Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <asm/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #undef CONFIG_IP_FIB_TRIE_STATS
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
89 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
90
91 typedef unsigned int t_key;
92
93 #define T_TNODE 0
94 #define T_LEAF 1
95 #define NODE_TYPE_MASK 0x1UL
96 #define NODE_PARENT(node) \
97 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
98
99 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
100
101 #define NODE_SET_PARENT(node, ptr) \
102 rcu_assign_pointer((node)->parent, \
103 ((unsigned long)(ptr)) | NODE_TYPE(node))
104
105 #define IS_TNODE(n) (!(n->parent & T_LEAF))
106 #define IS_LEAF(n) (n->parent & T_LEAF)
107
108 struct node {
109 t_key key;
110 unsigned long parent;
111 };
112
113 struct leaf {
114 t_key key;
115 unsigned long parent;
116 struct hlist_head list;
117 struct rcu_head rcu;
118 };
119
120 struct leaf_info {
121 struct hlist_node hlist;
122 struct rcu_head rcu;
123 int plen;
124 struct list_head falh;
125 };
126
127 struct tnode {
128 t_key key;
129 unsigned long parent;
130 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
131 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short full_children; /* KEYLENGTH bits needed */
133 unsigned short empty_children; /* KEYLENGTH bits needed */
134 struct rcu_head rcu;
135 struct node *child[0];
136 };
137
138 #ifdef CONFIG_IP_FIB_TRIE_STATS
139 struct trie_use_stats {
140 unsigned int gets;
141 unsigned int backtrack;
142 unsigned int semantic_match_passed;
143 unsigned int semantic_match_miss;
144 unsigned int null_node_hit;
145 unsigned int resize_node_skipped;
146 };
147 #endif
148
149 struct trie_stat {
150 unsigned int totdepth;
151 unsigned int maxdepth;
152 unsigned int tnodes;
153 unsigned int leaves;
154 unsigned int nullpointers;
155 unsigned int nodesizes[MAX_STAT_DEPTH];
156 };
157
158 struct trie {
159 struct node *trie;
160 #ifdef CONFIG_IP_FIB_TRIE_STATS
161 struct trie_use_stats stats;
162 #endif
163 int size;
164 unsigned int revision;
165 };
166
167 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
168 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
169 static struct node *resize(struct trie *t, struct tnode *tn);
170 static struct tnode *inflate(struct trie *t, struct tnode *tn);
171 static struct tnode *halve(struct trie *t, struct tnode *tn);
172 static void tnode_free(struct tnode *tn);
173
174 static struct kmem_cache *fn_alias_kmem __read_mostly;
175 static struct trie *trie_local = NULL, *trie_main = NULL;
176
177
178 /* rcu_read_lock needs to be hold by caller from readside */
179
180 static inline struct node *tnode_get_child(struct tnode *tn, int i)
181 {
182 BUG_ON(i >= 1 << tn->bits);
183
184 return rcu_dereference(tn->child[i]);
185 }
186
187 static inline int tnode_child_length(const struct tnode *tn)
188 {
189 return 1 << tn->bits;
190 }
191
192 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
193 {
194 if (offset < KEYLENGTH)
195 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
196 else
197 return 0;
198 }
199
200 static inline int tkey_equals(t_key a, t_key b)
201 {
202 return a == b;
203 }
204
205 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
206 {
207 if (bits == 0 || offset >= KEYLENGTH)
208 return 1;
209 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
210 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
211 }
212
213 static inline int tkey_mismatch(t_key a, int offset, t_key b)
214 {
215 t_key diff = a ^ b;
216 int i = offset;
217
218 if (!diff)
219 return 0;
220 while ((diff << i) >> (KEYLENGTH-1) == 0)
221 i++;
222 return i;
223 }
224
225 /*
226 To understand this stuff, an understanding of keys and all their bits is
227 necessary. Every node in the trie has a key associated with it, but not
228 all of the bits in that key are significant.
229
230 Consider a node 'n' and its parent 'tp'.
231
232 If n is a leaf, every bit in its key is significant. Its presence is
233 necessitated by path compression, since during a tree traversal (when
234 searching for a leaf - unless we are doing an insertion) we will completely
235 ignore all skipped bits we encounter. Thus we need to verify, at the end of
236 a potentially successful search, that we have indeed been walking the
237 correct key path.
238
239 Note that we can never "miss" the correct key in the tree if present by
240 following the wrong path. Path compression ensures that segments of the key
241 that are the same for all keys with a given prefix are skipped, but the
242 skipped part *is* identical for each node in the subtrie below the skipped
243 bit! trie_insert() in this implementation takes care of that - note the
244 call to tkey_sub_equals() in trie_insert().
245
246 if n is an internal node - a 'tnode' here, the various parts of its key
247 have many different meanings.
248
249 Example:
250 _________________________________________________________________
251 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
252 -----------------------------------------------------------------
253 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
254
255 _________________________________________________________________
256 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
257 -----------------------------------------------------------------
258 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
259
260 tp->pos = 7
261 tp->bits = 3
262 n->pos = 15
263 n->bits = 4
264
265 First, let's just ignore the bits that come before the parent tp, that is
266 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
267 not use them for anything.
268
269 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
270 index into the parent's child array. That is, they will be used to find
271 'n' among tp's children.
272
273 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
274 for the node n.
275
276 All the bits we have seen so far are significant to the node n. The rest
277 of the bits are really not needed or indeed known in n->key.
278
279 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
280 n's child array, and will of course be different for each child.
281
282
283 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
284 at this point.
285
286 */
287
288 static inline void check_tnode(const struct tnode *tn)
289 {
290 WARN_ON(tn && tn->pos+tn->bits > 32);
291 }
292
293 static int halve_threshold = 25;
294 static int inflate_threshold = 50;
295 static int halve_threshold_root = 8;
296 static int inflate_threshold_root = 15;
297
298
299 static void __alias_free_mem(struct rcu_head *head)
300 {
301 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
302 kmem_cache_free(fn_alias_kmem, fa);
303 }
304
305 static inline void alias_free_mem_rcu(struct fib_alias *fa)
306 {
307 call_rcu(&fa->rcu, __alias_free_mem);
308 }
309
310 static void __leaf_free_rcu(struct rcu_head *head)
311 {
312 kfree(container_of(head, struct leaf, rcu));
313 }
314
315 static void __leaf_info_free_rcu(struct rcu_head *head)
316 {
317 kfree(container_of(head, struct leaf_info, rcu));
318 }
319
320 static inline void free_leaf_info(struct leaf_info *leaf)
321 {
322 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
323 }
324
325 static struct tnode *tnode_alloc(unsigned int size)
326 {
327 struct page *pages;
328
329 if (size <= PAGE_SIZE)
330 return kcalloc(size, 1, GFP_KERNEL);
331
332 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 if (!pages)
334 return NULL;
335
336 return page_address(pages);
337 }
338
339 static void __tnode_free_rcu(struct rcu_head *head)
340 {
341 struct tnode *tn = container_of(head, struct tnode, rcu);
342 unsigned int size = sizeof(struct tnode) +
343 (1 << tn->bits) * sizeof(struct node *);
344
345 if (size <= PAGE_SIZE)
346 kfree(tn);
347 else
348 free_pages((unsigned long)tn, get_order(size));
349 }
350
351 static inline void tnode_free(struct tnode *tn)
352 {
353 if (IS_LEAF(tn)) {
354 struct leaf *l = (struct leaf *) tn;
355 call_rcu_bh(&l->rcu, __leaf_free_rcu);
356 } else
357 call_rcu(&tn->rcu, __tnode_free_rcu);
358 }
359
360 static struct leaf *leaf_new(void)
361 {
362 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
363 if (l) {
364 l->parent = T_LEAF;
365 INIT_HLIST_HEAD(&l->list);
366 }
367 return l;
368 }
369
370 static struct leaf_info *leaf_info_new(int plen)
371 {
372 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
373 if (li) {
374 li->plen = plen;
375 INIT_LIST_HEAD(&li->falh);
376 }
377 return li;
378 }
379
380 static struct tnode* tnode_new(t_key key, int pos, int bits)
381 {
382 int nchildren = 1<<bits;
383 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
384 struct tnode *tn = tnode_alloc(sz);
385
386 if (tn) {
387 memset(tn, 0, sz);
388 tn->parent = T_TNODE;
389 tn->pos = pos;
390 tn->bits = bits;
391 tn->key = key;
392 tn->full_children = 0;
393 tn->empty_children = 1<<bits;
394 }
395
396 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
397 (unsigned int) (sizeof(struct node) * 1<<bits));
398 return tn;
399 }
400
401 /*
402 * Check whether a tnode 'n' is "full", i.e. it is an internal node
403 * and no bits are skipped. See discussion in dyntree paper p. 6
404 */
405
406 static inline int tnode_full(const struct tnode *tn, const struct node *n)
407 {
408 if (n == NULL || IS_LEAF(n))
409 return 0;
410
411 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
412 }
413
414 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
415 {
416 tnode_put_child_reorg(tn, i, n, -1);
417 }
418
419 /*
420 * Add a child at position i overwriting the old value.
