[IPV4] fib_trie: Use %u for unsigned printfs.
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #undef CONFIG_IP_FIB_TRIE_STATS
86 #define MAX_STAT_DEPTH 32
87
88 #define KEYLENGTH (8*sizeof(t_key))
89
90 typedef unsigned int t_key;
91
92 #define T_TNODE 0
93 #define T_LEAF 1
94 #define NODE_TYPE_MASK 0x1UL
95 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
97 #define IS_TNODE(n) (!(n->parent & T_LEAF))
98 #define IS_LEAF(n) (n->parent & T_LEAF)
99
100 struct node {
101 t_key key;
102 unsigned long parent;
103 };
104
105 struct leaf {
106 t_key key;
107 unsigned long parent;
108 struct hlist_head list;
109 struct rcu_head rcu;
110 };
111
112 struct leaf_info {
113 struct hlist_node hlist;
114 struct rcu_head rcu;
115 int plen;
116 struct list_head falh;
117 };
118
119 struct tnode {
120 t_key key;
121 unsigned long parent;
122 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
123 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
124 unsigned short full_children; /* KEYLENGTH bits needed */
125 unsigned short empty_children; /* KEYLENGTH bits needed */
126 struct rcu_head rcu;
127 struct node *child[0];
128 };
129
130 #ifdef CONFIG_IP_FIB_TRIE_STATS
131 struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
137 unsigned int resize_node_skipped;
138 };
139 #endif
140
141 struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
148 };
149
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
155 int size;
156 };
157
158 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
159 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
160 static struct node *resize(struct trie *t, struct tnode *tn);
161 static struct tnode *inflate(struct trie *t, struct tnode *tn);
162 static struct tnode *halve(struct trie *t, struct tnode *tn);
163 static void tnode_free(struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166
167 static inline struct tnode *node_parent(struct node *node)
168 {
169 struct tnode *ret;
170
171 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
172 return rcu_dereference(ret);
173 }
174
175 static inline void node_set_parent(struct node *node, struct tnode *ptr)
176 {
177 rcu_assign_pointer(node->parent,
178 (unsigned long)ptr | NODE_TYPE(node));
179 }
180
181 /* rcu_read_lock needs to be hold by caller from readside */
182
183 static inline struct node *tnode_get_child(struct tnode *tn, int i)
184 {
185 BUG_ON(i >= 1 << tn->bits);
186
187 return rcu_dereference(tn->child[i]);
188 }
189
190 static inline int tnode_child_length(const struct tnode *tn)
191 {
192 return 1 << tn->bits;
193 }
194
195 static inline t_key mask_pfx(t_key k, unsigned short l)
196 {
197 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
198 }
199
200 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
201 {
202 if (offset < KEYLENGTH)
203 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
204 else
205 return 0;
206 }
207
208 static inline int tkey_equals(t_key a, t_key b)
209 {
210 return a == b;
211 }
212
213 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
214 {
215 if (bits == 0 || offset >= KEYLENGTH)
216 return 1;
217 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
218 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
219 }
220
221 static inline int tkey_mismatch(t_key a, int offset, t_key b)
222 {
223 t_key diff = a ^ b;
224 int i = offset;
225
226 if (!diff)
227 return 0;
228 while ((diff << i) >> (KEYLENGTH-1) == 0)
229 i++;
230 return i;
231 }
232
233 /*
234 To understand this stuff, an understanding of keys and all their bits is
235 necessary. Every node in the trie has a key associated with it, but not
236 all of the bits in that key are significant.
237
238 Consider a node 'n' and its parent 'tp'.
239
240 If n is a leaf, every bit in its key is significant. Its presence is
241 necessitated by path compression, since during a tree traversal (when
242 searching for a leaf - unless we are doing an insertion) we will completely
243 ignore all skipped bits we encounter. Thus we need to verify, at the end of
244 a potentially successful search, that we have indeed been walking the
245 correct key path.
246
247 Note that we can never "miss" the correct key in the tree if present by
248 following the wrong path. Path compression ensures that segments of the key
249 that are the same for all keys with a given prefix are skipped, but the
250 skipped part *is* identical for each node in the subtrie below the skipped
251 bit! trie_insert() in this implementation takes care of that - note the
252 call to tkey_sub_equals() in trie_insert().
253
254 if n is an internal node - a 'tnode' here, the various parts of its key
255 have many different meanings.
256
257 Example:
258 _________________________________________________________________
259 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
260 -----------------------------------------------------------------
261 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
262
263 _________________________________________________________________
264 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
265 -----------------------------------------------------------------
266 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
267
268 tp->pos = 7
269 tp->bits = 3
270 n->pos = 15
271 n->bits = 4
272
273 First, let's just ignore the bits that come before the parent tp, that is
274 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
275 not use them for anything.
276
277 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
278 index into the parent's child array. That is, they will be used to find
279 'n' among tp's children.
280
281 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
282 for the node n.
283
284 All the bits we have seen so far are significant to the node n. The rest
285 of the bits are really not needed or indeed known in n->key.
286
287 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
288 n's child array, and will of course be different for each child.
289
290
291 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
292 at this point.
293
294 */
295
296 static inline void check_tnode(const struct tnode *tn)
297 {
298 WARN_ON(tn && tn->pos+tn->bits > 32);
299 }
300
301 static const int halve_threshold = 25;
302 static const int inflate_threshold = 50;
303 static const int halve_threshold_root = 8;
304 static const int inflate_threshold_root = 15;
305
306
307 static void __alias_free_mem(struct rcu_head *head)
308 {
309 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
310 kmem_cache_free(fn_alias_kmem, fa);
311 }
312
313 static inline void alias_free_mem_rcu(struct fib_alias *fa)
314 {
315 call_rcu(&fa->rcu, __alias_free_mem);
316 }
317
318 static void __leaf_free_rcu(struct rcu_head *head)
319 {
320 kfree(container_of(head, struct leaf, rcu));
321 }
322
323 static void __leaf_info_free_rcu(struct rcu_head *head)
324 {
325 kfree(container_of(head, struct leaf_info, rcu));
326 }
327
328 static inline void free_leaf_info(struct leaf_info *leaf)
329 {
330 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
331 }
332
333 static struct tnode *tnode_alloc(unsigned int size)
334 {
335 struct page *pages;
336
337 if (size <= PAGE_SIZE)
338 return kcalloc(size, 1, GFP_KERNEL);
339
340 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
341 if (!pages)
342 return NULL;
343
344 return page_address(pages);
345 }
346
347 static void __tnode_free_rcu(struct rcu_head *head)
348 {
349 struct tnode *tn = container_of(head, struct tnode, rcu);
350 unsigned int size = sizeof(struct tnode) +
351 (1 << tn->bits) * sizeof(struct node *);
352
353 if (size <= PAGE_SIZE)
354 kfree(tn);
355 else
356 free_pages((unsigned long)tn, get_order(size));
357 }
358
359 static inline void tnode_free(struct tnode *tn)
360 {
361 if (IS_LEAF(tn)) {
362 struct leaf *l = (struct leaf *) tn;
363 call_rcu_bh(&l->rcu, __leaf_free_rcu);
364 } else
365 call_rcu(&tn->rcu, __tnode_free_rcu);
366 }
367
368 static struct leaf *leaf_new(void)
369 {
370 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
371 if (l) {
372 l->parent = T_LEAF;
373 INIT_HLIST_HEAD(&l->list);
374 }
375 return l;
376 }
377
378 static struct leaf_info *leaf_info_new(int plen)
379 {
380 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
381 if (li) {
382 li->plen = plen;
383 INIT_LIST_HEAD(&li->falh);
384 }
385 return li;
386 }
387
388 static struct tnode* tnode_new(t_key key, int pos, int bits)
389 {
390 int nchildren = 1<<bits;
391 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
392 struct tnode *tn = tnode_alloc(sz);
393
394 if (tn) {
395 memset(tn, 0, sz);
396 tn->parent = T_TNODE;
397 tn->pos = pos;
398 tn->bits = bits;
399 tn->key = key;
400 tn->full_children = 0;
401 tn->empty_children = 1<<bits;
402 }
403
404 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
405 (unsigned int) (sizeof(struct node) * 1<<bits));
406 return tn;
407 }
408
409 /*
410 * Check whether a tnode 'n' is "full", i.e. it is an internal node
411 * and no bits are skipped. See discussion in dyntree paper p. 6
412 */
413
414 static inline int tnode_full(const struct tnode *tn, const struct node *n)
415 {
416 if (n == NULL || IS_LEAF(n))
417 return 0;
418
419 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
420 }
421
422 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
423 {
424 tnode_put_child_reorg(tn, i, n, -1);
425 }
426
427 /*
428 * Add a child at position i overwriting the old value.
