[IPV4] fib_trie: dump message multiple part flag
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
127 };
128
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
137 };
138 #endif
139
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int prefixes;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
148 };
149
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
155 };
156
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
160 static struct node *resize(struct trie *t, struct tnode *tn);
161 static struct tnode *inflate(struct trie *t, struct tnode *tn);
162 static struct tnode *halve(struct trie *t, struct tnode *tn);
163 static void tnode_free(struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 static inline void node_set_parent(struct node *node, struct tnode *ptr)
181 {
182 rcu_assign_pointer(node->parent,
183 (unsigned long)ptr | NODE_TYPE(node));
184 }
185
186 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
187 {
188 BUG_ON(i >= 1U << tn->bits);
189
190 return tn->child[i];
191 }
192
193 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
194 {
195 struct node *ret = tnode_get_child(tn, i);
196
197 return rcu_dereference(ret);
198 }
199
200 static inline int tnode_child_length(const struct tnode *tn)
201 {
202 return 1 << tn->bits;
203 }
204
205 static inline t_key mask_pfx(t_key k, unsigned short l)
206 {
207 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
208 }
209
210 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
211 {
212 if (offset < KEYLENGTH)
213 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
214 else
215 return 0;
216 }
217
218 static inline int tkey_equals(t_key a, t_key b)
219 {
220 return a == b;
221 }
222
223 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
224 {
225 if (bits == 0 || offset >= KEYLENGTH)
226 return 1;
227 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
228 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
229 }
230
231 static inline int tkey_mismatch(t_key a, int offset, t_key b)
232 {
233 t_key diff = a ^ b;
234 int i = offset;
235
236 if (!diff)
237 return 0;
238 while ((diff << i) >> (KEYLENGTH-1) == 0)
239 i++;
240 return i;
241 }
242
243 /*
244 To understand this stuff, an understanding of keys and all their bits is
245 necessary. Every node in the trie has a key associated with it, but not
246 all of the bits in that key are significant.
247
248 Consider a node 'n' and its parent 'tp'.
249
250 If n is a leaf, every bit in its key is significant. Its presence is
251 necessitated by path compression, since during a tree traversal (when
252 searching for a leaf - unless we are doing an insertion) we will completely
253 ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 a potentially successful search, that we have indeed been walking the
255 correct key path.
256
257 Note that we can never "miss" the correct key in the tree if present by
258 following the wrong path. Path compression ensures that segments of the key
259 that are the same for all keys with a given prefix are skipped, but the
260 skipped part *is* identical for each node in the subtrie below the skipped
261 bit! trie_insert() in this implementation takes care of that - note the
262 call to tkey_sub_equals() in trie_insert().
263
264 if n is an internal node - a 'tnode' here, the various parts of its key
265 have many different meanings.
266
267 Example:
268 _________________________________________________________________
269 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
270 -----------------------------------------------------------------
271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
272
273 _________________________________________________________________
274 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
275 -----------------------------------------------------------------
276 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
277
278 tp->pos = 7
279 tp->bits = 3
280 n->pos = 15
281 n->bits = 4
282
283 First, let's just ignore the bits that come before the parent tp, that is
284 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
285 not use them for anything.
286
287 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
288 index into the parent's child array. That is, they will be used to find
289 'n' among tp's children.
290
291 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
292 for the node n.
293
294 All the bits we have seen so far are significant to the node n. The rest
295 of the bits are really not needed or indeed known in n->key.
296
297 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
298 n's child array, and will of course be different for each child.
299
300
301 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
302 at this point.
303
304 */
305
306 static inline void check_tnode(const struct tnode *tn)
307 {
308 WARN_ON(tn && tn->pos+tn->bits > 32);
309 }
310
311 static const int halve_threshold = 25;
312 static const int inflate_threshold = 50;
313 static const int halve_threshold_root = 8;
314 static const int inflate_threshold_root = 15;
315
316
317 static void __alias_free_mem(struct rcu_head *head)
318 {
319 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
320 kmem_cache_free(fn_alias_kmem, fa);
321 }
322
323 static inline void alias_free_mem_rcu(struct fib_alias *fa)
324 {
325 call_rcu(&fa->rcu, __alias_free_mem);
326 }
327
328 static void __leaf_free_rcu(struct rcu_head *head)
329 {
330 struct leaf *l = container_of(head, struct leaf, rcu);
331 kmem_cache_free(trie_leaf_kmem, l);
332 }
333
334 static void __leaf_info_free_rcu(struct rcu_head *head)
335 {
336 kfree(container_of(head, struct leaf_info, rcu));
337 }
338
339 static inline void free_leaf_info(struct leaf_info *leaf)
340 {
341 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
342 }
343
344 static struct tnode *tnode_alloc(size_t size)
345 {
346 struct page *pages;
347
348 if (size <= PAGE_SIZE)
349 return kzalloc(size, GFP_KERNEL);
350
351 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
352 if (!pages)
353 return NULL;
354
355 return page_address(pages);
356 }
357
358 static void __tnode_free_rcu(struct rcu_head *head)
359 {
360 struct tnode *tn = container_of(head, struct tnode, rcu);
361 size_t size = sizeof(struct tnode) +
362 (sizeof(struct node *) << tn->bits);
363
364 if (size <= PAGE_SIZE)
365 kfree(tn);
366 else
367 free_pages((unsigned long)tn, get_order(size));
368 }
369
370 static inline void tnode_free(struct tnode *tn)
371 {
372 if (IS_LEAF(tn)) {
373 struct leaf *l = (struct leaf *) tn;
374 call_rcu_bh(&l->rcu, __leaf_free_rcu);
375 } else
376 call_rcu(&tn->rcu, __tnode_free_rcu);
377 }
378
379 static struct leaf *leaf_new(void)
380 {
381 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
382 if (l) {
383 l->parent = T_LEAF;
384 INIT_HLIST_HEAD(&l->list);
385 }
386 return l;
387 }
388
389 static struct leaf_info *leaf_info_new(int plen)
390 {
391 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
392 if (li) {
393 li->plen = plen;
394 INIT_LIST_HEAD(&li->falh);
395 }
396 return li;
397 }
398
399 static struct tnode *tnode_new(t_key key, int pos, int bits)
400 {
401 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
402 struct tnode *tn = tnode_alloc(sz);
403
404 if (tn) {
405 tn->parent = T_TNODE;
406 tn->pos = pos;
407 tn->bits = bits;
408 tn->key = key;
409 tn->full_children = 0;
410 tn->empty_children = 1<<bits;
411 }
412
413 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
414 (unsigned long) (sizeof(struct node) << bits));
415 return tn;
416 }
417
418 /*
419 * Check whether a tnode 'n' is "full", i.e. it is an internal node
420 * and no bits are skipped. See discussion in dyntree paper p. 6
421 */
422
423 static inline int tnode_full(const struct tnode *tn, const struct node *n)
424 {
425 if (n == NULL || IS_LEAF(n))
426 return 0;
427
428 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
429 }
430
431 static inline void put_child(struct trie *t, struct tnode *tn, int i,
432 struct node *n)
433 {
434 tnode_put_child_reorg(tn, i, n, -1);
435 }
436
437 /*
438 * Add a child at position i overwriting the old value.
439 * Update the value of full_children and empty_children.
440 */
441
442 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
443 int wasfull)
444 {
445 struct node *chi = tn->child[i];
446 int isfull;
447
448 BUG_ON(i >= 1<<tn->bits);
449
450
451 /* update emptyChildren */
452 if (n == NULL && chi != NULL)
453 tn->empty_children++;
454 else if (n != NULL && chi == NULL)
455 tn->empty_children--;
456
457 /* update fullChildren */
458 if (wasfull == -1)
459 wasfull = tnode_full(tn, chi);
460
461 isfull = tnode_full(tn, n);
462 if (wasfull && !isfull)
463 tn->full_children--;
464 else if (!wasfull && isfull)
465 tn->full_children++;
466
467 if (n)
468 node_set_parent(n, tn);
469
470 rcu_assign_pointer(tn->child[i], n);
471 }
472
473 static struct node *resize(struct trie *t, struct tnode *tn)
474 {
475 int i;
476 int err = 0;
477 struct tnode *old_tn;
478 int inflate_threshold_use;
479 int halve_threshold_use;
480 int max_resize;
481
482 if (!tn)
483 return NULL;
484
485 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
486 tn, inflate_threshold, halve_threshold);
487
488 /* No children */
489 if (tn->empty_children == tnode_child_length(tn)) {
490 tnode_free(tn);
491 return NULL;
492 }
493 /* One child */
494 if (tn->empty_children == tnode_child_length(tn) - 1)
495 for (i = 0; i < tnode_child_length(tn); i++) {
496 struct node *n;
497
498 n = tn->child[i];
499 if (!n)
500 continue;
501
502 /* compress one level */
503 node_set_parent(n, NULL);
504 tnode_free(tn);
505 return n;
506 }
507 /*
508 * Double as long as the resulting node has a number of
509 * nonempty nodes that are above the threshold.