421 * Update the value of full_children and empty_children.
422 */
423
424 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
425 {
426 struct node *chi = tn->child[i];
427 int isfull;
428
429 BUG_ON(i >= 1<<tn->bits);
430
431
432 /* update emptyChildren */
433 if (n == NULL && chi != NULL)
434 tn->empty_children++;
435 else if (n != NULL && chi == NULL)
436 tn->empty_children--;
437
438 /* update fullChildren */
439 if (wasfull == -1)
440 wasfull = tnode_full(tn, chi);
441
442 isfull = tnode_full(tn, n);
443 if (wasfull && !isfull)
444 tn->full_children--;
445 else if (!wasfull && isfull)
446 tn->full_children++;
447
448 if (n)
449 NODE_SET_PARENT(n, tn);
450
451 rcu_assign_pointer(tn->child[i], n);
452 }
453
454 static struct node *resize(struct trie *t, struct tnode *tn)
455 {
456 int i;
457 int err = 0;
458 struct tnode *old_tn;
459 int inflate_threshold_use;
460 int halve_threshold_use;
461 int max_resize;
462
463 if (!tn)
464 return NULL;
465
466 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
467 tn, inflate_threshold, halve_threshold);
468
469 /* No children */
470 if (tn->empty_children == tnode_child_length(tn)) {
471 tnode_free(tn);
472 return NULL;
473 }
474 /* One child */
475 if (tn->empty_children == tnode_child_length(tn) - 1)
476 for (i = 0; i < tnode_child_length(tn); i++) {
477 struct node *n;
478
479 n = tn->child[i];
480 if (!n)
481 continue;
482
483 /* compress one level */
484 NODE_SET_PARENT(n, NULL);
485 tnode_free(tn);
486 return n;
487 }
488 /*
489 * Double as long as the resulting node has a number of
490 * nonempty nodes that are above the threshold.
491 */
492
493 /*
494 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
495 * the Helsinki University of Technology and Matti Tikkanen of Nokia
496 * Telecommunications, page 6:
497 * "A node is doubled if the ratio of non-empty children to all
498 * children in the *doubled* node is at least 'high'."
499 *
500 * 'high' in this instance is the variable 'inflate_threshold'. It
501 * is expressed as a percentage, so we multiply it with
502 * tnode_child_length() and instead of multiplying by 2 (since the
503 * child array will be doubled by inflate()) and multiplying
504 * the left-hand side by 100 (to handle the percentage thing) we
505 * multiply the left-hand side by 50.
506 *
507 * The left-hand side may look a bit weird: tnode_child_length(tn)
508 * - tn->empty_children is of course the number of non-null children
509 * in the current node. tn->full_children is the number of "full"
510 * children, that is non-null tnodes with a skip value of 0.
511 * All of those will be doubled in the resulting inflated tnode, so
512 * we just count them one extra time here.
513 *
514 * A clearer way to write this would be:
515 *
516 * to_be_doubled = tn->full_children;
517 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
518 * tn->full_children;
519 *
520 * new_child_length = tnode_child_length(tn) * 2;
521 *
522 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
523 * new_child_length;
524 * if (new_fill_factor >= inflate_threshold)
525 *
526 * ...and so on, tho it would mess up the while () loop.
527 *
528 * anyway,
529 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
530 * inflate_threshold
531 *
532 * avoid a division:
533 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
534 * inflate_threshold * new_child_length
535 *
536 * expand not_to_be_doubled and to_be_doubled, and shorten:
537 * 100 * (tnode_child_length(tn) - tn->empty_children +
538 * tn->full_children) >= inflate_threshold * new_child_length
539 *
540 * expand new_child_length:
541 * 100 * (tnode_child_length(tn) - tn->empty_children +
542 * tn->full_children) >=
543 * inflate_threshold * tnode_child_length(tn) * 2
544 *
545 * shorten again:
546 * 50 * (tn->full_children + tnode_child_length(tn) -
547 * tn->empty_children) >= inflate_threshold *
548 * tnode_child_length(tn)
549 *
550 */
551
552 check_tnode(tn);
553
554 /* Keep root node larger */
555
556 if (!tn->parent)
557 inflate_threshold_use = inflate_threshold_root;
558 else
559 inflate_threshold_use = inflate_threshold;
560
561 err = 0;
562 max_resize = 10;
563 while ((tn->full_children > 0 && max_resize-- &&
564 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
565 inflate_threshold_use * tnode_child_length(tn))) {
566
567 old_tn = tn;
568 tn = inflate(t, tn);
569 if (IS_ERR(tn)) {
570 tn = old_tn;
571 #ifdef CONFIG_IP_FIB_TRIE_STATS
572 t->stats.resize_node_skipped++;
573 #endif
574 break;
575 }
576 }
577
578 if (max_resize < 0) {
579 if (!tn->parent)
580 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
581 inflate_threshold_root, tn->bits);
582 else
583 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
584 inflate_threshold, tn->bits);
585 }
586
587 check_tnode(tn);
588
589 /*
590 * Halve as long as the number of empty children in this
591 * node is above threshold.
592 */
593
594
595 /* Keep root node larger */
596
597 if (!tn->parent)
598 halve_threshold_use = halve_threshold_root;
599 else
600 halve_threshold_use = halve_threshold;
601
602 err = 0;
603 max_resize = 10;
604 while (tn->bits > 1 && max_resize-- &&
605 100 * (tnode_child_length(tn) - tn->empty_children) <
606 halve_threshold_use * tnode_child_length(tn)) {
607
608 old_tn = tn;
609 tn = halve(t, tn);
610 if (IS_ERR(tn)) {
611 tn = old_tn;
612 #ifdef CONFIG_IP_FIB_TRIE_STATS
613 t->stats.resize_node_skipped++;
614 #endif
615 break;
616 }
617 }
618
619 if (max_resize < 0) {
620 if (!tn->parent)
621 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
622 halve_threshold_root, tn->bits);
623 else
624 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
625 halve_threshold, tn->bits);
626 }
627
628 /* Only one child remains */
629 if (tn->empty_children == tnode_child_length(tn) - 1)
630 for (i = 0; i < tnode_child_length(tn); i++) {
631 struct node *n;
632
633 n = tn->child[i];
634 if (!n)
635 continue;
636
637 /* compress one level */
638
639 NODE_SET_PARENT(n, NULL);
640 tnode_free(tn);
641 return n;
642 }
643
644 return (struct node *) tn;
645 }
646
647 static struct tnode *inflate(struct trie *t, struct tnode *tn)
648 {
649 struct tnode *inode;
650 struct tnode *oldtnode = tn;
651 int olen = tnode_child_length(tn);
652 int i;
653
654 pr_debug("In inflate\n");
655
656 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
657
658 if (!tn)
659 return ERR_PTR(-ENOMEM);
660
661 /*
662 * Preallocate and store tnodes before the actual work so we
663 * don't get into an inconsistent state if memory allocation
664 * fails. In case of failure we return the oldnode and inflate
665 * of tnode is ignored.
666 */
667
668 for (i = 0; i < olen; i++) {
669 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
670
671 if (inode &&
672 IS_TNODE(inode) &&
673 inode->pos == oldtnode->pos + oldtnode->bits &&
674 inode->bits > 1) {
675 struct tnode *left, *right;
676 t_key m = TKEY_GET_MASK(inode->pos, 1);
677
678 left = tnode_new(inode->key&(~m), inode->pos + 1,
679 inode->bits - 1);
680 if (!left)
681 goto nomem;
682
683 right = tnode_new(inode->key|m, inode->pos + 1,
684 inode->bits - 1);
685
686 if (!right) {
687 tnode_free(left);
688 goto nomem;
689 }
690
691 put_child(t, tn, 2*i, (struct node *) left);
692 put_child(t, tn, 2*i+1, (struct node *) right);
693 }
694 }
695
696 for (i = 0; i < olen; i++) {
697 struct node *node = tnode_get_child(oldtnode, i);
698 struct tnode *left, *right;
699 int size, j;
700
701 /* An empty child */
702 if (node == NULL)
703 continue;
704
705 /* A leaf or an internal node with skipped bits */
706
707 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
708 tn->pos + tn->bits - 1) {
709 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
710 1) == 0)
711 put_child(t, tn, 2*i, node);
712 else
713 put_child(t, tn, 2*i+1, node);
714 continue;
715 }
716
717 /* An internal node with two children */
718 inode = (struct tnode *) node;
719
720 if (inode->bits == 1) {
721 put_child(t, tn, 2*i, inode->child[0]);
722 put_child(t, tn, 2*i+1, inode->child[1]);
723
724 tnode_free(inode);
725 continue;
726 }
727
728 /* An internal node with more than two children */
729
730 /* We will replace this node 'inode' with two new
731 * ones, 'left' and 'right', each with half of the
732 * original children. The two new nodes will have
733 * a position one bit further down the key and this
734 * means that the "significant" part of their keys
735 * (see the discussion near the top of this file)
736 * will differ by one bit, which will be "0" in
737 * left's key and "1" in right's key. Since we are
738 * moving the key position by one step, the bit that
739 * we are moving away from - the bit at position
740 * (inode->pos) - is the one that will differ between
741 * left and right. So... we synthesize that bit in the
742 * two new keys.
