Merge branch 'fix/hda' into for-linus
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.408"
52
53 #include <asm/uaccess.h>
54 #include <asm/system.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/mm.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
63 #include <linux/in.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <net/net_namespace.h>
75 #include <net/ip.h>
76 #include <net/protocol.h>
77 #include <net/route.h>
78 #include <net/tcp.h>
79 #include <net/sock.h>
80 #include <net/ip_fib.h>
81 #include "fib_lookup.h"
82
83 #define MAX_STAT_DEPTH 32
84
85 #define KEYLENGTH (8*sizeof(t_key))
86
87 typedef unsigned int t_key;
88
89 #define T_TNODE 0
90 #define T_LEAF 1
91 #define NODE_TYPE_MASK 0x1UL
92 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
94 #define IS_TNODE(n) (!(n->parent & T_LEAF))
95 #define IS_LEAF(n) (n->parent & T_LEAF)
96
97 struct node {
98 unsigned long parent;
99 t_key key;
100 };
101
102 struct leaf {
103 unsigned long parent;
104 t_key key;
105 struct hlist_head list;
106 struct rcu_head rcu;
107 };
108
109 struct leaf_info {
110 struct hlist_node hlist;
111 struct rcu_head rcu;
112 int plen;
113 struct list_head falh;
114 };
115
116 struct tnode {
117 unsigned long parent;
118 t_key key;
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 struct tnode *tnode_free;
127 };
128 struct node *child[0];
129 };
130
131 #ifdef CONFIG_IP_FIB_TRIE_STATS
132 struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
138 unsigned int resize_node_skipped;
139 };
140 #endif
141
142 struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
148 unsigned int prefixes;
149 unsigned int nodesizes[MAX_STAT_DEPTH];
150 };
151
152 struct trie {
153 struct node *trie;
154 #ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156 #endif
157 };
158
159 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
162 static struct node *resize(struct trie *t, struct tnode *tn);
163 static struct tnode *inflate(struct trie *t, struct tnode *tn);
164 static struct tnode *halve(struct trie *t, struct tnode *tn);
165 /* tnodes to free after resize(); protected by RTNL */
166 static struct tnode *tnode_free_head;
167
168 static struct kmem_cache *fn_alias_kmem __read_mostly;
169 static struct kmem_cache *trie_leaf_kmem __read_mostly;
170
171 static inline struct tnode *node_parent(struct node *node)
172 {
173 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
174 }
175
176 static inline struct tnode *node_parent_rcu(struct node *node)
177 {
178 struct tnode *ret = node_parent(node);
179
180 return rcu_dereference(ret);
181 }
182
183 /* Same as rcu_assign_pointer
184 * but that macro() assumes that value is a pointer.
185 */
186 static inline void node_set_parent(struct node *node, struct tnode *ptr)
187 {
188 smp_wmb();
189 node->parent = (unsigned long)ptr | NODE_TYPE(node);
190 }
191
192 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
193 {
194 BUG_ON(i >= 1U << tn->bits);
195
196 return tn->child[i];
197 }
198
199 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
200 {
201 struct node *ret = tnode_get_child(tn, i);
202
203 return rcu_dereference(ret);
204 }
205
206 static inline int tnode_child_length(const struct tnode *tn)
207 {
208 return 1 << tn->bits;
209 }
210
211 static inline t_key mask_pfx(t_key k, unsigned short l)
212 {
213 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
214 }
215
216 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
217 {
218 if (offset < KEYLENGTH)
219 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
220 else
221 return 0;
222 }
223
224 static inline int tkey_equals(t_key a, t_key b)
225 {
226 return a == b;
227 }
228
229 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
230 {
231 if (bits == 0 || offset >= KEYLENGTH)
232 return 1;
233 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
234 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
235 }
236
237 static inline int tkey_mismatch(t_key a, int offset, t_key b)
238 {
239 t_key diff = a ^ b;
240 int i = offset;
241
242 if (!diff)
243 return 0;
244 while ((diff << i) >> (KEYLENGTH-1) == 0)
245 i++;
246 return i;
247 }
248
249 /*
250 To understand this stuff, an understanding of keys and all their bits is
251 necessary. Every node in the trie has a key associated with it, but not
252 all of the bits in that key are significant.
253
254 Consider a node 'n' and its parent 'tp'.
255
256 If n is a leaf, every bit in its key is significant. Its presence is
257 necessitated by path compression, since during a tree traversal (when
258 searching for a leaf - unless we are doing an insertion) we will completely
259 ignore all skipped bits we encounter. Thus we need to verify, at the end of
260 a potentially successful search, that we have indeed been walking the
261 correct key path.
262
263 Note that we can never "miss" the correct key in the tree if present by
264 following the wrong path. Path compression ensures that segments of the key
265 that are the same for all keys with a given prefix are skipped, but the
266 skipped part *is* identical for each node in the subtrie below the skipped
267 bit! trie_insert() in this implementation takes care of that - note the
268 call to tkey_sub_equals() in trie_insert().
269
270 if n is an internal node - a 'tnode' here, the various parts of its key
271 have many different meanings.
272
273 Example:
274 _________________________________________________________________
275 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
276 -----------------------------------------------------------------
277 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
278
279 _________________________________________________________________
280 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
281 -----------------------------------------------------------------
282 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
283
284 tp->pos = 7
285 tp->bits = 3
286 n->pos = 15
287 n->bits = 4
288
289 First, let's just ignore the bits that come before the parent tp, that is
290 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
291 not use them for anything.
292
293 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
294 index into the parent's child array. That is, they will be used to find
295 'n' among tp's children.
296
297 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
298 for the node n.
299
300 All the bits we have seen so far are significant to the node n. The rest
301 of the bits are really not needed or indeed known in n->key.
302
303 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
304 n's child array, and will of course be different for each child.
305
306
307 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
308 at this point.
309
310 */
311
312 static inline void check_tnode(const struct tnode *tn)
313 {
314 WARN_ON(tn && tn->pos+tn->bits > 32);
315 }
316
317 static const int halve_threshold = 25;
318 static const int inflate_threshold = 50;
319 static const int halve_threshold_root = 15;
320 static const int inflate_threshold_root = 25;
321
322
323 static void __alias_free_mem(struct rcu_head *head)
324 {
325 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
326 kmem_cache_free(fn_alias_kmem, fa);
327 }
328
329 static inline void alias_free_mem_rcu(struct fib_alias *fa)
330 {
331 call_rcu(&fa->rcu, __alias_free_mem);
332 }
333
334 static void __leaf_free_rcu(struct rcu_head *head)
335 {
336 struct leaf *l = container_of(head, struct leaf, rcu);
337 kmem_cache_free(trie_leaf_kmem, l);
338 }
339
340 static inline void free_leaf(struct leaf *l)
341 {
342 call_rcu_bh(&l->rcu, __leaf_free_rcu);
343 }
344
345 static void __leaf_info_free_rcu(struct rcu_head *head)
346 {
347 kfree(container_of(head, struct leaf_info, rcu));
348 }
349
350 static inline void free_leaf_info(struct leaf_info *leaf)
351 {
352 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
353 }
354
355 static struct tnode *tnode_alloc(size_t size)
356 {
357 if (size <= PAGE_SIZE)
358 return kzalloc(size, GFP_KERNEL);
359 else
360 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
361 }
362
363 static void __tnode_vfree(struct work_struct *arg)
364 {
365 struct tnode *tn = container_of(arg, struct tnode, work);
366 vfree(tn);
367 }
368
369 static void __tnode_free_rcu(struct rcu_head *head)
370 {
371 struct tnode *tn = container_of(head, struct tnode, rcu);
372 size_t size = sizeof(struct tnode) +
373 (sizeof(struct node *) << tn->bits);
374
375 if (size <= PAGE_SIZE)
376 kfree(tn);
377 else {
378 INIT_WORK(&tn->work, __tnode_vfree);
379 schedule_work(&tn->work);
380 }
381 }
382
383 static inline void tnode_free(struct tnode *tn)
384 {
385 if (IS_LEAF(tn))
386 free_leaf((struct leaf *) tn);
387 else
388 call_rcu(&tn->rcu, __tnode_free_rcu);
389 }
390
391 static void tnode_free_safe(struct tnode *tn)
392 {
393 BUG_ON(IS_LEAF(tn));
394 tn->tnode_free = tnode_free_head;
395 tnode_free_head = tn;
396 }
397
398 static void tnode_free_flush(void)
399 {
400 struct tnode *tn;
401
402 while ((tn = tnode_free_head)) {
403 tnode_free_head = tn->tnode_free;
404 tn->tnode_free = NULL;
405 tnode_free(tn);
406 }
407 }
408
409 static struct leaf *leaf_new(void)
410 {
411 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
412 if (l) {
413 l->parent = T_LEAF;
414 INIT_HLIST_HEAD(&l->list);
415 }
416 return l;
417 }
418
419 static struct leaf_info *leaf_info_new(int plen)
420 {
421 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
422 if (li) {
423 li->plen = plen;
424 INIT_LIST_HEAD(&li->falh);
425 }
426 return li;
427 }
428
429 static struct tnode *tnode_new(t_key key, int pos, int bits)
430 {
431 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
432 struct tnode *tn = tnode_alloc(sz);
433
434 if (tn) {
435 tn->parent = T_TNODE;
436 tn->pos = pos;
437 tn->bits = bits;
438 tn->key = key;
439 tn->full_children = 0;
440 tn->empty_children = 1<<bits;
441 }
442
443 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
444 (unsigned long) (sizeof(struct node) << bits));
445 return tn;
446 }
447
448 /*
449 * Check whether a tnode 'n' is "full", i.e. it is an internal node
450 * and no bits are skipped. See discussion in dyntree paper p. 6
451 */
452
453 static inline int tnode_full(const struct tnode *tn, const struct node *n)
454 {
455 if (n == NULL || IS_LEAF(n))
456 return 0;
457
458 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
459 }
460
461 static inline void put_child(struct trie *t, struct tnode *tn, int i,
462 struct node *n)
463 {
464 tnode_put_child_reorg(tn, i, n, -1);
465 }
466
467 /*
468 * Add a child at position i overwriting the old value.