429 * Update the value of full_children and empty_children.
430 */
431
432 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
433 {
434 struct node *chi = tn->child[i];
435 int isfull;
436
437 BUG_ON(i >= 1<<tn->bits);
438
439
440 /* update emptyChildren */
441 if (n == NULL && chi != NULL)
442 tn->empty_children++;
443 else if (n != NULL && chi == NULL)
444 tn->empty_children--;
445
446 /* update fullChildren */
447 if (wasfull == -1)
448 wasfull = tnode_full(tn, chi);
449
450 isfull = tnode_full(tn, n);
451 if (wasfull && !isfull)
452 tn->full_children--;
453 else if (!wasfull && isfull)
454 tn->full_children++;
455
456 if (n)
457 node_set_parent(n, tn);
458
459 rcu_assign_pointer(tn->child[i], n);
460 }
461
462 static struct node *resize(struct trie *t, struct tnode *tn)
463 {
464 int i;
465 int err = 0;
466 struct tnode *old_tn;
467 int inflate_threshold_use;
468 int halve_threshold_use;
469 int max_resize;
470
471 if (!tn)
472 return NULL;
473
474 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
475 tn, inflate_threshold, halve_threshold);
476
477 /* No children */
478 if (tn->empty_children == tnode_child_length(tn)) {
479 tnode_free(tn);
480 return NULL;
481 }
482 /* One child */
483 if (tn->empty_children == tnode_child_length(tn) - 1)
484 for (i = 0; i < tnode_child_length(tn); i++) {
485 struct node *n;
486
487 n = tn->child[i];
488 if (!n)
489 continue;
490
491 /* compress one level */
492 node_set_parent(n, NULL);
493 tnode_free(tn);
494 return n;
495 }
496 /*
497 * Double as long as the resulting node has a number of
498 * nonempty nodes that are above the threshold.
499 */
500
501 /*
502 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
503 * the Helsinki University of Technology and Matti Tikkanen of Nokia
504 * Telecommunications, page 6:
505 * "A node is doubled if the ratio of non-empty children to all
506 * children in the *doubled* node is at least 'high'."
507 *
508 * 'high' in this instance is the variable 'inflate_threshold'. It
509 * is expressed as a percentage, so we multiply it with
510 * tnode_child_length() and instead of multiplying by 2 (since the
511 * child array will be doubled by inflate()) and multiplying
512 * the left-hand side by 100 (to handle the percentage thing) we
513 * multiply the left-hand side by 50.
514 *
515 * The left-hand side may look a bit weird: tnode_child_length(tn)
516 * - tn->empty_children is of course the number of non-null children
517 * in the current node. tn->full_children is the number of "full"
518 * children, that is non-null tnodes with a skip value of 0.
519 * All of those will be doubled in the resulting inflated tnode, so
520 * we just count them one extra time here.
521 *
522 * A clearer way to write this would be:
523 *
524 * to_be_doubled = tn->full_children;
525 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
526 * tn->full_children;
527 *
528 * new_child_length = tnode_child_length(tn) * 2;
529 *
530 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
531 * new_child_length;
532 * if (new_fill_factor >= inflate_threshold)
533 *
534 * ...and so on, tho it would mess up the while () loop.
535 *
536 * anyway,
537 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
538 * inflate_threshold
539 *
540 * avoid a division:
541 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
542 * inflate_threshold * new_child_length
543 *
544 * expand not_to_be_doubled and to_be_doubled, and shorten:
545 * 100 * (tnode_child_length(tn) - tn->empty_children +
546 * tn->full_children) >= inflate_threshold * new_child_length
547 *
548 * expand new_child_length:
549 * 100 * (tnode_child_length(tn) - tn->empty_children +
550 * tn->full_children) >=
551 * inflate_threshold * tnode_child_length(tn) * 2
552 *
553 * shorten again:
554 * 50 * (tn->full_children + tnode_child_length(tn) -
555 * tn->empty_children) >= inflate_threshold *
556 * tnode_child_length(tn)
557 *
558 */
559
560 check_tnode(tn);
561
562 /* Keep root node larger */
563
564 if (!tn->parent)
565 inflate_threshold_use = inflate_threshold_root;
566 else
567 inflate_threshold_use = inflate_threshold;
568
569 err = 0;
570 max_resize = 10;
571 while ((tn->full_children > 0 && max_resize-- &&
572 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
573 inflate_threshold_use * tnode_child_length(tn))) {
574
575 old_tn = tn;
576 tn = inflate(t, tn);
577 if (IS_ERR(tn)) {
578 tn = old_tn;
579 #ifdef CONFIG_IP_FIB_TRIE_STATS
580 t->stats.resize_node_skipped++;
581 #endif
582 break;
583 }
584 }
585
586 if (max_resize < 0) {
587 if (!tn->parent)
588 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
589 inflate_threshold_root, tn->bits);
590 else
591 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
592 inflate_threshold, tn->bits);
593 }
594
595 check_tnode(tn);
596
597 /*
598 * Halve as long as the number of empty children in this
599 * node is above threshold.
600 */
601
602
603 /* Keep root node larger */
604
605 if (!tn->parent)
606 halve_threshold_use = halve_threshold_root;
607 else
608 halve_threshold_use = halve_threshold;
609
610 err = 0;
611 max_resize = 10;
612 while (tn->bits > 1 && max_resize-- &&
613 100 * (tnode_child_length(tn) - tn->empty_children) <
614 halve_threshold_use * tnode_child_length(tn)) {
615
616 old_tn = tn;
617 tn = halve(t, tn);
618 if (IS_ERR(tn)) {
619 tn = old_tn;
620 #ifdef CONFIG_IP_FIB_TRIE_STATS
621 t->stats.resize_node_skipped++;
622 #endif
623 break;
624 }
625 }
626
627 if (max_resize < 0) {
628 if (!tn->parent)
629 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
630 halve_threshold_root, tn->bits);
631 else
632 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
633 halve_threshold, tn->bits);
634 }
635
636 /* Only one child remains */
637 if (tn->empty_children == tnode_child_length(tn) - 1)
638 for (i = 0; i < tnode_child_length(tn); i++) {
639 struct node *n;
640
641 n = tn->child[i];
642 if (!n)
643 continue;
644
645 /* compress one level */
646
647 node_set_parent(n, NULL);
648 tnode_free(tn);
649 return n;
650 }
651
652 return (struct node *) tn;
653 }
654
655 static struct tnode *inflate(struct trie *t, struct tnode *tn)
656 {
657 struct tnode *inode;
658 struct tnode *oldtnode = tn;
659 int olen = tnode_child_length(tn);
660 int i;
661
662 pr_debug("In inflate\n");
663
664 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
665
666 if (!tn)
667 return ERR_PTR(-ENOMEM);
668
669 /*
670 * Preallocate and store tnodes before the actual work so we
671 * don't get into an inconsistent state if memory allocation
672 * fails. In case of failure we return the oldnode and inflate
673 * of tnode is ignored.
674 */
675
676 for (i = 0; i < olen; i++) {
677 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
678
679 if (inode &&
680 IS_TNODE(inode) &&
681 inode->pos == oldtnode->pos + oldtnode->bits &&
682 inode->bits > 1) {
683 struct tnode *left, *right;
684 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
685
686 left = tnode_new(inode->key&(~m), inode->pos + 1,
687 inode->bits - 1);
688 if (!left)
689 goto nomem;
690
691 right = tnode_new(inode->key|m, inode->pos + 1,
692 inode->bits - 1);
693
694 if (!right) {
695 tnode_free(left);
696 goto nomem;
697 }
698
699 put_child(t, tn, 2*i, (struct node *) left);
700 put_child(t, tn, 2*i+1, (struct node *) right);
701 }
702 }
703
704 for (i = 0; i < olen; i++) {
705 struct node *node = tnode_get_child(oldtnode, i);
706 struct tnode *left, *right;
707 int size, j;
708
709 /* An empty child */
710 if (node == NULL)
711 continue;
712
713 /* A leaf or an internal node with skipped bits */
714
715 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
716 tn->pos + tn->bits - 1) {
717 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
718 1) == 0)
719 put_child(t, tn, 2*i, node);
720 else
721 put_child(t, tn, 2*i+1, node);
722 continue;
723 }
724
725 /* An internal node with two children */
726 inode = (struct tnode *) node;
727
728 if (inode->bits == 1) {
729 put_child(t, tn, 2*i, inode->child[0]);
730 put_child(t, tn, 2*i+1, inode->child[1]);
731
732 tnode_free(inode);
733 continue;
734 }
735
736 /* An internal node with more than two children */
737
738 /* We will replace this node 'inode' with two new
739 * ones, 'left' and 'right', each with half of the
740 * original children. The two new nodes will have
741 * a position one bit further down the key and this
742 * means that the "significant" part of their keys
743 * (see the discussion near the top of this file)
744 * will differ by one bit, which will be "0" in
745 * left's key and "1" in right's key. Since we are
746 * moving the key position by one step, the bit that
747 * we are moving away from - the bit at position
748 * (inode->pos) - is the one that will differ between
749 * left and right. So... we synthesize that bit in the
750 * two new keys.