743 * The mask 'm' below will be a single "one" bit at
744 * the position (inode->pos)
745 */
746
747 /* Use the old key, but set the new significant
748 * bit to zero.
749 */
750
751 left = (struct tnode *) tnode_get_child(tn, 2*i);
752 put_child(t, tn, 2*i, NULL);
753
754 BUG_ON(!left);
755
756 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
757 put_child(t, tn, 2*i+1, NULL);
758
759 BUG_ON(!right);
760
761 size = tnode_child_length(left);
762 for (j = 0; j < size; j++) {
763 put_child(t, left, j, inode->child[j]);
764 put_child(t, right, j, inode->child[j + size]);
765 }
766 put_child(t, tn, 2*i, resize(t, left));
767 put_child(t, tn, 2*i+1, resize(t, right));
768
769 tnode_free(inode);
770 }
771 tnode_free(oldtnode);
772 return tn;
773 nomem:
774 {
775 int size = tnode_child_length(tn);
776 int j;
777
778 for (j = 0; j < size; j++)
779 if (tn->child[j])
780 tnode_free((struct tnode *)tn->child[j]);
781
782 tnode_free(tn);
783
784 return ERR_PTR(-ENOMEM);
785 }
786 }
787
788 static struct tnode *halve(struct trie *t, struct tnode *tn)
789 {
790 struct tnode *oldtnode = tn;
791 struct node *left, *right;
792 int i;
793 int olen = tnode_child_length(tn);
794
795 pr_debug("In halve\n");
796
797 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
798
799 if (!tn)
800 return ERR_PTR(-ENOMEM);
801
802 /*
803 * Preallocate and store tnodes before the actual work so we
804 * don't get into an inconsistent state if memory allocation
805 * fails. In case of failure we return the oldnode and halve
806 * of tnode is ignored.
807 */
808
809 for (i = 0; i < olen; i += 2) {
810 left = tnode_get_child(oldtnode, i);
811 right = tnode_get_child(oldtnode, i+1);
812
813 /* Two nonempty children */
814 if (left && right) {
815 struct tnode *newn;
816
817 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
818
819 if (!newn)
820 goto nomem;
821
822 put_child(t, tn, i/2, (struct node *)newn);
823 }
824
825 }
826
827 for (i = 0; i < olen; i += 2) {
828 struct tnode *newBinNode;
829
830 left = tnode_get_child(oldtnode, i);
831 right = tnode_get_child(oldtnode, i+1);
832
833 /* At least one of the children is empty */
834 if (left == NULL) {
835 if (right == NULL) /* Both are empty */
836 continue;
837 put_child(t, tn, i/2, right);
838 continue;
839 }
840
841 if (right == NULL) {
842 put_child(t, tn, i/2, left);
843 continue;
844 }
845
846 /* Two nonempty children */
847 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
848 put_child(t, tn, i/2, NULL);
849 put_child(t, newBinNode, 0, left);
850 put_child(t, newBinNode, 1, right);
851 put_child(t, tn, i/2, resize(t, newBinNode));
852 }
853 tnode_free(oldtnode);
854 return tn;
855 nomem:
856 {
857 int size = tnode_child_length(tn);
858 int j;
859
860 for (j = 0; j < size; j++)
861 if (tn->child[j])
862 tnode_free((struct tnode *)tn->child[j]);
863
864 tnode_free(tn);
865
866 return ERR_PTR(-ENOMEM);
867 }
868 }
869
870 static void trie_init(struct trie *t)
871 {
872 if (!t)
873 return;
874
875 t->size = 0;
876 rcu_assign_pointer(t->trie, NULL);
877 t->revision = 0;
878 #ifdef CONFIG_IP_FIB_TRIE_STATS
879 memset(&t->stats, 0, sizeof(struct trie_use_stats));
880 #endif
881 }
882
883 /* readside must use rcu_read_lock currently dump routines
884 via get_fa_head and dump */
885
886 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
887 {
888 struct hlist_head *head = &l->list;
889 struct hlist_node *node;
890 struct leaf_info *li;
891
892 hlist_for_each_entry_rcu(li, node, head, hlist)
893 if (li->plen == plen)
894 return li;
895
896 return NULL;
897 }
898
899 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
900 {
901 struct leaf_info *li = find_leaf_info(l, plen);
902
903 if (!li)
904 return NULL;
905
906 return &li->falh;
907 }
908
909 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
910 {
911 struct leaf_info *li = NULL, *last = NULL;
912 struct hlist_node *node;
913
914 if (hlist_empty(head)) {
915 hlist_add_head_rcu(&new->hlist, head);
916 } else {
917 hlist_for_each_entry(li, node, head, hlist) {
918 if (new->plen > li->plen)
919 break;
920
921 last = li;
922 }
923 if (last)
924 hlist_add_after_rcu(&last->hlist, &new->hlist);
925 else
926 hlist_add_before_rcu(&new->hlist, &li->hlist);
927 }
928 }
929
930 /* rcu_read_lock needs to be hold by caller from readside */
931
932 static struct leaf *
933 fib_find_node(struct trie *t, u32 key)
934 {
935 int pos;
936 struct tnode *tn;
937 struct node *n;
938
939 pos = 0;
940 n = rcu_dereference(t->trie);
941
942 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
943 tn = (struct tnode *) n;
944
945 check_tnode(tn);
946
947 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
948 pos = tn->pos + tn->bits;
949 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
950 } else
951 break;
952 }
953 /* Case we have found a leaf. Compare prefixes */
954
955 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
956 return (struct leaf *)n;
957
958 return NULL;
959 }
960
961 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
962 {
963 int wasfull;
964 t_key cindex, key;
965 struct tnode *tp = NULL;
966
967 key = tn->key;
968
969 while (tn != NULL && NODE_PARENT(tn) != NULL) {
970
971 tp = NODE_PARENT(tn);
972 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
973 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
974 tn = (struct tnode *) resize (t, (struct tnode *)tn);
975 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
976
977 if (!NODE_PARENT(tn))
978 break;
979
980 tn = NODE_PARENT(tn);
981 }
982 /* Handle last (top) tnode */
983 if (IS_TNODE(tn))
984 tn = (struct tnode*) resize(t, (struct tnode *)tn);
985
986 return (struct node*) tn;
987 }
988
989 /* only used from updater-side */
990
991 static struct list_head *
992 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
993 {
994 int pos, newpos;
995 struct tnode *tp = NULL, *tn = NULL;
996 struct node *n;
997 struct leaf *l;
998 int missbit;
999 struct list_head *fa_head = NULL;
1000 struct leaf_info *li;
1001 t_key cindex;
1002
1003 pos = 0;
1004 n = t->trie;
1005
1006 /* If we point to NULL, stop. Either the tree is empty and we should
1007 * just put a new leaf in if, or we have reached an empty child slot,
1008 * and we should just put our new leaf in that.
1009 * If we point to a T_TNODE, check if it matches our key. Note that
1010 * a T_TNODE might be skipping any number of bits - its 'pos' need
1011 * not be the parent's 'pos'+'bits'!
1012 *
1013 * If it does match the current key, get pos/bits from it, extract
1014 * the index from our key, push the T_TNODE and walk the tree.
1015 *
1016 * If it doesn't, we have to replace it with a new T_TNODE.
1017 *
1018 * If we point to a T_LEAF, it might or might not have the same key
1019 * as we do. If it does, just change the value, update the T_LEAF's
1020 * value, and return it.
1021 * If it doesn't, we need to replace it with a T_TNODE.