469 * Update the value of full_children and empty_children.
470 */
471
472 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
473 int wasfull)
474 {
475 struct node *chi = tn->child[i];
476 int isfull;
477
478 BUG_ON(i >= 1<<tn->bits);
479
480 /* update emptyChildren */
481 if (n == NULL && chi != NULL)
482 tn->empty_children++;
483 else if (n != NULL && chi == NULL)
484 tn->empty_children--;
485
486 /* update fullChildren */
487 if (wasfull == -1)
488 wasfull = tnode_full(tn, chi);
489
490 isfull = tnode_full(tn, n);
491 if (wasfull && !isfull)
492 tn->full_children--;
493 else if (!wasfull && isfull)
494 tn->full_children++;
495
496 if (n)
497 node_set_parent(n, tn);
498
499 rcu_assign_pointer(tn->child[i], n);
500 }
501
502 static struct node *resize(struct trie *t, struct tnode *tn)
503 {
504 int i;
505 int err = 0;
506 struct tnode *old_tn;
507 int inflate_threshold_use;
508 int halve_threshold_use;
509 int max_resize;
510
511 if (!tn)
512 return NULL;
513
514 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
515 tn, inflate_threshold, halve_threshold);
516
517 /* No children */
518 if (tn->empty_children == tnode_child_length(tn)) {
519 tnode_free_safe(tn);
520 return NULL;
521 }
522 /* One child */
523 if (tn->empty_children == tnode_child_length(tn) - 1)
524 for (i = 0; i < tnode_child_length(tn); i++) {
525 struct node *n;
526
527 n = tn->child[i];
528 if (!n)
529 continue;
530
531 /* compress one level */
532 node_set_parent(n, NULL);
533 tnode_free_safe(tn);
534 return n;
535 }
536 /*
537 * Double as long as the resulting node has a number of
538 * nonempty nodes that are above the threshold.
539 */
540
541 /*
542 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
543 * the Helsinki University of Technology and Matti Tikkanen of Nokia
544 * Telecommunications, page 6:
545 * "A node is doubled if the ratio of non-empty children to all
546 * children in the *doubled* node is at least 'high'."
547 *
548 * 'high' in this instance is the variable 'inflate_threshold'. It
549 * is expressed as a percentage, so we multiply it with
550 * tnode_child_length() and instead of multiplying by 2 (since the
551 * child array will be doubled by inflate()) and multiplying
552 * the left-hand side by 100 (to handle the percentage thing) we
553 * multiply the left-hand side by 50.
554 *
555 * The left-hand side may look a bit weird: tnode_child_length(tn)
556 * - tn->empty_children is of course the number of non-null children
557 * in the current node. tn->full_children is the number of "full"
558 * children, that is non-null tnodes with a skip value of 0.
559 * All of those will be doubled in the resulting inflated tnode, so
560 * we just count them one extra time here.
561 *
562 * A clearer way to write this would be:
563 *
564 * to_be_doubled = tn->full_children;
565 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
566 * tn->full_children;
567 *
568 * new_child_length = tnode_child_length(tn) * 2;
569 *
570 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
571 * new_child_length;
572 * if (new_fill_factor >= inflate_threshold)
573 *
574 * ...and so on, tho it would mess up the while () loop.
575 *
576 * anyway,
577 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
578 * inflate_threshold
579 *
580 * avoid a division:
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
582 * inflate_threshold * new_child_length
583 *
584 * expand not_to_be_doubled and to_be_doubled, and shorten:
585 * 100 * (tnode_child_length(tn) - tn->empty_children +
586 * tn->full_children) >= inflate_threshold * new_child_length
587 *
588 * expand new_child_length:
589 * 100 * (tnode_child_length(tn) - tn->empty_children +
590 * tn->full_children) >=
591 * inflate_threshold * tnode_child_length(tn) * 2
592 *
593 * shorten again:
594 * 50 * (tn->full_children + tnode_child_length(tn) -
595 * tn->empty_children) >= inflate_threshold *
596 * tnode_child_length(tn)
597 *
598 */
599
600 check_tnode(tn);
601
602 /* Keep root node larger */
603
604 if (!tn->parent)
605 inflate_threshold_use = inflate_threshold_root;
606 else
607 inflate_threshold_use = inflate_threshold;
608
609 err = 0;
610 max_resize = 10;
611 while ((tn->full_children > 0 && max_resize-- &&
612 50 * (tn->full_children + tnode_child_length(tn)
613 - tn->empty_children)
614 >= inflate_threshold_use * tnode_child_length(tn))) {
615
616 old_tn = tn;
617 tn = inflate(t, tn);
618
619 if (IS_ERR(tn)) {
620 tn = old_tn;
621 #ifdef CONFIG_IP_FIB_TRIE_STATS
622 t->stats.resize_node_skipped++;
623 #endif
624 break;
625 }
626 }
627
628 if (max_resize < 0) {
629 if (!tn->parent)
630 pr_warning("Fix inflate_threshold_root."
631 " Now=%d size=%d bits\n",
632 inflate_threshold_root, tn->bits);
633 else
634 pr_warning("Fix inflate_threshold."
635 " Now=%d size=%d bits\n",
636 inflate_threshold, tn->bits);
637 }
638
639 check_tnode(tn);
640
641 /*
642 * Halve as long as the number of empty children in this
643 * node is above threshold.
644 */
645
646
647 /* Keep root node larger */
648
649 if (!tn->parent)
650 halve_threshold_use = halve_threshold_root;
651 else
652 halve_threshold_use = halve_threshold;
653
654 err = 0;
655 max_resize = 10;
656 while (tn->bits > 1 && max_resize-- &&
657 100 * (tnode_child_length(tn) - tn->empty_children) <
658 halve_threshold_use * tnode_child_length(tn)) {
659
660 old_tn = tn;
661 tn = halve(t, tn);
662 if (IS_ERR(tn)) {
663 tn = old_tn;
664 #ifdef CONFIG_IP_FIB_TRIE_STATS
665 t->stats.resize_node_skipped++;
666 #endif
667 break;
668 }
669 }
670
671 if (max_resize < 0) {
672 if (!tn->parent)
673 pr_warning("Fix halve_threshold_root."
674 " Now=%d size=%d bits\n",
675 halve_threshold_root, tn->bits);
676 else
677 pr_warning("Fix halve_threshold."
678 " Now=%d size=%d bits\n",
679 halve_threshold, tn->bits);
680 }
681
682 /* Only one child remains */
683 if (tn->empty_children == tnode_child_length(tn) - 1)
684 for (i = 0; i < tnode_child_length(tn); i++) {
685 struct node *n;
686
687 n = tn->child[i];
688 if (!n)
689 continue;
690
691 /* compress one level */
692
693 node_set_parent(n, NULL);
694 tnode_free_safe(tn);
695 return n;
696 }
697
698 return (struct node *) tn;
699 }
700
701 static struct tnode *inflate(struct trie *t, struct tnode *tn)
702 {
703 struct tnode *oldtnode = tn;
704 int olen = tnode_child_length(tn);
705 int i;
706
707 pr_debug("In inflate\n");
708
709 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
710
711 if (!tn)
712 return ERR_PTR(-ENOMEM);
713
714 /*
715 * Preallocate and store tnodes before the actual work so we
716 * don't get into an inconsistent state if memory allocation
717 * fails. In case of failure we return the oldnode and inflate
718 * of tnode is ignored.