751 * The mask 'm' below will be a single "one" bit at
752 * the position (inode->pos)
753 */
754
755 /* Use the old key, but set the new significant
756 * bit to zero.
757 */
758
759 left = (struct tnode *) tnode_get_child(tn, 2*i);
760 put_child(t, tn, 2*i, NULL);
761
762 BUG_ON(!left);
763
764 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
765 put_child(t, tn, 2*i+1, NULL);
766
767 BUG_ON(!right);
768
769 size = tnode_child_length(left);
770 for (j = 0; j < size; j++) {
771 put_child(t, left, j, inode->child[j]);
772 put_child(t, right, j, inode->child[j + size]);
773 }
774 put_child(t, tn, 2*i, resize(t, left));
775 put_child(t, tn, 2*i+1, resize(t, right));
776
777 tnode_free(inode);
778 }
779 tnode_free(oldtnode);
780 return tn;
781 nomem:
782 {
783 int size = tnode_child_length(tn);
784 int j;
785
786 for (j = 0; j < size; j++)
787 if (tn->child[j])
788 tnode_free((struct tnode *)tn->child[j]);
789
790 tnode_free(tn);
791
792 return ERR_PTR(-ENOMEM);
793 }
794 }
795
796 static struct tnode *halve(struct trie *t, struct tnode *tn)
797 {
798 struct tnode *oldtnode = tn;
799 struct node *left, *right;
800 int i;
801 int olen = tnode_child_length(tn);
802
803 pr_debug("In halve\n");
804
805 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
806
807 if (!tn)
808 return ERR_PTR(-ENOMEM);
809
810 /*
811 * Preallocate and store tnodes before the actual work so we
812 * don't get into an inconsistent state if memory allocation
813 * fails. In case of failure we return the oldnode and halve
814 * of tnode is ignored.
815 */
816
817 for (i = 0; i < olen; i += 2) {
818 left = tnode_get_child(oldtnode, i);
819 right = tnode_get_child(oldtnode, i+1);
820
821 /* Two nonempty children */
822 if (left && right) {
823 struct tnode *newn;
824
825 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
826
827 if (!newn)
828 goto nomem;
829
830 put_child(t, tn, i/2, (struct node *)newn);
831 }
832
833 }
834
835 for (i = 0; i < olen; i += 2) {
836 struct tnode *newBinNode;
837
838 left = tnode_get_child(oldtnode, i);
839 right = tnode_get_child(oldtnode, i+1);
840
841 /* At least one of the children is empty */
842 if (left == NULL) {
843 if (right == NULL) /* Both are empty */
844 continue;
845 put_child(t, tn, i/2, right);
846 continue;
847 }
848
849 if (right == NULL) {
850 put_child(t, tn, i/2, left);
851 continue;
852 }
853
854 /* Two nonempty children */
855 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
856 put_child(t, tn, i/2, NULL);
857 put_child(t, newBinNode, 0, left);
858 put_child(t, newBinNode, 1, right);
859 put_child(t, tn, i/2, resize(t, newBinNode));
860 }
861 tnode_free(oldtnode);
862 return tn;
863 nomem:
864 {
865 int size = tnode_child_length(tn);
866 int j;
867
868 for (j = 0; j < size; j++)
869 if (tn->child[j])
870 tnode_free((struct tnode *)tn->child[j]);
871
872 tnode_free(tn);
873
874 return ERR_PTR(-ENOMEM);
875 }
876 }
877
878 /* readside must use rcu_read_lock currently dump routines
879 via get_fa_head and dump */
880
881 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
882 {
883 struct hlist_head *head = &l->list;
884 struct hlist_node *node;
885 struct leaf_info *li;
886
887 hlist_for_each_entry_rcu(li, node, head, hlist)
888 if (li->plen == plen)
889 return li;
890
891 return NULL;
892 }
893
894 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
895 {
896 struct leaf_info *li = find_leaf_info(l, plen);
897
898 if (!li)
899 return NULL;
900
901 return &li->falh;
902 }
903
904 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
905 {
906 struct leaf_info *li = NULL, *last = NULL;
907 struct hlist_node *node;
908
909 if (hlist_empty(head)) {
910 hlist_add_head_rcu(&new->hlist, head);
911 } else {
912 hlist_for_each_entry(li, node, head, hlist) {
913 if (new->plen > li->plen)
914 break;
915
916 last = li;
917 }
918 if (last)
919 hlist_add_after_rcu(&last->hlist, &new->hlist);
920 else
921 hlist_add_before_rcu(&new->hlist, &li->hlist);
922 }
923 }
924
925 /* rcu_read_lock needs to be hold by caller from readside */
926
927 static struct leaf *
928 fib_find_node(struct trie *t, u32 key)
929 {
930 int pos;
931 struct tnode *tn;
932 struct node *n;
933
934 pos = 0;
935 n = rcu_dereference(t->trie);
936
937 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
938 tn = (struct tnode *) n;
939
940 check_tnode(tn);
941
942 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
943 pos = tn->pos + tn->bits;
944 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
945 } else
946 break;
947 }
948 /* Case we have found a leaf. Compare prefixes */
949
950 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
951 return (struct leaf *)n;
952
953 return NULL;
954 }
955
956 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
957 {
958 int wasfull;
959 t_key cindex, key = tn->key;
960 struct tnode *tp;
961
962 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
963 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
964 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
965 tn = (struct tnode *) resize (t, (struct tnode *)tn);
966 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
967
968 tp = node_parent((struct node *) tn);
969 if (!tp)
970 break;
971 tn = tp;
972 }
973
974 /* Handle last (top) tnode */
975 if (IS_TNODE(tn))
976 tn = (struct tnode*) resize(t, (struct tnode *)tn);
977
978 return (struct node*) tn;
979 }
980
981 /* only used from updater-side */
982
983 static struct list_head *
984 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
985 {
986 int pos, newpos;
987 struct tnode *tp = NULL, *tn = NULL;
988 struct node *n;
989 struct leaf *l;
990 int missbit;
991 struct list_head *fa_head = NULL;
992 struct leaf_info *li;
993 t_key cindex;
994
995 pos = 0;
996 n = t->trie;
997
998 /* If we point to NULL, stop. Either the tree is empty and we should
999 * just put a new leaf in if, or we have reached an empty child slot,
1000 * and we should just put our new leaf in that.
1001 * If we point to a T_TNODE, check if it matches our key. Note that
1002 * a T_TNODE might be skipping any number of bits - its 'pos' need
1003 * not be the parent's 'pos'+'bits'!
1004 *
1005 * If it does match the current key, get pos/bits from it, extract
1006 * the index from our key, push the T_TNODE and walk the tree.
1007 *
1008 * If it doesn't, we have to replace it with a new T_TNODE.
1009 *
1010 * If we point to a T_LEAF, it might or might not have the same key
1011 * as we do. If it does, just change the value, update the T_LEAF's
1012 * value, and return it.
1013 * If it doesn't, we need to replace it with a T_TNODE.
