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2207 seq_printf(seq, "skipped node resize = %u\n\n",
2208 stats->resize_node_skipped);
2209 }
2210 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2211
2212 static void fib_trie_show(struct seq_file *seq, const char *name,
2213 struct trie *trie)
2214 {
2215 struct trie_stat stat;
2216
2217 trie_collect_stats(trie, &stat);
2218 seq_printf(seq, "%s:\n", name);
2219 trie_show_stats(seq, &stat);
2220 #ifdef CONFIG_IP_FIB_TRIE_STATS
2221 trie_show_usage(seq, &trie->stats);
2222 #endif
2223 }
2224
2225 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2226 {
2227 struct net *net = (struct net *)seq->private;
2228 struct fib_table *tb;
2229
2230 seq_printf(seq,
2231 "Basic info: size of leaf:"
2232 " %Zd bytes, size of tnode: %Zd bytes.\n",
2233 sizeof(struct leaf), sizeof(struct tnode));
2234
2235 tb = fib_get_table(net, RT_TABLE_LOCAL);
2236 if (tb)
2237 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
2238
2239 tb = fib_get_table(net, RT_TABLE_MAIN);
2240 if (tb)
2241 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
2242
2243 return 0;
2244 }
2245
2246 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2247 {
2248 int err;
2249 struct net *net;
2250
2251 net = get_proc_net(inode);
2252 if (net == NULL)
2253 return -ENXIO;
2254 err = single_open(file, fib_triestat_seq_show, net);
2255 if (err < 0) {
2256 put_net(net);
2257 return err;
2258 }
2259 return 0;
2260 }
2261
2262 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2263 {
2264 struct seq_file *seq = f->private_data;
2265 put_net(seq->private);
2266 return single_release(ino, f);
2267 }
2268
2269 static const struct file_operations fib_triestat_fops = {
2270 .owner = THIS_MODULE,
2271 .open = fib_triestat_seq_open,
2272 .read = seq_read,
2273 .llseek = seq_lseek,
2274 .release = fib_triestat_seq_release,
2275 };
2276
2277 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2278 loff_t pos)
2279 {
2280 loff_t idx = 0;
2281 struct node *n;
2282
2283 for (n = fib_trie_get_first(iter, iter->trie_local);
2284 n; ++idx, n = fib_trie_get_next(iter)) {
2285 if (pos == idx)
2286 return n;
2287 }
2288
2289 for (n = fib_trie_get_first(iter, iter->trie_main);
2290 n; ++idx, n = fib_trie_get_next(iter)) {
2291 if (pos == idx)
2292 return n;
2293 }
2294 return NULL;
2295 }
2296
2297 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2298 __acquires(RCU)
2299 {
2300 struct fib_trie_iter *iter = seq->private;
2301 struct fib_table *tb;
2302
2303 if (!iter->trie_local) {
2304 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2305 if (tb)
2306 iter->trie_local = (struct trie *) tb->tb_data;
2307 }
2308 if (!iter->trie_main) {
2309 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2310 if (tb)
2311 iter->trie_main = (struct trie *) tb->tb_data;
2312 }
2313 rcu_read_lock();
2314 if (*pos == 0)
2315 return SEQ_START_TOKEN;
2316 return fib_trie_get_idx(iter, *pos - 1);
2317 }
2318
2319 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2320 {
2321 struct fib_trie_iter *iter = seq->private;
2322 void *l = v;
2323
2324 ++*pos;
2325 if (v == SEQ_START_TOKEN)
2326 return fib_trie_get_idx(iter, 0);
2327
2328 v = fib_trie_get_next(iter);
2329 BUG_ON(v == l);
2330 if (v)
2331 return v;
2332
2333 /* continue scan in next trie */
2334 if (iter->trie == iter->trie_local)
2335 return fib_trie_get_first(iter, iter->trie_main);
2336
2337 return NULL;
2338 }
2339
2340 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2341 __releases(RCU)
2342 {
2343 rcu_read_unlock();
2344 }
2345
2346 static void seq_indent(struct seq_file *seq, int n)
2347 {
2348 while (n-- > 0) seq_puts(seq, " ");
2349 }
2350
2351 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2352 {
2353 switch (s) {
2354 case RT_SCOPE_UNIVERSE: return "universe";
2355 case RT_SCOPE_SITE: return "site";
2356 case RT_SCOPE_LINK: return "link";
2357 case RT_SCOPE_HOST: return "host";
2358 case RT_SCOPE_NOWHERE: return "nowhere";
2359 default:
2360 snprintf(buf, len, "scope=%d", s);
2361 return buf;
2362 }
2363 }
2364
2365 static const char *rtn_type_names[__RTN_MAX] = {
2366 [RTN_UNSPEC] = "UNSPEC",
2367 [RTN_UNICAST] = "UNICAST",
2368 [RTN_LOCAL] = "LOCAL",
2369 [RTN_BROADCAST] = "BROADCAST",
2370 [RTN_ANYCAST] = "ANYCAST",
2371 [RTN_MULTICAST] = "MULTICAST",
2372 [RTN_BLACKHOLE] = "BLACKHOLE",
2373 [RTN_UNREACHABLE] = "UNREACHABLE",
2374 [RTN_PROHIBIT] = "PROHIBIT",
2375 [RTN_THROW] = "THROW",
