[FIB]: full_children & empty_children should be uint, not ushort
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
127 };
128
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
137 };
138 #endif
139
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int nodesizes[MAX_STAT_DEPTH];
147 };
148
149 struct trie {
150 struct node *trie;
151 #ifdef CONFIG_IP_FIB_TRIE_STATS
152 struct trie_use_stats stats;
153 #endif
154 int size;
155 };
156
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
159 static struct node *resize(struct trie *t, struct tnode *tn);
160 static struct tnode *inflate(struct trie *t, struct tnode *tn);
161 static struct tnode *halve(struct trie *t, struct tnode *tn);
162 static void tnode_free(struct tnode *tn);
163
164 static struct kmem_cache *fn_alias_kmem __read_mostly;
165
166 static inline struct tnode *node_parent(struct node *node)
167 {
168 struct tnode *ret;
169
170 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 return rcu_dereference(ret);
172 }
173
174 static inline void node_set_parent(struct node *node, struct tnode *ptr)
175 {
176 rcu_assign_pointer(node->parent,
177 (unsigned long)ptr | NODE_TYPE(node));
178 }
179
180 /* rcu_read_lock needs to be hold by caller from readside */
181
182 static inline struct node *tnode_get_child(struct tnode *tn, int i)
183 {
184 BUG_ON(i >= 1 << tn->bits);
185
186 return rcu_dereference(tn->child[i]);
187 }
188
189 static inline int tnode_child_length(const struct tnode *tn)
190 {
191 return 1 << tn->bits;
192 }
193
194 static inline t_key mask_pfx(t_key k, unsigned short l)
195 {
196 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
197 }
198
199 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
200 {
201 if (offset < KEYLENGTH)
202 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
203 else
204 return 0;
205 }
206
207 static inline int tkey_equals(t_key a, t_key b)
208 {
209 return a == b;
210 }
211
212 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
213 {
214 if (bits == 0 || offset >= KEYLENGTH)
215 return 1;
216 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
217 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
218 }
219
220 static inline int tkey_mismatch(t_key a, int offset, t_key b)
221 {
222 t_key diff = a ^ b;
223 int i = offset;
224
225 if (!diff)
226 return 0;
227 while ((diff << i) >> (KEYLENGTH-1) == 0)
228 i++;
229 return i;
230 }
231
232 /*
233 To understand this stuff, an understanding of keys and all their bits is
234 necessary. Every node in the trie has a key associated with it, but not
235 all of the bits in that key are significant.
236
237 Consider a node 'n' and its parent 'tp'.
238
239 If n is a leaf, every bit in its key is significant. Its presence is
240 necessitated by path compression, since during a tree traversal (when
241 searching for a leaf - unless we are doing an insertion) we will completely
242 ignore all skipped bits we encounter. Thus we need to verify, at the end of
243 a potentially successful search, that we have indeed been walking the
244 correct key path.
245
246 Note that we can never "miss" the correct key in the tree if present by
247 following the wrong path. Path compression ensures that segments of the key
248 that are the same for all keys with a given prefix are skipped, but the
249 skipped part *is* identical for each node in the subtrie below the skipped
250 bit! trie_insert() in this implementation takes care of that - note the
251 call to tkey_sub_equals() in trie_insert().
252
253 if n is an internal node - a 'tnode' here, the various parts of its key
254 have many different meanings.
255
256 Example:
257 _________________________________________________________________
258 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
259 -----------------------------------------------------------------
260 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
261
262 _________________________________________________________________
263 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
264 -----------------------------------------------------------------
265 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
266
267 tp->pos = 7
268 tp->bits = 3
269 n->pos = 15
270 n->bits = 4
271
272 First, let's just ignore the bits that come before the parent tp, that is
273 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
274 not use them for anything.
275
276 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
277 index into the parent's child array. That is, they will be used to find
278 'n' among tp's children.
279
280 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
281 for the node n.
282
283 All the bits we have seen so far are significant to the node n. The rest
284 of the bits are really not needed or indeed known in n->key.
285
286 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
287 n's child array, and will of course be different for each child.
288
289
290 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
291 at this point.
292
293 */
294
295 static inline void check_tnode(const struct tnode *tn)
296 {
297 WARN_ON(tn && tn->pos+tn->bits > 32);
298 }
299
300 static const int halve_threshold = 25;
301 static const int inflate_threshold = 50;
302 static const int halve_threshold_root = 8;
303 static const int inflate_threshold_root = 15;
304
305
306 static void __alias_free_mem(struct rcu_head *head)
307 {
308 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
309 kmem_cache_free(fn_alias_kmem, fa);
310 }
311
312 static inline void alias_free_mem_rcu(struct fib_alias *fa)
313 {
314 call_rcu(&fa->rcu, __alias_free_mem);
315 }
316
317 static void __leaf_free_rcu(struct rcu_head *head)
318 {
319 kfree(container_of(head, struct leaf, rcu));
320 }
321
322 static void __leaf_info_free_rcu(struct rcu_head *head)
323 {
324 kfree(container_of(head, struct leaf_info, rcu));
325 }
326
327 static inline void free_leaf_info(struct leaf_info *leaf)
328 {
329 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
330 }
331
332 static struct tnode *tnode_alloc(size_t size)
333 {
334 struct page *pages;
335
336 if (size <= PAGE_SIZE)
337 return kzalloc(size, GFP_KERNEL);
338
339 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
340 if (!pages)
341 return NULL;
342
343 return page_address(pages);
344 }
345
346 static void __tnode_free_rcu(struct rcu_head *head)
347 {
348 struct tnode *tn = container_of(head, struct tnode, rcu);
349 size_t size = sizeof(struct tnode) +
350 (sizeof(struct node *) << tn->bits);
351
352 if (size <= PAGE_SIZE)
353 kfree(tn);
354 else
355 free_pages((unsigned long)tn, get_order(size));
356 }
357
358 static inline void tnode_free(struct tnode *tn)
359 {
360 if (IS_LEAF(tn)) {
361 struct leaf *l = (struct leaf *) tn;
362 call_rcu_bh(&l->rcu, __leaf_free_rcu);
363 } else
364 call_rcu(&tn->rcu, __tnode_free_rcu);
365 }
366
367 static struct leaf *leaf_new(void)
368 {
369 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
370 if (l) {
371 l->parent = T_LEAF;
372 INIT_HLIST_HEAD(&l->list);
373 }
374 return l;
375 }
376
377 static struct leaf_info *leaf_info_new(int plen)
378 {
379 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
380 if (li) {
381 li->plen = plen;
382 INIT_LIST_HEAD(&li->falh);
383 }
384 return li;
385 }
386
387 static struct tnode* tnode_new(t_key key, int pos, int bits)
388 {
389 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
390 struct tnode *tn = tnode_alloc(sz);
391
392 if (tn) {
393 tn->parent = T_TNODE;
394 tn->pos = pos;
395 tn->bits = bits;
396 tn->key = key;
397 tn->full_children = 0;
398 tn->empty_children = 1<<bits;
399 }
400
401 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
402 (unsigned long) (sizeof(struct node) << bits));
403 return tn;
404 }
405
406 /*
407 * Check whether a tnode 'n' is "full", i.e. it is an internal node
408 * and no bits are skipped. See discussion in dyntree paper p. 6
409 */
410
411 static inline int tnode_full(const struct tnode *tn, const struct node *n)
412 {
413 if (n == NULL || IS_LEAF(n))
414 return 0;
415
416 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
417 }
418
419 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
420 {
421 tnode_put_child_reorg(tn, i, n, -1);
422 }
423
424 /*
425 * Add a child at position i overwriting the old value.