719 */
720
721 for (i = 0; i < olen; i++) {
722 struct tnode *inode;
723
724 inode = (struct tnode *) tnode_get_child(oldtnode, i);
725 if (inode &&
726 IS_TNODE(inode) &&
727 inode->pos == oldtnode->pos + oldtnode->bits &&
728 inode->bits > 1) {
729 struct tnode *left, *right;
730 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
731
732 left = tnode_new(inode->key&(~m), inode->pos + 1,
733 inode->bits - 1);
734 if (!left)
735 goto nomem;
736
737 right = tnode_new(inode->key|m, inode->pos + 1,
738 inode->bits - 1);
739
740 if (!right) {
741 tnode_free(left);
742 goto nomem;
743 }
744
745 put_child(t, tn, 2*i, (struct node *) left);
746 put_child(t, tn, 2*i+1, (struct node *) right);
747 }
748 }
749
750 for (i = 0; i < olen; i++) {
751 struct tnode *inode;
752 struct node *node = tnode_get_child(oldtnode, i);
753 struct tnode *left, *right;
754 int size, j;
755
756 /* An empty child */
757 if (node == NULL)
758 continue;
759
760 /* A leaf or an internal node with skipped bits */
761
762 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
763 tn->pos + tn->bits - 1) {
764 if (tkey_extract_bits(node->key,
765 oldtnode->pos + oldtnode->bits,
766 1) == 0)
767 put_child(t, tn, 2*i, node);
768 else
769 put_child(t, tn, 2*i+1, node);
770 continue;
771 }
772
773 /* An internal node with two children */
774 inode = (struct tnode *) node;
775
776 if (inode->bits == 1) {
777 put_child(t, tn, 2*i, inode->child[0]);
778 put_child(t, tn, 2*i+1, inode->child[1]);
779
780 tnode_free_safe(inode);
781 continue;
782 }
783
784 /* An internal node with more than two children */
785
786 /* We will replace this node 'inode' with two new
787 * ones, 'left' and 'right', each with half of the
788 * original children. The two new nodes will have
789 * a position one bit further down the key and this
790 * means that the "significant" part of their keys
791 * (see the discussion near the top of this file)
792 * will differ by one bit, which will be "0" in
793 * left's key and "1" in right's key. Since we are
794 * moving the key position by one step, the bit that
795 * we are moving away from - the bit at position
796 * (inode->pos) - is the one that will differ between
797 * left and right. So... we synthesize that bit in the
798 * two new keys.
799 * The mask 'm' below will be a single "one" bit at
800 * the position (inode->pos)
801 */
802
803 /* Use the old key, but set the new significant
804 * bit to zero.
805 */
806
807 left = (struct tnode *) tnode_get_child(tn, 2*i);
808 put_child(t, tn, 2*i, NULL);
809
810 BUG_ON(!left);
811
812 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
813 put_child(t, tn, 2*i+1, NULL);
814
815 BUG_ON(!right);
816
817 size = tnode_child_length(left);
818 for (j = 0; j < size; j++) {
819 put_child(t, left, j, inode->child[j]);
820 put_child(t, right, j, inode->child[j + size]);
821 }
822 put_child(t, tn, 2*i, resize(t, left));
823 put_child(t, tn, 2*i+1, resize(t, right));
824
825 tnode_free_safe(inode);
826 }
827 tnode_free_safe(oldtnode);
828 return tn;
829 nomem:
830 {
831 int size = tnode_child_length(tn);
832 int j;
833
834 for (j = 0; j < size; j++)
835 if (tn->child[j])
836 tnode_free((struct tnode *)tn->child[j]);
837
838 tnode_free(tn);
839
840 return ERR_PTR(-ENOMEM);
841 }
842 }
843
844 static struct tnode *halve(struct trie *t, struct tnode *tn)
845 {
846 struct tnode *oldtnode = tn;
847 struct node *left, *right;
848 int i;
849 int olen = tnode_child_length(tn);
850
851 pr_debug("In halve\n");
852
853 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
854
855 if (!tn)
856 return ERR_PTR(-ENOMEM);
857
858 /*
859 * Preallocate and store tnodes before the actual work so we
860 * don't get into an inconsistent state if memory allocation
861 * fails. In case of failure we return the oldnode and halve
862 * of tnode is ignored.
863 */
864
865 for (i = 0; i < olen; i += 2) {
866 left = tnode_get_child(oldtnode, i);
867 right = tnode_get_child(oldtnode, i+1);
868
869 /* Two nonempty children */
870 if (left && right) {
871 struct tnode *newn;
872
873 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
874
875 if (!newn)
876 goto nomem;
877
878 put_child(t, tn, i/2, (struct node *)newn);
879 }
880
881 }
882
883 for (i = 0; i < olen; i += 2) {
884 struct tnode *newBinNode;
885
886 left = tnode_get_child(oldtnode, i);
887 right = tnode_get_child(oldtnode, i+1);
888
889 /* At least one of the children is empty */
890 if (left == NULL) {
891 if (right == NULL) /* Both are empty */
892 continue;
893 put_child(t, tn, i/2, right);
894 continue;
895 }
896
897 if (right == NULL) {
898 put_child(t, tn, i/2, left);
899 continue;
900 }
901
902 /* Two nonempty children */
903 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904 put_child(t, tn, i/2, NULL);
905 put_child(t, newBinNode, 0, left);
906 put_child(t, newBinNode, 1, right);
907 put_child(t, tn, i/2, resize(t, newBinNode));
908 }
909 tnode_free_safe(oldtnode);
910 return tn;
911 nomem:
912 {
913 int size = tnode_child_length(tn);
914 int j;
915
916 for (j = 0; j < size; j++)
917 if (tn->child[j])
918 tnode_free((struct tnode *)tn->child[j]);
919
920 tnode_free(tn);
921
922 return ERR_PTR(-ENOMEM);
923 }
924 }
925
926 /* readside must use rcu_read_lock currently dump routines
927 via get_fa_head and dump */
928
929 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
930 {
931 struct hlist_head *head = &l->list;
932 struct hlist_node *node;
933 struct leaf_info *li;
934
935 hlist_for_each_entry_rcu(li, node, head, hlist)
936 if (li->plen == plen)
937 return li;
938
939 return NULL;
940 }
941
942 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
943 {
944 struct leaf_info *li = find_leaf_info(l, plen);
945
946 if (!li)
947 return NULL;
948
949 return &li->falh;
950 }
951
952 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
953 {
954 struct leaf_info *li = NULL, *last = NULL;
955 struct hlist_node *node;
956
957 if (hlist_empty(head)) {
958 hlist_add_head_rcu(&new->hlist, head);
959 } else {
960 hlist_for_each_entry(li, node, head, hlist) {
961 if (new->plen > li->plen)
962 break;
963
964 last = li;
965 }
966 if (last)
967 hlist_add_after_rcu(&last->hlist, &new->hlist);
968 else
969 hlist_add_before_rcu(&new->hlist, &li->hlist);
970 }
971 }
972
973 /* rcu_read_lock needs to be hold by caller from readside */
974
975 static struct leaf *
976 fib_find_node(struct trie *t, u32 key)
977 {
978 int pos;
979 struct tnode *tn;
980 struct node *n;
981
982 pos = 0;
983 n = rcu_dereference(t->trie);
984
985 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
986 tn = (struct tnode *) n;
987
988 check_tnode(tn);
989
990 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
991 pos = tn->pos + tn->bits;
992 n = tnode_get_child_rcu(tn,
993 tkey_extract_bits(key,
994 tn->pos,
995 tn->bits));
996 } else
997 break;
998 }
999 /* Case we have found a leaf. Compare prefixes */
1000
1001 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
1002 return (struct leaf *)n;
1003
1004 return NULL;
1005 }
1006
1007 static void trie_rebalance(struct trie *t, struct tnode *tn)
1008 {
1009 int wasfull;
1010 t_key cindex, key;
1011 struct tnode *tp;
1012
1013 key = tn->key;
1014
1015 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
1016 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1017 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
1018 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1019
1020 tnode_put_child_reorg((struct tnode *)tp, cindex,
1021 (struct node *)tn, wasfull);
1022
1023 tp = node_parent((struct node *) tn);
1024 if (!tp)
1025 rcu_assign_pointer(t->trie, (struct node *)tn);
1026
1027 tnode_free_flush();
1028 if (!tp)
1029 break;
1030 tn = tp;
1031 }
1032
1033 /* Handle last (top) tnode */
1034 if (IS_TNODE(tn))
1035 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1036
1037 rcu_assign_pointer(t->trie, (struct node *)tn);
1038 tnode_free_flush();
1039
1040 return;
1041 }
1042
1043 /* only used from updater-side */
1044
1045 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1046 {
1047 int pos, newpos;
1048 struct tnode *tp = NULL, *tn = NULL;
1049 struct node *n;
1050 struct leaf *l;
1051 int missbit;
1052 struct list_head *fa_head = NULL;
1053 struct leaf_info *li;
1054 t_key cindex;
1055
1056 pos = 0;
1057 n = t->trie;
1058
1059 /* If we point to NULL, stop. Either the tree is empty and we should
1060 * just put a new leaf in if, or we have reached an empty child slot,
1061 * and we should just put our new leaf in that.
1062 * If we point to a T_TNODE, check if it matches our key. Note that
1063 * a T_TNODE might be skipping any number of bits - its 'pos' need
1064 * not be the parent's 'pos'+'bits'!
1065 *
1066 * If it does match the current key, get pos/bits from it, extract
1067 * the index from our key, push the T_TNODE and walk the tree.
1068 *
1069 * If it doesn't, we have to replace it with a new T_TNODE.
1070 *
1071 * If we point to a T_LEAF, it might or might not have the same key
1072 * as we do. If it does, just change the value, update the T_LEAF's
1073 * value, and return it.
1074 * If it doesn't, we need to replace it with a T_TNODE.