1022 */
1023
1024 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1025 tn = (struct tnode *) n;
1026
1027 check_tnode(tn);
1028
1029 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1030 tp = tn;
1031 pos = tn->pos + tn->bits;
1032 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1033
1034 BUG_ON(n && NODE_PARENT(n) != tn);
1035 } else
1036 break;
1037 }
1038
1039 /*
1040 * n ----> NULL, LEAF or TNODE
1041 *
1042 * tp is n's (parent) ----> NULL or TNODE
1043 */
1044
1045 BUG_ON(tp && IS_LEAF(tp));
1046
1047 /* Case 1: n is a leaf. Compare prefixes */
1048
1049 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1050 struct leaf *l = (struct leaf *) n;
1051
1052 li = leaf_info_new(plen);
1053
1054 if (!li) {
1055 *err = -ENOMEM;
1056 goto err;
1057 }
1058
1059 fa_head = &li->falh;
1060 insert_leaf_info(&l->list, li);
1061 goto done;
1062 }
1063 t->size++;
1064 l = leaf_new();
1065
1066 if (!l) {
1067 *err = -ENOMEM;
1068 goto err;
1069 }
1070
1071 l->key = key;
1072 li = leaf_info_new(plen);
1073
1074 if (!li) {
1075 tnode_free((struct tnode *) l);
1076 *err = -ENOMEM;
1077 goto err;
1078 }
1079
1080 fa_head = &li->falh;
1081 insert_leaf_info(&l->list, li);
1082
1083 if (t->trie && n == NULL) {
1084 /* Case 2: n is NULL, and will just insert a new leaf */
1085
1086 NODE_SET_PARENT(l, tp);
1087
1088 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1089 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1090 } else {
1091 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1092 /*
1093 * Add a new tnode here
1094 * first tnode need some special handling
1095 */
1096
1097 if (tp)
1098 pos = tp->pos+tp->bits;
1099 else
1100 pos = 0;
1101
1102 if (n) {
1103 newpos = tkey_mismatch(key, pos, n->key);
1104 tn = tnode_new(n->key, newpos, 1);
1105 } else {
1106 newpos = 0;
1107 tn = tnode_new(key, newpos, 1); /* First tnode */
1108 }
1109
1110 if (!tn) {
1111 free_leaf_info(li);
1112 tnode_free((struct tnode *) l);
1113 *err = -ENOMEM;
1114 goto err;
1115 }
1116
1117 NODE_SET_PARENT(tn, tp);
1118
1119 missbit = tkey_extract_bits(key, newpos, 1);
1120 put_child(t, tn, missbit, (struct node *)l);
1121 put_child(t, tn, 1-missbit, n);
1122
1123 if (tp) {
1124 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1126 } else {
1127 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1128 tp = tn;
1129 }
1130 }
1131
1132 if (tp && tp->pos + tp->bits > 32)
1133 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1134 tp, tp->pos, tp->bits, key, plen);
1135
1136 /* Rebalance the trie */
1137
1138 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1139 done:
1140 t->revision++;
1141 err:
1142 return fa_head;
1143 }
1144
1145 /*
1146 * Caller must hold RTNL.
1147 */
1148 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1149 {
1150 struct trie *t = (struct trie *) tb->tb_data;
1151 struct fib_alias *fa, *new_fa;
1152 struct list_head *fa_head = NULL;
1153 struct fib_info *fi;
1154 int plen = cfg->fc_dst_len;
1155 u8 tos = cfg->fc_tos;
1156 u32 key, mask;
1157 int err;
1158 struct leaf *l;
1159
1160 if (plen > 32)
1161 return -EINVAL;
1162
1163 key = ntohl(cfg->fc_dst);
1164
1165 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1166
1167 mask = ntohl(inet_make_mask(plen));
1168
1169 if (key & ~mask)
1170 return -EINVAL;
1171
1172 key = key & mask;
1173
1174 fi = fib_create_info(cfg);
1175 if (IS_ERR(fi)) {
1176 err = PTR_ERR(fi);
1177 goto err;
1178 }
1179
1180 l = fib_find_node(t, key);
1181 fa = NULL;
1182
1183 if (l) {
1184 fa_head = get_fa_head(l, plen);
1185 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1186 }
1187
1188 /* Now fa, if non-NULL, points to the first fib alias
1189 * with the same keys [prefix,tos,priority], if such key already
1190 * exists or to the node before which we will insert new one.
1191 *
1192 * If fa is NULL, we will need to allocate a new one and
1193 * insert to the head of f.
1194 *
1195 * If f is NULL, no fib node matched the destination key
1196 * and we need to allocate a new one of those as well.
1197 */
1198
1199 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1200 struct fib_alias *fa_orig;
1201
1202 err = -EEXIST;
1203 if (cfg->fc_nlflags & NLM_F_EXCL)
1204 goto out;
1205
1206 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1207 struct fib_info *fi_drop;
1208 u8 state;
1209
1210 err = -ENOBUFS;
1211 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1212 if (new_fa == NULL)
1213 goto out;
1214
1215 fi_drop = fa->fa_info;
1216 new_fa->fa_tos = fa->fa_tos;
1217 new_fa->fa_info = fi;
1218 new_fa->fa_type = cfg->fc_type;
1219 new_fa->fa_scope = cfg->fc_scope;
1220 state = fa->fa_state;
1221 new_fa->fa_state &= ~FA_S_ACCESSED;
1222
1223 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1224 alias_free_mem_rcu(fa);
1225
1226 fib_release_info(fi_drop);
1227 if (state & FA_S_ACCESSED)
1228 rt_cache_flush(-1);
1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1231
1232 goto succeeded;
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
1238 fa_orig = fa;
1239 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1240 if (fa->fa_tos != tos)
1241 break;
1242 if (fa->fa_info->fib_priority != fi->fib_priority)
1243 break;
1244 if (fa->fa_type == cfg->fc_type &&
1245 fa->fa_scope == cfg->fc_scope &&
1246 fa->fa_info == fi) {
1247 goto out;
1248 }
1249 }
1250 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1251 fa = fa_orig;
1252 }
1253 err = -ENOENT;
1254 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1255 goto out;
1256
1257 err = -ENOBUFS;
1258 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259 if (new_fa == NULL)
1260 goto out;
1261
1262 new_fa->fa_info = fi;
1263 new_fa->fa_tos = tos;
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
1266 new_fa->fa_state = 0;
1267 /*
1268 * Insert new entry to the list.
1269 */
1270
1271 if (!fa_head) {
1272 err = 0;
1273 fa_head = fib_insert_node(t, &err, key, plen);
1274 if (err)
1275 goto out_free_new_fa;
1276 }
1277
1278 list_add_tail_rcu(&new_fa->fa_list,
1279 (fa ? &fa->fa_list : fa_head));
1280
1281 rt_cache_flush(-1);
1282 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1283 &cfg->fc_nlinfo, 0);
1284 succeeded:
1285 return 0;
1286
1287 out_free_new_fa:
1288 kmem_cache_free(fn_alias_kmem, new_fa);
1289 out:
1290 fib_release_info(fi);
1291 err:
1292 return err;
1293 }
1294
1295
1296 /* should be called with rcu_read_lock */
1297 static inline int check_leaf(struct trie *t, struct leaf *l,
1298 t_key key, int *plen, const struct flowi *flp,
1299 struct fib_result *res)
1300 {
1301 int err, i;
1302 __be32 mask;
1303 struct leaf_info *li;
1304 struct hlist_head *hhead = &l->list;
1305 struct hlist_node *node;
1306
1307 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1308 i = li->plen;
1309 mask = inet_make_mask(i);
1310 if (l->key != (key & ntohl(mask)))
1311 continue;
1312
1313 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1314 *plen = i;
1315 #ifdef CONFIG_IP_FIB_TRIE_STATS
1316 t->stats.semantic_match_passed++;
1317 #endif
1318 return err;
1319 }
1320 #ifdef CONFIG_IP_FIB_TRIE_STATS
1321 t->stats.semantic_match_miss++;
1322 #endif
1323 }
1324 return 1;
1325 }
1326
1327 static int
1328 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1329 {
1330 struct trie *t = (struct trie *) tb->tb_data;
1331 int plen, ret = 0;
1332 struct node *n;
1333 struct tnode *pn;
1334 int pos, bits;
1335 t_key key = ntohl(flp->fl4_dst);
1336 int chopped_off;
1337 t_key cindex = 0;
1338 int current_prefix_length = KEYLENGTH;
1339 struct tnode *cn;
1340 t_key node_prefix, key_prefix, pref_mismatch;
1341 int mp;
1342
1343 rcu_read_lock();
1344
1345 n = rcu_dereference(t->trie);
1346 if (!n)
1347 goto failed;
1348
1349 #ifdef CONFIG_IP_FIB_TRIE_STATS
1350 t->stats.gets++;
1351 #endif
1352
1353 /* Just a leaf? */
1354 if (IS_LEAF(n)) {
1355 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1356 goto found;
1357 goto failed;
1358 }
1359 pn = (struct tnode *) n;
1360 chopped_off = 0;
1361
1362 while (pn) {
1363 pos = pn->pos;
1364 bits = pn->bits;
1365
1366 if (!chopped_off)
1367 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1368
1369 n = tnode_get_child(pn, cindex);
1370
1371 if (n == NULL) {
1372 #ifdef CONFIG_IP_FIB_TRIE_STATS
1373 t->stats.null_node_hit++;
1374 #endif
1375 goto backtrace;
1376 }
1377
1378 if (IS_LEAF(n)) {
1379 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1380 goto found;
1381 else
1382 goto backtrace;
1383 }
1384
1385 #define HL_OPTIMIZE
1386 #ifdef HL_OPTIMIZE
1387 cn = (struct tnode *)n;
1388
1389 /*
1390 * It's a tnode, and we can do some extra checks here if we
1391 * like, to avoid descending into a dead-end branch.