426 * Update the value of full_children and empty_children.
427 */
428
429 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
430 {
431 struct node *chi = tn->child[i];
432 int isfull;
433
434 BUG_ON(i >= 1<<tn->bits);
435
436
437 /* update emptyChildren */
438 if (n == NULL && chi != NULL)
439 tn->empty_children++;
440 else if (n != NULL && chi == NULL)
441 tn->empty_children--;
442
443 /* update fullChildren */
444 if (wasfull == -1)
445 wasfull = tnode_full(tn, chi);
446
447 isfull = tnode_full(tn, n);
448 if (wasfull && !isfull)
449 tn->full_children--;
450 else if (!wasfull && isfull)
451 tn->full_children++;
452
453 if (n)
454 node_set_parent(n, tn);
455
456 rcu_assign_pointer(tn->child[i], n);
457 }
458
459 static struct node *resize(struct trie *t, struct tnode *tn)
460 {
461 int i;
462 int err = 0;
463 struct tnode *old_tn;
464 int inflate_threshold_use;
465 int halve_threshold_use;
466 int max_resize;
467
468 if (!tn)
469 return NULL;
470
471 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
472 tn, inflate_threshold, halve_threshold);
473
474 /* No children */
475 if (tn->empty_children == tnode_child_length(tn)) {
476 tnode_free(tn);
477 return NULL;
478 }
479 /* One child */
480 if (tn->empty_children == tnode_child_length(tn) - 1)
481 for (i = 0; i < tnode_child_length(tn); i++) {
482 struct node *n;
483
484 n = tn->child[i];
485 if (!n)
486 continue;
487
488 /* compress one level */
489 node_set_parent(n, NULL);
490 tnode_free(tn);
491 return n;
492 }
493 /*
494 * Double as long as the resulting node has a number of
495 * nonempty nodes that are above the threshold.
496 */
497
498 /*
499 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
500 * the Helsinki University of Technology and Matti Tikkanen of Nokia
501 * Telecommunications, page 6:
502 * "A node is doubled if the ratio of non-empty children to all
503 * children in the *doubled* node is at least 'high'."
504 *
505 * 'high' in this instance is the variable 'inflate_threshold'. It
506 * is expressed as a percentage, so we multiply it with
507 * tnode_child_length() and instead of multiplying by 2 (since the
508 * child array will be doubled by inflate()) and multiplying
509 * the left-hand side by 100 (to handle the percentage thing) we
510 * multiply the left-hand side by 50.
511 *
512 * The left-hand side may look a bit weird: tnode_child_length(tn)
513 * - tn->empty_children is of course the number of non-null children
514 * in the current node. tn->full_children is the number of "full"
515 * children, that is non-null tnodes with a skip value of 0.
516 * All of those will be doubled in the resulting inflated tnode, so
517 * we just count them one extra time here.
518 *
519 * A clearer way to write this would be:
520 *
521 * to_be_doubled = tn->full_children;
522 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
523 * tn->full_children;
524 *
525 * new_child_length = tnode_child_length(tn) * 2;
526 *
527 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
528 * new_child_length;
529 * if (new_fill_factor >= inflate_threshold)
530 *
531 * ...and so on, tho it would mess up the while () loop.
532 *
533 * anyway,
534 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
535 * inflate_threshold
536 *
537 * avoid a division:
538 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
539 * inflate_threshold * new_child_length
540 *
541 * expand not_to_be_doubled and to_be_doubled, and shorten:
542 * 100 * (tnode_child_length(tn) - tn->empty_children +
543 * tn->full_children) >= inflate_threshold * new_child_length
544 *
545 * expand new_child_length:
546 * 100 * (tnode_child_length(tn) - tn->empty_children +
547 * tn->full_children) >=
548 * inflate_threshold * tnode_child_length(tn) * 2
549 *
550 * shorten again:
551 * 50 * (tn->full_children + tnode_child_length(tn) -
552 * tn->empty_children) >= inflate_threshold *
553 * tnode_child_length(tn)
554 *
555 */
556
557 check_tnode(tn);
558
559 /* Keep root node larger */
560
561 if (!tn->parent)
562 inflate_threshold_use = inflate_threshold_root;
563 else
564 inflate_threshold_use = inflate_threshold;
565
566 err = 0;
567 max_resize = 10;
568 while ((tn->full_children > 0 && max_resize-- &&
569 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
570 inflate_threshold_use * tnode_child_length(tn))) {
571
572 old_tn = tn;
573 tn = inflate(t, tn);
574 if (IS_ERR(tn)) {
575 tn = old_tn;
576 #ifdef CONFIG_IP_FIB_TRIE_STATS
577 t->stats.resize_node_skipped++;
578 #endif
579 break;
580 }
581 }
582
583 if (max_resize < 0) {
584 if (!tn->parent)
585 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
586 inflate_threshold_root, tn->bits);
587 else
588 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
589 inflate_threshold, tn->bits);
590 }
591
592 check_tnode(tn);
593
594 /*
595 * Halve as long as the number of empty children in this
596 * node is above threshold.
597 */
598
599
600 /* Keep root node larger */
601
602 if (!tn->parent)
603 halve_threshold_use = halve_threshold_root;
604 else
605 halve_threshold_use = halve_threshold;
606
607 err = 0;
608 max_resize = 10;
609 while (tn->bits > 1 && max_resize-- &&
610 100 * (tnode_child_length(tn) - tn->empty_children) <
611 halve_threshold_use * tnode_child_length(tn)) {
612
613 old_tn = tn;
614 tn = halve(t, tn);
615 if (IS_ERR(tn)) {
616 tn = old_tn;
617 #ifdef CONFIG_IP_FIB_TRIE_STATS
618 t->stats.resize_node_skipped++;
619 #endif
620 break;
621 }
622 }
623
624 if (max_resize < 0) {
625 if (!tn->parent)
626 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
627 halve_threshold_root, tn->bits);
628 else
629 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
630 halve_threshold, tn->bits);
631 }
632
633 /* Only one child remains */
634 if (tn->empty_children == tnode_child_length(tn) - 1)
635 for (i = 0; i < tnode_child_length(tn); i++) {
636 struct node *n;
637
638 n = tn->child[i];
639 if (!n)
640 continue;
641
642 /* compress one level */
643
644 node_set_parent(n, NULL);
645 tnode_free(tn);
646 return n;
647 }
648
649 return (struct node *) tn;
650 }
651
652 static struct tnode *inflate(struct trie *t, struct tnode *tn)
653 {
654 struct tnode *oldtnode = tn;
655 int olen = tnode_child_length(tn);
656 int i;
657
658 pr_debug("In inflate\n");
659
660 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
661
662 if (!tn)
663 return ERR_PTR(-ENOMEM);
664
665 /*
666 * Preallocate and store tnodes before the actual work so we
667 * don't get into an inconsistent state if memory allocation
668 * fails. In case of failure we return the oldnode and inflate
669 * of tnode is ignored.