1075 */
1076
1077 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1078 tn = (struct tnode *) n;
1079
1080 check_tnode(tn);
1081
1082 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1083 tp = tn;
1084 pos = tn->pos + tn->bits;
1085 n = tnode_get_child(tn,
1086 tkey_extract_bits(key,
1087 tn->pos,
1088 tn->bits));
1089
1090 BUG_ON(n && node_parent(n) != tn);
1091 } else
1092 break;
1093 }
1094
1095 /*
1096 * n ----> NULL, LEAF or TNODE
1097 *
1098 * tp is n's (parent) ----> NULL or TNODE
1099 */
1100
1101 BUG_ON(tp && IS_LEAF(tp));
1102
1103 /* Case 1: n is a leaf. Compare prefixes */
1104
1105 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1106 l = (struct leaf *) n;
1107 li = leaf_info_new(plen);
1108
1109 if (!li)
1110 return NULL;
1111
1112 fa_head = &li->falh;
1113 insert_leaf_info(&l->list, li);
1114 goto done;
1115 }
1116 l = leaf_new();
1117
1118 if (!l)
1119 return NULL;
1120
1121 l->key = key;
1122 li = leaf_info_new(plen);
1123
1124 if (!li) {
1125 free_leaf(l);
1126 return NULL;
1127 }
1128
1129 fa_head = &li->falh;
1130 insert_leaf_info(&l->list, li);
1131
1132 if (t->trie && n == NULL) {
1133 /* Case 2: n is NULL, and will just insert a new leaf */
1134
1135 node_set_parent((struct node *)l, tp);
1136
1137 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1138 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1139 } else {
1140 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1141 /*
1142 * Add a new tnode here
1143 * first tnode need some special handling
1144 */
1145
1146 if (tp)
1147 pos = tp->pos+tp->bits;
1148 else
1149 pos = 0;
1150
1151 if (n) {
1152 newpos = tkey_mismatch(key, pos, n->key);
1153 tn = tnode_new(n->key, newpos, 1);
1154 } else {
1155 newpos = 0;
1156 tn = tnode_new(key, newpos, 1); /* First tnode */
1157 }
1158
1159 if (!tn) {
1160 free_leaf_info(li);
1161 free_leaf(l);
1162 return NULL;
1163 }
1164
1165 node_set_parent((struct node *)tn, tp);
1166
1167 missbit = tkey_extract_bits(key, newpos, 1);
1168 put_child(t, tn, missbit, (struct node *)l);
1169 put_child(t, tn, 1-missbit, n);
1170
1171 if (tp) {
1172 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1173 put_child(t, (struct tnode *)tp, cindex,
1174 (struct node *)tn);
1175 } else {
1176 rcu_assign_pointer(t->trie, (struct node *)tn);
1177 tp = tn;
1178 }
1179 }
1180
1181 if (tp && tp->pos + tp->bits > 32)
1182 pr_warning("fib_trie"
1183 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1184 tp, tp->pos, tp->bits, key, plen);
1185
1186 /* Rebalance the trie */
1187
1188 trie_rebalance(t, tp);
1189 done:
1190 return fa_head;
1191 }
1192
1193 /*
1194 * Caller must hold RTNL.
1195 */
1196 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1197 {
1198 struct trie *t = (struct trie *) tb->tb_data;
1199 struct fib_alias *fa, *new_fa;
1200 struct list_head *fa_head = NULL;
1201 struct fib_info *fi;
1202 int plen = cfg->fc_dst_len;
1203 u8 tos = cfg->fc_tos;
1204 u32 key, mask;
1205 int err;
1206 struct leaf *l;
1207
1208 if (plen > 32)
1209 return -EINVAL;
1210
1211 key = ntohl(cfg->fc_dst);
1212
1213 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1214
1215 mask = ntohl(inet_make_mask(plen));
1216
1217 if (key & ~mask)
1218 return -EINVAL;
1219
1220 key = key & mask;
1221
1222 fi = fib_create_info(cfg);
1223 if (IS_ERR(fi)) {
1224 err = PTR_ERR(fi);
1225 goto err;
1226 }
1227
1228 l = fib_find_node(t, key);
1229 fa = NULL;
1230
1231 if (l) {
1232 fa_head = get_fa_head(l, plen);
1233 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1234 }
1235
1236 /* Now fa, if non-NULL, points to the first fib alias
1237 * with the same keys [prefix,tos,priority], if such key already
1238 * exists or to the node before which we will insert new one.
1239 *
1240 * If fa is NULL, we will need to allocate a new one and
1241 * insert to the head of f.
1242 *
1243 * If f is NULL, no fib node matched the destination key
1244 * and we need to allocate a new one of those as well.
1245 */
1246
1247 if (fa && fa->fa_tos == tos &&
1248 fa->fa_info->fib_priority == fi->fib_priority) {
1249 struct fib_alias *fa_first, *fa_match;
1250
1251 err = -EEXIST;
1252 if (cfg->fc_nlflags & NLM_F_EXCL)
1253 goto out;
1254
1255 /* We have 2 goals:
1256 * 1. Find exact match for type, scope, fib_info to avoid
1257 * duplicate routes
1258 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1259 */
1260 fa_match = NULL;
1261 fa_first = fa;
1262 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1263 list_for_each_entry_continue(fa, fa_head, fa_list) {
1264 if (fa->fa_tos != tos)
1265 break;
1266 if (fa->fa_info->fib_priority != fi->fib_priority)
1267 break;
1268 if (fa->fa_type == cfg->fc_type &&
1269 fa->fa_scope == cfg->fc_scope &&
1270 fa->fa_info == fi) {
1271 fa_match = fa;
1272 break;
1273 }
1274 }
1275
1276 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1277 struct fib_info *fi_drop;
1278 u8 state;
1279
1280 fa = fa_first;
1281 if (fa_match) {
1282 if (fa == fa_match)
1283 err = 0;
1284 goto out;
1285 }
1286 err = -ENOBUFS;
1287 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1288 if (new_fa == NULL)
1289 goto out;
1290
1291 fi_drop = fa->fa_info;
1292 new_fa->fa_tos = fa->fa_tos;
1293 new_fa->fa_info = fi;
1294 new_fa->fa_type = cfg->fc_type;
1295 new_fa->fa_scope = cfg->fc_scope;
1296 state = fa->fa_state;
1297 new_fa->fa_state = state & ~FA_S_ACCESSED;
1298
1299 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1300 alias_free_mem_rcu(fa);
1301
1302 fib_release_info(fi_drop);
1303 if (state & FA_S_ACCESSED)
1304 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1305 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1306 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1307
1308 goto succeeded;
1309 }
1310 /* Error if we find a perfect match which
1311 * uses the same scope, type, and nexthop
1312 * information.
1313 */
1314 if (fa_match)
1315 goto out;
1316
1317 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1318 fa = fa_first;
1319 }
1320 err = -ENOENT;
1321 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1322 goto out;
1323
1324 err = -ENOBUFS;
1325 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1326 if (new_fa == NULL)
1327 goto out;
1328
1329 new_fa->fa_info = fi;
1330 new_fa->fa_tos = tos;
1331 new_fa->fa_type = cfg->fc_type;
1332 new_fa->fa_scope = cfg->fc_scope;
1333 new_fa->fa_state = 0;
1334 /*
1335 * Insert new entry to the list.
1336 */
1337
1338 if (!fa_head) {
1339 fa_head = fib_insert_node(t, key, plen);
1340 if (unlikely(!fa_head)) {
1341 err = -ENOMEM;
1342 goto out_free_new_fa;
1343 }
1344 }
1345
1346 list_add_tail_rcu(&new_fa->fa_list,
1347 (fa ? &fa->fa_list : fa_head));
1348
1349 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1350 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1351 &cfg->fc_nlinfo, 0);
1352 succeeded:
1353 return 0;
1354
1355 out_free_new_fa:
1356 kmem_cache_free(fn_alias_kmem, new_fa);
1357 out:
1358 fib_release_info(fi);
1359 err:
1360 return err;
1361 }
1362
1363 /* should be called with rcu_read_lock */
1364 static int check_leaf(struct trie *t, struct leaf *l,
1365 t_key key, const struct flowi *flp,
1366 struct fib_result *res)
1367 {
1368 struct leaf_info *li;
1369 struct hlist_head *hhead = &l->list;
1370 struct hlist_node *node;
1371
1372 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1373 int err;
1374 int plen = li->plen;
1375 __be32 mask = inet_make_mask(plen);
1376
1377 if (l->key != (key & ntohl(mask)))
1378 continue;
1379
1380 err = fib_semantic_match(&li->falh, flp, res, plen);
1381
1382 #ifdef CONFIG_IP_FIB_TRIE_STATS
1383 if (err <= 0)
1384 t->stats.semantic_match_passed++;
1385 else
1386 t->stats.semantic_match_miss++;
1387 #endif
1388 if (err <= 0)
1389 return err;
1390 }
1391
1392 return 1;
1393 }
1394
1395 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1396 struct fib_result *res)
1397 {
1398 struct trie *t = (struct trie *) tb->tb_data;
1399 int ret;
1400 struct node *n;
1401 struct tnode *pn;
1402 int pos, bits;
1403 t_key key = ntohl(flp->fl4_dst);
1404 int chopped_off;
1405 t_key cindex = 0;
1406 int current_prefix_length = KEYLENGTH;
1407 struct tnode *cn;
1408 t_key node_prefix, key_prefix, pref_mismatch;
1409 int mp;
1410
1411 rcu_read_lock();
1412
1413 n = rcu_dereference(t->trie);
1414 if (!n)
1415 goto failed;
1416
1417 #ifdef CONFIG_IP_FIB_TRIE_STATS
1418 t->stats.gets++;
1419 #endif
1420
1421 /* Just a leaf? */
1422 if (IS_LEAF(n)) {
1423 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1424 goto found;
1425 }
1426
1427 pn = (struct tnode *) n;
1428 chopped_off = 0;
1429
1430 while (pn) {
1431 pos = pn->pos;
1432 bits = pn->bits;
1433
1434 if (!chopped_off)
1435 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1436 pos, bits);
1437
1438 n = tnode_get_child(pn, cindex);
1439
1440 if (n == NULL) {
1441 #ifdef CONFIG_IP_FIB_TRIE_STATS
1442 t->stats.null_node_hit++;
1443 #endif
1444 goto backtrace;
1445 }
1446
1447 if (IS_LEAF(n)) {
1448 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1449 if (ret > 0)
1450 goto backtrace;
1451 goto found;
1452 }
1453
1454 cn = (struct tnode *)n;
1455
1456 /*
1457 * It's a tnode, and we can do some extra checks here if we
1458 * like, to avoid descending into a dead-end branch.