510 */
511
512 /*
513 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
514 * the Helsinki University of Technology and Matti Tikkanen of Nokia
515 * Telecommunications, page 6:
516 * "A node is doubled if the ratio of non-empty children to all
517 * children in the *doubled* node is at least 'high'."
518 *
519 * 'high' in this instance is the variable 'inflate_threshold'. It
520 * is expressed as a percentage, so we multiply it with
521 * tnode_child_length() and instead of multiplying by 2 (since the
522 * child array will be doubled by inflate()) and multiplying
523 * the left-hand side by 100 (to handle the percentage thing) we
524 * multiply the left-hand side by 50.
525 *
526 * The left-hand side may look a bit weird: tnode_child_length(tn)
527 * - tn->empty_children is of course the number of non-null children
528 * in the current node. tn->full_children is the number of "full"
529 * children, that is non-null tnodes with a skip value of 0.
530 * All of those will be doubled in the resulting inflated tnode, so
531 * we just count them one extra time here.
532 *
533 * A clearer way to write this would be:
534 *
535 * to_be_doubled = tn->full_children;
536 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
537 * tn->full_children;
538 *
539 * new_child_length = tnode_child_length(tn) * 2;
540 *
541 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
542 * new_child_length;
543 * if (new_fill_factor >= inflate_threshold)
544 *
545 * ...and so on, tho it would mess up the while () loop.
546 *
547 * anyway,
548 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
549 * inflate_threshold
550 *
551 * avoid a division:
552 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
553 * inflate_threshold * new_child_length
554 *
555 * expand not_to_be_doubled and to_be_doubled, and shorten:
556 * 100 * (tnode_child_length(tn) - tn->empty_children +
557 * tn->full_children) >= inflate_threshold * new_child_length
558 *
559 * expand new_child_length:
560 * 100 * (tnode_child_length(tn) - tn->empty_children +
561 * tn->full_children) >=
562 * inflate_threshold * tnode_child_length(tn) * 2
563 *
564 * shorten again:
565 * 50 * (tn->full_children + tnode_child_length(tn) -
566 * tn->empty_children) >= inflate_threshold *
567 * tnode_child_length(tn)
568 *
569 */
570
571 check_tnode(tn);
572
573 /* Keep root node larger */
574
575 if (!tn->parent)
576 inflate_threshold_use = inflate_threshold_root;
577 else
578 inflate_threshold_use = inflate_threshold;
579
580 err = 0;
581 max_resize = 10;
582 while ((tn->full_children > 0 && max_resize-- &&
583 50 * (tn->full_children + tnode_child_length(tn)
584 - tn->empty_children)
585 >= inflate_threshold_use * tnode_child_length(tn))) {
586
587 old_tn = tn;
588 tn = inflate(t, tn);
589
590 if (IS_ERR(tn)) {
591 tn = old_tn;
592 #ifdef CONFIG_IP_FIB_TRIE_STATS
593 t->stats.resize_node_skipped++;
594 #endif
595 break;
596 }
597 }
598
599 if (max_resize < 0) {
600 if (!tn->parent)
601 pr_warning("Fix inflate_threshold_root."
602 " Now=%d size=%d bits\n",
603 inflate_threshold_root, tn->bits);
604 else
605 pr_warning("Fix inflate_threshold."
606 " Now=%d size=%d bits\n",
607 inflate_threshold, tn->bits);
608 }
609
610 check_tnode(tn);
611
612 /*
613 * Halve as long as the number of empty children in this
614 * node is above threshold.
615 */
616
617
618 /* Keep root node larger */
619
620 if (!tn->parent)
621 halve_threshold_use = halve_threshold_root;
622 else
623 halve_threshold_use = halve_threshold;
624
625 err = 0;
626 max_resize = 10;
627 while (tn->bits > 1 && max_resize-- &&
628 100 * (tnode_child_length(tn) - tn->empty_children) <
629 halve_threshold_use * tnode_child_length(tn)) {
630
631 old_tn = tn;
632 tn = halve(t, tn);
633 if (IS_ERR(tn)) {
634 tn = old_tn;
635 #ifdef CONFIG_IP_FIB_TRIE_STATS
636 t->stats.resize_node_skipped++;
637 #endif
638 break;
639 }
640 }
641
642 if (max_resize < 0) {
643 if (!tn->parent)
644 pr_warning("Fix halve_threshold_root."
645 " Now=%d size=%d bits\n",
646 halve_threshold_root, tn->bits);
647 else
648 pr_warning("Fix halve_threshold."
649 " Now=%d size=%d bits\n",
650 halve_threshold, tn->bits);
651 }
652
653 /* Only one child remains */
654 if (tn->empty_children == tnode_child_length(tn) - 1)
655 for (i = 0; i < tnode_child_length(tn); i++) {
656 struct node *n;
657
658 n = tn->child[i];
659 if (!n)
660 continue;
661
662 /* compress one level */
663
664 node_set_parent(n, NULL);
665 tnode_free(tn);
666 return n;
667 }
668
669 return (struct node *) tn;
670 }
671
672 static struct tnode *inflate(struct trie *t, struct tnode *tn)
673 {
674 struct tnode *oldtnode = tn;
675 int olen = tnode_child_length(tn);
676 int i;
677
678 pr_debug("In inflate\n");
679
680 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
681
682 if (!tn)
683 return ERR_PTR(-ENOMEM);
684
685 /*
686 * Preallocate and store tnodes before the actual work so we
687 * don't get into an inconsistent state if memory allocation
688 * fails. In case of failure we return the oldnode and inflate
689 * of tnode is ignored.
690 */
691
692 for (i = 0; i < olen; i++) {
693 struct tnode *inode;
694
695 inode = (struct tnode *) tnode_get_child(oldtnode, i);
696 if (inode &&
697 IS_TNODE(inode) &&
698 inode->pos == oldtnode->pos + oldtnode->bits &&
699 inode->bits > 1) {
700 struct tnode *left, *right;
701 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
702
703 left = tnode_new(inode->key&(~m), inode->pos + 1,
704 inode->bits - 1);
705 if (!left)
706 goto nomem;
707
708 right = tnode_new(inode->key|m, inode->pos + 1,
709 inode->bits - 1);
710
711 if (!right) {
712 tnode_free(left);
713 goto nomem;
714 }
715
716 put_child(t, tn, 2*i, (struct node *) left);
717 put_child(t, tn, 2*i+1, (struct node *) right);
718 }
719 }
720
721 for (i = 0; i < olen; i++) {
722 struct tnode *inode;
723 struct node *node = tnode_get_child(oldtnode, i);
724 struct tnode *left, *right;
725 int size, j;
726
727 /* An empty child */
728 if (node == NULL)
729 continue;
730
731 /* A leaf or an internal node with skipped bits */
732
733 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
734 tn->pos + tn->bits - 1) {
735 if (tkey_extract_bits(node->key,
736 oldtnode->pos + oldtnode->bits,
737 1) == 0)
738 put_child(t, tn, 2*i, node);
739 else
740 put_child(t, tn, 2*i+1, node);
741 continue;
742 }
743
744 /* An internal node with two children */
745 inode = (struct tnode *) node;
746
747 if (inode->bits == 1) {
748 put_child(t, tn, 2*i, inode->child[0]);
749 put_child(t, tn, 2*i+1, inode->child[1]);
750
751 tnode_free(inode);
752 continue;
753 }
754
755 /* An internal node with more than two children */
756
757 /* We will replace this node 'inode' with two new
758 * ones, 'left' and 'right', each with half of the
759 * original children. The two new nodes will have
760 * a position one bit further down the key and this
761 * means that the "significant" part of their keys
762 * (see the discussion near the top of this file)
763 * will differ by one bit, which will be "0" in
764 * left's key and "1" in right's key. Since we are
765 * moving the key position by one step, the bit that
766 * we are moving away from - the bit at position
767 * (inode->pos) - is the one that will differ between
768 * left and right. So... we synthesize that bit in the
769 * two new keys.
770 * The mask 'm' below will be a single "one" bit at
771 * the position (inode->pos)
772 */
773
774 /* Use the old key, but set the new significant
775 * bit to zero.