2376 [RTN_NAT] = "NAT",
2377 [RTN_XRESOLVE] = "XRESOLVE",
2378 };
2379
2380 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2381 {
2382 if (t < __RTN_MAX && rtn_type_names[t])
2383 return rtn_type_names[t];
2384 snprintf(buf, len, "type %u", t);
2385 return buf;
2386 }
2387
2388 /* Pretty print the trie */
2389 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2390 {
2391 const struct fib_trie_iter *iter = seq->private;
2392 struct node *n = v;
2393
2394 if (v == SEQ_START_TOKEN)
2395 return 0;
2396
2397 if (!node_parent_rcu(n)) {
2398 if (iter->trie == iter->trie_local)
2399 seq_puts(seq, "<local>:\n");
2400 else
2401 seq_puts(seq, "<main>:\n");
2402 }
2403
2404 if (IS_TNODE(n)) {
2405 struct tnode *tn = (struct tnode *) n;
2406 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2407
2408 seq_indent(seq, iter->depth-1);
2409 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2410 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2411 tn->empty_children);
2412
2413 } else {
2414 struct leaf *l = (struct leaf *) n;
2415 struct leaf_info *li;
2416 struct hlist_node *node;
2417 __be32 val = htonl(l->key);
2418
2419 seq_indent(seq, iter->depth);
2420 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2421
2422 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2423 struct fib_alias *fa;
2424
2425 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2426 char buf1[32], buf2[32];
2427
2428 seq_indent(seq, iter->depth+1);
2429 seq_printf(seq, " /%d %s %s", li->plen,
2430 rtn_scope(buf1, sizeof(buf1),
2431 fa->fa_scope),
2432 rtn_type(buf2, sizeof(buf2),
2433 fa->fa_type));
2434 if (fa->fa_tos)
2435 seq_printf(seq, " tos=%d", fa->fa_tos);
2436 seq_putc(seq, '\n');
2437 }
2438 }
2439 }
2440
2441 return 0;
2442 }
2443
2444 static const struct seq_operations fib_trie_seq_ops = {
2445 .start = fib_trie_seq_start,
2446 .next = fib_trie_seq_next,
2447 .stop = fib_trie_seq_stop,
2448 .show = fib_trie_seq_show,
2449 };
2450
2451 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2452 {
2453 return seq_open_net(inode, file, &fib_trie_seq_ops,
2454 sizeof(struct fib_trie_iter));
2455 }
2456
2457 static const struct file_operations fib_trie_fops = {
2458 .owner = THIS_MODULE,
2459 .open = fib_trie_seq_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
2462 .release = seq_release_net,
2463 };
2464
2465 struct fib_route_iter {
2466 struct seq_net_private p;
2467 struct trie *main_trie;
2468 loff_t pos;
2469 t_key key;
2470 };
2471
2472 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2473 {
2474 struct leaf *l = NULL;
2475 struct trie *t = iter->main_trie;
2476
2477 /* use cache location of last found key */
2478 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2479 pos -= iter->pos;
2480 else {
2481 iter->pos = 0;
2482 l = trie_firstleaf(t);
2483 }
2484
2485 while (l && pos-- > 0) {
2486 iter->pos++;
2487 l = trie_nextleaf(l);
2488 }
2489
2490 if (l)
2491 iter->key = pos; /* remember it */
2492 else
2493 iter->pos = 0; /* forget it */
2494
2495 return l;
2496 }
2497
2498 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2499 __acquires(RCU)
2500 {
2501 struct fib_route_iter *iter = seq->private;
2502 struct fib_table *tb;
2503
2504 rcu_read_lock();
2505 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2506 if (!tb)
2507 return NULL;
2508
2509 iter->main_trie = (struct trie *) tb->tb_data;
2510 if (*pos == 0)
2511 return SEQ_START_TOKEN;
2512 else
2513 return fib_route_get_idx(iter, *pos - 1);
2514 }
2515
2516 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2517 {
2518 struct fib_route_iter *iter = seq->private;
2519 struct leaf *l = v;
2520
2521 ++*pos;
2522 if (v == SEQ_START_TOKEN) {
2523 iter->pos = 0;
2524 l = trie_firstleaf(iter->main_trie);
2525 } else {
2526 iter->pos++;
2527 l = trie_nextleaf(l);
2528 }
2529
2530 if (l)
2531 iter->key = l->key;
2532 else
2533 iter->pos = 0;
2534 return l;
2535 }
2536
2537 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2538 __releases(RCU)
2539 {
2540 rcu_read_unlock();
2541 }
2542
2543 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544 {
2545 static unsigned type2flags[RTN_MAX + 1] = {
2546 [7] = RTF_REJECT, [8] = RTF_REJECT,
2547 };
2548 unsigned flags = type2flags[type];
2549
2550 if (fi && fi->fib_nh->nh_gw)
2551 flags |= RTF_GATEWAY;
2552 if (mask == htonl(0xFFFFFFFF))
2553 flags |= RTF_HOST;
2554 flags |= RTF_UP;
2555 return flags;
2556 }
2557
2558 /*
2559 * This outputs /proc/net/route.