1459 * This tnode is in the parent's child array at index
1460 * key[p_pos..p_pos+p_bits] but potentially with some bits
1461 * chopped off, so in reality the index may be just a
1462 * subprefix, padded with zero at the end.
1463 * We can also take a look at any skipped bits in this
1464 * tnode - everything up to p_pos is supposed to be ok,
1465 * and the non-chopped bits of the index (se previous
1466 * paragraph) are also guaranteed ok, but the rest is
1467 * considered unknown.
1468 *
1469 * The skipped bits are key[pos+bits..cn->pos].
1470 */
1471
1472 /* If current_prefix_length < pos+bits, we are already doing
1473 * actual prefix matching, which means everything from
1474 * pos+(bits-chopped_off) onward must be zero along some
1475 * branch of this subtree - otherwise there is *no* valid
1476 * prefix present. Here we can only check the skipped
1477 * bits. Remember, since we have already indexed into the
1478 * parent's child array, we know that the bits we chopped of
1479 * *are* zero.
1480 */
1481
1482 /* NOTA BENE: Checking only skipped bits
1483 for the new node here */
1484
1485 if (current_prefix_length < pos+bits) {
1486 if (tkey_extract_bits(cn->key, current_prefix_length,
1487 cn->pos - current_prefix_length)
1488 || !(cn->child[0]))
1489 goto backtrace;
1490 }
1491
1492 /*
1493 * If chopped_off=0, the index is fully validated and we
1494 * only need to look at the skipped bits for this, the new,
1495 * tnode. What we actually want to do is to find out if
1496 * these skipped bits match our key perfectly, or if we will
1497 * have to count on finding a matching prefix further down,
1498 * because if we do, we would like to have some way of
1499 * verifying the existence of such a prefix at this point.
1500 */
1501
1502 /* The only thing we can do at this point is to verify that
1503 * any such matching prefix can indeed be a prefix to our
1504 * key, and if the bits in the node we are inspecting that
1505 * do not match our key are not ZERO, this cannot be true.
1506 * Thus, find out where there is a mismatch (before cn->pos)
1507 * and verify that all the mismatching bits are zero in the
1508 * new tnode's key.
1509 */
1510
1511 /*
1512 * Note: We aren't very concerned about the piece of
1513 * the key that precede pn->pos+pn->bits, since these
1514 * have already been checked. The bits after cn->pos
1515 * aren't checked since these are by definition
1516 * "unknown" at this point. Thus, what we want to see
1517 * is if we are about to enter the "prefix matching"
1518 * state, and in that case verify that the skipped
1519 * bits that will prevail throughout this subtree are
1520 * zero, as they have to be if we are to find a
1521 * matching prefix.
1522 */
1523
1524 node_prefix = mask_pfx(cn->key, cn->pos);
1525 key_prefix = mask_pfx(key, cn->pos);
1526 pref_mismatch = key_prefix^node_prefix;
1527 mp = 0;
1528
1529 /*
1530 * In short: If skipped bits in this node do not match
1531 * the search key, enter the "prefix matching"
1532 * state.directly.
1533 */
1534 if (pref_mismatch) {
1535 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1536 mp++;
1537 pref_mismatch = pref_mismatch << 1;
1538 }
1539 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1540
1541 if (key_prefix != 0)
1542 goto backtrace;
1543
1544 if (current_prefix_length >= cn->pos)
1545 current_prefix_length = mp;
1546 }
1547
1548 pn = (struct tnode *)n; /* Descend */
1549 chopped_off = 0;
1550 continue;
1551
1552 backtrace:
1553 chopped_off++;
1554
1555 /* As zero don't change the child key (cindex) */
1556 while ((chopped_off <= pn->bits)
1557 && !(cindex & (1<<(chopped_off-1))))
1558 chopped_off++;
1559
1560 /* Decrease current_... with bits chopped off */
1561 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1562 current_prefix_length = pn->pos + pn->bits
1563 - chopped_off;
1564
1565 /*
1566 * Either we do the actual chop off according or if we have
1567 * chopped off all bits in this tnode walk up to our parent.
1568 */
1569
1570 if (chopped_off <= pn->bits) {
1571 cindex &= ~(1 << (chopped_off-1));
1572 } else {
1573 struct tnode *parent = node_parent((struct node *) pn);
1574 if (!parent)
1575 goto failed;
1576
1577 /* Get Child's index */
1578 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1579 pn = parent;
1580 chopped_off = 0;
1581
1582 #ifdef CONFIG_IP_FIB_TRIE_STATS
1583 t->stats.backtrack++;
1584 #endif
1585 goto backtrace;
1586 }
1587 }
1588 failed:
1589 ret = 1;
1590 found:
1591 rcu_read_unlock();
1592 return ret;
1593 }
1594
1595 /*
1596 * Remove the leaf and return parent.
1597 */
1598 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1599 {
1600 struct tnode *tp = node_parent((struct node *) l);
1601
1602 pr_debug("entering trie_leaf_remove(%p)\n", l);
1603
1604 if (tp) {
1605 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1606 put_child(t, (struct tnode *)tp, cindex, NULL);
1607 trie_rebalance(t, tp);
1608 } else
1609 rcu_assign_pointer(t->trie, NULL);
1610
1611 free_leaf(l);
1612 }
1613
1614 /*
1615 * Caller must hold RTNL.
1616 */
1617 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1618 {
1619 struct trie *t = (struct trie *) tb->tb_data;
1620 u32 key, mask;
1621 int plen = cfg->fc_dst_len;
1622 u8 tos = cfg->fc_tos;
1623 struct fib_alias *fa, *fa_to_delete;
1624 struct list_head *fa_head;
1625 struct leaf *l;
1626 struct leaf_info *li;
1627
1628 if (plen > 32)
1629 return -EINVAL;
1630
1631 key = ntohl(cfg->fc_dst);
1632 mask = ntohl(inet_make_mask(plen));
1633
1634 if (key & ~mask)
1635 return -EINVAL;
1636
1637 key = key & mask;
1638 l = fib_find_node(t, key);
1639
1640 if (!l)
1641 return -ESRCH;
1642
1643 fa_head = get_fa_head(l, plen);
1644 fa = fib_find_alias(fa_head, tos, 0);
1645
1646 if (!fa)
1647 return -ESRCH;
1648
1649 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1650
1651 fa_to_delete = NULL;
1652 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1653 list_for_each_entry_continue(fa, fa_head, fa_list) {
1654 struct fib_info *fi = fa->fa_info;
1655
1656 if (fa->fa_tos != tos)
1657 break;
1658
1659 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1660 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1661 fa->fa_scope == cfg->fc_scope) &&
1662 (!cfg->fc_protocol ||
1663 fi->fib_protocol == cfg->fc_protocol) &&
1664 fib_nh_match(cfg, fi) == 0) {
1665 fa_to_delete = fa;
1666 break;
1667 }
1668 }
1669
1670 if (!fa_to_delete)
1671 return -ESRCH;
1672
1673 fa = fa_to_delete;
1674 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1675 &cfg->fc_nlinfo, 0);
1676
1677 l = fib_find_node(t, key);
1678 li = find_leaf_info(l, plen);
1679
1680 list_del_rcu(&fa->fa_list);
1681
1682 if (list_empty(fa_head)) {
1683 hlist_del_rcu(&li->hlist);
1684 free_leaf_info(li);
1685 }
1686
1687 if (hlist_empty(&l->list))
1688 trie_leaf_remove(t, l);
1689
1690 if (fa->fa_state & FA_S_ACCESSED)
1691 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
1692
1693 fib_release_info(fa->fa_info);
1694 alias_free_mem_rcu(fa);
1695 return 0;
1696 }
1697
1698 static int trie_flush_list(struct list_head *head)
1699 {
1700 struct fib_alias *fa, *fa_node;
1701 int found = 0;
1702
1703 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1704 struct fib_info *fi = fa->fa_info;
1705
1706 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1707 list_del_rcu(&fa->fa_list);
1708 fib_release_info(fa->fa_info);
1709 alias_free_mem_rcu(fa);
1710 found++;
1711 }
1712 }
1713 return found;
1714 }
1715
1716 static int trie_flush_leaf(struct leaf *l)
1717 {
1718 int found = 0;
1719 struct hlist_head *lih = &l->list;
1720 struct hlist_node *node, *tmp;
1721 struct leaf_info *li = NULL;
1722
1723 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1724 found += trie_flush_list(&li->falh);
1725
1726 if (list_empty(&li->falh)) {
1727 hlist_del_rcu(&li->hlist);
1728 free_leaf_info(li);
1729 }
1730 }
1731 return found;
1732 }
1733
1734 /*
1735 * Scan for the next right leaf starting at node p->child[idx]
1736 * Since we have back pointer, no recursion necessary.