1014 */
1015
1016 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1017 tn = (struct tnode *) n;
1018
1019 check_tnode(tn);
1020
1021 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1022 tp = tn;
1023 pos = tn->pos + tn->bits;
1024 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1025
1026 BUG_ON(n && node_parent(n) != tn);
1027 } else
1028 break;
1029 }
1030
1031 /*
1032 * n ----> NULL, LEAF or TNODE
1033 *
1034 * tp is n's (parent) ----> NULL or TNODE
1035 */
1036
1037 BUG_ON(tp && IS_LEAF(tp));
1038
1039 /* Case 1: n is a leaf. Compare prefixes */
1040
1041 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1042 struct leaf *l = (struct leaf *) n;
1043
1044 li = leaf_info_new(plen);
1045
1046 if (!li) {
1047 *err = -ENOMEM;
1048 goto done;
1049 }
1050
1051 fa_head = &li->falh;
1052 insert_leaf_info(&l->list, li);
1053 goto done;
1054 }
1055 t->size++;
1056 l = leaf_new();
1057
1058 if (!l) {
1059 *err = -ENOMEM;
1060 goto done;
1061 }
1062
1063 l->key = key;
1064 li = leaf_info_new(plen);
1065
1066 if (!li) {
1067 tnode_free((struct tnode *) l);
1068 *err = -ENOMEM;
1069 goto done;
1070 }
1071
1072 fa_head = &li->falh;
1073 insert_leaf_info(&l->list, li);
1074
1075 if (t->trie && n == NULL) {
1076 /* Case 2: n is NULL, and will just insert a new leaf */
1077
1078 node_set_parent((struct node *)l, tp);
1079
1080 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1081 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1082 } else {
1083 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1084 /*
1085 * Add a new tnode here
1086 * first tnode need some special handling
1087 */
1088
1089 if (tp)
1090 pos = tp->pos+tp->bits;
1091 else
1092 pos = 0;
1093
1094 if (n) {
1095 newpos = tkey_mismatch(key, pos, n->key);
1096 tn = tnode_new(n->key, newpos, 1);
1097 } else {
1098 newpos = 0;
1099 tn = tnode_new(key, newpos, 1); /* First tnode */
1100 }
1101
1102 if (!tn) {
1103 free_leaf_info(li);
1104 tnode_free((struct tnode *) l);
1105 *err = -ENOMEM;
1106 goto done;
1107 }
1108
1109 node_set_parent((struct node *)tn, tp);
1110
1111 missbit = tkey_extract_bits(key, newpos, 1);
1112 put_child(t, tn, missbit, (struct node *)l);
1113 put_child(t, tn, 1-missbit, n);
1114
1115 if (tp) {
1116 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1117 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1118 } else {
1119 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1120 tp = tn;
1121 }
1122 }
1123
1124 if (tp && tp->pos + tp->bits > 32)
1125 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1126 tp, tp->pos, tp->bits, key, plen);
1127
1128 /* Rebalance the trie */
1129
1130 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1131 done:
1132 return fa_head;
1133 }
1134
1135 /*
1136 * Caller must hold RTNL.
1137 */
1138 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1139 {
1140 struct trie *t = (struct trie *) tb->tb_data;
1141 struct fib_alias *fa, *new_fa;
1142 struct list_head *fa_head = NULL;
1143 struct fib_info *fi;
1144 int plen = cfg->fc_dst_len;
1145 u8 tos = cfg->fc_tos;
1146 u32 key, mask;
1147 int err;
1148 struct leaf *l;
1149
1150 if (plen > 32)
1151 return -EINVAL;
1152
1153 key = ntohl(cfg->fc_dst);
1154
1155 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1156
1157 mask = ntohl(inet_make_mask(plen));
1158
1159 if (key & ~mask)
1160 return -EINVAL;
1161
1162 key = key & mask;
1163
1164 fi = fib_create_info(cfg);
1165 if (IS_ERR(fi)) {
1166 err = PTR_ERR(fi);
1167 goto err;
1168 }
1169
1170 l = fib_find_node(t, key);
1171 fa = NULL;
1172
1173 if (l) {
1174 fa_head = get_fa_head(l, plen);
1175 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1176 }
1177
1178 /* Now fa, if non-NULL, points to the first fib alias
1179 * with the same keys [prefix,tos,priority], if such key already
1180 * exists or to the node before which we will insert new one.
1181 *
1182 * If fa is NULL, we will need to allocate a new one and
1183 * insert to the head of f.
1184 *
1185 * If f is NULL, no fib node matched the destination key
1186 * and we need to allocate a new one of those as well.
1187 */
1188
1189 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1190 struct fib_alias *fa_orig;
1191
1192 err = -EEXIST;
1193 if (cfg->fc_nlflags & NLM_F_EXCL)
1194 goto out;
1195
1196 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1197 struct fib_info *fi_drop;
1198 u8 state;
1199
1200 if (fi->fib_treeref > 1)
1201 goto out;
1202
1203 err = -ENOBUFS;
1204 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205 if (new_fa == NULL)
1206 goto out;
1207
1208 fi_drop = fa->fa_info;
1209 new_fa->fa_tos = fa->fa_tos;
1210 new_fa->fa_info = fi;
1211 new_fa->fa_type = cfg->fc_type;
1212 new_fa->fa_scope = cfg->fc_scope;
1213 state = fa->fa_state;
1214 new_fa->fa_state &= ~FA_S_ACCESSED;
1215
1216 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1217 alias_free_mem_rcu(fa);
1218
1219 fib_release_info(fi_drop);
1220 if (state & FA_S_ACCESSED)
1221 rt_cache_flush(-1);
1222 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1223 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1224
1225 goto succeeded;
1226 }
1227 /* Error if we find a perfect match which
1228 * uses the same scope, type, and nexthop
1229 * information.
1230 */
1231 fa_orig = fa;
1232 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1233 if (fa->fa_tos != tos)
1234 break;
1235 if (fa->fa_info->fib_priority != fi->fib_priority)
1236 break;
1237 if (fa->fa_type == cfg->fc_type &&
1238 fa->fa_scope == cfg->fc_scope &&
1239 fa->fa_info == fi) {
1240 goto out;
1241 }
1242 }
1243 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1244 fa = fa_orig;
1245 }
1246 err = -ENOENT;
1247 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1248 goto out;
1249
1250 err = -ENOBUFS;
1251 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1252 if (new_fa == NULL)
1253 goto out;
1254
1255 new_fa->fa_info = fi;
1256 new_fa->fa_tos = tos;
1257 new_fa->fa_type = cfg->fc_type;
1258 new_fa->fa_scope = cfg->fc_scope;
1259 new_fa->fa_state = 0;
1260 /*
1261 * Insert new entry to the list.
1262 */
1263
1264 if (!fa_head) {
1265 err = 0;
1266 fa_head = fib_insert_node(t, &err, key, plen);
1267 if (err)
1268 goto out_free_new_fa;
1269 }
1270
1271 list_add_tail_rcu(&new_fa->fa_list,
1272 (fa ? &fa->fa_list : fa_head));
1273
1274 rt_cache_flush(-1);
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1276 &cfg->fc_nlinfo, 0);
1277 succeeded:
1278 return 0;
1279
1280 out_free_new_fa:
1281 kmem_cache_free(fn_alias_kmem, new_fa);
1282 out:
1283 fib_release_info(fi);
1284 err:
1285 return err;
1286 }
1287
1288
1289 /* should be called with rcu_read_lock */
1290 static inline int check_leaf(struct trie *t, struct leaf *l,
1291 t_key key, int *plen, const struct flowi *flp,
1292 struct fib_result *res)
1293 {
1294 int err, i;
1295 __be32 mask;
1296 struct leaf_info *li;
1297 struct hlist_head *hhead = &l->list;
1298 struct hlist_node *node;
1299
1300 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1301 i = li->plen;
1302 mask = inet_make_mask(i);
1303 if (l->key != (key & ntohl(mask)))
1304 continue;
1305
1306 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1307 *plen = i;
1308 #ifdef CONFIG_IP_FIB_TRIE_STATS
1309 t->stats.semantic_match_passed++;
1310 #endif
1311 return err;
1312 }
1313 #ifdef CONFIG_IP_FIB_TRIE_STATS
1314 t->stats.semantic_match_miss++;
1315 #endif
1316 }
1317 return 1;
1318 }
1319
1320 static int
1321 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1322 {
1323 struct trie *t = (struct trie *) tb->tb_data;
1324 int plen, ret = 0;
1325 struct node *n;
1326 struct tnode *pn;
1327 int pos, bits;
1328 t_key key = ntohl(flp->fl4_dst);
1329 int chopped_off;
1330 t_key cindex = 0;
1331 int current_prefix_length = KEYLENGTH;
1332 struct tnode *cn;
1333 t_key node_prefix, key_prefix, pref_mismatch;
1334 int mp;
1335
1336 rcu_read_lock();
1337
1338 n = rcu_dereference(t->trie);
1339 if (!n)
1340 goto failed;
1341
1342 #ifdef CONFIG_IP_FIB_TRIE_STATS
1343 t->stats.gets++;
1344 #endif
1345
1346 /* Just a leaf? */
1347 if (IS_LEAF(n)) {
1348 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1349 goto found;
1350 goto failed;
1351 }
1352 pn = (struct tnode *) n;
1353 chopped_off = 0;
1354
1355 while (pn) {
1356 pos = pn->pos;
1357 bits = pn->bits;
1358
1359 if (!chopped_off)
1360 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1361 pos, bits);
1362
1363 n = tnode_get_child(pn, cindex);
1364
1365 if (n == NULL) {
1366 #ifdef CONFIG_IP_FIB_TRIE_STATS
1367 t->stats.null_node_hit++;
1368 #endif
1369 goto backtrace;
1370 }
1371
1372 if (IS_LEAF(n)) {
1373 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1374 goto found;
1375 else
1376 goto backtrace;
1377 }
1378
1379 #define HL_OPTIMIZE
1380 #ifdef HL_OPTIMIZE
1381 cn = (struct tnode *)n;
1382
1383 /*
1384 * It's a tnode, and we can do some extra checks here if we
1385 * like, to avoid descending into a dead-end branch.