670 */
671
672 for (i = 0; i < olen; i++) {
673 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
674
675 if (inode &&
676 IS_TNODE(inode) &&
677 inode->pos == oldtnode->pos + oldtnode->bits &&
678 inode->bits > 1) {
679 struct tnode *left, *right;
680 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
681
682 left = tnode_new(inode->key&(~m), inode->pos + 1,
683 inode->bits - 1);
684 if (!left)
685 goto nomem;
686
687 right = tnode_new(inode->key|m, inode->pos + 1,
688 inode->bits - 1);
689
690 if (!right) {
691 tnode_free(left);
692 goto nomem;
693 }
694
695 put_child(t, tn, 2*i, (struct node *) left);
696 put_child(t, tn, 2*i+1, (struct node *) right);
697 }
698 }
699
700 for (i = 0; i < olen; i++) {
701 struct tnode *inode;
702 struct node *node = tnode_get_child(oldtnode, i);
703 struct tnode *left, *right;
704 int size, j;
705
706 /* An empty child */
707 if (node == NULL)
708 continue;
709
710 /* A leaf or an internal node with skipped bits */
711
712 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
713 tn->pos + tn->bits - 1) {
714 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
715 1) == 0)
716 put_child(t, tn, 2*i, node);
717 else
718 put_child(t, tn, 2*i+1, node);
719 continue;
720 }
721
722 /* An internal node with two children */
723 inode = (struct tnode *) node;
724
725 if (inode->bits == 1) {
726 put_child(t, tn, 2*i, inode->child[0]);
727 put_child(t, tn, 2*i+1, inode->child[1]);
728
729 tnode_free(inode);
730 continue;
731 }
732
733 /* An internal node with more than two children */
734
735 /* We will replace this node 'inode' with two new
736 * ones, 'left' and 'right', each with half of the
737 * original children. The two new nodes will have
738 * a position one bit further down the key and this
739 * means that the "significant" part of their keys
740 * (see the discussion near the top of this file)
741 * will differ by one bit, which will be "0" in
742 * left's key and "1" in right's key. Since we are
743 * moving the key position by one step, the bit that
744 * we are moving away from - the bit at position
745 * (inode->pos) - is the one that will differ between
746 * left and right. So... we synthesize that bit in the
747 * two new keys.
748 * The mask 'm' below will be a single "one" bit at
749 * the position (inode->pos)
750 */
751
752 /* Use the old key, but set the new significant
753 * bit to zero.
754 */
755
756 left = (struct tnode *) tnode_get_child(tn, 2*i);
757 put_child(t, tn, 2*i, NULL);
758
759 BUG_ON(!left);
760
761 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
762 put_child(t, tn, 2*i+1, NULL);
763
764 BUG_ON(!right);
765
766 size = tnode_child_length(left);
767 for (j = 0; j < size; j++) {
768 put_child(t, left, j, inode->child[j]);
769 put_child(t, right, j, inode->child[j + size]);
770 }
771 put_child(t, tn, 2*i, resize(t, left));
772 put_child(t, tn, 2*i+1, resize(t, right));
773
774 tnode_free(inode);
775 }
776 tnode_free(oldtnode);
777 return tn;
778 nomem:
779 {
780 int size = tnode_child_length(tn);
781 int j;
782
783 for (j = 0; j < size; j++)
784 if (tn->child[j])
785 tnode_free((struct tnode *)tn->child[j]);
786
787 tnode_free(tn);
788
789 return ERR_PTR(-ENOMEM);
790 }
791 }
792
793 static struct tnode *halve(struct trie *t, struct tnode *tn)
794 {
795 struct tnode *oldtnode = tn;
796 struct node *left, *right;
797 int i;
798 int olen = tnode_child_length(tn);
799
800 pr_debug("In halve\n");
801
802 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
803
804 if (!tn)
805 return ERR_PTR(-ENOMEM);
806
807 /*
808 * Preallocate and store tnodes before the actual work so we
809 * don't get into an inconsistent state if memory allocation
810 * fails. In case of failure we return the oldnode and halve
811 * of tnode is ignored.
812 */
813
814 for (i = 0; i < olen; i += 2) {
815 left = tnode_get_child(oldtnode, i);
816 right = tnode_get_child(oldtnode, i+1);
817
818 /* Two nonempty children */
819 if (left && right) {
820 struct tnode *newn;
821
822 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
823
824 if (!newn)
825 goto nomem;
826
827 put_child(t, tn, i/2, (struct node *)newn);
828 }
829
830 }
831
832 for (i = 0; i < olen; i += 2) {
833 struct tnode *newBinNode;
834
835 left = tnode_get_child(oldtnode, i);
836 right = tnode_get_child(oldtnode, i+1);
837
838 /* At least one of the children is empty */
839 if (left == NULL) {
840 if (right == NULL) /* Both are empty */
841 continue;
842 put_child(t, tn, i/2, right);
843 continue;
844 }
845
846 if (right == NULL) {
847 put_child(t, tn, i/2, left);
848 continue;
849 }
850
851 /* Two nonempty children */
852 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
853 put_child(t, tn, i/2, NULL);
854 put_child(t, newBinNode, 0, left);
855 put_child(t, newBinNode, 1, right);
856 put_child(t, tn, i/2, resize(t, newBinNode));
857 }
858 tnode_free(oldtnode);
859 return tn;
860 nomem:
861 {
862 int size = tnode_child_length(tn);
863 int j;
864
865 for (j = 0; j < size; j++)
866 if (tn->child[j])
867 tnode_free((struct tnode *)tn->child[j]);
868
869 tnode_free(tn);
870
871 return ERR_PTR(-ENOMEM);
872 }
873 }
874
875 /* readside must use rcu_read_lock currently dump routines
876 via get_fa_head and dump */
877
878 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
879 {
880 struct hlist_head *head = &l->list;
881 struct hlist_node *node;
882 struct leaf_info *li;
883
884 hlist_for_each_entry_rcu(li, node, head, hlist)
885 if (li->plen == plen)
886 return li;
887
888 return NULL;
889 }
890
891 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
892 {
893 struct leaf_info *li = find_leaf_info(l, plen);
894
895 if (!li)
896 return NULL;
897
898 return &li->falh;
899 }
900
901 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
902 {
903 struct leaf_info *li = NULL, *last = NULL;
904 struct hlist_node *node;
905
906 if (hlist_empty(head)) {
907 hlist_add_head_rcu(&new->hlist, head);
908 } else {
909 hlist_for_each_entry(li, node, head, hlist) {
910 if (new->plen > li->plen)
911 break;
912
913 last = li;
914 }
915 if (last)
916 hlist_add_after_rcu(&last->hlist, &new->hlist);
917 else
918 hlist_add_before_rcu(&new->hlist, &li->hlist);
919 }
920 }
921
922 /* rcu_read_lock needs to be hold by caller from readside */