1737 */
1738 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1739 {
1740 do {
1741 t_key idx;
1742
1743 if (c)
1744 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1745 else
1746 idx = 0;
1747
1748 while (idx < 1u << p->bits) {
1749 c = tnode_get_child_rcu(p, idx++);
1750 if (!c)
1751 continue;
1752
1753 if (IS_LEAF(c)) {
1754 prefetch(p->child[idx]);
1755 return (struct leaf *) c;
1756 }
1757
1758 /* Rescan start scanning in new node */
1759 p = (struct tnode *) c;
1760 idx = 0;
1761 }
1762
1763 /* Node empty, walk back up to parent */
1764 c = (struct node *) p;
1765 } while ( (p = node_parent_rcu(c)) != NULL);
1766
1767 return NULL; /* Root of trie */
1768 }
1769
1770 static struct leaf *trie_firstleaf(struct trie *t)
1771 {
1772 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1773
1774 if (!n)
1775 return NULL;
1776
1777 if (IS_LEAF(n)) /* trie is just a leaf */
1778 return (struct leaf *) n;
1779
1780 return leaf_walk_rcu(n, NULL);
1781 }
1782
1783 static struct leaf *trie_nextleaf(struct leaf *l)
1784 {
1785 struct node *c = (struct node *) l;
1786 struct tnode *p = node_parent(c);
1787
1788 if (!p)
1789 return NULL; /* trie with just one leaf */
1790
1791 return leaf_walk_rcu(p, c);
1792 }
1793
1794 static struct leaf *trie_leafindex(struct trie *t, int index)
1795 {
1796 struct leaf *l = trie_firstleaf(t);
1797
1798 while (l && index-- > 0)
1799 l = trie_nextleaf(l);
1800
1801 return l;
1802 }
1803
1804
1805 /*
1806 * Caller must hold RTNL.
1807 */
1808 static int fn_trie_flush(struct fib_table *tb)
1809 {
1810 struct trie *t = (struct trie *) tb->tb_data;
1811 struct leaf *l, *ll = NULL;
1812 int found = 0;
1813
1814 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1815 found += trie_flush_leaf(l);
1816
1817 if (ll && hlist_empty(&ll->list))
1818 trie_leaf_remove(t, ll);
1819 ll = l;
1820 }
1821
1822 if (ll && hlist_empty(&ll->list))
1823 trie_leaf_remove(t, ll);
1824
1825 pr_debug("trie_flush found=%d\n", found);
1826 return found;
1827 }
1828
1829 static void fn_trie_select_default(struct fib_table *tb,
1830 const struct flowi *flp,
1831 struct fib_result *res)
1832 {
1833 struct trie *t = (struct trie *) tb->tb_data;
1834 int order, last_idx;
1835 struct fib_info *fi = NULL;
1836 struct fib_info *last_resort;
1837 struct fib_alias *fa = NULL;
1838 struct list_head *fa_head;
1839 struct leaf *l;
1840
1841 last_idx = -1;
1842 last_resort = NULL;
1843 order = -1;
1844
1845 rcu_read_lock();
1846
1847 l = fib_find_node(t, 0);
1848 if (!l)
1849 goto out;
1850
1851 fa_head = get_fa_head(l, 0);
1852 if (!fa_head)
1853 goto out;
1854
1855 if (list_empty(fa_head))
1856 goto out;
1857
1858 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1859 struct fib_info *next_fi = fa->fa_info;
1860
1861 if (fa->fa_scope != res->scope ||
1862 fa->fa_type != RTN_UNICAST)
1863 continue;
1864
1865 if (next_fi->fib_priority > res->fi->fib_priority)
1866 break;
1867 if (!next_fi->fib_nh[0].nh_gw ||
1868 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1869 continue;
1870 fa->fa_state |= FA_S_ACCESSED;
1871
1872 if (fi == NULL) {
1873 if (next_fi != res->fi)
1874 break;
1875 } else if (!fib_detect_death(fi, order, &last_resort,
1876 &last_idx, tb->tb_default)) {
1877 fib_result_assign(res, fi);
1878 tb->tb_default = order;
1879 goto out;
1880 }
1881 fi = next_fi;
1882 order++;
1883 }
1884 if (order <= 0 || fi == NULL) {
1885 tb->tb_default = -1;
1886 goto out;
1887 }
1888
1889 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1890 tb->tb_default)) {
1891 fib_result_assign(res, fi);
1892 tb->tb_default = order;
1893 goto out;
1894 }
1895 if (last_idx >= 0)
1896 fib_result_assign(res, last_resort);
1897 tb->tb_default = last_idx;
1898 out:
1899 rcu_read_unlock();
1900 }
1901
1902 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1903 struct fib_table *tb,
1904 struct sk_buff *skb, struct netlink_callback *cb)
1905 {
1906 int i, s_i;
1907 struct fib_alias *fa;
1908 __be32 xkey = htonl(key);
1909
1910 s_i = cb->args[5];
1911 i = 0;
1912
1913 /* rcu_read_lock is hold by caller */
1914
1915 list_for_each_entry_rcu(fa, fah, fa_list) {
1916 if (i < s_i) {
1917 i++;
1918 continue;
1919 }
1920
1921 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1922 cb->nlh->nlmsg_seq,
1923 RTM_NEWROUTE,
1924 tb->tb_id,
1925 fa->fa_type,
1926 fa->fa_scope,
1927 xkey,
1928 plen,
1929 fa->fa_tos,
1930 fa->fa_info, NLM_F_MULTI) < 0) {
1931 cb->args[5] = i;
1932 return -1;
1933 }
1934 i++;
1935 }
1936 cb->args[5] = i;
1937 return skb->len;
1938 }
1939
1940 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1941 struct sk_buff *skb, struct netlink_callback *cb)
1942 {
1943 struct leaf_info *li;
1944 struct hlist_node *node;
1945 int i, s_i;
1946
1947 s_i = cb->args[4];
1948 i = 0;
1949
1950 /* rcu_read_lock is hold by caller */
1951 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1952 if (i < s_i) {
1953 i++;
1954 continue;
1955 }
1956
1957 if (i > s_i)
1958 cb->args[5] = 0;
1959
1960 if (list_empty(&li->falh))
1961 continue;
1962
1963 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1964 cb->args[4] = i;
1965 return -1;
1966 }
1967 i++;
1968 }
1969
1970 cb->args[4] = i;
1971 return skb->len;
1972 }
1973
1974 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1975 struct netlink_callback *cb)
1976 {
1977 struct leaf *l;
1978 struct trie *t = (struct trie *) tb->tb_data;
1979 t_key key = cb->args[2];
1980 int count = cb->args[3];
1981
1982 rcu_read_lock();
1983 /* Dump starting at last key.
1984 * Note: 0.0.0.0/0 (ie default) is first key.