1386 * This tnode is in the parent's child array at index
1387 * key[p_pos..p_pos+p_bits] but potentially with some bits
1388 * chopped off, so in reality the index may be just a
1389 * subprefix, padded with zero at the end.
1390 * We can also take a look at any skipped bits in this
1391 * tnode - everything up to p_pos is supposed to be ok,
1392 * and the non-chopped bits of the index (se previous
1393 * paragraph) are also guaranteed ok, but the rest is
1394 * considered unknown.
1395 *
1396 * The skipped bits are key[pos+bits..cn->pos].
1397 */
1398
1399 /* If current_prefix_length < pos+bits, we are already doing
1400 * actual prefix matching, which means everything from
1401 * pos+(bits-chopped_off) onward must be zero along some
1402 * branch of this subtree - otherwise there is *no* valid
1403 * prefix present. Here we can only check the skipped
1404 * bits. Remember, since we have already indexed into the
1405 * parent's child array, we know that the bits we chopped of
1406 * *are* zero.
1407 */
1408
1409 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1410
1411 if (current_prefix_length < pos+bits) {
1412 if (tkey_extract_bits(cn->key, current_prefix_length,
1413 cn->pos - current_prefix_length) != 0 ||
1414 !(cn->child[0]))
1415 goto backtrace;
1416 }
1417
1418 /*
1419 * If chopped_off=0, the index is fully validated and we
1420 * only need to look at the skipped bits for this, the new,
1421 * tnode. What we actually want to do is to find out if
1422 * these skipped bits match our key perfectly, or if we will
1423 * have to count on finding a matching prefix further down,
1424 * because if we do, we would like to have some way of
1425 * verifying the existence of such a prefix at this point.
1426 */
1427
1428 /* The only thing we can do at this point is to verify that
1429 * any such matching prefix can indeed be a prefix to our
1430 * key, and if the bits in the node we are inspecting that
1431 * do not match our key are not ZERO, this cannot be true.
1432 * Thus, find out where there is a mismatch (before cn->pos)
1433 * and verify that all the mismatching bits are zero in the
1434 * new tnode's key.
1435 */
1436
1437 /* Note: We aren't very concerned about the piece of the key
1438 * that precede pn->pos+pn->bits, since these have already been
1439 * checked. The bits after cn->pos aren't checked since these are
1440 * by definition "unknown" at this point. Thus, what we want to
1441 * see is if we are about to enter the "prefix matching" state,
1442 * and in that case verify that the skipped bits that will prevail
1443 * throughout this subtree are zero, as they have to be if we are
1444 * to find a matching prefix.
1445 */
1446
1447 node_prefix = mask_pfx(cn->key, cn->pos);
1448 key_prefix = mask_pfx(key, cn->pos);
1449 pref_mismatch = key_prefix^node_prefix;
1450 mp = 0;
1451
1452 /* In short: If skipped bits in this node do not match the search
1453 * key, enter the "prefix matching" state.directly.
1454 */
1455 if (pref_mismatch) {
1456 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1457 mp++;
1458 pref_mismatch = pref_mismatch <<1;
1459 }
1460 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1461
1462 if (key_prefix != 0)
1463 goto backtrace;
1464
1465 if (current_prefix_length >= cn->pos)
1466 current_prefix_length = mp;
1467 }
1468 #endif
1469 pn = (struct tnode *)n; /* Descend */
1470 chopped_off = 0;
1471 continue;
1472
1473 backtrace:
1474 chopped_off++;
1475
1476 /* As zero don't change the child key (cindex) */
1477 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1478 chopped_off++;
1479
1480 /* Decrease current_... with bits chopped off */
1481 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1482 current_prefix_length = pn->pos + pn->bits - chopped_off;
1483
1484 /*
1485 * Either we do the actual chop off according or if we have
1486 * chopped off all bits in this tnode walk up to our parent.
1487 */
1488
1489 if (chopped_off <= pn->bits) {
1490 cindex &= ~(1 << (chopped_off-1));
1491 } else {
1492 struct tnode *parent = node_parent((struct node *) pn);
1493 if (!parent)
1494 goto failed;
1495
1496 /* Get Child's index */
1497 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1498 pn = parent;
1499 chopped_off = 0;
1500
1501 #ifdef CONFIG_IP_FIB_TRIE_STATS
1502 t->stats.backtrack++;
1503 #endif
1504 goto backtrace;
1505 }
1506 }
1507 failed:
1508 ret = 1;
1509 found:
1510 rcu_read_unlock();
1511 return ret;
1512 }
1513
1514 /* only called from updater side */
1515 static int trie_leaf_remove(struct trie *t, t_key key)
1516 {
1517 t_key cindex;
1518 struct tnode *tp = NULL;
1519 struct node *n = t->trie;
1520 struct leaf *l;
1521
1522 pr_debug("entering trie_leaf_remove(%p)\n", n);
1523
1524 /* Note that in the case skipped bits, those bits are *not* checked!
1525 * When we finish this, we will have NULL or a T_LEAF, and the
1526 * T_LEAF may or may not match our key.
1527 */
1528
1529 while (n != NULL && IS_TNODE(n)) {
1530 struct tnode *tn = (struct tnode *) n;
1531 check_tnode(tn);
1532 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1533
1534 BUG_ON(n && node_parent(n) != tn);
1535 }
1536 l = (struct leaf *) n;
1537
1538 if (!n || !tkey_equals(l->key, key))
1539 return 0;
1540
1541 /*
1542 * Key found.
1543 * Remove the leaf and rebalance the tree
1544 */
1545
1546 t->size--;
1547
1548 tp = node_parent(n);
1549 tnode_free((struct tnode *) n);
1550
1551 if (tp) {
1552 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1553 put_child(t, (struct tnode *)tp, cindex, NULL);
1554 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1555 } else
1556 rcu_assign_pointer(t->trie, NULL);
1557
1558 return 1;
1559 }
1560
1561 /*
1562 * Caller must hold RTNL.