776 */
777
778 left = (struct tnode *) tnode_get_child(tn, 2*i);
779 put_child(t, tn, 2*i, NULL);
780
781 BUG_ON(!left);
782
783 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
784 put_child(t, tn, 2*i+1, NULL);
785
786 BUG_ON(!right);
787
788 size = tnode_child_length(left);
789 for (j = 0; j < size; j++) {
790 put_child(t, left, j, inode->child[j]);
791 put_child(t, right, j, inode->child[j + size]);
792 }
793 put_child(t, tn, 2*i, resize(t, left));
794 put_child(t, tn, 2*i+1, resize(t, right));
795
796 tnode_free(inode);
797 }
798 tnode_free(oldtnode);
799 return tn;
800 nomem:
801 {
802 int size = tnode_child_length(tn);
803 int j;
804
805 for (j = 0; j < size; j++)
806 if (tn->child[j])
807 tnode_free((struct tnode *)tn->child[j]);
808
809 tnode_free(tn);
810
811 return ERR_PTR(-ENOMEM);
812 }
813 }
814
815 static struct tnode *halve(struct trie *t, struct tnode *tn)
816 {
817 struct tnode *oldtnode = tn;
818 struct node *left, *right;
819 int i;
820 int olen = tnode_child_length(tn);
821
822 pr_debug("In halve\n");
823
824 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
825
826 if (!tn)
827 return ERR_PTR(-ENOMEM);
828
829 /*
830 * Preallocate and store tnodes before the actual work so we
831 * don't get into an inconsistent state if memory allocation
832 * fails. In case of failure we return the oldnode and halve
833 * of tnode is ignored.
834 */
835
836 for (i = 0; i < olen; i += 2) {
837 left = tnode_get_child(oldtnode, i);
838 right = tnode_get_child(oldtnode, i+1);
839
840 /* Two nonempty children */
841 if (left && right) {
842 struct tnode *newn;
843
844 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
845
846 if (!newn)
847 goto nomem;
848
849 put_child(t, tn, i/2, (struct node *)newn);
850 }
851
852 }
853
854 for (i = 0; i < olen; i += 2) {
855 struct tnode *newBinNode;
856
857 left = tnode_get_child(oldtnode, i);
858 right = tnode_get_child(oldtnode, i+1);
859
860 /* At least one of the children is empty */
861 if (left == NULL) {
862 if (right == NULL) /* Both are empty */
863 continue;
864 put_child(t, tn, i/2, right);
865 continue;
866 }
867
868 if (right == NULL) {
869 put_child(t, tn, i/2, left);
870 continue;
871 }
872
873 /* Two nonempty children */
874 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
875 put_child(t, tn, i/2, NULL);
876 put_child(t, newBinNode, 0, left);
877 put_child(t, newBinNode, 1, right);
878 put_child(t, tn, i/2, resize(t, newBinNode));
879 }
880 tnode_free(oldtnode);
881 return tn;
882 nomem:
883 {
884 int size = tnode_child_length(tn);
885 int j;
886
887 for (j = 0; j < size; j++)
888 if (tn->child[j])
889 tnode_free((struct tnode *)tn->child[j]);
890
891 tnode_free(tn);
892
893 return ERR_PTR(-ENOMEM);
894 }
895 }
896
897 /* readside must use rcu_read_lock currently dump routines
898 via get_fa_head and dump */
899
900 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
901 {
902 struct hlist_head *head = &l->list;
903 struct hlist_node *node;
904 struct leaf_info *li;
905
906 hlist_for_each_entry_rcu(li, node, head, hlist)
907 if (li->plen == plen)
908 return li;
909
910 return NULL;
911 }
912
913 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
914 {
915 struct leaf_info *li = find_leaf_info(l, plen);
916
917 if (!li)
918 return NULL;
919
920 return &li->falh;
921 }
922
923 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
924 {
925 struct leaf_info *li = NULL, *last = NULL;
926 struct hlist_node *node;
927
928 if (hlist_empty(head)) {
929 hlist_add_head_rcu(&new->hlist, head);
930 } else {
931 hlist_for_each_entry(li, node, head, hlist) {
932 if (new->plen > li->plen)
933 break;
934
935 last = li;
936 }
937 if (last)
938 hlist_add_after_rcu(&last->hlist, &new->hlist);
939 else
940 hlist_add_before_rcu(&new->hlist, &li->hlist);
941 }
942 }
943
944 /* rcu_read_lock needs to be hold by caller from readside */
945
946 static struct leaf *
947 fib_find_node(struct trie *t, u32 key)
948 {
949 int pos;
950 struct tnode *tn;
951 struct node *n;
952
953 pos = 0;
954 n = rcu_dereference(t->trie);
955
956 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
957 tn = (struct tnode *) n;
958
959 check_tnode(tn);
960
961 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
962 pos = tn->pos + tn->bits;
963 n = tnode_get_child_rcu(tn,
964 tkey_extract_bits(key,
965 tn->pos,
966 tn->bits));
967 } else
968 break;
969 }
970 /* Case we have found a leaf. Compare prefixes */
971
972 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
973 return (struct leaf *)n;
974
975 return NULL;
976 }
977
978 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
979 {
980 int wasfull;
981 t_key cindex, key = tn->key;
982 struct tnode *tp;
983
984 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
985 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
986 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
987 tn = (struct tnode *) resize(t, (struct tnode *)tn);
988
989 tnode_put_child_reorg((struct tnode *)tp, cindex,
990 (struct node *)tn, wasfull);
991
992 tp = node_parent((struct node *) tn);
993 if (!tp)
994 break;
995 tn = tp;
996 }
997
998 /* Handle last (top) tnode */
999 if (IS_TNODE(tn))
1000 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1001
1002 return (struct node *)tn;
1003 }
1004
1005 /* only used from updater-side */
1006
1007 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1008 {
1009 int pos, newpos;
1010 struct tnode *tp = NULL, *tn = NULL;
1011 struct node *n;
1012 struct leaf *l;
1013 int missbit;
1014 struct list_head *fa_head = NULL;
1015 struct leaf_info *li;
1016 t_key cindex;
1017
1018 pos = 0;
1019 n = t->trie;
1020
1021 /* If we point to NULL, stop. Either the tree is empty and we should
1022 * just put a new leaf in if, or we have reached an empty child slot,
1023 * and we should just put our new leaf in that.
1024 * If we point to a T_TNODE, check if it matches our key. Note that
1025 * a T_TNODE might be skipping any number of bits - its 'pos' need
1026 * not be the parent's 'pos'+'bits'!
1027 *
1028 * If it does match the current key, get pos/bits from it, extract
1029 * the index from our key, push the T_TNODE and walk the tree.
1030 *
1031 * If it doesn't, we have to replace it with a new T_TNODE.
1032 *
1033 * If we point to a T_LEAF, it might or might not have the same key
1034 * as we do. If it does, just change the value, update the T_LEAF's
1035 * value, and return it.
1036 * If it doesn't, we need to replace it with a T_TNODE.
1037 */
1038
1039 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1040 tn = (struct tnode *) n;
1041
1042 check_tnode(tn);
1043
1044 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1045 tp = tn;
1046 pos = tn->pos + tn->bits;
1047 n = tnode_get_child(tn,
1048 tkey_extract_bits(key,
1049 tn->pos,
1050 tn->bits));
1051
1052 BUG_ON(n && node_parent(n) != tn);
1053 } else
1054 break;
1055 }
1056
1057 /*
1058 * n ----> NULL, LEAF or TNODE
1059 *
1060 * tp is n's (parent) ----> NULL or TNODE
1061 */
1062
1063 BUG_ON(tp && IS_LEAF(tp));
1064
1065 /* Case 1: n is a leaf. Compare prefixes */
1066
1067 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1068 l = (struct leaf *) n;
1069 li = leaf_info_new(plen);
1070
1071 if (!li)
1072 return NULL;
1073
1074 fa_head = &li->falh;
1075 insert_leaf_info(&l->list, li);
1076 goto done;
1077 }
1078 l = leaf_new();
1079
1080 if (!l)
1081 return NULL;
1082
1083 l->key = key;
1084 li = leaf_info_new(plen);
1085
1086 if (!li) {
1087 tnode_free((struct tnode *) l);
1088 return NULL;
1089 }
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093
1094 if (t->trie && n == NULL) {
1095 /* Case 2: n is NULL, and will just insert a new leaf */
1096
1097 node_set_parent((struct node *)l, tp);
1098
1099 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1100 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1101 } else {
1102 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1103 /*
1104 * Add a new tnode here
1105 * first tnode need some special handling
1106 */
1107
1108 if (tp)
1109 pos = tp->pos+tp->bits;
1110 else
1111 pos = 0;
1112
1113 if (n) {
1114 newpos = tkey_mismatch(key, pos, n->key);
1115 tn = tnode_new(n->key, newpos, 1);
1116 } else {
1117 newpos = 0;
1118 tn = tnode_new(key, newpos, 1); /* First tnode */
1119 }
1120
1121 if (!tn) {
1122 free_leaf_info(li);
1123 tnode_free((struct tnode *) l);
1124 return NULL;
1125 }
1126
1127 node_set_parent((struct node *)tn, tp);
1128
1129 missbit = tkey_extract_bits(key, newpos, 1);
1130 put_child(t, tn, missbit, (struct node *)l);
1131 put_child(t, tn, 1-missbit, n);
1132
1133 if (tp) {
1134 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1135 put_child(t, (struct tnode *)tp, cindex,
1136 (struct node *)tn);
1137 } else {
1138 rcu_assign_pointer(t->trie, (struct node *)tn);
1139 tp = tn;
1140 }
1141 }
1142
1143 if (tp && tp->pos + tp->bits > 32)
1144 pr_warning("fib_trie"
1145 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1146 tp, tp->pos, tp->bits, key, plen);
1147
1148 /* Rebalance the trie */
1149
1150 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1151 done:
1152 return fa_head;
1153 }
1154
1155 /*
1156 * Caller must hold RTNL.