923
924 static struct leaf *
925 fib_find_node(struct trie *t, u32 key)
926 {
927 int pos;
928 struct tnode *tn;
929 struct node *n;
930
931 pos = 0;
932 n = rcu_dereference(t->trie);
933
934 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
935 tn = (struct tnode *) n;
936
937 check_tnode(tn);
938
939 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
940 pos = tn->pos + tn->bits;
941 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
942 } else
943 break;
944 }
945 /* Case we have found a leaf. Compare prefixes */
946
947 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
948 return (struct leaf *)n;
949
950 return NULL;
951 }
952
953 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
954 {
955 int wasfull;
956 t_key cindex, key = tn->key;
957 struct tnode *tp;
958
959 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
960 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
961 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
962 tn = (struct tnode *) resize (t, (struct tnode *)tn);
963 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
964
965 tp = node_parent((struct node *) tn);
966 if (!tp)
967 break;
968 tn = tp;
969 }
970
971 /* Handle last (top) tnode */
972 if (IS_TNODE(tn))
973 tn = (struct tnode*) resize(t, (struct tnode *)tn);
974
975 return (struct node*) tn;
976 }
977
978 /* only used from updater-side */
979
980 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
981 {
982 int pos, newpos;
983 struct tnode *tp = NULL, *tn = NULL;
984 struct node *n;
985 struct leaf *l;
986 int missbit;
987 struct list_head *fa_head = NULL;
988 struct leaf_info *li;
989 t_key cindex;
990
991 pos = 0;
992 n = t->trie;
993
994 /* If we point to NULL, stop. Either the tree is empty and we should
995 * just put a new leaf in if, or we have reached an empty child slot,
996 * and we should just put our new leaf in that.
997 * If we point to a T_TNODE, check if it matches our key. Note that
998 * a T_TNODE might be skipping any number of bits - its 'pos' need
999 * not be the parent's 'pos'+'bits'!
1000 *
1001 * If it does match the current key, get pos/bits from it, extract
1002 * the index from our key, push the T_TNODE and walk the tree.
1003 *
1004 * If it doesn't, we have to replace it with a new T_TNODE.
1005 *
1006 * If we point to a T_LEAF, it might or might not have the same key
1007 * as we do. If it does, just change the value, update the T_LEAF's
1008 * value, and return it.
1009 * If it doesn't, we need to replace it with a T_TNODE.
1010 */
1011
1012 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1013 tn = (struct tnode *) n;
1014
1015 check_tnode(tn);
1016
1017 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1018 tp = tn;
1019 pos = tn->pos + tn->bits;
1020 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1021
1022 BUG_ON(n && node_parent(n) != tn);
1023 } else
1024 break;
1025 }
1026
1027 /*
1028 * n ----> NULL, LEAF or TNODE
1029 *
1030 * tp is n's (parent) ----> NULL or TNODE
1031 */
1032
1033 BUG_ON(tp && IS_LEAF(tp));
1034
1035 /* Case 1: n is a leaf. Compare prefixes */
1036
1037 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1038 l = (struct leaf *) n;
1039 li = leaf_info_new(plen);
1040
1041 if (!li)
1042 return NULL;
1043
1044 fa_head = &li->falh;
1045 insert_leaf_info(&l->list, li);
1046 goto done;
1047 }
1048 t->size++;
1049 l = leaf_new();
1050
1051 if (!l)
1052 return NULL;
1053
1054 l->key = key;
1055 li = leaf_info_new(plen);
1056
1057 if (!li) {
1058 tnode_free((struct tnode *) l);
1059 return NULL;
1060 }
1061
1062 fa_head = &li->falh;
1063 insert_leaf_info(&l->list, li);
1064
1065 if (t->trie && n == NULL) {
1066 /* Case 2: n is NULL, and will just insert a new leaf */
1067
1068 node_set_parent((struct node *)l, tp);
1069
1070 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1071 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1072 } else {
1073 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1074 /*
1075 * Add a new tnode here
1076 * first tnode need some special handling
1077 */
1078
1079 if (tp)
1080 pos = tp->pos+tp->bits;
1081 else
1082 pos = 0;
1083
1084 if (n) {
1085 newpos = tkey_mismatch(key, pos, n->key);
1086 tn = tnode_new(n->key, newpos, 1);
1087 } else {
1088 newpos = 0;
1089 tn = tnode_new(key, newpos, 1); /* First tnode */
1090 }
1091
1092 if (!tn) {
1093 free_leaf_info(li);
1094 tnode_free((struct tnode *) l);
1095 return NULL;
1096 }
1097
1098 node_set_parent((struct node *)tn, tp);
1099
1100 missbit = tkey_extract_bits(key, newpos, 1);
1101 put_child(t, tn, missbit, (struct node *)l);
1102 put_child(t, tn, 1-missbit, n);
1103
1104 if (tp) {
1105 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1106 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1107 } else {
1108 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1109 tp = tn;
1110 }
1111 }
1112
1113 if (tp && tp->pos + tp->bits > 32)
1114 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1115 tp, tp->pos, tp->bits, key, plen);
1116
1117 /* Rebalance the trie */
1118
1119 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1120 done:
1121 return fa_head;
1122 }
1123
1124 /*
1125 * Caller must hold RTNL.
1126 */
1127 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1128 {
1129 struct trie *t = (struct trie *) tb->tb_data;
1130 struct fib_alias *fa, *new_fa;
1131 struct list_head *fa_head = NULL;
1132 struct fib_info *fi;
1133 int plen = cfg->fc_dst_len;
1134 u8 tos = cfg->fc_tos;
1135 u32 key, mask;
1136 int err;
1137 struct leaf *l;
1138
1139 if (plen > 32)
1140 return -EINVAL;
1141
1142 key = ntohl(cfg->fc_dst);
1143
1144 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
1146 mask = ntohl(inet_make_mask(plen));
1147
1148 if (key & ~mask)
1149 return -EINVAL;
1150
1151 key = key & mask;
1152
1153 fi = fib_create_info(cfg);
1154 if (IS_ERR(fi)) {
1155 err = PTR_ERR(fi);
1156 goto err;
1157 }
1158
1159 l = fib_find_node(t, key);
1160 fa = NULL;
1161
1162 if (l) {
1163 fa_head = get_fa_head(l, plen);
1164 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1165 }
1166
1167 /* Now fa, if non-NULL, points to the first fib alias
1168 * with the same keys [prefix,tos,priority], if such key already
1169 * exists or to the node before which we will insert new one.