1563 */
1564 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1565 {
1566 struct trie *t = (struct trie *) tb->tb_data;
1567 u32 key, mask;
1568 int plen = cfg->fc_dst_len;
1569 u8 tos = cfg->fc_tos;
1570 struct fib_alias *fa, *fa_to_delete;
1571 struct list_head *fa_head;
1572 struct leaf *l;
1573 struct leaf_info *li;
1574
1575 if (plen > 32)
1576 return -EINVAL;
1577
1578 key = ntohl(cfg->fc_dst);
1579 mask = ntohl(inet_make_mask(plen));
1580
1581 if (key & ~mask)
1582 return -EINVAL;
1583
1584 key = key & mask;
1585 l = fib_find_node(t, key);
1586
1587 if (!l)
1588 return -ESRCH;
1589
1590 fa_head = get_fa_head(l, plen);
1591 fa = fib_find_alias(fa_head, tos, 0);
1592
1593 if (!fa)
1594 return -ESRCH;
1595
1596 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1597
1598 fa_to_delete = NULL;
1599 fa_head = fa->fa_list.prev;
1600
1601 list_for_each_entry(fa, fa_head, fa_list) {
1602 struct fib_info *fi = fa->fa_info;
1603
1604 if (fa->fa_tos != tos)
1605 break;
1606
1607 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1608 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1609 fa->fa_scope == cfg->fc_scope) &&
1610 (!cfg->fc_protocol ||
1611 fi->fib_protocol == cfg->fc_protocol) &&
1612 fib_nh_match(cfg, fi) == 0) {
1613 fa_to_delete = fa;
1614 break;
1615 }
1616 }
1617
1618 if (!fa_to_delete)
1619 return -ESRCH;
1620
1621 fa = fa_to_delete;
1622 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1623 &cfg->fc_nlinfo, 0);
1624
1625 l = fib_find_node(t, key);
1626 li = find_leaf_info(l, plen);
1627
1628 list_del_rcu(&fa->fa_list);
1629
1630 if (list_empty(fa_head)) {
1631 hlist_del_rcu(&li->hlist);
1632 free_leaf_info(li);
1633 }
1634
1635 if (hlist_empty(&l->list))
1636 trie_leaf_remove(t, key);
1637
1638 if (fa->fa_state & FA_S_ACCESSED)
1639 rt_cache_flush(-1);
1640
1641 fib_release_info(fa->fa_info);
1642 alias_free_mem_rcu(fa);
1643 return 0;
1644 }
1645
1646 static int trie_flush_list(struct trie *t, struct list_head *head)
1647 {
1648 struct fib_alias *fa, *fa_node;
1649 int found = 0;
1650
1651 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1652 struct fib_info *fi = fa->fa_info;
1653
1654 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1655 list_del_rcu(&fa->fa_list);
1656 fib_release_info(fa->fa_info);
1657 alias_free_mem_rcu(fa);
1658 found++;
1659 }
1660 }
1661 return found;
1662 }
1663
1664 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1665 {
1666 int found = 0;
1667 struct hlist_head *lih = &l->list;
1668 struct hlist_node *node, *tmp;
1669 struct leaf_info *li = NULL;
1670
1671 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1672 found += trie_flush_list(t, &li->falh);
1673
1674 if (list_empty(&li->falh)) {
1675 hlist_del_rcu(&li->hlist);
1676 free_leaf_info(li);
1677 }
1678 }
1679 return found;
1680 }
1681
1682 /* rcu_read_lock needs to be hold by caller from readside */
1683
1684 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1685 {
1686 struct node *c = (struct node *) thisleaf;
1687 struct tnode *p;
1688 int idx;
1689 struct node *trie = rcu_dereference(t->trie);
1690
1691 if (c == NULL) {
1692 if (trie == NULL)
1693 return NULL;
1694
1695 if (IS_LEAF(trie)) /* trie w. just a leaf */
1696 return (struct leaf *) trie;
1697
1698 p = (struct tnode*) trie; /* Start */
1699 } else
1700 p = node_parent(c);
1701
1702 while (p) {
1703 int pos, last;
1704
1705 /* Find the next child of the parent */
1706 if (c)
1707 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1708 else
1709 pos = 0;
1710
1711 last = 1 << p->bits;
1712 for (idx = pos; idx < last ; idx++) {
1713 c = rcu_dereference(p->child[idx]);
1714
1715 if (!c)
1716 continue;
1717
1718 /* Decend if tnode */
1719 while (IS_TNODE(c)) {
1720 p = (struct tnode *) c;
1721 idx = 0;
1722
1723 /* Rightmost non-NULL branch */
1724 if (p && IS_TNODE(p))
1725 while (!(c = rcu_dereference(p->child[idx]))
1726 && idx < (1<<p->bits)) idx++;
1727
1728 /* Done with this tnode? */
1729 if (idx >= (1 << p->bits) || !c)
1730 goto up;
1731 }
1732 return (struct leaf *) c;
1733 }
1734 up:
1735 /* No more children go up one step */
1736 c = (struct node *) p;
1737 p = node_parent(c);
1738 }
1739 return NULL; /* Ready. Root of trie */
1740 }
1741
1742 /*
1743 * Caller must hold RTNL.
1744 */
1745 static int fn_trie_flush(struct fib_table *tb)
1746 {
1747 struct trie *t = (struct trie *) tb->tb_data;
1748 struct leaf *ll = NULL, *l = NULL;
1749 int found = 0, h;
1750
1751 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1752 found += trie_flush_leaf(t, l);
1753
1754 if (ll && hlist_empty(&ll->list))
1755 trie_leaf_remove(t, ll->key);
1756 ll = l;
1757 }
1758
1759 if (ll && hlist_empty(&ll->list))
1760 trie_leaf_remove(t, ll->key);
1761
1762 pr_debug("trie_flush found=%d\n", found);
1763 return found;
1764 }
1765
1766 static void
1767 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1768 {
1769 struct trie *t = (struct trie *) tb->tb_data;
1770 int order, last_idx;
1771 struct fib_info *fi = NULL;
1772 struct fib_info *last_resort;
1773 struct fib_alias *fa = NULL;
1774 struct list_head *fa_head;
1775 struct leaf *l;
1776
1777 last_idx = -1;
1778 last_resort = NULL;
1779 order = -1;
1780
1781 rcu_read_lock();
1782
1783 l = fib_find_node(t, 0);
1784 if (!l)
1785 goto out;
1786
1787 fa_head = get_fa_head(l, 0);
1788 if (!fa_head)
1789 goto out;
1790
1791 if (list_empty(fa_head))
1792 goto out;
1793
1794 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1795 struct fib_info *next_fi = fa->fa_info;
1796
1797 if (fa->fa_scope != res->scope ||
1798 fa->fa_type != RTN_UNICAST)
1799 continue;
1800
1801 if (next_fi->fib_priority > res->fi->fib_priority)
1802 break;
1803 if (!next_fi->fib_nh[0].nh_gw ||
1804 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1805 continue;
1806 fa->fa_state |= FA_S_ACCESSED;
1807
1808 if (fi == NULL) {
1809 if (next_fi != res->fi)
1810 break;
1811 } else if (!fib_detect_death(fi, order, &last_resort,
1812 &last_idx, tb->tb_default)) {
1813 fib_result_assign(res, fi);
1814 tb->tb_default = order;
1815 goto out;
1816 }
1817 fi = next_fi;
1818 order++;
1819 }
1820 if (order <= 0 || fi == NULL) {
1821 tb->tb_default = -1;
1822 goto out;
1823 }
1824
1825 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1826 tb->tb_default)) {
1827 fib_result_assign(res, fi);
1828 tb->tb_default = order;
1829 goto out;
1830 }
1831 if (last_idx >= 0)
1832 fib_result_assign(res, last_resort);
1833 tb->tb_default = last_idx;
1834 out:
1835 rcu_read_unlock();
1836 }
1837
1838 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1839 struct sk_buff *skb, struct netlink_callback *cb)
1840 {
1841 int i, s_i;
1842 struct fib_alias *fa;
1843
1844 __be32 xkey = htonl(key);
1845
1846 s_i = cb->args[4];
1847 i = 0;
1848
1849 /* rcu_read_lock is hold by caller */
1850
1851 list_for_each_entry_rcu(fa, fah, fa_list) {
1852 if (i < s_i) {
1853 i++;
1854 continue;
1855 }
1856 BUG_ON(!fa->fa_info);
1857
1858 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1859 cb->nlh->nlmsg_seq,
1860 RTM_NEWROUTE,
1861 tb->tb_id,
1862 fa->fa_type,
1863 fa->fa_scope,
1864 xkey,
1865 plen,
1866 fa->fa_tos,
1867 fa->fa_info, 0) < 0) {
1868 cb->args[4] = i;
1869 return -1;
1870 }
1871 i++;
1872 }
1873 cb->args[4] = i;
1874 return skb->len;
1875 }
1876
1877 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1878 struct netlink_callback *cb)
1879 {
1880 int h, s_h;
1881 struct list_head *fa_head;
1882 struct leaf *l = NULL;
1883
1884 s_h = cb->args[3];
1885
1886 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1887 if (h < s_h)
1888 continue;
1889 if (h > s_h)
1890 memset(&cb->args[4], 0,
1891 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1892
1893 fa_head = get_fa_head(l, plen);
1894
1895 if (!fa_head)
1896 continue;
1897
1898 if (list_empty(fa_head))
1899 continue;
1900
1901 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1902 cb->args[3] = h;
1903 return -1;
1904 }
1905 }