1157 */
1158 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1159 {
1160 struct trie *t = (struct trie *) tb->tb_data;
1161 struct fib_alias *fa, *new_fa;
1162 struct list_head *fa_head = NULL;
1163 struct fib_info *fi;
1164 int plen = cfg->fc_dst_len;
1165 u8 tos = cfg->fc_tos;
1166 u32 key, mask;
1167 int err;
1168 struct leaf *l;
1169
1170 if (plen > 32)
1171 return -EINVAL;
1172
1173 key = ntohl(cfg->fc_dst);
1174
1175 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1176
1177 mask = ntohl(inet_make_mask(plen));
1178
1179 if (key & ~mask)
1180 return -EINVAL;
1181
1182 key = key & mask;
1183
1184 fi = fib_create_info(cfg);
1185 if (IS_ERR(fi)) {
1186 err = PTR_ERR(fi);
1187 goto err;
1188 }
1189
1190 l = fib_find_node(t, key);
1191 fa = NULL;
1192
1193 if (l) {
1194 fa_head = get_fa_head(l, plen);
1195 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1196 }
1197
1198 /* Now fa, if non-NULL, points to the first fib alias
1199 * with the same keys [prefix,tos,priority], if such key already
1200 * exists or to the node before which we will insert new one.
1201 *
1202 * If fa is NULL, we will need to allocate a new one and
1203 * insert to the head of f.
1204 *
1205 * If f is NULL, no fib node matched the destination key
1206 * and we need to allocate a new one of those as well.
1207 */
1208
1209 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_orig;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1217 struct fib_info *fi_drop;
1218 u8 state;
1219
1220 if (fi->fib_treeref > 1)
1221 goto out;
1222
1223 err = -ENOBUFS;
1224 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1225 if (new_fa == NULL)
1226 goto out;
1227
1228 fi_drop = fa->fa_info;
1229 new_fa->fa_tos = fa->fa_tos;
1230 new_fa->fa_info = fi;
1231 new_fa->fa_type = cfg->fc_type;
1232 new_fa->fa_scope = cfg->fc_scope;
1233 state = fa->fa_state;
1234 new_fa->fa_state &= ~FA_S_ACCESSED;
1235
1236 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1237 alias_free_mem_rcu(fa);
1238
1239 fib_release_info(fi_drop);
1240 if (state & FA_S_ACCESSED)
1241 rt_cache_flush(-1);
1242 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1243 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1244
1245 goto succeeded;
1246 }
1247 /* Error if we find a perfect match which
1248 * uses the same scope, type, and nexthop
1249 * information.
1250 */
1251 fa_orig = fa;
1252 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1253 if (fa->fa_tos != tos)
1254 break;
1255 if (fa->fa_info->fib_priority != fi->fib_priority)
1256 break;
1257 if (fa->fa_type == cfg->fc_type &&
1258 fa->fa_scope == cfg->fc_scope &&
1259 fa->fa_info == fi)
1260 goto out;
1261 }
1262
1263 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1264 fa = fa_orig;
1265 }
1266 err = -ENOENT;
1267 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1268 goto out;
1269
1270 err = -ENOBUFS;
1271 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1272 if (new_fa == NULL)
1273 goto out;
1274
1275 new_fa->fa_info = fi;
1276 new_fa->fa_tos = tos;
1277 new_fa->fa_type = cfg->fc_type;
1278 new_fa->fa_scope = cfg->fc_scope;
1279 new_fa->fa_state = 0;
1280 /*
1281 * Insert new entry to the list.
1282 */
1283
1284 if (!fa_head) {
1285 fa_head = fib_insert_node(t, key, plen);
1286 if (unlikely(!fa_head)) {
1287 err = -ENOMEM;
1288 goto out_free_new_fa;
1289 }
1290 }
1291
1292 list_add_tail_rcu(&new_fa->fa_list,
1293 (fa ? &fa->fa_list : fa_head));
1294
1295 rt_cache_flush(-1);
1296 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1297 &cfg->fc_nlinfo, 0);
1298 succeeded:
1299 return 0;
1300
1301 out_free_new_fa:
1302 kmem_cache_free(fn_alias_kmem, new_fa);
1303 out:
1304 fib_release_info(fi);
1305 err:
1306 return err;
1307 }
1308
1309
1310 /* should be called with rcu_read_lock */
1311 static int check_leaf(struct trie *t, struct leaf *l,
1312 t_key key, const struct flowi *flp,
1313 struct fib_result *res)
1314 {
1315 struct leaf_info *li;
1316 struct hlist_head *hhead = &l->list;
1317 struct hlist_node *node;
1318
1319 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1320 int err;
1321 int plen = li->plen;
1322 __be32 mask = inet_make_mask(plen);
1323
1324 if (l->key != (key & ntohl(mask)))
1325 continue;
1326
1327 err = fib_semantic_match(&li->falh, flp, res,
1328 htonl(l->key), mask, plen);
1329
1330 #ifdef CONFIG_IP_FIB_TRIE_STATS
1331 if (err <= 0)
1332 t->stats.semantic_match_passed++;
1333 else
1334 t->stats.semantic_match_miss++;
1335 #endif
1336 if (err <= 0)
1337 return plen;
1338 }
1339
1340 return -1;
1341 }
1342
1343 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1344 struct fib_result *res)
1345 {
1346 struct trie *t = (struct trie *) tb->tb_data;
1347 int plen, ret = 0;
1348 struct node *n;
1349 struct tnode *pn;
1350 int pos, bits;
1351 t_key key = ntohl(flp->fl4_dst);
1352 int chopped_off;
1353 t_key cindex = 0;
1354 int current_prefix_length = KEYLENGTH;
1355 struct tnode *cn;
1356 t_key node_prefix, key_prefix, pref_mismatch;
1357 int mp;
1358
1359 rcu_read_lock();
1360
1361 n = rcu_dereference(t->trie);
1362 if (!n)
1363 goto failed;
1364
1365 #ifdef CONFIG_IP_FIB_TRIE_STATS
1366 t->stats.gets++;
1367 #endif
1368
1369 /* Just a leaf? */
1370 if (IS_LEAF(n)) {
1371 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1372 if (plen < 0)
1373 goto failed;
1374 ret = 0;
1375 goto found;
1376 }
1377
1378 pn = (struct tnode *) n;
1379 chopped_off = 0;
1380
1381 while (pn) {
1382 pos = pn->pos;
1383 bits = pn->bits;
1384
1385 if (!chopped_off)
1386 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1387 pos, bits);
1388
1389 n = tnode_get_child(pn, cindex);
1390
1391 if (n == NULL) {
1392 #ifdef CONFIG_IP_FIB_TRIE_STATS
1393 t->stats.null_node_hit++;
1394 #endif
1395 goto backtrace;
1396 }
1397
1398 if (IS_LEAF(n)) {
1399 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1400 if (plen < 0)
1401 goto backtrace;
1402
1403 ret = 0;
1404 goto found;
1405 }
1406
1407 cn = (struct tnode *)n;
1408
1409 /*
1410 * It's a tnode, and we can do some extra checks here if we
1411 * like, to avoid descending into a dead-end branch.
1412 * This tnode is in the parent's child array at index
1413 * key[p_pos..p_pos+p_bits] but potentially with some bits
1414 * chopped off, so in reality the index may be just a
1415 * subprefix, padded with zero at the end.
1416 * We can also take a look at any skipped bits in this
1417 * tnode - everything up to p_pos is supposed to be ok,
1418 * and the non-chopped bits of the index (se previous
1419 * paragraph) are also guaranteed ok, but the rest is
1420 * considered unknown.
1421 *
1422 * The skipped bits are key[pos+bits..cn->pos].