1170 *
1171 * If fa is NULL, we will need to allocate a new one and
1172 * insert to the head of f.
1173 *
1174 * If f is NULL, no fib node matched the destination key
1175 * and we need to allocate a new one of those as well.
1176 */
1177
1178 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1179 struct fib_alias *fa_orig;
1180
1181 err = -EEXIST;
1182 if (cfg->fc_nlflags & NLM_F_EXCL)
1183 goto out;
1184
1185 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1186 struct fib_info *fi_drop;
1187 u8 state;
1188
1189 if (fi->fib_treeref > 1)
1190 goto out;
1191
1192 err = -ENOBUFS;
1193 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1194 if (new_fa == NULL)
1195 goto out;
1196
1197 fi_drop = fa->fa_info;
1198 new_fa->fa_tos = fa->fa_tos;
1199 new_fa->fa_info = fi;
1200 new_fa->fa_type = cfg->fc_type;
1201 new_fa->fa_scope = cfg->fc_scope;
1202 state = fa->fa_state;
1203 new_fa->fa_state &= ~FA_S_ACCESSED;
1204
1205 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1206 alias_free_mem_rcu(fa);
1207
1208 fib_release_info(fi_drop);
1209 if (state & FA_S_ACCESSED)
1210 rt_cache_flush(-1);
1211 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1212 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1213
1214 goto succeeded;
1215 }
1216 /* Error if we find a perfect match which
1217 * uses the same scope, type, and nexthop
1218 * information.
1219 */
1220 fa_orig = fa;
1221 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1222 if (fa->fa_tos != tos)
1223 break;
1224 if (fa->fa_info->fib_priority != fi->fib_priority)
1225 break;
1226 if (fa->fa_type == cfg->fc_type &&
1227 fa->fa_scope == cfg->fc_scope &&
1228 fa->fa_info == fi) {
1229 goto out;
1230 }
1231 }
1232 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1233 fa = fa_orig;
1234 }
1235 err = -ENOENT;
1236 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1237 goto out;
1238
1239 err = -ENOBUFS;
1240 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1241 if (new_fa == NULL)
1242 goto out;
1243
1244 new_fa->fa_info = fi;
1245 new_fa->fa_tos = tos;
1246 new_fa->fa_type = cfg->fc_type;
1247 new_fa->fa_scope = cfg->fc_scope;
1248 new_fa->fa_state = 0;
1249 /*
1250 * Insert new entry to the list.
1251 */
1252
1253 if (!fa_head) {
1254 fa_head = fib_insert_node(t, key, plen);
1255 if (unlikely(!fa_head)) {
1256 err = -ENOMEM;
1257 goto out_free_new_fa;
1258 }
1259 }
1260
1261 list_add_tail_rcu(&new_fa->fa_list,
1262 (fa ? &fa->fa_list : fa_head));
1263
1264 rt_cache_flush(-1);
1265 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1266 &cfg->fc_nlinfo, 0);
1267 succeeded:
1268 return 0;
1269
1270 out_free_new_fa:
1271 kmem_cache_free(fn_alias_kmem, new_fa);
1272 out:
1273 fib_release_info(fi);
1274 err:
1275 return err;
1276 }
1277
1278
1279 /* should be called with rcu_read_lock */
1280 static inline int check_leaf(struct trie *t, struct leaf *l,
1281 t_key key, int *plen, const struct flowi *flp,
1282 struct fib_result *res)
1283 {
1284 int err, i;
1285 __be32 mask;
1286 struct leaf_info *li;
1287 struct hlist_head *hhead = &l->list;
1288 struct hlist_node *node;
1289
1290 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1291 i = li->plen;
1292 mask = inet_make_mask(i);
1293 if (l->key != (key & ntohl(mask)))
1294 continue;
1295
1296 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1297 *plen = i;
1298 #ifdef CONFIG_IP_FIB_TRIE_STATS
1299 t->stats.semantic_match_passed++;
1300 #endif
1301 return err;
1302 }
1303 #ifdef CONFIG_IP_FIB_TRIE_STATS
1304 t->stats.semantic_match_miss++;
1305 #endif
1306 }
1307 return 1;
1308 }
1309
1310 static int
1311 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1312 {
1313 struct trie *t = (struct trie *) tb->tb_data;
1314 int plen, ret = 0;
1315 struct node *n;
1316 struct tnode *pn;
1317 int pos, bits;
1318 t_key key = ntohl(flp->fl4_dst);
1319 int chopped_off;
1320 t_key cindex = 0;
1321 int current_prefix_length = KEYLENGTH;
1322 struct tnode *cn;
1323 t_key node_prefix, key_prefix, pref_mismatch;
1324 int mp;
1325
1326 rcu_read_lock();
1327
1328 n = rcu_dereference(t->trie);
1329 if (!n)
1330 goto failed;
1331
1332 #ifdef CONFIG_IP_FIB_TRIE_STATS
1333 t->stats.gets++;
1334 #endif
1335
1336 /* Just a leaf? */
1337 if (IS_LEAF(n)) {
1338 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1339 goto found;
1340 goto failed;
1341 }
1342 pn = (struct tnode *) n;
1343 chopped_off = 0;
1344
1345 while (pn) {
1346 pos = pn->pos;
1347 bits = pn->bits;
1348
1349 if (!chopped_off)
1350 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1351 pos, bits);
1352
1353 n = tnode_get_child(pn, cindex);
1354
1355 if (n == NULL) {
1356 #ifdef CONFIG_IP_FIB_TRIE_STATS
1357 t->stats.null_node_hit++;
1358 #endif
1359 goto backtrace;
1360 }
1361
1362 if (IS_LEAF(n)) {
1363 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1364 goto found;
1365 else
1366 goto backtrace;
1367 }
1368
1369 #define HL_OPTIMIZE
1370 #ifdef HL_OPTIMIZE
1371 cn = (struct tnode *)n;
1372
1373 /*
1374 * It's a tnode, and we can do some extra checks here if we
1375 * like, to avoid descending into a dead-end branch.
1376 * This tnode is in the parent's child array at index
1377 * key[p_pos..p_pos+p_bits] but potentially with some bits
1378 * chopped off, so in reality the index may be just a
1379 * subprefix, padded with zero at the end.
1380 * We can also take a look at any skipped bits in this
1381 * tnode - everything up to p_pos is supposed to be ok,
1382 * and the non-chopped bits of the index (se previous
1383 * paragraph) are also guaranteed ok, but the rest is
1384 * considered unknown.
1385 *
1386 * The skipped bits are key[pos+bits..cn->pos].
1387 */
1388
1389 /* If current_prefix_length < pos+bits, we are already doing
1390 * actual prefix matching, which means everything from
1391 * pos+(bits-chopped_off) onward must be zero along some
1392 * branch of this subtree - otherwise there is *no* valid
1393 * prefix present. Here we can only check the skipped
1394 * bits. Remember, since we have already indexed into the
1395 * parent's child array, we know that the bits we chopped of
1396 * *are* zero.