1985 */
1986 if (count == 0)
1987 l = trie_firstleaf(t);
1988 else {
1989 /* Normally, continue from last key, but if that is missing
1990 * fallback to using slow rescan
1991 */
1992 l = fib_find_node(t, key);
1993 if (!l)
1994 l = trie_leafindex(t, count);
1995 }
1996
1997 while (l) {
1998 cb->args[2] = l->key;
1999 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
2000 cb->args[3] = count;
2001 rcu_read_unlock();
2002 return -1;
2003 }
2004
2005 ++count;
2006 l = trie_nextleaf(l);
2007 memset(&cb->args[4], 0,
2008 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2009 }
2010 cb->args[3] = count;
2011 rcu_read_unlock();
2012
2013 return skb->len;
2014 }
2015
2016 void __init fib_hash_init(void)
2017 {
2018 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2019 sizeof(struct fib_alias),
2020 0, SLAB_PANIC, NULL);
2021
2022 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2023 max(sizeof(struct leaf),
2024 sizeof(struct leaf_info)),
2025 0, SLAB_PANIC, NULL);
2026 }
2027
2028
2029 /* Fix more generic FIB names for init later */
2030 struct fib_table *fib_hash_table(u32 id)
2031 {
2032 struct fib_table *tb;
2033 struct trie *t;
2034
2035 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2036 GFP_KERNEL);
2037 if (tb == NULL)
2038 return NULL;
2039
2040 tb->tb_id = id;
2041 tb->tb_default = -1;
2042 tb->tb_lookup = fn_trie_lookup;
2043 tb->tb_insert = fn_trie_insert;
2044 tb->tb_delete = fn_trie_delete;
2045 tb->tb_flush = fn_trie_flush;
2046 tb->tb_select_default = fn_trie_select_default;
2047 tb->tb_dump = fn_trie_dump;
2048
2049 t = (struct trie *) tb->tb_data;
2050 memset(t, 0, sizeof(*t));
2051
2052 if (id == RT_TABLE_LOCAL)
2053 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
2054
2055 return tb;
2056 }
2057
2058 #ifdef CONFIG_PROC_FS
2059 /* Depth first Trie walk iterator */
2060 struct fib_trie_iter {
2061 struct seq_net_private p;
2062 struct fib_table *tb;
2063 struct tnode *tnode;
2064 unsigned index;
2065 unsigned depth;
2066 };
2067
2068 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2069 {
2070 struct tnode *tn = iter->tnode;
2071 unsigned cindex = iter->index;
2072 struct tnode *p;
2073
2074 /* A single entry routing table */
2075 if (!tn)
2076 return NULL;
2077
2078 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2079 iter->tnode, iter->index, iter->depth);
2080 rescan:
2081 while (cindex < (1<<tn->bits)) {
2082 struct node *n = tnode_get_child_rcu(tn, cindex);
2083
2084 if (n) {
2085 if (IS_LEAF(n)) {
2086 iter->tnode = tn;
2087 iter->index = cindex + 1;
2088 } else {
2089 /* push down one level */
2090 iter->tnode = (struct tnode *) n;
2091 iter->index = 0;
2092 ++iter->depth;
2093 }
2094 return n;
2095 }
2096
2097 ++cindex;
2098 }
2099
2100 /* Current node exhausted, pop back up */
2101 p = node_parent_rcu((struct node *)tn);
2102 if (p) {
2103 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2104 tn = p;
2105 --iter->depth;
2106 goto rescan;
2107 }
2108
2109 /* got root? */
2110 return NULL;
2111 }
2112
2113 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2114 struct trie *t)
2115 {
2116 struct node *n;
2117
2118 if (!t)
2119 return NULL;
2120
2121 n = rcu_dereference(t->trie);
2122 if (!n)
2123 return NULL;
2124
2125 if (IS_TNODE(n)) {
2126 iter->tnode = (struct tnode *) n;
2127 iter->index = 0;
2128 iter->depth = 1;
2129 } else {
2130 iter->tnode = NULL;
2131 iter->index = 0;
2132 iter->depth = 0;
2133 }
2134
2135 return n;
2136 }
2137
2138 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2139 {
2140 struct node *n;
2141 struct fib_trie_iter iter;
2142
2143 memset(s, 0, sizeof(*s));
2144
2145 rcu_read_lock();
2146 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2147 if (IS_LEAF(n)) {
2148 struct leaf *l = (struct leaf *)n;
2149 struct leaf_info *li;
2150 struct hlist_node *tmp;
2151
2152 s->leaves++;
2153 s->totdepth += iter.depth;
2154 if (iter.depth > s->maxdepth)
2155 s->maxdepth = iter.depth;
2156
2157 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2158 ++s->prefixes;
2159 } else {
2160 const struct tnode *tn = (const struct tnode *) n;
2161 int i;
2162
2163 s->tnodes++;
2164 if (tn->bits < MAX_STAT_DEPTH)
2165 s->nodesizes[tn->bits]++;
2166
2167 for (i = 0; i < (1<<tn->bits); i++)
2168 if (!tn->child[i])
2169 s->nullpointers++;
2170 }
2171 }
2172 rcu_read_unlock();
2173 }
2174
2175 /*
2176 * This outputs /proc/net/fib_triestats
2177 */
2178 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2179 {
2180 unsigned i, max, pointers, bytes, avdepth;
2181
2182 if (stat->leaves)
2183 avdepth = stat->totdepth*100 / stat->leaves;
2184 else
2185 avdepth = 0;
2186
2187 seq_printf(seq, "\tAver depth: %u.%02d\n",
2188 avdepth / 100, avdepth % 100);
2189 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2190
2191 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2192 bytes = sizeof(struct leaf) * stat->leaves;
2193
2194 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2195 bytes += sizeof(struct leaf_info) * stat->prefixes;
2196
2197 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2198 bytes += sizeof(struct tnode) * stat->tnodes;
2199
2200 max = MAX_STAT_DEPTH;
2201 while (max > 0 && stat->nodesizes[max-1] == 0)
2202 max--;
2203
2204 pointers = 0;
2205 for (i = 1; i <= max; i++)
2206 if (stat->nodesizes[i] != 0) {
2207 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2208 pointers += (1<<i) * stat->nodesizes[i];
2209 }
2210 seq_putc(seq, '\n');
2211 seq_printf(seq, "\tPointers: %u\n", pointers);
2212
2213 bytes += sizeof(struct node *) * pointers;
2214 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2215 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2216 }
2217
2218 #ifdef CONFIG_IP_FIB_TRIE_STATS
2219 static void trie_show_usage(struct seq_file *seq,
2220 const struct trie_use_stats *stats)
2221 {
2222 seq_printf(seq, "\nCounters:\n---------\n");
2223 seq_printf(seq, "gets = %u\n", stats->gets);
2224 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2225 seq_printf(seq, "semantic match passed = %u\n",
2226 stats->semantic_match_passed);
2227 seq_printf(seq, "semantic match miss = %u\n",
2228 stats->semantic_match_miss);
2229 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2230 seq_printf(seq, "skipped node resize = %u\n\n",
2231 stats->resize_node_skipped);
2232 }
2233 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2234
2235 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2236 {
2237 if (tb->tb_id == RT_TABLE_LOCAL)
2238 seq_puts(seq, "Local:\n");
2239 else if (tb->tb_id == RT_TABLE_MAIN)
2240 seq_puts(seq, "Main:\n");
2241 else
2242 seq_printf(seq, "Id %d:\n", tb->tb_id);
2243 }
2244
2245
2246 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2247 {
2248 struct net *net = (struct net *)seq->private;
2249 unsigned int h;
2250
2251 seq_printf(seq,
2252 "Basic info: size of leaf:"
2253 " %Zd bytes, size of tnode: %Zd bytes.\n",
2254 sizeof(struct leaf), sizeof(struct tnode));
2255
2256 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2257 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2258 struct hlist_node *node;
2259 struct fib_table *tb;
2260
2261 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2262 struct trie *t = (struct trie *) tb->tb_data;
2263 struct trie_stat stat;
2264
2265 if (!t)
2266 continue;
2267
2268 fib_table_print(seq, tb);
2269
2270 trie_collect_stats(t, &stat);
2271 trie_show_stats(seq, &stat);
2272 #ifdef CONFIG_IP_FIB_TRIE_STATS
2273 trie_show_usage(seq, &t->stats);
2274 #endif
2275 }
2276 }
2277
2278 return 0;
2279 }
2280
2281 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2282 {
2283 return single_open_net(inode, file, fib_triestat_seq_show);
2284 }
2285
2286 static const struct file_operations fib_triestat_fops = {
2287 .owner = THIS_MODULE,
2288 .open = fib_triestat_seq_open,
2289 .read = seq_read,
2290 .llseek = seq_lseek,
2291 .release = single_release_net,
2292 };
2293
2294 static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2295 {
2296 struct fib_trie_iter *iter = seq->private;
2297 struct net *net = seq_file_net(seq);
2298 loff_t idx = 0;
2299 unsigned int h;
2300
2301 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2302 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2303 struct hlist_node *node;
2304 struct fib_table *tb;
2305
2306 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2307 struct node *n;
2308
2309 for (n = fib_trie_get_first(iter,
2310 (struct trie *) tb->tb_data);
2311 n; n = fib_trie_get_next(iter))
2312 if (pos == idx++) {
2313 iter->tb = tb;
2314 return n;
2315 }
2316 }
2317 }
2318
2319 return NULL;
2320 }
2321
2322 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2323 __acquires(RCU)
2324 {
2325 rcu_read_lock();
2326 return fib_trie_get_idx(seq, *pos);
2327 }
2328
2329 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2330 {
2331 struct fib_trie_iter *iter = seq->private;
2332 struct net *net = seq_file_net(seq);
2333 struct fib_table *tb = iter->tb;
2334 struct hlist_node *tb_node;
2335 unsigned int h;
2336 struct node *n;
2337
2338 ++*pos;
2339 /* next node in same table */