1423 */
1424
1425 /* If current_prefix_length < pos+bits, we are already doing
1426 * actual prefix matching, which means everything from
1427 * pos+(bits-chopped_off) onward must be zero along some
1428 * branch of this subtree - otherwise there is *no* valid
1429 * prefix present. Here we can only check the skipped
1430 * bits. Remember, since we have already indexed into the
1431 * parent's child array, we know that the bits we chopped of
1432 * *are* zero.
1433 */
1434
1435 /* NOTA BENE: Checking only skipped bits
1436 for the new node here */
1437
1438 if (current_prefix_length < pos+bits) {
1439 if (tkey_extract_bits(cn->key, current_prefix_length,
1440 cn->pos - current_prefix_length)
1441 || !(cn->child[0]))
1442 goto backtrace;
1443 }
1444
1445 /*
1446 * If chopped_off=0, the index is fully validated and we
1447 * only need to look at the skipped bits for this, the new,
1448 * tnode. What we actually want to do is to find out if
1449 * these skipped bits match our key perfectly, or if we will
1450 * have to count on finding a matching prefix further down,
1451 * because if we do, we would like to have some way of
1452 * verifying the existence of such a prefix at this point.
1453 */
1454
1455 /* The only thing we can do at this point is to verify that
1456 * any such matching prefix can indeed be a prefix to our
1457 * key, and if the bits in the node we are inspecting that
1458 * do not match our key are not ZERO, this cannot be true.
1459 * Thus, find out where there is a mismatch (before cn->pos)
1460 * and verify that all the mismatching bits are zero in the
1461 * new tnode's key.
1462 */
1463
1464 /*
1465 * Note: We aren't very concerned about the piece of
1466 * the key that precede pn->pos+pn->bits, since these
1467 * have already been checked. The bits after cn->pos
1468 * aren't checked since these are by definition
1469 * "unknown" at this point. Thus, what we want to see
1470 * is if we are about to enter the "prefix matching"
1471 * state, and in that case verify that the skipped
1472 * bits that will prevail throughout this subtree are
1473 * zero, as they have to be if we are to find a
1474 * matching prefix.
1475 */
1476
1477 node_prefix = mask_pfx(cn->key, cn->pos);
1478 key_prefix = mask_pfx(key, cn->pos);
1479 pref_mismatch = key_prefix^node_prefix;
1480 mp = 0;
1481
1482 /*
1483 * In short: If skipped bits in this node do not match
1484 * the search key, enter the "prefix matching"
1485 * state.directly.
1486 */
1487 if (pref_mismatch) {
1488 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1489 mp++;
1490 pref_mismatch = pref_mismatch << 1;
1491 }
1492 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1493
1494 if (key_prefix != 0)
1495 goto backtrace;
1496
1497 if (current_prefix_length >= cn->pos)
1498 current_prefix_length = mp;
1499 }
1500
1501 pn = (struct tnode *)n; /* Descend */
1502 chopped_off = 0;
1503 continue;
1504
1505 backtrace:
1506 chopped_off++;
1507
1508 /* As zero don't change the child key (cindex) */
1509 while ((chopped_off <= pn->bits)
1510 && !(cindex & (1<<(chopped_off-1))))
1511 chopped_off++;
1512
1513 /* Decrease current_... with bits chopped off */
1514 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1515 current_prefix_length = pn->pos + pn->bits
1516 - chopped_off;
1517
1518 /*
1519 * Either we do the actual chop off according or if we have
1520 * chopped off all bits in this tnode walk up to our parent.
1521 */
1522
1523 if (chopped_off <= pn->bits) {
1524 cindex &= ~(1 << (chopped_off-1));
1525 } else {
1526 struct tnode *parent = node_parent((struct node *) pn);
1527 if (!parent)
1528 goto failed;
1529
1530 /* Get Child's index */
1531 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1532 pn = parent;
1533 chopped_off = 0;
1534
1535 #ifdef CONFIG_IP_FIB_TRIE_STATS
1536 t->stats.backtrack++;
1537 #endif
1538 goto backtrace;
1539 }
1540 }
1541 failed:
1542 ret = 1;
1543 found:
1544 rcu_read_unlock();
1545 return ret;
1546 }
1547
1548 /* only called from updater side */
1549 static int trie_leaf_remove(struct trie *t, t_key key)
1550 {
1551 t_key cindex;
1552 struct tnode *tp = NULL;
1553 struct node *n = t->trie;
1554 struct leaf *l;
1555
1556 pr_debug("entering trie_leaf_remove(%p)\n", n);
1557
1558 /* Note that in the case skipped bits, those bits are *not* checked!
1559 * When we finish this, we will have NULL or a T_LEAF, and the
1560 * T_LEAF may or may not match our key.
1561 */
1562
1563 while (n != NULL && IS_TNODE(n)) {
1564 struct tnode *tn = (struct tnode *) n;
1565 check_tnode(tn);
1566 n = tnode_get_child(tn, tkey_extract_bits(key,
1567 tn->pos, tn->bits));
1568
1569 BUG_ON(n && node_parent(n) != tn);
1570 }
1571 l = (struct leaf *) n;
1572
1573 if (!n || !tkey_equals(l->key, key))
1574 return 0;
1575
1576 /*
1577 * Key found.
1578 * Remove the leaf and rebalance the tree
1579 */
1580 tp = node_parent(n);
1581 tnode_free((struct tnode *) n);
1582
1583 if (tp) {
1584 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1585 put_child(t, (struct tnode *)tp, cindex, NULL);
1586 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1587 } else
1588 rcu_assign_pointer(t->trie, NULL);
1589
1590 return 1;
1591 }
1592
1593 /*
1594 * Caller must hold RTNL.
1595 */
1596 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1597 {
1598 struct trie *t = (struct trie *) tb->tb_data;
1599 u32 key, mask;
1600 int plen = cfg->fc_dst_len;
1601 u8 tos = cfg->fc_tos;
1602 struct fib_alias *fa, *fa_to_delete;
1603 struct list_head *fa_head;
1604 struct leaf *l;
1605 struct leaf_info *li;
1606
1607 if (plen > 32)
1608 return -EINVAL;
1609
1610 key = ntohl(cfg->fc_dst);
1611 mask = ntohl(inet_make_mask(plen));
1612
1613 if (key & ~mask)
1614 return -EINVAL;
1615
1616 key = key & mask;
1617 l = fib_find_node(t, key);
1618
1619 if (!l)
1620 return -ESRCH;
1621
1622 fa_head = get_fa_head(l, plen);
1623 fa = fib_find_alias(fa_head, tos, 0);
1624
1625 if (!fa)
1626 return -ESRCH;
1627
1628 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1629
1630 fa_to_delete = NULL;
1631 fa_head = fa->fa_list.prev;
1632
1633 list_for_each_entry(fa, fa_head, fa_list) {
1634 struct fib_info *fi = fa->fa_info;
1635
1636 if (fa->fa_tos != tos)
1637 break;
1638
1639 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1640 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1641 fa->fa_scope == cfg->fc_scope) &&
1642 (!cfg->fc_protocol ||
1643 fi->fib_protocol == cfg->fc_protocol) &&
1644 fib_nh_match(cfg, fi) == 0) {
1645 fa_to_delete = fa;
1646 break;
1647 }
1648 }
1649
1650 if (!fa_to_delete)
1651 return -ESRCH;
1652
1653 fa = fa_to_delete;
1654 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1655 &cfg->fc_nlinfo, 0);
1656
1657 l = fib_find_node(t, key);
1658 li = find_leaf_info(l, plen);
1659
1660 list_del_rcu(&fa->fa_list);
1661
1662 if (list_empty(fa_head)) {
1663 hlist_del_rcu(&li->hlist);
1664 free_leaf_info(li);
1665 }
1666
1667 if (hlist_empty(&l->list))
1668 trie_leaf_remove(t, key);
1669
1670 if (fa->fa_state & FA_S_ACCESSED)
1671 rt_cache_flush(-1);
1672
1673 fib_release_info(fa->fa_info);
1674 alias_free_mem_rcu(fa);
1675 return 0;
1676 }
1677
1678 static int trie_flush_list(struct trie *t, struct list_head *head)
1679 {
1680 struct fib_alias *fa, *fa_node;
1681 int found = 0;
1682
1683 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1684 struct fib_info *fi = fa->fa_info;
1685
1686 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1687 list_del_rcu(&fa->fa_list);
1688 fib_release_info(fa->fa_info);
1689 alias_free_mem_rcu(fa);
1690 found++;
1691 }
1692 }
1693 return found;
1694 }
1695
1696 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1697 {
1698 int found = 0;
1699 struct hlist_head *lih = &l->list;
1700 struct hlist_node *node, *tmp;
1701 struct leaf_info *li = NULL;
1702
1703 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1704 found += trie_flush_list(t, &li->falh);
1705
1706 if (list_empty(&li->falh)) {
1707 hlist_del_rcu(&li->hlist);
1708 free_leaf_info(li);
1709 }
1710 }
1711 return found;
1712 }
1713
1714 /* rcu_read_lock needs to be hold by caller from readside */
1715
1716 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1717 {
1718 struct node *c = (struct node *) thisleaf;
1719 struct tnode *p;
1720 int idx;
1721 struct node *trie = rcu_dereference(t->trie);
1722
1723 if (c == NULL) {
1724 if (trie == NULL)
1725 return NULL;
1726
1727 if (IS_LEAF(trie)) /* trie w. just a leaf */
1728 return (struct leaf *) trie;
1729
1730 p = (struct tnode *)trie; /* Start */
1731 } else
1732 p = node_parent_rcu(c);
1733
1734 while (p) {
1735 int pos, last;
1736
1737 /* Find the next child of the parent */
1738 if (c)
1739 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1740 else
1741 pos = 0;
1742
1743 last = 1 << p->bits;
1744 for (idx = pos; idx < last ; idx++) {
1745 c = rcu_dereference(p->child[idx]);
1746
1747 if (!c)
1748 continue;
1749
1750 /* Decend if tnode */
1751 while (IS_TNODE(c)) {
1752 p = (struct tnode *) c;
1753 idx = 0;
1754
1755 /* Rightmost non-NULL branch */
1756 if (p && IS_TNODE(p))
1757 while (!(c = rcu_dereference(p->child[idx]))
1758 && idx < (1<<p->bits)) idx++;
1759
1760 /* Done with this tnode? */
1761 if (idx >= (1 << p->bits) || !c)
1762 goto up;
1763 }
1764 return (struct leaf *) c;
1765 }
1766 up:
1767 /* No more children go up one step */
1768 c = (struct node *) p;
1769 p = node_parent_rcu(c);
1770 }
1771 return NULL; /* Ready. Root of trie */
1772 }
1773
1774 /*
1775 * Caller must hold RTNL.