1392 * This tnode is in the parent's child array at index
1393 * key[p_pos..p_pos+p_bits] but potentially with some bits
1394 * chopped off, so in reality the index may be just a
1395 * subprefix, padded with zero at the end.
1396 * We can also take a look at any skipped bits in this
1397 * tnode - everything up to p_pos is supposed to be ok,
1398 * and the non-chopped bits of the index (se previous
1399 * paragraph) are also guaranteed ok, but the rest is
1400 * considered unknown.
1401 *
1402 * The skipped bits are key[pos+bits..cn->pos].
1403 */
1404
1405 /* If current_prefix_length < pos+bits, we are already doing
1406 * actual prefix matching, which means everything from
1407 * pos+(bits-chopped_off) onward must be zero along some
1408 * branch of this subtree - otherwise there is *no* valid
1409 * prefix present. Here we can only check the skipped
1410 * bits. Remember, since we have already indexed into the
1411 * parent's child array, we know that the bits we chopped of
1412 * *are* zero.
1413 */
1414
1415 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1416
1417 if (current_prefix_length < pos+bits) {
1418 if (tkey_extract_bits(cn->key, current_prefix_length,
1419 cn->pos - current_prefix_length) != 0 ||
1420 !(cn->child[0]))
1421 goto backtrace;
1422 }
1423
1424 /*
1425 * If chopped_off=0, the index is fully validated and we
1426 * only need to look at the skipped bits for this, the new,
1427 * tnode. What we actually want to do is to find out if
1428 * these skipped bits match our key perfectly, or if we will
1429 * have to count on finding a matching prefix further down,
1430 * because if we do, we would like to have some way of
1431 * verifying the existence of such a prefix at this point.
1432 */
1433
1434 /* The only thing we can do at this point is to verify that
1435 * any such matching prefix can indeed be a prefix to our
1436 * key, and if the bits in the node we are inspecting that
1437 * do not match our key are not ZERO, this cannot be true.
1438 * Thus, find out where there is a mismatch (before cn->pos)
1439 * and verify that all the mismatching bits are zero in the
1440 * new tnode's key.
1441 */
1442
1443 /* Note: We aren't very concerned about the piece of the key
1444 * that precede pn->pos+pn->bits, since these have already been
1445 * checked. The bits after cn->pos aren't checked since these are
1446 * by definition "unknown" at this point. Thus, what we want to
1447 * see is if we are about to enter the "prefix matching" state,
1448 * and in that case verify that the skipped bits that will prevail
1449 * throughout this subtree are zero, as they have to be if we are
1450 * to find a matching prefix.
1451 */
1452
1453 node_prefix = MASK_PFX(cn->key, cn->pos);
1454 key_prefix = MASK_PFX(key, cn->pos);
1455 pref_mismatch = key_prefix^node_prefix;
1456 mp = 0;
1457
1458 /* In short: If skipped bits in this node do not match the search
1459 * key, enter the "prefix matching" state.directly.
1460 */
1461 if (pref_mismatch) {
1462 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1463 mp++;
1464 pref_mismatch = pref_mismatch <<1;
1465 }
1466 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1467
1468 if (key_prefix != 0)
1469 goto backtrace;
1470
1471 if (current_prefix_length >= cn->pos)
1472 current_prefix_length = mp;
1473 }
1474 #endif
1475 pn = (struct tnode *)n; /* Descend */
1476 chopped_off = 0;
1477 continue;
1478
1479 backtrace:
1480 chopped_off++;
1481
1482 /* As zero don't change the child key (cindex) */
1483 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1484 chopped_off++;
1485
1486 /* Decrease current_... with bits chopped off */
1487 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1488 current_prefix_length = pn->pos + pn->bits - chopped_off;
1489
1490 /*
1491 * Either we do the actual chop off according or if we have
1492 * chopped off all bits in this tnode walk up to our parent.
1493 */
1494
1495 if (chopped_off <= pn->bits) {
1496 cindex &= ~(1 << (chopped_off-1));
1497 } else {
1498 if (NODE_PARENT(pn) == NULL)
1499 goto failed;
1500
1501 /* Get Child's index */
1502 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1503 pn = NODE_PARENT(pn);
1504 chopped_off = 0;
1505
1506 #ifdef CONFIG_IP_FIB_TRIE_STATS
1507 t->stats.backtrack++;
1508 #endif
1509 goto backtrace;
1510 }
1511 }
1512 failed:
1513 ret = 1;
1514 found:
1515 rcu_read_unlock();
1516 return ret;
1517 }
1518
1519 /* only called from updater side */
1520 static int trie_leaf_remove(struct trie *t, t_key key)
1521 {
1522 t_key cindex;
1523 struct tnode *tp = NULL;
1524 struct node *n = t->trie;
1525 struct leaf *l;
1526
1527 pr_debug("entering trie_leaf_remove(%p)\n", n);
1528
1529 /* Note that in the case skipped bits, those bits are *not* checked!
1530 * When we finish this, we will have NULL or a T_LEAF, and the
1531 * T_LEAF may or may not match our key.
1532 */
1533
1534 while (n != NULL && IS_TNODE(n)) {
1535 struct tnode *tn = (struct tnode *) n;
1536 check_tnode(tn);
1537 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1538
1539 BUG_ON(n && NODE_PARENT(n) != tn);
1540 }
1541 l = (struct leaf *) n;
1542
1543 if (!n || !tkey_equals(l->key, key))
1544 return 0;
1545
1546 /*
1547 * Key found.
1548 * Remove the leaf and rebalance the tree
1549 */
1550
1551 t->revision++;
1552 t->size--;
1553
1554 tp = NODE_PARENT(n);
1555 tnode_free((struct tnode *) n);
1556
1557 if (tp) {
1558 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1559 put_child(t, (struct tnode *)tp, cindex, NULL);
1560 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1561 } else
1562 rcu_assign_pointer(t->trie, NULL);
1563
1564 return 1;
1565 }
1566
1567 /*
1568 * Caller must hold RTNL.