2560 * The format of the file is not supposed to be changed
2561 * and needs to be same as fib_hash output to avoid breaking
2562 * legacy utilities
2563 */
2564 static int fib_route_seq_show(struct seq_file *seq, void *v)
2565 {
2566 struct leaf *l = v;
2567 struct leaf_info *li;
2568 struct hlist_node *node;
2569
2570 if (v == SEQ_START_TOKEN) {
2571 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2572 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2573 "\tWindow\tIRTT");
2574 return 0;
2575 }
2576
2577 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2578 struct fib_alias *fa;
2579 __be32 mask, prefix;
2580
2581 mask = inet_make_mask(li->plen);
2582 prefix = htonl(l->key);
2583
2584 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2585 const struct fib_info *fi = fa->fa_info;
2586 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2587 char bf[128];
2588
2589 if (fa->fa_type == RTN_BROADCAST
2590 || fa->fa_type == RTN_MULTICAST)
2591 continue;
2592
2593 if (fi)
2594 snprintf(bf, sizeof(bf),
2595 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2596 fi->fib_dev ? fi->fib_dev->name : "*",
2597 prefix,
2598 fi->fib_nh->nh_gw, flags, 0, 0,
2599 fi->fib_priority,
2600 mask,
2601 (fi->fib_advmss ?
2602 fi->fib_advmss + 40 : 0),
2603 fi->fib_window,
2604 fi->fib_rtt >> 3);
2605 else
2606 snprintf(bf, sizeof(bf),
2607 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2608 prefix, 0, flags, 0, 0, 0,
2609 mask, 0, 0, 0);
2610
2611 seq_printf(seq, "%-127s\n", bf);
2612 }
2613 }
2614
2615 return 0;
2616 }
2617
2618 static const struct seq_operations fib_route_seq_ops = {
2619 .start = fib_route_seq_start,
2620 .next = fib_route_seq_next,
2621 .stop = fib_route_seq_stop,
2622 .show = fib_route_seq_show,
2623 };
2624
2625 static int fib_route_seq_open(struct inode *inode, struct file *file)
2626 {
2627 return seq_open_net(inode, file, &fib_route_seq_ops,
2628 sizeof(struct fib_route_iter));
2629 }
2630
2631 static const struct file_operations fib_route_fops = {
2632 .owner = THIS_MODULE,
2633 .open = fib_route_seq_open,
2634 .read = seq_read,
2635 .llseek = seq_lseek,
2636 .release = seq_release_net,
2637 };
2638
2639 int __net_init fib_proc_init(struct net *net)
2640 {
2641 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2642 goto out1;
2643
2644 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2645 &fib_triestat_fops))
2646 goto out2;
2647
2648 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2649 goto out3;
2650
2651 return 0;
2652
2653 out3:
2654 proc_net_remove(net, "fib_triestat");
2655 out2:
2656 proc_net_remove(net, "fib_trie");
2657 out1:
2658 return -ENOMEM;
2659 }
2660
2661 void __net_exit fib_proc_exit(struct net *net)
2662 {
2663 proc_net_remove(net, "fib_trie");
2664 proc_net_remove(net, "fib_triestat");
2665 proc_net_remove(net, "route");
2666 }
2667
2668 #endif /* CONFIG_PROC_FS */
This page took 0.082875 seconds and 6 git commands to generate.