1776 */
1777 static int fn_trie_flush(struct fib_table *tb)
1778 {
1779 struct trie *t = (struct trie *) tb->tb_data;
1780 struct leaf *ll = NULL, *l = NULL;
1781 int found = 0, h;
1782
1783 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1784 found += trie_flush_leaf(t, l);
1785
1786 if (ll && hlist_empty(&ll->list))
1787 trie_leaf_remove(t, ll->key);
1788 ll = l;
1789 }
1790
1791 if (ll && hlist_empty(&ll->list))
1792 trie_leaf_remove(t, ll->key);
1793
1794 pr_debug("trie_flush found=%d\n", found);
1795 return found;
1796 }
1797
1798 static void fn_trie_select_default(struct fib_table *tb,
1799 const struct flowi *flp,
1800 struct fib_result *res)
1801 {
1802 struct trie *t = (struct trie *) tb->tb_data;
1803 int order, last_idx;
1804 struct fib_info *fi = NULL;
1805 struct fib_info *last_resort;
1806 struct fib_alias *fa = NULL;
1807 struct list_head *fa_head;
1808 struct leaf *l;
1809
1810 last_idx = -1;
1811 last_resort = NULL;
1812 order = -1;
1813
1814 rcu_read_lock();
1815
1816 l = fib_find_node(t, 0);
1817 if (!l)
1818 goto out;
1819
1820 fa_head = get_fa_head(l, 0);
1821 if (!fa_head)
1822 goto out;
1823
1824 if (list_empty(fa_head))
1825 goto out;
1826
1827 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1828 struct fib_info *next_fi = fa->fa_info;
1829
1830 if (fa->fa_scope != res->scope ||
1831 fa->fa_type != RTN_UNICAST)
1832 continue;
1833
1834 if (next_fi->fib_priority > res->fi->fib_priority)
1835 break;
1836 if (!next_fi->fib_nh[0].nh_gw ||
1837 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1838 continue;
1839 fa->fa_state |= FA_S_ACCESSED;
1840
1841 if (fi == NULL) {
1842 if (next_fi != res->fi)
1843 break;
1844 } else if (!fib_detect_death(fi, order, &last_resort,
1845 &last_idx, tb->tb_default)) {
1846 fib_result_assign(res, fi);
1847 tb->tb_default = order;
1848 goto out;
1849 }
1850 fi = next_fi;
1851 order++;
1852 }
1853 if (order <= 0 || fi == NULL) {
1854 tb->tb_default = -1;
1855 goto out;
1856 }
1857
1858 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1859 tb->tb_default)) {
1860 fib_result_assign(res, fi);
1861 tb->tb_default = order;
1862 goto out;
1863 }
1864 if (last_idx >= 0)
1865 fib_result_assign(res, last_resort);
1866 tb->tb_default = last_idx;
1867 out:
1868 rcu_read_unlock();
1869 }
1870
1871 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1872 struct fib_table *tb,
1873 struct sk_buff *skb, struct netlink_callback *cb)
1874 {
1875 int i, s_i;
1876 struct fib_alias *fa;
1877
1878 __be32 xkey = htonl(key);
1879
1880 s_i = cb->args[4];
1881 i = 0;
1882
1883 /* rcu_read_lock is hold by caller */
1884
1885 list_for_each_entry_rcu(fa, fah, fa_list) {
1886 if (i < s_i) {
1887 i++;
1888 continue;
1889 }
1890 BUG_ON(!fa->fa_info);
1891
1892 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1893 cb->nlh->nlmsg_seq,
1894 RTM_NEWROUTE,
1895 tb->tb_id,
1896 fa->fa_type,
1897 fa->fa_scope,
1898 xkey,
1899 plen,
1900 fa->fa_tos,
1901 fa->fa_info, NLM_F_MULTI) < 0) {
1902 cb->args[4] = i;
1903 return -1;
1904 }
1905 i++;
1906 }
1907 cb->args[4] = i;
1908 return skb->len;
1909 }
1910
1911 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb,
1912 struct sk_buff *skb, struct netlink_callback *cb)
1913 {
1914 int h, s_h;
1915 struct list_head *fa_head;
1916 struct leaf *l = NULL;
1917
1918 s_h = cb->args[3];
1919
1920 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1921 if (h < s_h)
1922 continue;
1923 if (h > s_h)
1924 memset(&cb->args[4], 0,
1925 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1926
1927 fa_head = get_fa_head(l, plen);
1928
1929 if (!fa_head)
1930 continue;
1931
1932 if (list_empty(fa_head))
1933 continue;
1934
1935 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb) < 0) {
1936 cb->args[3] = h;
1937 return -1;
1938 }
1939 }
1940 cb->args[3] = h;
1941 return skb->len;
1942 }
1943
1944 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1945 struct netlink_callback *cb)
1946 {
1947 int m, s_m;
1948 struct trie *t = (struct trie *) tb->tb_data;
1949
1950 s_m = cb->args[2];
1951
1952 rcu_read_lock();
1953 for (m = 0; m <= 32; m++) {
1954 if (m < s_m)
1955 continue;
1956 if (m > s_m)
1957 memset(&cb->args[3], 0,
1958 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1959
1960 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb) < 0) {
1961 cb->args[2] = m;
1962 goto out;
1963 }
1964 }
1965 rcu_read_unlock();
1966 cb->args[2] = m;
1967 return skb->len;
1968 out:
1969 rcu_read_unlock();
1970 return -1;
1971 }
1972
1973 void __init fib_hash_init(void)
1974 {
1975 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1976 sizeof(struct fib_alias),
1977 0, SLAB_PANIC, NULL);
1978
1979 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1980 max(sizeof(struct leaf),
1981 sizeof(struct leaf_info)),
1982 0, SLAB_PANIC, NULL);
1983 }
1984
1985
1986 /* Fix more generic FIB names for init later */
1987 struct fib_table *fib_hash_table(u32 id)
1988 {
1989 struct fib_table *tb;
1990 struct trie *t;
1991
1992 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1993 GFP_KERNEL);
1994 if (tb == NULL)
1995 return NULL;
1996
1997 tb->tb_id = id;
1998 tb->tb_default = -1;
1999 tb->tb_lookup = fn_trie_lookup;
2000 tb->tb_insert = fn_trie_insert;
2001 tb->tb_delete = fn_trie_delete;
2002 tb->tb_flush = fn_trie_flush;
2003 tb->tb_select_default = fn_trie_select_default;
2004 tb->tb_dump = fn_trie_dump;
2005
2006 t = (struct trie *) tb->tb_data;
2007 memset(t, 0, sizeof(*t));
2008
2009 if (id == RT_TABLE_LOCAL)
2010 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2011
2012 return tb;
2013 }
2014
2015 #ifdef CONFIG_PROC_FS
2016 /* Depth first Trie walk iterator */
2017 struct fib_trie_iter {
2018 struct seq_net_private p;
2019 struct trie *trie_local, *trie_main;
2020 struct tnode *tnode;
2021 struct trie *trie;
2022 unsigned index;
2023 unsigned depth;
2024 };
2025
2026 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2027 {
2028 struct tnode *tn = iter->tnode;
2029 unsigned cindex = iter->index;
2030 struct tnode *p;
2031
2032 /* A single entry routing table */
2033 if (!tn)
2034 return NULL;
2035
2036 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2037 iter->tnode, iter->index, iter->depth);
2038 rescan:
2039 while (cindex < (1<<tn->bits)) {
2040 struct node *n = tnode_get_child_rcu(tn, cindex);
2041
2042 if (n) {
2043 if (IS_LEAF(n)) {
2044 iter->tnode = tn;
2045 iter->index = cindex + 1;
2046 } else {
2047 /* push down one level */
2048 iter->tnode = (struct tnode *) n;
2049 iter->index = 0;
2050 ++iter->depth;
2051 }
2052 return n;
2053 }
2054
2055 ++cindex;
2056 }
2057
2058 /* Current node exhausted, pop back up */
2059 p = node_parent_rcu((struct node *)tn);
2060 if (p) {
2061 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2062 tn = p;
2063 --iter->depth;
2064 goto rescan;
2065 }
2066
2067 /* got root? */