1906 cb->args[3] = h;
1907 return skb->len;
1908 }
1909
1910 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1911 {
1912 int m, s_m;
1913 struct trie *t = (struct trie *) tb->tb_data;
1914
1915 s_m = cb->args[2];
1916
1917 rcu_read_lock();
1918 for (m = 0; m <= 32; m++) {
1919 if (m < s_m)
1920 continue;
1921 if (m > s_m)
1922 memset(&cb->args[3], 0,
1923 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1924
1925 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1926 cb->args[2] = m;
1927 goto out;
1928 }
1929 }
1930 rcu_read_unlock();
1931 cb->args[2] = m;
1932 return skb->len;
1933 out:
1934 rcu_read_unlock();
1935 return -1;
1936 }
1937
1938 /* Fix more generic FIB names for init later */
1939
1940 struct fib_table *fib_hash_init(u32 id)
1941 {
1942 struct fib_table *tb;
1943 struct trie *t;
1944
1945 if (fn_alias_kmem == NULL)
1946 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1947 sizeof(struct fib_alias),
1948 0, SLAB_HWCACHE_ALIGN,
1949 NULL);
1950
1951 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1952 GFP_KERNEL);
1953 if (tb == NULL)
1954 return NULL;
1955
1956 tb->tb_id = id;
1957 tb->tb_default = -1;
1958 tb->tb_lookup = fn_trie_lookup;
1959 tb->tb_insert = fn_trie_insert;
1960 tb->tb_delete = fn_trie_delete;
1961 tb->tb_flush = fn_trie_flush;
1962 tb->tb_select_default = fn_trie_select_default;
1963 tb->tb_dump = fn_trie_dump;
1964
1965 t = (struct trie *) tb->tb_data;
1966 memset(t, 0, sizeof(*t));
1967
1968 if (id == RT_TABLE_LOCAL)
1969 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1970
1971 return tb;
1972 }
1973
1974 #ifdef CONFIG_PROC_FS
1975 /* Depth first Trie walk iterator */
1976 struct fib_trie_iter {
1977 struct seq_net_private p;
1978 struct trie *trie_local, *trie_main;
1979 struct tnode *tnode;
1980 struct trie *trie;
1981 unsigned index;
1982 unsigned depth;
1983 };
1984
1985 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1986 {
1987 struct tnode *tn = iter->tnode;
1988 unsigned cindex = iter->index;
1989 struct tnode *p;
1990
1991 /* A single entry routing table */
1992 if (!tn)
1993 return NULL;
1994
1995 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1996 iter->tnode, iter->index, iter->depth);
1997 rescan:
1998 while (cindex < (1<<tn->bits)) {
1999 struct node *n = tnode_get_child(tn, cindex);
2000
2001 if (n) {
2002 if (IS_LEAF(n)) {
2003 iter->tnode = tn;
2004 iter->index = cindex + 1;
2005 } else {
2006 /* push down one level */
2007 iter->tnode = (struct tnode *) n;
2008 iter->index = 0;
2009 ++iter->depth;
2010 }
2011 return n;
2012 }
2013
2014 ++cindex;
2015 }
2016
2017 /* Current node exhausted, pop back up */
2018 p = node_parent((struct node *)tn);
2019 if (p) {
2020 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2021 tn = p;
2022 --iter->depth;
2023 goto rescan;
2024 }
2025
2026 /* got root? */
2027 return NULL;
2028 }
2029
2030 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2031 struct trie *t)
2032 {
2033 struct node *n ;
2034
2035 if (!t)
2036 return NULL;
2037
2038 n = rcu_dereference(t->trie);
2039
2040 if (!iter)
2041 return NULL;
2042
2043 if (n) {
2044 if (IS_TNODE(n)) {
2045 iter->tnode = (struct tnode *) n;
2046 iter->trie = t;
2047 iter->index = 0;
2048 iter->depth = 1;
2049 } else {
2050 iter->tnode = NULL;
2051 iter->trie = t;
2052 iter->index = 0;
2053 iter->depth = 0;
2054 }
2055 return n;
2056 }
2057 return NULL;
2058 }
2059
2060 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2061 {
2062 struct node *n;
2063 struct fib_trie_iter iter;
2064
2065 memset(s, 0, sizeof(*s));
2066
2067 rcu_read_lock();
2068 for (n = fib_trie_get_first(&iter, t); n;
2069 n = fib_trie_get_next(&iter)) {
2070 if (IS_LEAF(n)) {
2071 s->leaves++;
2072 s->totdepth += iter.depth;
2073 if (iter.depth > s->maxdepth)
2074 s->maxdepth = iter.depth;
2075 } else {
2076 const struct tnode *tn = (const struct tnode *) n;
2077 int i;
2078
2079 s->tnodes++;
2080 if (tn->bits < MAX_STAT_DEPTH)
2081 s->nodesizes[tn->bits]++;
2082
2083 for (i = 0; i < (1<<tn->bits); i++)
2084 if (!tn->child[i])
2085 s->nullpointers++;
2086 }
2087 }
2088 rcu_read_unlock();
2089 }
2090
2091 /*
2092 * This outputs /proc/net/fib_triestats
2093 */
2094 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2095 {
2096 unsigned i, max, pointers, bytes, avdepth;
2097
2098 if (stat->leaves)
2099 avdepth = stat->totdepth*100 / stat->leaves;
2100 else
2101 avdepth = 0;
2102
2103 seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100 );
2104 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2105
2106 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2107
2108 bytes = sizeof(struct leaf) * stat->leaves;
2109 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2110 bytes += sizeof(struct tnode) * stat->tnodes;
2111
2112 max = MAX_STAT_DEPTH;
2113 while (max > 0 && stat->nodesizes[max-1] == 0)
2114 max--;
2115
2116 pointers = 0;
2117 for (i = 1; i <= max; i++)
2118 if (stat->nodesizes[i] != 0) {
2119 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2120 pointers += (1<<i) * stat->nodesizes[i];
2121 }
2122 seq_putc(seq, '\n');
2123 seq_printf(seq, "\tPointers: %u\n", pointers);
2124
2125 bytes += sizeof(struct node *) * pointers;
2126 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2127 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2128
2129 #ifdef CONFIG_IP_FIB_TRIE_STATS
2130 seq_printf(seq, "Counters:\n---------\n");
2131 seq_printf(seq,"gets = %d\n", t->stats.gets);
2132 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2133 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2134 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2135 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2136 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2137 #ifdef CLEAR_STATS
2138 memset(&(t->stats), 0, sizeof(t->stats));
2139 #endif
2140 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2141 }
2142
2143 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2144 {
2145 struct net *net = (struct net *)seq->private;
2146 struct trie *trie_local, *trie_main;
2147 struct trie_stat *stat;
2148 struct fib_table *tb;
2149
2150 trie_local = NULL;
2151 tb = fib_get_table(net, RT_TABLE_LOCAL);
2152 if (tb)
2153 trie_local = (struct trie *) tb->tb_data;
2154
2155 trie_main = NULL;
2156 tb = fib_get_table(net, RT_TABLE_MAIN);
2157 if (tb)
2158 trie_main = (struct trie *) tb->tb_data;
2159
2160
2161 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2162 if (!stat)
2163 return -ENOMEM;
2164
2165 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2166 sizeof(struct leaf), sizeof(struct tnode));
2167
2168 if (trie_local) {
2169 seq_printf(seq, "Local:\n");
2170 trie_collect_stats(trie_local, stat);
2171 trie_show_stats(seq, stat);
2172 }
2173
2174 if (trie_main) {
2175 seq_printf(seq, "Main:\n");
2176 trie_collect_stats(trie_main, stat);
2177 trie_show_stats(seq, stat);
2178 }
2179 kfree(stat);
2180
2181 return 0;
2182 }
2183
2184 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2185 {
2186 int err;
2187 struct net *net;
2188
2189 net = get_proc_net(inode);
2190 if (net == NULL)
2191 return -ENXIO;
2192 err = single_open(file, fib_triestat_seq_show, net);
2193 if (err < 0) {
2194 put_net(net);
2195 return err;
2196 }
2197 return 0;
2198 }
2199
2200 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2201 {
2202 struct seq_file *seq = f->private_data;
2203 put_net(seq->private);
2204 return single_release(ino, f);
2205 }
2206
2207 static const struct file_operations fib_triestat_fops = {
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
2212 .release = fib_triestat_seq_release,
2213 };
2214
2215 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2216 loff_t pos)
2217 {
2218 loff_t idx = 0;
2219 struct node *n;
2220
2221 for (n = fib_trie_get_first(iter, iter->trie_local);
2222 n; ++idx, n = fib_trie_get_next(iter)) {
2223 if (pos == idx)
2224 return n;
2225 }
2226
2227 for (n = fib_trie_get_first(iter, iter->trie_main);