2340 n = fib_trie_get_next(iter);
2341 if (n)
2342 return n;
2343
2344 /* walk rest of this hash chain */
2345 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2346 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2347 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2348 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2349 if (n)
2350 goto found;
2351 }
2352
2353 /* new hash chain */
2354 while (++h < FIB_TABLE_HASHSZ) {
2355 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2356 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2357 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2358 if (n)
2359 goto found;
2360 }
2361 }
2362 return NULL;
2363
2364 found:
2365 iter->tb = tb;
2366 return n;
2367 }
2368
2369 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2370 __releases(RCU)
2371 {
2372 rcu_read_unlock();
2373 }
2374
2375 static void seq_indent(struct seq_file *seq, int n)
2376 {
2377 while (n-- > 0) seq_puts(seq, " ");
2378 }
2379
2380 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2381 {
2382 switch (s) {
2383 case RT_SCOPE_UNIVERSE: return "universe";
2384 case RT_SCOPE_SITE: return "site";
2385 case RT_SCOPE_LINK: return "link";
2386 case RT_SCOPE_HOST: return "host";
2387 case RT_SCOPE_NOWHERE: return "nowhere";
2388 default:
2389 snprintf(buf, len, "scope=%d", s);
2390 return buf;
2391 }
2392 }
2393
2394 static const char *rtn_type_names[__RTN_MAX] = {
2395 [RTN_UNSPEC] = "UNSPEC",
2396 [RTN_UNICAST] = "UNICAST",
2397 [RTN_LOCAL] = "LOCAL",
2398 [RTN_BROADCAST] = "BROADCAST",
2399 [RTN_ANYCAST] = "ANYCAST",
2400 [RTN_MULTICAST] = "MULTICAST",
2401 [RTN_BLACKHOLE] = "BLACKHOLE",
2402 [RTN_UNREACHABLE] = "UNREACHABLE",
2403 [RTN_PROHIBIT] = "PROHIBIT",
2404 [RTN_THROW] = "THROW",
2405 [RTN_NAT] = "NAT",
2406 [RTN_XRESOLVE] = "XRESOLVE",
2407 };
2408
2409 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2410 {
2411 if (t < __RTN_MAX && rtn_type_names[t])
2412 return rtn_type_names[t];
2413 snprintf(buf, len, "type %u", t);
2414 return buf;
2415 }
2416
2417 /* Pretty print the trie */
2418 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2419 {
2420 const struct fib_trie_iter *iter = seq->private;
2421 struct node *n = v;
2422
2423 if (!node_parent_rcu(n))
2424 fib_table_print(seq, iter->tb);
2425
2426 if (IS_TNODE(n)) {
2427 struct tnode *tn = (struct tnode *) n;
2428 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2429
2430 seq_indent(seq, iter->depth-1);
2431 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2432 &prf, tn->pos, tn->bits, tn->full_children,
2433 tn->empty_children);
2434
2435 } else {
2436 struct leaf *l = (struct leaf *) n;
2437 struct leaf_info *li;
2438 struct hlist_node *node;
2439 __be32 val = htonl(l->key);
2440
2441 seq_indent(seq, iter->depth);
2442 seq_printf(seq, " |-- %pI4\n", &val);
2443
2444 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2445 struct fib_alias *fa;
2446
2447 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2448 char buf1[32], buf2[32];
2449
2450 seq_indent(seq, iter->depth+1);
2451 seq_printf(seq, " /%d %s %s", li->plen,
2452 rtn_scope(buf1, sizeof(buf1),
2453 fa->fa_scope),
2454 rtn_type(buf2, sizeof(buf2),
2455 fa->fa_type));
2456 if (fa->fa_tos)
2457 seq_printf(seq, " tos=%d", fa->fa_tos);
2458 seq_putc(seq, '\n');
2459 }
2460 }
2461 }
2462
2463 return 0;
2464 }
2465
2466 static const struct seq_operations fib_trie_seq_ops = {
2467 .start = fib_trie_seq_start,
2468 .next = fib_trie_seq_next,
2469 .stop = fib_trie_seq_stop,
2470 .show = fib_trie_seq_show,
2471 };
2472
2473 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2474 {
2475 return seq_open_net(inode, file, &fib_trie_seq_ops,
2476 sizeof(struct fib_trie_iter));
2477 }
2478
2479 static const struct file_operations fib_trie_fops = {
2480 .owner = THIS_MODULE,
2481 .open = fib_trie_seq_open,
2482 .read = seq_read,
2483 .llseek = seq_lseek,
2484 .release = seq_release_net,
2485 };
2486
2487 struct fib_route_iter {
2488 struct seq_net_private p;
2489 struct trie *main_trie;
2490 loff_t pos;
2491 t_key key;
2492 };
2493
2494 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2495 {
2496 struct leaf *l = NULL;
2497 struct trie *t = iter->main_trie;
2498
2499 /* use cache location of last found key */
2500 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2501 pos -= iter->pos;
2502 else {
2503 iter->pos = 0;
2504 l = trie_firstleaf(t);
2505 }
2506
2507 while (l && pos-- > 0) {
2508 iter->pos++;
2509 l = trie_nextleaf(l);
2510 }
2511
2512 if (l)
2513 iter->key = pos; /* remember it */
2514 else
2515 iter->pos = 0; /* forget it */
2516
2517 return l;
2518 }
2519
2520 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2521 __acquires(RCU)
2522 {
2523 struct fib_route_iter *iter = seq->private;
2524 struct fib_table *tb;
2525
2526 rcu_read_lock();
2527 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2528 if (!tb)
2529 return NULL;
2530
2531 iter->main_trie = (struct trie *) tb->tb_data;
2532 if (*pos == 0)
2533 return SEQ_START_TOKEN;
2534 else
2535 return fib_route_get_idx(iter, *pos - 1);
2536 }
2537
2538 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2539 {
2540 struct fib_route_iter *iter = seq->private;
2541 struct leaf *l = v;
2542
2543 ++*pos;
2544 if (v == SEQ_START_TOKEN) {
2545 iter->pos = 0;
2546 l = trie_firstleaf(iter->main_trie);
2547 } else {
2548 iter->pos++;
2549 l = trie_nextleaf(l);
2550 }
2551
2552 if (l)
2553 iter->key = l->key;
2554 else
2555 iter->pos = 0;
2556 return l;
2557 }
2558
2559 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2560 __releases(RCU)
2561 {
2562 rcu_read_unlock();
2563 }
2564
2565 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2566 {
2567 static unsigned type2flags[RTN_MAX + 1] = {
2568 [7] = RTF_REJECT, [8] = RTF_REJECT,
2569 };
2570 unsigned flags = type2flags[type];
2571
2572 if (fi && fi->fib_nh->nh_gw)
2573 flags |= RTF_GATEWAY;
2574 if (mask == htonl(0xFFFFFFFF))
2575 flags |= RTF_HOST;
2576 flags |= RTF_UP;
2577 return flags;
2578 }
2579
2580 /*
2581 * This outputs /proc/net/route.
2582 * The format of the file is not supposed to be changed
2583 * and needs to be same as fib_hash output to avoid breaking
2584 * legacy utilities
2585 */
2586 static int fib_route_seq_show(struct seq_file *seq, void *v)
2587 {
2588 struct leaf *l = v;
2589 struct leaf_info *li;
2590 struct hlist_node *node;
2591
2592 if (v == SEQ_START_TOKEN) {
2593 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2594 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2595 "\tWindow\tIRTT");
2596 return 0;
2597 }
2598
2599 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2600 struct fib_alias *fa;
2601 __be32 mask, prefix;
2602
2603 mask = inet_make_mask(li->plen);
2604 prefix = htonl(l->key);
2605
2606 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2607 const struct fib_info *fi = fa->fa_info;
2608 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2609 int len;
2610
2611 if (fa->fa_type == RTN_BROADCAST
2612 || fa->fa_type == RTN_MULTICAST)
2613 continue;
2614
2615 if (fi)
2616 seq_printf(seq,
2617 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2618 "%d\t%08X\t%d\t%u\t%u%n",
2619 fi->fib_dev ? fi->fib_dev->name : "*",
2620 prefix,
2621 fi->fib_nh->nh_gw, flags, 0, 0,
2622 fi->fib_priority,
2623 mask,
2624 (fi->fib_advmss ?
2625 fi->fib_advmss + 40 : 0),
2626 fi->fib_window,
2627 fi->fib_rtt >> 3, &len);
2628 else
2629 seq_printf(seq,
2630 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2631 "%d\t%08X\t%d\t%u\t%u%n",
2632 prefix, 0, flags, 0, 0, 0,
2633 mask, 0, 0, 0, &len);
2634
2635 seq_printf(seq, "%*s\n", 127 - len, "");
2636 }
2637 }
2638
2639 return 0;
2640 }
2641
2642 static const struct seq_operations fib_route_seq_ops = {
2643 .start = fib_route_seq_start,
2644 .next = fib_route_seq_next,
2645 .stop = fib_route_seq_stop,
2646 .show = fib_route_seq_show,
2647 };
2648
2649 static int fib_route_seq_open(struct inode *inode, struct file *file)
2650 {
2651 return seq_open_net(inode, file, &fib_route_seq_ops,
2652 sizeof(struct fib_route_iter));
2653 }
2654
2655 static const struct file_operations fib_route_fops = {
2656 .owner = THIS_MODULE,
2657 .open = fib_route_seq_open,
2658 .read = seq_read,
2659 .llseek = seq_lseek,
2660 .release = seq_release_net,
2661 };
2662
2663 int __net_init fib_proc_init(struct net *net)
2664 {
2665 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2666 goto out1;
2667
2668 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2669 &fib_triestat_fops))
2670 goto out2;
2671
2672 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2673 goto out3;
2674
2675 return 0;
2676
2677 out3:
2678 proc_net_remove(net, "fib_triestat");
2679 out2:
2680 proc_net_remove(net, "fib_trie");
2681 out1:
2682 return -ENOMEM;
2683 }
2684
2685 void __net_exit fib_proc_exit(struct net *net)
2686 {
2687 proc_net_remove(net, "fib_trie");
2688 proc_net_remove(net, "fib_triestat");
2689 proc_net_remove(net, "route");
2690 }
2691
2692 #endif /* CONFIG_PROC_FS */
This page took 0.141995 seconds and 6 git commands to generate.