2068 return NULL;
2069 }
2070
2071 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2072 struct trie *t)
2073 {
2074 struct node *n ;
2075
2076 if (!t)
2077 return NULL;
2078
2079 n = rcu_dereference(t->trie);
2080
2081 if (!iter)
2082 return NULL;
2083
2084 if (n) {
2085 if (IS_TNODE(n)) {
2086 iter->tnode = (struct tnode *) n;
2087 iter->trie = t;
2088 iter->index = 0;
2089 iter->depth = 1;
2090 } else {
2091 iter->tnode = NULL;
2092 iter->trie = t;
2093 iter->index = 0;
2094 iter->depth = 0;
2095 }
2096 return n;
2097 }
2098 return NULL;
2099 }
2100
2101 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2102 {
2103 struct node *n;
2104 struct fib_trie_iter iter;
2105
2106 memset(s, 0, sizeof(*s));
2107
2108 rcu_read_lock();
2109 for (n = fib_trie_get_first(&iter, t); n;
2110 n = fib_trie_get_next(&iter)) {
2111 if (IS_LEAF(n)) {
2112 struct leaf *l = (struct leaf *)n;
2113 struct leaf_info *li;
2114 struct hlist_node *tmp;
2115
2116 s->leaves++;
2117 s->totdepth += iter.depth;
2118 if (iter.depth > s->maxdepth)
2119 s->maxdepth = iter.depth;
2120
2121 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2122 ++s->prefixes;
2123 } else {
2124 const struct tnode *tn = (const struct tnode *) n;
2125 int i;
2126
2127 s->tnodes++;
2128 if (tn->bits < MAX_STAT_DEPTH)
2129 s->nodesizes[tn->bits]++;
2130
2131 for (i = 0; i < (1<<tn->bits); i++)
2132 if (!tn->child[i])
2133 s->nullpointers++;
2134 }
2135 }
2136 rcu_read_unlock();
2137 }
2138
2139 /*
2140 * This outputs /proc/net/fib_triestats
2141 */
2142 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2143 {
2144 unsigned i, max, pointers, bytes, avdepth;
2145
2146 if (stat->leaves)
2147 avdepth = stat->totdepth*100 / stat->leaves;
2148 else
2149 avdepth = 0;
2150
2151 seq_printf(seq, "\tAver depth: %u.%02d\n",
2152 avdepth / 100, avdepth % 100);
2153 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2154
2155 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2156 bytes = sizeof(struct leaf) * stat->leaves;
2157
2158 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2159 bytes += sizeof(struct leaf_info) * stat->prefixes;
2160
2161 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2162 bytes += sizeof(struct tnode) * stat->tnodes;
2163
2164 max = MAX_STAT_DEPTH;
2165 while (max > 0 && stat->nodesizes[max-1] == 0)
2166 max--;
2167
2168 pointers = 0;
2169 for (i = 1; i <= max; i++)
2170 if (stat->nodesizes[i] != 0) {
2171 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2172 pointers += (1<<i) * stat->nodesizes[i];
2173 }
2174 seq_putc(seq, '\n');
2175 seq_printf(seq, "\tPointers: %u\n", pointers);
2176
2177 bytes += sizeof(struct node *) * pointers;
2178 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2179 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2180 }
2181
2182 #ifdef CONFIG_IP_FIB_TRIE_STATS
2183 static void trie_show_usage(struct seq_file *seq,
2184 const struct trie_use_stats *stats)
2185 {
2186 seq_printf(seq, "\nCounters:\n---------\n");
2187 seq_printf(seq, "gets = %u\n", stats->gets);
2188 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2189 seq_printf(seq, "semantic match passed = %u\n",
2190 stats->semantic_match_passed);
2191 seq_printf(seq, "semantic match miss = %u\n",
2192 stats->semantic_match_miss);
2193 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2194 seq_printf(seq, "skipped node resize = %u\n\n",
2195 stats->resize_node_skipped);
2196 }
2197 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2198
2199 static void fib_trie_show(struct seq_file *seq, const char *name,
2200 struct trie *trie)
2201 {
2202 struct trie_stat stat;
2203
2204 trie_collect_stats(trie, &stat);
2205 seq_printf(seq, "%s:\n", name);
2206 trie_show_stats(seq, &stat);
2207 #ifdef CONFIG_IP_FIB_TRIE_STATS
2208 trie_show_usage(seq, &trie->stats);
2209 #endif
2210 }
2211
2212 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2213 {
2214 struct net *net = (struct net *)seq->private;
2215 struct fib_table *tb;
2216
2217 seq_printf(seq,
2218 "Basic info: size of leaf:"
2219 " %Zd bytes, size of tnode: %Zd bytes.\n",
2220 sizeof(struct leaf), sizeof(struct tnode));
2221
2222 tb = fib_get_table(net, RT_TABLE_LOCAL);
2223 if (tb)
2224 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
2225
2226 tb = fib_get_table(net, RT_TABLE_MAIN);
2227 if (tb)
2228 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
2229
2230 return 0;
2231 }
2232
2233 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2234 {
2235 int err;
2236 struct net *net;
2237
2238 net = get_proc_net(inode);
2239 if (net == NULL)
2240 return -ENXIO;
2241 err = single_open(file, fib_triestat_seq_show, net);
2242 if (err < 0) {
2243 put_net(net);
2244 return err;
2245 }
2246 return 0;
2247 }
2248
2249 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2250 {
2251 struct seq_file *seq = f->private_data;
2252 put_net(seq->private);
2253 return single_release(ino, f);
2254 }
2255
2256 static const struct file_operations fib_triestat_fops = {
2257 .owner = THIS_MODULE,
2258 .open = fib_triestat_seq_open,
2259 .read = seq_read,
2260 .llseek = seq_lseek,
2261 .release = fib_triestat_seq_release,
2262 };
2263
2264 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2265 loff_t pos)
2266 {
2267 loff_t idx = 0;
2268 struct node *n;
2269
2270 for (n = fib_trie_get_first(iter, iter->trie_local);
2271 n; ++idx, n = fib_trie_get_next(iter)) {
2272 if (pos == idx)
2273 return n;
2274 }
2275
2276 for (n = fib_trie_get_first(iter, iter->trie_main);
2277 n; ++idx, n = fib_trie_get_next(iter)) {
2278 if (pos == idx)
2279 return n;
2280 }
2281 return NULL;
2282 }
2283
2284 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2285 __acquires(RCU)
2286 {
2287 struct fib_trie_iter *iter = seq->private;
2288 struct fib_table *tb;
2289
2290 if (!iter->trie_local) {
2291 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2292 if (tb)
2293 iter->trie_local = (struct trie *) tb->tb_data;
2294 }
2295 if (!iter->trie_main) {
2296 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2297 if (tb)
2298 iter->trie_main = (struct trie *) tb->tb_data;
2299 }
2300 rcu_read_lock();
2301 if (*pos == 0)
2302 return SEQ_START_TOKEN;
2303 return fib_trie_get_idx(iter, *pos - 1);
2304 }
2305
2306 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2307 {
2308 struct fib_trie_iter *iter = seq->private;
2309 void *l = v;
2310
2311 ++*pos;
2312 if (v == SEQ_START_TOKEN)
2313 return fib_trie_get_idx(iter, 0);
2314
2315 v = fib_trie_get_next(iter);
2316 BUG_ON(v == l);
2317 if (v)
2318 return v;
2319
2320 /* continue scan in next trie */
2321 if (iter->trie == iter->trie_local)
2322 return fib_trie_get_first(iter, iter->trie_main);
2323
2324 return NULL;
2325 }
2326
2327 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2328 __releases(RCU)
2329 {
2330 rcu_read_unlock();