1397 */
1398
1399 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1400
1401 if (current_prefix_length < pos+bits) {
1402 if (tkey_extract_bits(cn->key, current_prefix_length,
1403 cn->pos - current_prefix_length) != 0 ||
1404 !(cn->child[0]))
1405 goto backtrace;
1406 }
1407
1408 /*
1409 * If chopped_off=0, the index is fully validated and we
1410 * only need to look at the skipped bits for this, the new,
1411 * tnode. What we actually want to do is to find out if
1412 * these skipped bits match our key perfectly, or if we will
1413 * have to count on finding a matching prefix further down,
1414 * because if we do, we would like to have some way of
1415 * verifying the existence of such a prefix at this point.
1416 */
1417
1418 /* The only thing we can do at this point is to verify that
1419 * any such matching prefix can indeed be a prefix to our
1420 * key, and if the bits in the node we are inspecting that
1421 * do not match our key are not ZERO, this cannot be true.
1422 * Thus, find out where there is a mismatch (before cn->pos)
1423 * and verify that all the mismatching bits are zero in the
1424 * new tnode's key.
1425 */
1426
1427 /* Note: We aren't very concerned about the piece of the key
1428 * that precede pn->pos+pn->bits, since these have already been
1429 * checked. The bits after cn->pos aren't checked since these are
1430 * by definition "unknown" at this point. Thus, what we want to
1431 * see is if we are about to enter the "prefix matching" state,
1432 * and in that case verify that the skipped bits that will prevail
1433 * throughout this subtree are zero, as they have to be if we are
1434 * to find a matching prefix.
1435 */
1436
1437 node_prefix = mask_pfx(cn->key, cn->pos);
1438 key_prefix = mask_pfx(key, cn->pos);
1439 pref_mismatch = key_prefix^node_prefix;
1440 mp = 0;
1441
1442 /* In short: If skipped bits in this node do not match the search
1443 * key, enter the "prefix matching" state.directly.
1444 */
1445 if (pref_mismatch) {
1446 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1447 mp++;
1448 pref_mismatch = pref_mismatch <<1;
1449 }
1450 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1451
1452 if (key_prefix != 0)
1453 goto backtrace;
1454
1455 if (current_prefix_length >= cn->pos)
1456 current_prefix_length = mp;
1457 }
1458 #endif
1459 pn = (struct tnode *)n; /* Descend */
1460 chopped_off = 0;
1461 continue;
1462
1463 backtrace:
1464 chopped_off++;
1465
1466 /* As zero don't change the child key (cindex) */
1467 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1468 chopped_off++;
1469
1470 /* Decrease current_... with bits chopped off */
1471 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1472 current_prefix_length = pn->pos + pn->bits - chopped_off;
1473
1474 /*
1475 * Either we do the actual chop off according or if we have
1476 * chopped off all bits in this tnode walk up to our parent.
1477 */
1478
1479 if (chopped_off <= pn->bits) {
1480 cindex &= ~(1 << (chopped_off-1));
1481 } else {
1482 struct tnode *parent = node_parent((struct node *) pn);
1483 if (!parent)
1484 goto failed;
1485
1486 /* Get Child's index */
1487 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1488 pn = parent;
1489 chopped_off = 0;
1490
1491 #ifdef CONFIG_IP_FIB_TRIE_STATS
1492 t->stats.backtrack++;
1493 #endif
1494 goto backtrace;
1495 }
1496 }
1497 failed:
1498 ret = 1;
1499 found:
1500 rcu_read_unlock();
1501 return ret;
1502 }
1503
1504 /* only called from updater side */
1505 static int trie_leaf_remove(struct trie *t, t_key key)
1506 {
1507 t_key cindex;
1508 struct tnode *tp = NULL;
1509 struct node *n = t->trie;
1510 struct leaf *l;
1511
1512 pr_debug("entering trie_leaf_remove(%p)\n", n);
1513
1514 /* Note that in the case skipped bits, those bits are *not* checked!
1515 * When we finish this, we will have NULL or a T_LEAF, and the
1516 * T_LEAF may or may not match our key.
1517 */
1518
1519 while (n != NULL && IS_TNODE(n)) {
1520 struct tnode *tn = (struct tnode *) n;
1521 check_tnode(tn);
1522 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1523
1524 BUG_ON(n && node_parent(n) != tn);
1525 }
1526 l = (struct leaf *) n;
1527
1528 if (!n || !tkey_equals(l->key, key))
1529 return 0;
1530
1531 /*
1532 * Key found.
1533 * Remove the leaf and rebalance the tree
1534 */
1535
1536 t->size--;
1537
1538 tp = node_parent(n);
1539 tnode_free((struct tnode *) n);
1540
1541 if (tp) {
1542 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1543 put_child(t, (struct tnode *)tp, cindex, NULL);
1544 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1545 } else
1546 rcu_assign_pointer(t->trie, NULL);
1547
1548 return 1;
1549 }
1550
1551 /*
1552 * Caller must hold RTNL.