1569 */
1570 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1571 {
1572 struct trie *t = (struct trie *) tb->tb_data;
1573 u32 key, mask;
1574 int plen = cfg->fc_dst_len;
1575 u8 tos = cfg->fc_tos;
1576 struct fib_alias *fa, *fa_to_delete;
1577 struct list_head *fa_head;
1578 struct leaf *l;
1579 struct leaf_info *li;
1580
1581 if (plen > 32)
1582 return -EINVAL;
1583
1584 key = ntohl(cfg->fc_dst);
1585 mask = ntohl(inet_make_mask(plen));
1586
1587 if (key & ~mask)
1588 return -EINVAL;
1589
1590 key = key & mask;
1591 l = fib_find_node(t, key);
1592
1593 if (!l)
1594 return -ESRCH;
1595
1596 fa_head = get_fa_head(l, plen);
1597 fa = fib_find_alias(fa_head, tos, 0);
1598
1599 if (!fa)
1600 return -ESRCH;
1601
1602 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1603
1604 fa_to_delete = NULL;
1605 fa_head = fa->fa_list.prev;
1606
1607 list_for_each_entry(fa, fa_head, fa_list) {
1608 struct fib_info *fi = fa->fa_info;
1609
1610 if (fa->fa_tos != tos)
1611 break;
1612
1613 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1614 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1615 fa->fa_scope == cfg->fc_scope) &&
1616 (!cfg->fc_protocol ||
1617 fi->fib_protocol == cfg->fc_protocol) &&
1618 fib_nh_match(cfg, fi) == 0) {
1619 fa_to_delete = fa;
1620 break;
1621 }
1622 }
1623
1624 if (!fa_to_delete)
1625 return -ESRCH;
1626
1627 fa = fa_to_delete;
1628 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1629 &cfg->fc_nlinfo, 0);
1630
1631 l = fib_find_node(t, key);
1632 li = find_leaf_info(l, plen);
1633
1634 list_del_rcu(&fa->fa_list);
1635
1636 if (list_empty(fa_head)) {
1637 hlist_del_rcu(&li->hlist);
1638 free_leaf_info(li);
1639 }
1640
1641 if (hlist_empty(&l->list))
1642 trie_leaf_remove(t, key);
1643
1644 if (fa->fa_state & FA_S_ACCESSED)
1645 rt_cache_flush(-1);
1646
1647 fib_release_info(fa->fa_info);
1648 alias_free_mem_rcu(fa);
1649 return 0;
1650 }
1651
1652 static int trie_flush_list(struct trie *t, struct list_head *head)
1653 {
1654 struct fib_alias *fa, *fa_node;
1655 int found = 0;
1656
1657 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1658 struct fib_info *fi = fa->fa_info;
1659
1660 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1661 list_del_rcu(&fa->fa_list);
1662 fib_release_info(fa->fa_info);
1663 alias_free_mem_rcu(fa);
1664 found++;
1665 }
1666 }
1667 return found;
1668 }
1669
1670 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1671 {
1672 int found = 0;
1673 struct hlist_head *lih = &l->list;
1674 struct hlist_node *node, *tmp;
1675 struct leaf_info *li = NULL;
1676
1677 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1678 found += trie_flush_list(t, &li->falh);
1679
1680 if (list_empty(&li->falh)) {
1681 hlist_del_rcu(&li->hlist);
1682 free_leaf_info(li);
1683 }
1684 }
1685 return found;
1686 }
1687
1688 /* rcu_read_lock needs to be hold by caller from readside */
1689
1690 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1691 {
1692 struct node *c = (struct node *) thisleaf;
1693 struct tnode *p;
1694 int idx;
1695 struct node *trie = rcu_dereference(t->trie);
1696
1697 if (c == NULL) {
1698 if (trie == NULL)
1699 return NULL;
1700
1701 if (IS_LEAF(trie)) /* trie w. just a leaf */
1702 return (struct leaf *) trie;
1703
1704 p = (struct tnode*) trie; /* Start */
1705 } else
1706 p = (struct tnode *) NODE_PARENT(c);
1707
1708 while (p) {
1709 int pos, last;
1710
1711 /* Find the next child of the parent */
1712 if (c)
1713 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1714 else
1715 pos = 0;
1716
1717 last = 1 << p->bits;
1718 for (idx = pos; idx < last ; idx++) {
1719 c = rcu_dereference(p->child[idx]);
1720
1721 if (!c)
1722 continue;
1723
1724 /* Decend if tnode */
1725 while (IS_TNODE(c)) {
1726 p = (struct tnode *) c;
1727 idx = 0;
1728
1729 /* Rightmost non-NULL branch */
1730 if (p && IS_TNODE(p))
1731 while (!(c = rcu_dereference(p->child[idx]))
1732 && idx < (1<<p->bits)) idx++;
1733
1734 /* Done with this tnode? */
1735 if (idx >= (1 << p->bits) || !c)
1736 goto up;
1737 }
1738 return (struct leaf *) c;
1739 }
1740 up:
1741 /* No more children go up one step */
1742 c = (struct node *) p;
1743 p = (struct tnode *) NODE_PARENT(p);
1744 }
1745 return NULL; /* Ready. Root of trie */
1746 }
1747
1748 /*
1749 * Caller must hold RTNL.
1750 */
1751 static int fn_trie_flush(struct fib_table *tb)
1752 {
1753 struct trie *t = (struct trie *) tb->tb_data;
1754 struct leaf *ll = NULL, *l = NULL;
1755 int found = 0, h;
1756
1757 t->revision++;
1758
1759 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1760 found += trie_flush_leaf(t, l);
1761
1762 if (ll && hlist_empty(&ll->list))
1763 trie_leaf_remove(t, ll->key);
1764 ll = l;
1765 }
1766
1767 if (ll && hlist_empty(&ll->list))
1768 trie_leaf_remove(t, ll->key);
1769
1770 pr_debug("trie_flush found=%d\n", found);
1771 return found;
1772 }
1773
1774 static int trie_last_dflt = -1;
1775
1776 static void
1777 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1778 {
1779 struct trie *t = (struct trie *) tb->tb_data;
1780 int order, last_idx;
1781 struct fib_info *fi = NULL;
1782 struct fib_info *last_resort;
1783 struct fib_alias *fa = NULL;
1784 struct list_head *fa_head;
1785 struct leaf *l;
1786
1787 last_idx = -1;
1788 last_resort = NULL;
1789 order = -1;
1790
1791 rcu_read_lock();
1792
1793 l = fib_find_node(t, 0);
1794 if (!l)
1795 goto out;
1796
1797 fa_head = get_fa_head(l, 0);
1798 if (!fa_head)
1799 goto out;
1800
1801 if (list_empty(fa_head))
1802 goto out;
1803
1804 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1805 struct fib_info *next_fi = fa->fa_info;
1806
1807 if (fa->fa_scope != res->scope ||
1808 fa->fa_type != RTN_UNICAST)
1809 continue;
1810
1811 if (next_fi->fib_priority > res->fi->fib_priority)
1812 break;
1813 if (!next_fi->fib_nh[0].nh_gw ||
1814 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1815 continue;
1816 fa->fa_state |= FA_S_ACCESSED;
1817
1818 if (fi == NULL) {
1819 if (next_fi != res->fi)
1820 break;
1821 } else if (!fib_detect_death(fi, order, &last_resort,
1822 &last_idx, &trie_last_dflt)) {
1823 if (res->fi)
1824 fib_info_put(res->fi);
1825 res->fi = fi;
1826 atomic_inc(&fi->fib_clntref);
1827 trie_last_dflt = order;
1828 goto out;
1829 }
1830 fi = next_fi;
1831 order++;
1832 }
1833 if (order <= 0 || fi == NULL) {
1834 trie_last_dflt = -1;
1835 goto out;
1836 }
1837
1838 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1839 if (res->fi)
1840 fib_info_put(res->fi);
1841 res->fi = fi;
1842 atomic_inc(&fi->fib_clntref);
1843 trie_last_dflt = order;
1844 goto out;
1845 }
1846 if (last_idx >= 0) {
1847 if (res->fi)
1848 fib_info_put(res->fi);
1849 res->fi = last_resort;
1850 if (last_resort)
1851 atomic_inc(&last_resort->fib_clntref);
1852 }
1853 trie_last_dflt = last_idx;
1854 out:;
1855 rcu_read_unlock();
1856 }
1857
1858 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1859 struct sk_buff *skb, struct netlink_callback *cb)
1860 {
1861 int i, s_i;
1862 struct fib_alias *fa;
1863
1864 __be32 xkey = htonl(key);
1865
1866 s_i = cb->args[4];
1867 i = 0;
1868
1869 /* rcu_read_lock is hold by caller */
1870
1871 list_for_each_entry_rcu(fa, fah, fa_list) {
1872 if (i < s_i) {
1873 i++;
1874 continue;
1875 }
1876 BUG_ON(!fa->fa_info);
1877
1878 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1879 cb->nlh->nlmsg_seq,
1880 RTM_NEWROUTE,
1881 tb->tb_id,
1882 fa->fa_type,
1883 fa->fa_scope,
1884 xkey,
1885 plen,
1886 fa->fa_tos,
1887 fa->fa_info, 0) < 0) {
1888 cb->args[4] = i;
1889 return -1;
1890 }
1891 i++;
1892 }
1893 cb->args[4] = i;
1894 return skb->len;
1895 }
1896
1897 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1898 struct netlink_callback *cb)
1899 {
1900 int h, s_h;
1901 struct list_head *fa_head;
1902 struct leaf *l = NULL;
1903
1904 s_h = cb->args[3];
1905