2228 n; ++idx, n = fib_trie_get_next(iter)) {
2229 if (pos == idx)
2230 return n;
2231 }
2232 return NULL;
2233 }
2234
2235 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2236 {
2237 struct fib_trie_iter *iter = seq->private;
2238 struct fib_table *tb;
2239
2240 if (!iter->trie_local) {
2241 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2242 if (tb)
2243 iter->trie_local = (struct trie *) tb->tb_data;
2244 }
2245 if (!iter->trie_main) {
2246 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2247 if (tb)
2248 iter->trie_main = (struct trie *) tb->tb_data;
2249 }
2250 rcu_read_lock();
2251 if (*pos == 0)
2252 return SEQ_START_TOKEN;
2253 return fib_trie_get_idx(iter, *pos - 1);
2254 }
2255
2256 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2257 {
2258 struct fib_trie_iter *iter = seq->private;
2259 void *l = v;
2260
2261 ++*pos;
2262 if (v == SEQ_START_TOKEN)
2263 return fib_trie_get_idx(iter, 0);
2264
2265 v = fib_trie_get_next(iter);
2266 BUG_ON(v == l);
2267 if (v)
2268 return v;
2269
2270 /* continue scan in next trie */
2271 if (iter->trie == iter->trie_local)
2272 return fib_trie_get_first(iter, iter->trie_main);
2273
2274 return NULL;
2275 }
2276
2277 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2278 {
2279 rcu_read_unlock();
2280 }
2281
2282 static void seq_indent(struct seq_file *seq, int n)
2283 {
2284 while (n-- > 0) seq_puts(seq, " ");
2285 }
2286
2287 static inline const char *rtn_scope(enum rt_scope_t s)
2288 {
2289 static char buf[32];
2290
2291 switch (s) {
2292 case RT_SCOPE_UNIVERSE: return "universe";
2293 case RT_SCOPE_SITE: return "site";
2294 case RT_SCOPE_LINK: return "link";
2295 case RT_SCOPE_HOST: return "host";
2296 case RT_SCOPE_NOWHERE: return "nowhere";
2297 default:
2298 snprintf(buf, sizeof(buf), "scope=%d", s);
2299 return buf;
2300 }
2301 }
2302
2303 static const char *rtn_type_names[__RTN_MAX] = {
2304 [RTN_UNSPEC] = "UNSPEC",
2305 [RTN_UNICAST] = "UNICAST",
2306 [RTN_LOCAL] = "LOCAL",
2307 [RTN_BROADCAST] = "BROADCAST",
2308 [RTN_ANYCAST] = "ANYCAST",
2309 [RTN_MULTICAST] = "MULTICAST",
2310 [RTN_BLACKHOLE] = "BLACKHOLE",
2311 [RTN_UNREACHABLE] = "UNREACHABLE",
2312 [RTN_PROHIBIT] = "PROHIBIT",
2313 [RTN_THROW] = "THROW",
2314 [RTN_NAT] = "NAT",
2315 [RTN_XRESOLVE] = "XRESOLVE",
2316 };
2317
2318 static inline const char *rtn_type(unsigned t)
2319 {
2320 static char buf[32];
2321
2322 if (t < __RTN_MAX && rtn_type_names[t])
2323 return rtn_type_names[t];
2324 snprintf(buf, sizeof(buf), "type %u", t);
2325 return buf;
2326 }
2327
2328 /* Pretty print the trie */
2329 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2330 {
2331 const struct fib_trie_iter *iter = seq->private;
2332 struct node *n = v;
2333
2334 if (v == SEQ_START_TOKEN)
2335 return 0;
2336
2337 if (!node_parent(n)) {
2338 if (iter->trie == iter->trie_local)
2339 seq_puts(seq, "<local>:\n");
2340 else
2341 seq_puts(seq, "<main>:\n");
2342 }
2343
2344 if (IS_TNODE(n)) {
2345 struct tnode *tn = (struct tnode *) n;
2346 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2347
2348 seq_indent(seq, iter->depth-1);
2349 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2350 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2351 tn->empty_children);
2352
2353 } else {
2354 struct leaf *l = (struct leaf *) n;
2355 int i;
2356 __be32 val = htonl(l->key);
2357
2358 seq_indent(seq, iter->depth);
2359 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2360 for (i = 32; i >= 0; i--) {
2361 struct leaf_info *li = find_leaf_info(l, i);
2362 if (li) {
2363 struct fib_alias *fa;
2364 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2365 seq_indent(seq, iter->depth+1);
2366 seq_printf(seq, " /%d %s %s", i,
2367 rtn_scope(fa->fa_scope),
2368 rtn_type(fa->fa_type));
2369 if (fa->fa_tos)
2370 seq_printf(seq, "tos =%d\n",
2371 fa->fa_tos);
2372 seq_putc(seq, '\n');
2373 }
2374 }
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 static const struct seq_operations fib_trie_seq_ops = {
2382 .start = fib_trie_seq_start,
2383 .next = fib_trie_seq_next,
2384 .stop = fib_trie_seq_stop,
2385 .show = fib_trie_seq_show,
2386 };
2387
2388 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2389 {
2390 return seq_open_net(inode, file, &fib_trie_seq_ops,
2391 sizeof(struct fib_trie_iter));
2392 }
2393
2394 static const struct file_operations fib_trie_fops = {
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
2399 .release = seq_release_net,
2400 };
2401
2402 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2403 {
2404 static unsigned type2flags[RTN_MAX + 1] = {
2405 [7] = RTF_REJECT, [8] = RTF_REJECT,
2406 };
2407 unsigned flags = type2flags[type];
2408
2409 if (fi && fi->fib_nh->nh_gw)
2410 flags |= RTF_GATEWAY;
2411 if (mask == htonl(0xFFFFFFFF))
2412 flags |= RTF_HOST;
2413 flags |= RTF_UP;
2414 return flags;
2415 }
2416
2417 /*
2418 * This outputs /proc/net/route.
2419 * The format of the file is not supposed to be changed
2420 * and needs to be same as fib_hash output to avoid breaking
2421 * legacy utilities
2422 */
2423 static int fib_route_seq_show(struct seq_file *seq, void *v)
2424 {
2425 const struct fib_trie_iter *iter = seq->private;
2426 struct leaf *l = v;
2427 int i;
2428 char bf[128];
2429
2430 if (v == SEQ_START_TOKEN) {
2431 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2432 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2433 "\tWindow\tIRTT");
2434 return 0;
2435 }
2436
2437 if (iter->trie == iter->trie_local)
2438 return 0;
2439 if (IS_TNODE(l))
2440 return 0;
2441
2442 for (i=32; i>=0; i--) {
2443 struct leaf_info *li = find_leaf_info(l, i);
2444 struct fib_alias *fa;
2445 __be32 mask, prefix;
2446
2447 if (!li)
2448 continue;
2449
2450 mask = inet_make_mask(li->plen);
2451 prefix = htonl(l->key);
2452
2453 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2454 const struct fib_info *fi = fa->fa_info;
2455 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2456
2457 if (fa->fa_type == RTN_BROADCAST
2458 || fa->fa_type == RTN_MULTICAST)
2459 continue;
2460
2461 if (fi)
2462 snprintf(bf, sizeof(bf),
2463 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2464 fi->fib_dev ? fi->fib_dev->name : "*",
2465 prefix,
2466 fi->fib_nh->nh_gw, flags, 0, 0,
2467 fi->fib_priority,
2468 mask,
2469 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2470 fi->fib_window,
2471 fi->fib_rtt >> 3);
2472 else
2473 snprintf(bf, sizeof(bf),
2474 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2475 prefix, 0, flags, 0, 0, 0,
2476 mask, 0, 0, 0);
2477
2478 seq_printf(seq, "%-127s\n", bf);
2479 }
2480 }
2481
2482 return 0;
2483 }
2484
2485 static const struct seq_operations fib_route_seq_ops = {
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_route_seq_show,
2490 };
2491
2492 static int fib_route_seq_open(struct inode *inode, struct file *file)
2493 {
2494 return seq_open_net(inode, file, &fib_route_seq_ops,
2495 sizeof(struct fib_trie_iter));
2496 }
2497
2498 static const struct file_operations fib_route_fops = {
2499 .owner = THIS_MODULE,
2500 .open = fib_route_seq_open,
2501 .read = seq_read,
2502 .llseek = seq_lseek,
2503 .release = seq_release_net,
2504 };
2505
2506 int __net_init fib_proc_init(struct net *net)
2507 {
2508 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2509 goto out1;
2510
2511 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2512 &fib_triestat_fops))
2513 goto out2;
2514
2515 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2516 goto out3;
2517
2518 return 0;
2519
2520 out3:
2521 proc_net_remove(net, "fib_triestat");
2522 out2:
2523 proc_net_remove(net, "fib_trie");
2524 out1:
2525 return -ENOMEM;
2526 }
2527
2528 void __net_exit fib_proc_exit(struct net *net)
2529 {
2530 proc_net_remove(net, "fib_trie");
2531 proc_net_remove(net, "fib_triestat");
2532 proc_net_remove(net, "route");
2533 }
2534
2535 #endif /* CONFIG_PROC_FS */
This page took 0.083118 seconds and 6 git commands to generate.