1553 */
1554 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1555 {
1556 struct trie *t = (struct trie *) tb->tb_data;
1557 u32 key, mask;
1558 int plen = cfg->fc_dst_len;
1559 u8 tos = cfg->fc_tos;
1560 struct fib_alias *fa, *fa_to_delete;
1561 struct list_head *fa_head;
1562 struct leaf *l;
1563 struct leaf_info *li;
1564
1565 if (plen > 32)
1566 return -EINVAL;
1567
1568 key = ntohl(cfg->fc_dst);
1569 mask = ntohl(inet_make_mask(plen));
1570
1571 if (key & ~mask)
1572 return -EINVAL;
1573
1574 key = key & mask;
1575 l = fib_find_node(t, key);
1576
1577 if (!l)
1578 return -ESRCH;
1579
1580 fa_head = get_fa_head(l, plen);
1581 fa = fib_find_alias(fa_head, tos, 0);
1582
1583 if (!fa)
1584 return -ESRCH;
1585
1586 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1587
1588 fa_to_delete = NULL;
1589 fa_head = fa->fa_list.prev;
1590
1591 list_for_each_entry(fa, fa_head, fa_list) {
1592 struct fib_info *fi = fa->fa_info;
1593
1594 if (fa->fa_tos != tos)
1595 break;
1596
1597 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1598 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1599 fa->fa_scope == cfg->fc_scope) &&
1600 (!cfg->fc_protocol ||
1601 fi->fib_protocol == cfg->fc_protocol) &&
1602 fib_nh_match(cfg, fi) == 0) {
1603 fa_to_delete = fa;
1604 break;
1605 }
1606 }
1607
1608 if (!fa_to_delete)
1609 return -ESRCH;
1610
1611 fa = fa_to_delete;
1612 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1613 &cfg->fc_nlinfo, 0);
1614
1615 l = fib_find_node(t, key);
1616 li = find_leaf_info(l, plen);
1617
1618 list_del_rcu(&fa->fa_list);
1619
1620 if (list_empty(fa_head)) {
1621 hlist_del_rcu(&li->hlist);
1622 free_leaf_info(li);
1623 }
1624
1625 if (hlist_empty(&l->list))
1626 trie_leaf_remove(t, key);
1627
1628 if (fa->fa_state & FA_S_ACCESSED)
1629 rt_cache_flush(-1);
1630
1631 fib_release_info(fa->fa_info);
1632 alias_free_mem_rcu(fa);
1633 return 0;
1634 }
1635
1636 static int trie_flush_list(struct trie *t, struct list_head *head)
1637 {
1638 struct fib_alias *fa, *fa_node;
1639 int found = 0;
1640
1641 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1642 struct fib_info *fi = fa->fa_info;
1643
1644 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1645 list_del_rcu(&fa->fa_list);
1646 fib_release_info(fa->fa_info);
1647 alias_free_mem_rcu(fa);
1648 found++;
1649 }
1650 }
1651 return found;
1652 }
1653
1654 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1655 {
1656 int found = 0;
1657 struct hlist_head *lih = &l->list;
1658 struct hlist_node *node, *tmp;
1659 struct leaf_info *li = NULL;
1660
1661 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1662 found += trie_flush_list(t, &li->falh);
1663
1664 if (list_empty(&li->falh)) {
1665 hlist_del_rcu(&li->hlist);
1666 free_leaf_info(li);
1667 }
1668 }
1669 return found;
1670 }
1671
1672 /* rcu_read_lock needs to be hold by caller from readside */
1673
1674 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1675 {
1676 struct node *c = (struct node *) thisleaf;
1677 struct tnode *p;
1678 int idx;
1679 struct node *trie = rcu_dereference(t->trie);
1680
1681 if (c == NULL) {
1682 if (trie == NULL)
1683 return NULL;
1684
1685 if (IS_LEAF(trie)) /* trie w. just a leaf */
1686 return (struct leaf *) trie;
1687
1688 p = (struct tnode*) trie; /* Start */
1689 } else
1690 p = node_parent(c);
1691
1692 while (p) {
1693 int pos, last;
1694
1695 /* Find the next child of the parent */
1696 if (c)
1697 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1698 else
1699 pos = 0;
1700
1701 last = 1 << p->bits;
1702 for (idx = pos; idx < last ; idx++) {
1703 c = rcu_dereference(p->child[idx]);
1704
1705 if (!c)
1706 continue;
1707
1708 /* Decend if tnode */
1709 while (IS_TNODE(c)) {
1710 p = (struct tnode *) c;
1711 idx = 0;
1712
1713 /* Rightmost non-NULL branch */
1714 if (p && IS_TNODE(p))
1715 while (!(c = rcu_dereference(p->child[idx]))
1716 && idx < (1<<p->bits)) idx++;
1717
1718 /* Done with this tnode? */
1719 if (idx >= (1 << p->bits) || !c)
1720 goto up;
1721 }
1722 return (struct leaf *) c;
1723 }
1724 up:
1725 /* No more children go up one step */
1726 c = (struct node *) p;
1727 p = node_parent(c);
1728 }
1729 return NULL; /* Ready. Root of trie */
1730 }
1731
1732 /*
1733 * Caller must hold RTNL.
1734 */
1735 static int fn_trie_flush(struct fib_table *tb)
1736 {
1737 struct trie *t = (struct trie *) tb->tb_data;
1738 struct leaf *ll = NULL, *l = NULL;
1739 int found = 0, h;
1740
1741 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1742 found += trie_flush_leaf(t, l);
1743
1744 if (ll && hlist_empty(&ll->list))
1745 trie_leaf_remove(t, ll->key);
1746 ll = l;
1747 }
1748
1749 if (ll && hlist_empty(&ll->list))
1750 trie_leaf_remove(t, ll->key);
1751
1752 pr_debug("trie_flush found=%d\n", found);
1753 return found;
1754 }
1755
1756 static void
1757 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1758 {
1759 struct trie *t = (struct trie *) tb->tb_data;
1760 int order, last_idx;
1761 struct fib_info *fi = NULL;
1762 struct fib_info *last_resort;
1763 struct fib_alias *fa = NULL;
1764 struct list_head *fa_head;
1765 struct leaf *l;
1766
1767 last_idx = -1;
1768 last_resort = NULL;
1769 order = -1;
1770
1771 rcu_read_lock();
1772
1773 l = fib_find_node(t, 0);
1774 if (!l)
1775 goto out;
1776
1777 fa_head = get_fa_head(l, 0);
1778 if (!fa_head)
1779 goto out;
1780
1781 if (list_empty(fa_head))
1782 goto out;
1783
1784 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1785 struct fib_info *next_fi = fa->fa_info;
1786
1787 if (fa->fa_scope != res->scope ||
1788 fa->fa_type != RTN_UNICAST)
1789 continue;
1790
1791 if (next_fi->fib_priority > res->fi->fib_priority)
1792 break;
1793 if (!next_fi->fib_nh[0].nh_gw ||
1794 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1795 continue;
1796 fa->fa_state |= FA_S_ACCESSED;
1797
1798 if (fi == NULL) {
1799 if (next_fi != res->fi)
1800 break;
1801 } else if (!fib_detect_death(fi, order, &last_resort,
1802 &last_idx, tb->tb_default)) {
1803 fib_result_assign(res, fi);
1804 tb->tb_default = order;
1805 goto out;
1806 }
1807 fi = next_fi;
1808 order++;
1809 }
1810 if (order <= 0 || fi == NULL) {
1811 tb->tb_default = -1;
1812 goto out;
1813 }
1814
1815 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1816 tb->tb_default)) {
1817 fib_result_assign(res, fi);
1818 tb->tb_default = order;
1819 goto out;
1820 }
1821 if (last_idx >= 0)
1822 fib_result_assign(res, last_resort);
1823 tb->tb_default = last_idx;
1824 out:
1825 rcu_read_unlock();
1826 }
1827
1828 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1829 struct sk_buff *skb, struct netlink_callback *cb)
1830 {
1831 int i, s_i;
1832 struct fib_alias *fa;
1833
1834 __be32 xkey = htonl(key);