1906 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1907 if (h < s_h)
1908 continue;
1909 if (h > s_h)
1910 memset(&cb->args[4], 0,
1911 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1912
1913 fa_head = get_fa_head(l, plen);
1914
1915 if (!fa_head)
1916 continue;
1917
1918 if (list_empty(fa_head))
1919 continue;
1920
1921 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1922 cb->args[3] = h;
1923 return -1;
1924 }
1925 }
1926 cb->args[3] = h;
1927 return skb->len;
1928 }
1929
1930 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1931 {
1932 int m, s_m;
1933 struct trie *t = (struct trie *) tb->tb_data;
1934
1935 s_m = cb->args[2];
1936
1937 rcu_read_lock();
1938 for (m = 0; m <= 32; m++) {
1939 if (m < s_m)
1940 continue;
1941 if (m > s_m)
1942 memset(&cb->args[3], 0,
1943 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1944
1945 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1946 cb->args[2] = m;
1947 goto out;
1948 }
1949 }
1950 rcu_read_unlock();
1951 cb->args[2] = m;
1952 return skb->len;
1953 out:
1954 rcu_read_unlock();
1955 return -1;
1956 }
1957
1958 /* Fix more generic FIB names for init later */
1959
1960 #ifdef CONFIG_IP_MULTIPLE_TABLES
1961 struct fib_table * fib_hash_init(u32 id)
1962 #else
1963 struct fib_table * __init fib_hash_init(u32 id)
1964 #endif
1965 {
1966 struct fib_table *tb;
1967 struct trie *t;
1968
1969 if (fn_alias_kmem == NULL)
1970 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1971 sizeof(struct fib_alias),
1972 0, SLAB_HWCACHE_ALIGN,
1973 NULL, NULL);
1974
1975 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1976 GFP_KERNEL);
1977 if (tb == NULL)
1978 return NULL;
1979
1980 tb->tb_id = id;
1981 tb->tb_lookup = fn_trie_lookup;
1982 tb->tb_insert = fn_trie_insert;
1983 tb->tb_delete = fn_trie_delete;
1984 tb->tb_flush = fn_trie_flush;
1985 tb->tb_select_default = fn_trie_select_default;
1986 tb->tb_dump = fn_trie_dump;
1987 memset(tb->tb_data, 0, sizeof(struct trie));
1988
1989 t = (struct trie *) tb->tb_data;
1990
1991 trie_init(t);
1992
1993 if (id == RT_TABLE_LOCAL)
1994 trie_local = t;
1995 else if (id == RT_TABLE_MAIN)
1996 trie_main = t;
1997
1998 if (id == RT_TABLE_LOCAL)
1999 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
2000
2001 return tb;
2002 }
2003
2004 #ifdef CONFIG_PROC_FS
2005 /* Depth first Trie walk iterator */
2006 struct fib_trie_iter {
2007 struct tnode *tnode;
2008 struct trie *trie;
2009 unsigned index;
2010 unsigned depth;
2011 };
2012
2013 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2014 {
2015 struct tnode *tn = iter->tnode;
2016 unsigned cindex = iter->index;
2017 struct tnode *p;
2018
2019 /* A single entry routing table */
2020 if (!tn)
2021 return NULL;
2022
2023 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2024 iter->tnode, iter->index, iter->depth);
2025 rescan:
2026 while (cindex < (1<<tn->bits)) {
2027 struct node *n = tnode_get_child(tn, cindex);
2028
2029 if (n) {
2030 if (IS_LEAF(n)) {
2031 iter->tnode = tn;
2032 iter->index = cindex + 1;
2033 } else {
2034 /* push down one level */
2035 iter->tnode = (struct tnode *) n;
2036 iter->index = 0;
2037 ++iter->depth;
2038 }
2039 return n;
2040 }
2041
2042 ++cindex;
2043 }
2044
2045 /* Current node exhausted, pop back up */
2046 p = NODE_PARENT(tn);
2047 if (p) {
2048 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2049 tn = p;
2050 --iter->depth;
2051 goto rescan;
2052 }
2053
2054 /* got root? */
2055 return NULL;
2056 }
2057
2058 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2059 struct trie *t)
2060 {
2061 struct node *n ;
2062
2063 if (!t)
2064 return NULL;
2065
2066 n = rcu_dereference(t->trie);
2067
2068 if (!iter)
2069 return NULL;
2070
2071 if (n) {
2072 if (IS_TNODE(n)) {
2073 iter->tnode = (struct tnode *) n;
2074 iter->trie = t;
2075 iter->index = 0;
2076 iter->depth = 1;
2077 } else {
2078 iter->tnode = NULL;
2079 iter->trie = t;
2080 iter->index = 0;
2081 iter->depth = 0;
2082 }
2083 return n;
2084 }
2085 return NULL;
2086 }
2087
2088 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2089 {
2090 struct node *n;
2091 struct fib_trie_iter iter;
2092
2093 memset(s, 0, sizeof(*s));
2094
2095 rcu_read_lock();
2096 for (n = fib_trie_get_first(&iter, t); n;
2097 n = fib_trie_get_next(&iter)) {
2098 if (IS_LEAF(n)) {
2099 s->leaves++;
2100 s->totdepth += iter.depth;
2101 if (iter.depth > s->maxdepth)
2102 s->maxdepth = iter.depth;
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
2108 if (tn->bits < MAX_STAT_DEPTH)
2109 s->nodesizes[tn->bits]++;
2110
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
2114 }
2115 }
2116 rcu_read_unlock();
2117 }
2118
2119 /*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2123 {
2124 unsigned i, max, pointers, bytes, avdepth;
2125
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
2130
2131 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2132 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2133
2134 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2135
2136 bytes = sizeof(struct leaf) * stat->leaves;
2137 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2138 bytes += sizeof(struct tnode) * stat->tnodes;
2139
2140 max = MAX_STAT_DEPTH;
2141 while (max > 0 && stat->nodesizes[max-1] == 0)
2142 max--;
2143
2144 pointers = 0;
2145 for (i = 1; i <= max; i++)
2146 if (stat->nodesizes[i] != 0) {
2147 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2148 pointers += (1<<i) * stat->nodesizes[i];
2149 }
2150 seq_putc(seq, '\n');
2151 seq_printf(seq, "\tPointers: %d\n", pointers);
2152
2153 bytes += sizeof(struct node *) * pointers;
2154 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2155 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2156
2157 #ifdef CONFIG_IP_FIB_TRIE_STATS
2158 seq_printf(seq, "Counters:\n---------\n");
2159 seq_printf(seq,"gets = %d\n", t->stats.gets);
2160 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2161 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2162 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2163 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2164 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2165 #ifdef CLEAR_STATS
2166 memset(&(t->stats), 0, sizeof(t->stats));
2167 #endif
2168 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2169 }
2170
2171 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2172 {
2173 struct trie_stat *stat;
2174
2175 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2176 if (!stat)
2177 return -ENOMEM;
2178
2179 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2180 sizeof(struct leaf), sizeof(struct tnode));
2181
2182 if (trie_local) {
2183 seq_printf(seq, "Local:\n");
2184 trie_collect_stats(trie_local, stat);
2185 trie_show_stats(seq, stat);
2186 }
2187
2188 if (trie_main) {
2189 seq_printf(seq, "Main:\n");
2190 trie_collect_stats(trie_main, stat);
2191 trie_show_stats(seq, stat);
2192 }
2193 kfree(stat);
2194
2195 return 0;
2196 }
2197
2198 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2199 {
2200 return single_open(file, fib_triestat_seq_show, NULL);
2201 }
2202
2203 static const struct file_operations fib_triestat_fops = {
2204 .owner = THIS_MODULE,
2205 .open = fib_triestat_seq_open,
2206 .read = seq_read,
2207 .llseek = seq_lseek,
2208 .release = single_release,
2209 };
2210
2211 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2212 loff_t pos)
2213 {
2214 loff_t idx = 0;
2215 struct node *n;
2216
2217 for (n = fib_trie_get_first(iter, trie_local);
2218 n; ++idx, n = fib_trie_get_next(iter)) {
2219 if (pos == idx)
2220 return n;
2221 }
2222
2223 for (n = fib_trie_get_first(iter, trie_main);
2224 n; ++idx, n = fib_trie_get_next(iter)) {
2225 if (pos == idx)
2226 return n;
2227 }
2228 return NULL;
2229 }
2230
2231 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2232 {
2233 rcu_read_lock();