2331 }
2332
2333 static void seq_indent(struct seq_file *seq, int n)
2334 {
2335 while (n-- > 0) seq_puts(seq, " ");
2336 }
2337
2338 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2339 {
2340 switch (s) {
2341 case RT_SCOPE_UNIVERSE: return "universe";
2342 case RT_SCOPE_SITE: return "site";
2343 case RT_SCOPE_LINK: return "link";
2344 case RT_SCOPE_HOST: return "host";
2345 case RT_SCOPE_NOWHERE: return "nowhere";
2346 default:
2347 snprintf(buf, len, "scope=%d", s);
2348 return buf;
2349 }
2350 }
2351
2352 static const char *rtn_type_names[__RTN_MAX] = {
2353 [RTN_UNSPEC] = "UNSPEC",
2354 [RTN_UNICAST] = "UNICAST",
2355 [RTN_LOCAL] = "LOCAL",
2356 [RTN_BROADCAST] = "BROADCAST",
2357 [RTN_ANYCAST] = "ANYCAST",
2358 [RTN_MULTICAST] = "MULTICAST",
2359 [RTN_BLACKHOLE] = "BLACKHOLE",
2360 [RTN_UNREACHABLE] = "UNREACHABLE",
2361 [RTN_PROHIBIT] = "PROHIBIT",
2362 [RTN_THROW] = "THROW",
2363 [RTN_NAT] = "NAT",
2364 [RTN_XRESOLVE] = "XRESOLVE",
2365 };
2366
2367 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2368 {
2369 if (t < __RTN_MAX && rtn_type_names[t])
2370 return rtn_type_names[t];
2371 snprintf(buf, len, "type %u", t);
2372 return buf;
2373 }
2374
2375 /* Pretty print the trie */
2376 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2377 {
2378 const struct fib_trie_iter *iter = seq->private;
2379 struct node *n = v;
2380
2381 if (v == SEQ_START_TOKEN)
2382 return 0;
2383
2384 if (!node_parent_rcu(n)) {
2385 if (iter->trie == iter->trie_local)
2386 seq_puts(seq, "<local>:\n");
2387 else
2388 seq_puts(seq, "<main>:\n");
2389 }
2390
2391 if (IS_TNODE(n)) {
2392 struct tnode *tn = (struct tnode *) n;
2393 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2394
2395 seq_indent(seq, iter->depth-1);
2396 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2397 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2398 tn->empty_children);
2399
2400 } else {
2401 struct leaf *l = (struct leaf *) n;
2402 struct leaf_info *li;
2403 struct hlist_node *node;
2404
2405 __be32 val = htonl(l->key);
2406
2407 seq_indent(seq, iter->depth);
2408 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2409
2410 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2411 struct fib_alias *fa;
2412
2413 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2414 char buf1[32], buf2[32];
2415
2416 seq_indent(seq, iter->depth+1);
2417 seq_printf(seq, " /%d %s %s", li->plen,
2418 rtn_scope(buf1, sizeof(buf1),
2419 fa->fa_scope),
2420 rtn_type(buf2, sizeof(buf2),
2421 fa->fa_type));
2422 if (fa->fa_tos)
2423 seq_printf(seq, "tos =%d\n",
2424 fa->fa_tos);
2425 seq_putc(seq, '\n');
2426 }
2427 }
2428 }
2429
2430 return 0;
2431 }
2432
2433 static const struct seq_operations fib_trie_seq_ops = {
2434 .start = fib_trie_seq_start,
2435 .next = fib_trie_seq_next,
2436 .stop = fib_trie_seq_stop,
2437 .show = fib_trie_seq_show,
2438 };
2439
2440 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2441 {
2442 return seq_open_net(inode, file, &fib_trie_seq_ops,
2443 sizeof(struct fib_trie_iter));
2444 }
2445
2446 static const struct file_operations fib_trie_fops = {
2447 .owner = THIS_MODULE,
2448 .open = fib_trie_seq_open,
2449 .read = seq_read,
2450 .llseek = seq_lseek,
2451 .release = seq_release_net,
2452 };
2453
2454 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2455 {
2456 static unsigned type2flags[RTN_MAX + 1] = {
2457 [7] = RTF_REJECT, [8] = RTF_REJECT,
2458 };
2459 unsigned flags = type2flags[type];
2460
2461 if (fi && fi->fib_nh->nh_gw)
2462 flags |= RTF_GATEWAY;
2463 if (mask == htonl(0xFFFFFFFF))
2464 flags |= RTF_HOST;
2465 flags |= RTF_UP;
2466 return flags;
2467 }
2468
2469 /*
2470 * This outputs /proc/net/route.
2471 * The format of the file is not supposed to be changed
2472 * and needs to be same as fib_hash output to avoid breaking
2473 * legacy utilities
2474 */
2475 static int fib_route_seq_show(struct seq_file *seq, void *v)
2476 {
2477 const struct fib_trie_iter *iter = seq->private;
2478 struct leaf *l = v;
2479 struct leaf_info *li;
2480 struct hlist_node *node;
2481
2482 if (v == SEQ_START_TOKEN) {
2483 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2484 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2485 "\tWindow\tIRTT");
2486 return 0;
2487 }
2488
2489 if (iter->trie == iter->trie_local)
2490 return 0;
2491
2492 if (IS_TNODE(l))
2493 return 0;
2494
2495 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2496 struct fib_alias *fa;
2497 __be32 mask, prefix;
2498
2499 if (!li)
2500 continue;
2501
2502 mask = inet_make_mask(li->plen);
2503 prefix = htonl(l->key);
2504
2505 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2506 const struct fib_info *fi = fa->fa_info;
2507 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2508 char bf[128];
2509
2510 if (fa->fa_type == RTN_BROADCAST
2511 || fa->fa_type == RTN_MULTICAST)
2512 continue;
2513
2514 if (fi)
2515 snprintf(bf, sizeof(bf),
2516 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2517 fi->fib_dev ? fi->fib_dev->name : "*",
2518 prefix,
2519 fi->fib_nh->nh_gw, flags, 0, 0,
2520 fi->fib_priority,
2521 mask,
2522 (fi->fib_advmss ?
2523 fi->fib_advmss + 40 : 0),
2524 fi->fib_window,
2525 fi->fib_rtt >> 3);
2526 else
2527 snprintf(bf, sizeof(bf),
2528 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2529 prefix, 0, flags, 0, 0, 0,
2530 mask, 0, 0, 0);
2531
2532 seq_printf(seq, "%-127s\n", bf);
2533 }
2534 }
2535
2536 return 0;
2537 }
2538
2539 static const struct seq_operations fib_route_seq_ops = {
2540 .start = fib_trie_seq_start,
2541 .next = fib_trie_seq_next,
2542 .stop = fib_trie_seq_stop,
2543 .show = fib_route_seq_show,
2544 };
2545
2546 static int fib_route_seq_open(struct inode *inode, struct file *file)
2547 {
2548 return seq_open_net(inode, file, &fib_route_seq_ops,
2549 sizeof(struct fib_trie_iter));
2550 }
2551
2552 static const struct file_operations fib_route_fops = {
2553 .owner = THIS_MODULE,
2554 .open = fib_route_seq_open,
2555 .read = seq_read,
2556 .llseek = seq_lseek,
2557 .release = seq_release_net,
2558 };
2559
2560 int __net_init fib_proc_init(struct net *net)
2561 {
2562 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2563 goto out1;
2564
2565 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2566 &fib_triestat_fops))
2567 goto out2;
2568
2569 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2570 goto out3;
2571
2572 return 0;
2573
2574 out3:
2575 proc_net_remove(net, "fib_triestat");
2576 out2:
2577 proc_net_remove(net, "fib_trie");
2578 out1:
2579 return -ENOMEM;
2580 }
2581
2582 void __net_exit fib_proc_exit(struct net *net)
2583 {
2584 proc_net_remove(net, "fib_trie");
2585 proc_net_remove(net, "fib_triestat");
2586 proc_net_remove(net, "route");
2587 }
2588
2589 #endif /* CONFIG_PROC_FS */
This page took 0.131257 seconds and 6 git commands to generate.