2234 if (*pos == 0)
2235 return SEQ_START_TOKEN;
2236 return fib_trie_get_idx(seq->private, *pos - 1);
2237 }
2238
2239 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2240 {
2241 struct fib_trie_iter *iter = seq->private;
2242 void *l = v;
2243
2244 ++*pos;
2245 if (v == SEQ_START_TOKEN)
2246 return fib_trie_get_idx(iter, 0);
2247
2248 v = fib_trie_get_next(iter);
2249 BUG_ON(v == l);
2250 if (v)
2251 return v;
2252
2253 /* continue scan in next trie */
2254 if (iter->trie == trie_local)
2255 return fib_trie_get_first(iter, trie_main);
2256
2257 return NULL;
2258 }
2259
2260 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2261 {
2262 rcu_read_unlock();
2263 }
2264
2265 static void seq_indent(struct seq_file *seq, int n)
2266 {
2267 while (n-- > 0) seq_puts(seq, " ");
2268 }
2269
2270 static inline const char *rtn_scope(enum rt_scope_t s)
2271 {
2272 static char buf[32];
2273
2274 switch (s) {
2275 case RT_SCOPE_UNIVERSE: return "universe";
2276 case RT_SCOPE_SITE: return "site";
2277 case RT_SCOPE_LINK: return "link";
2278 case RT_SCOPE_HOST: return "host";
2279 case RT_SCOPE_NOWHERE: return "nowhere";
2280 default:
2281 snprintf(buf, sizeof(buf), "scope=%d", s);
2282 return buf;
2283 }
2284 }
2285
2286 static const char *rtn_type_names[__RTN_MAX] = {
2287 [RTN_UNSPEC] = "UNSPEC",
2288 [RTN_UNICAST] = "UNICAST",
2289 [RTN_LOCAL] = "LOCAL",
2290 [RTN_BROADCAST] = "BROADCAST",
2291 [RTN_ANYCAST] = "ANYCAST",
2292 [RTN_MULTICAST] = "MULTICAST",
2293 [RTN_BLACKHOLE] = "BLACKHOLE",
2294 [RTN_UNREACHABLE] = "UNREACHABLE",
2295 [RTN_PROHIBIT] = "PROHIBIT",
2296 [RTN_THROW] = "THROW",
2297 [RTN_NAT] = "NAT",
2298 [RTN_XRESOLVE] = "XRESOLVE",
2299 };
2300
2301 static inline const char *rtn_type(unsigned t)
2302 {
2303 static char buf[32];
2304
2305 if (t < __RTN_MAX && rtn_type_names[t])
2306 return rtn_type_names[t];
2307 snprintf(buf, sizeof(buf), "type %d", t);
2308 return buf;
2309 }
2310
2311 /* Pretty print the trie */
2312 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2313 {
2314 const struct fib_trie_iter *iter = seq->private;
2315 struct node *n = v;
2316
2317 if (v == SEQ_START_TOKEN)
2318 return 0;
2319
2320 if (!NODE_PARENT(n)) {
2321 if (iter->trie == trie_local)
2322 seq_puts(seq, "<local>:\n");
2323 else
2324 seq_puts(seq, "<main>:\n");
2325 }
2326
2327 if (IS_TNODE(n)) {
2328 struct tnode *tn = (struct tnode *) n;
2329 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
2330
2331 seq_indent(seq, iter->depth-1);
2332 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2333 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2334 tn->empty_children);
2335
2336 } else {
2337 struct leaf *l = (struct leaf *) n;
2338 int i;
2339 __be32 val = htonl(l->key);
2340
2341 seq_indent(seq, iter->depth);
2342 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2343 for (i = 32; i >= 0; i--) {
2344 struct leaf_info *li = find_leaf_info(l, i);
2345 if (li) {
2346 struct fib_alias *fa;
2347 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2348 seq_indent(seq, iter->depth+1);
2349 seq_printf(seq, " /%d %s %s", i,
2350 rtn_scope(fa->fa_scope),
2351 rtn_type(fa->fa_type));
2352 if (fa->fa_tos)
2353 seq_printf(seq, "tos =%d\n",
2354 fa->fa_tos);
2355 seq_putc(seq, '\n');
2356 }
2357 }
2358 }
2359 }
2360
2361 return 0;
2362 }
2363
2364 static const struct seq_operations fib_trie_seq_ops = {
2365 .start = fib_trie_seq_start,
2366 .next = fib_trie_seq_next,
2367 .stop = fib_trie_seq_stop,
2368 .show = fib_trie_seq_show,
2369 };
2370
2371 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2372 {
2373 struct seq_file *seq;
2374 int rc = -ENOMEM;
2375 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2376
2377 if (!s)
2378 goto out;
2379
2380 rc = seq_open(file, &fib_trie_seq_ops);
2381 if (rc)
2382 goto out_kfree;
2383
2384 seq = file->private_data;
2385 seq->private = s;
2386 memset(s, 0, sizeof(*s));
2387 out:
2388 return rc;
2389 out_kfree:
2390 kfree(s);
2391 goto out;
2392 }
2393
2394 static const struct file_operations fib_trie_fops = {
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
2399 .release = seq_release_private,
2400 };
2401
2402 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2403 {
2404 static unsigned type2flags[RTN_MAX + 1] = {
2405 [7] = RTF_REJECT, [8] = RTF_REJECT,
2406 };
2407 unsigned flags = type2flags[type];
2408
2409 if (fi && fi->fib_nh->nh_gw)
2410 flags |= RTF_GATEWAY;
2411 if (mask == htonl(0xFFFFFFFF))
2412 flags |= RTF_HOST;
2413 flags |= RTF_UP;
2414 return flags;
2415 }
2416
2417 /*
2418 * This outputs /proc/net/route.
2419 * The format of the file is not supposed to be changed
2420 * and needs to be same as fib_hash output to avoid breaking
2421 * legacy utilities
2422 */
2423 static int fib_route_seq_show(struct seq_file *seq, void *v)
2424 {
2425 const struct fib_trie_iter *iter = seq->private;
2426 struct leaf *l = v;
2427 int i;
2428 char bf[128];
2429
2430 if (v == SEQ_START_TOKEN) {
2431 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2432 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2433 "\tWindow\tIRTT");
2434 return 0;
2435 }
2436
2437 if (iter->trie == trie_local)
2438 return 0;
2439 if (IS_TNODE(l))
2440 return 0;
2441
2442 for (i=32; i>=0; i--) {
2443 struct leaf_info *li = find_leaf_info(l, i);
2444 struct fib_alias *fa;
2445 __be32 mask, prefix;
2446
2447 if (!li)
2448 continue;
2449
2450 mask = inet_make_mask(li->plen);
2451 prefix = htonl(l->key);
2452
2453 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2454 const struct fib_info *fi = fa->fa_info;
2455 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2456
2457 if (fa->fa_type == RTN_BROADCAST
2458 || fa->fa_type == RTN_MULTICAST)
2459 continue;
2460
2461 if (fi)
2462 snprintf(bf, sizeof(bf),
2463 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2464 fi->fib_dev ? fi->fib_dev->name : "*",
2465 prefix,
2466 fi->fib_nh->nh_gw, flags, 0, 0,
2467 fi->fib_priority,
2468 mask,
2469 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2470 fi->fib_window,
2471 fi->fib_rtt >> 3);
2472 else
2473 snprintf(bf, sizeof(bf),
2474 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2475 prefix, 0, flags, 0, 0, 0,
2476 mask, 0, 0, 0);
2477
2478 seq_printf(seq, "%-127s\n", bf);
2479 }
2480 }
2481
2482 return 0;
2483 }
2484
2485 static const struct seq_operations fib_route_seq_ops = {
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_route_seq_show,
2490 };
2491
2492 static int fib_route_seq_open(struct inode *inode, struct file *file)
2493 {
2494 struct seq_file *seq;
2495 int rc = -ENOMEM;
2496 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2497
2498 if (!s)
2499 goto out;
2500
2501 rc = seq_open(file, &fib_route_seq_ops);
2502 if (rc)
2503 goto out_kfree;
2504
2505 seq = file->private_data;
2506 seq->private = s;
2507 memset(s, 0, sizeof(*s));
2508 out:
2509 return rc;
2510 out_kfree:
2511 kfree(s);
2512 goto out;
2513 }
2514
2515 static const struct file_operations fib_route_fops = {
2516 .owner = THIS_MODULE,
2517 .open = fib_route_seq_open,
2518 .read = seq_read,
2519 .llseek = seq_lseek,
2520 .release = seq_release_private,
2521 };
2522
2523 int __init fib_proc_init(void)
2524 {
2525 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2526 goto out1;
2527
2528 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2529 goto out2;
2530
2531 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2532 goto out3;
2533
2534 return 0;
2535
2536 out3:
2537 proc_net_remove("fib_triestat");
2538 out2:
2539 proc_net_remove("fib_trie");
2540 out1:
2541 return -ENOMEM;
2542 }
2543
2544 void __init fib_proc_exit(void)
2545 {
2546 proc_net_remove("fib_trie");
2547 proc_net_remove("fib_triestat");
2548 proc_net_remove("route");
2549 }
2550
2551 #endif /* CONFIG_PROC_FS */
This page took 0.097761 seconds and 6 git commands to generate.