1835
1836 s_i = cb->args[4];
1837 i = 0;
1838
1839 /* rcu_read_lock is hold by caller */
1840
1841 list_for_each_entry_rcu(fa, fah, fa_list) {
1842 if (i < s_i) {
1843 i++;
1844 continue;
1845 }
1846 BUG_ON(!fa->fa_info);
1847
1848 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1849 cb->nlh->nlmsg_seq,
1850 RTM_NEWROUTE,
1851 tb->tb_id,
1852 fa->fa_type,
1853 fa->fa_scope,
1854 xkey,
1855 plen,
1856 fa->fa_tos,
1857 fa->fa_info, 0) < 0) {
1858 cb->args[4] = i;
1859 return -1;
1860 }
1861 i++;
1862 }
1863 cb->args[4] = i;
1864 return skb->len;
1865 }
1866
1867 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1868 struct netlink_callback *cb)
1869 {
1870 int h, s_h;
1871 struct list_head *fa_head;
1872 struct leaf *l = NULL;
1873
1874 s_h = cb->args[3];
1875
1876 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1877 if (h < s_h)
1878 continue;
1879 if (h > s_h)
1880 memset(&cb->args[4], 0,
1881 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1882
1883 fa_head = get_fa_head(l, plen);
1884
1885 if (!fa_head)
1886 continue;
1887
1888 if (list_empty(fa_head))
1889 continue;
1890
1891 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1892 cb->args[3] = h;
1893 return -1;
1894 }
1895 }
1896 cb->args[3] = h;
1897 return skb->len;
1898 }
1899
1900 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1901 {
1902 int m, s_m;
1903 struct trie *t = (struct trie *) tb->tb_data;
1904
1905 s_m = cb->args[2];
1906
1907 rcu_read_lock();
1908 for (m = 0; m <= 32; m++) {
1909 if (m < s_m)
1910 continue;
1911 if (m > s_m)
1912 memset(&cb->args[3], 0,
1913 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1914
1915 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1916 cb->args[2] = m;
1917 goto out;
1918 }
1919 }
1920 rcu_read_unlock();
1921 cb->args[2] = m;
1922 return skb->len;
1923 out:
1924 rcu_read_unlock();
1925 return -1;
1926 }
1927
1928 /* Fix more generic FIB names for init later */
1929
1930 struct fib_table *fib_hash_init(u32 id)
1931 {
1932 struct fib_table *tb;
1933 struct trie *t;
1934
1935 if (fn_alias_kmem == NULL)
1936 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1937 sizeof(struct fib_alias),
1938 0, SLAB_HWCACHE_ALIGN,
1939 NULL);
1940
1941 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1942 GFP_KERNEL);
1943 if (tb == NULL)
1944 return NULL;
1945
1946 tb->tb_id = id;
1947 tb->tb_default = -1;
1948 tb->tb_lookup = fn_trie_lookup;
1949 tb->tb_insert = fn_trie_insert;
1950 tb->tb_delete = fn_trie_delete;
1951 tb->tb_flush = fn_trie_flush;
1952 tb->tb_select_default = fn_trie_select_default;
1953 tb->tb_dump = fn_trie_dump;
1954
1955 t = (struct trie *) tb->tb_data;
1956 memset(t, 0, sizeof(*t));
1957
1958 if (id == RT_TABLE_LOCAL)
1959 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1960
1961 return tb;
1962 }
1963
1964 #ifdef CONFIG_PROC_FS
1965 /* Depth first Trie walk iterator */
1966 struct fib_trie_iter {
1967 struct seq_net_private p;
1968 struct trie *trie_local, *trie_main;
1969 struct tnode *tnode;
1970 struct trie *trie;
1971 unsigned index;
1972 unsigned depth;
1973 };
1974
1975 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1976 {
1977 struct tnode *tn = iter->tnode;
1978 unsigned cindex = iter->index;
1979 struct tnode *p;
1980
1981 /* A single entry routing table */
1982 if (!tn)
1983 return NULL;
1984
1985 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1986 iter->tnode, iter->index, iter->depth);
1987 rescan:
1988 while (cindex < (1<<tn->bits)) {
1989 struct node *n = tnode_get_child(tn, cindex);
1990
1991 if (n) {
1992 if (IS_LEAF(n)) {
1993 iter->tnode = tn;
1994 iter->index = cindex + 1;
1995 } else {
1996 /* push down one level */
1997 iter->tnode = (struct tnode *) n;
1998 iter->index = 0;
1999 ++iter->depth;
2000 }
2001 return n;
2002 }
2003
2004 ++cindex;
2005 }
2006
2007 /* Current node exhausted, pop back up */
2008 p = node_parent((struct node *)tn);
2009 if (p) {
2010 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2011 tn = p;
2012 --iter->depth;
2013 goto rescan;
2014 }
2015
2016 /* got root? */
2017 return NULL;
2018 }
2019
2020 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2021 struct trie *t)
2022 {
2023 struct node *n ;
2024
2025 if (!t)
2026 return NULL;
2027
2028 n = rcu_dereference(t->trie);
2029
2030 if (!iter)
2031 return NULL;
2032
2033 if (n) {
2034 if (IS_TNODE(n)) {
2035 iter->tnode = (struct tnode *) n;
2036 iter->trie = t;
2037 iter->index = 0;
2038 iter->depth = 1;
2039 } else {
2040 iter->tnode = NULL;
2041 iter->trie = t;
2042 iter->index = 0;
2043 iter->depth = 0;
2044 }
2045 return n;
2046 }
2047 return NULL;
2048 }
2049
2050 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2051 {
2052 struct node *n;
2053 struct fib_trie_iter iter;
2054
2055 memset(s, 0, sizeof(*s));
2056
2057 rcu_read_lock();
2058 for (n = fib_trie_get_first(&iter, t); n;
2059 n = fib_trie_get_next(&iter)) {
2060 if (IS_LEAF(n)) {
2061 s->leaves++;
2062 s->totdepth += iter.depth;
2063 if (iter.depth > s->maxdepth)
2064 s->maxdepth = iter.depth;
2065 } else {
2066 const struct tnode *tn = (const struct tnode *) n;
2067 int i;
2068
2069 s->tnodes++;
2070 if (tn->bits < MAX_STAT_DEPTH)
2071 s->nodesizes[tn->bits]++;
2072
2073 for (i = 0; i < (1<<tn->bits); i++)
2074 if (!tn->child[i])
2075 s->nullpointers++;
2076 }
2077 }
2078 rcu_read_unlock();
2079 }
2080
2081 /*
2082 * This outputs /proc/net/fib_triestats
2083 */
2084 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2085 {
2086 unsigned i, max, pointers, bytes, avdepth;
2087
2088 if (stat->leaves)
2089 avdepth = stat->totdepth*100 / stat->leaves;
2090 else
2091 avdepth = 0;
2092
2093 seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100 );
2094 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2095
2096 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2097
2098 bytes = sizeof(struct leaf) * stat->leaves;
2099 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2100 bytes += sizeof(struct tnode) * stat->tnodes;
2101
2102 max = MAX_STAT_DEPTH;
2103 while (max > 0 && stat->nodesizes[max-1] == 0)
2104 max--;
2105
2106 pointers = 0;
2107 for (i = 1; i <= max; i++)
2108 if (stat->nodesizes[i] != 0) {
2109 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2110 pointers += (1<<i) * stat->nodesizes[i];
2111 }
2112 seq_putc(seq, '\n');
2113 seq_printf(seq, "\tPointers: %u\n", pointers);
2114
2115 bytes += sizeof(struct node *) * pointers;
2116 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2117 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2118 }
2119
2120 #ifdef CONFIG_IP_FIB_TRIE_STATS
2121 static void trie_show_usage(struct seq_file *seq,
2122 const struct trie_use_stats *stats)
2123 {
2124 seq_printf(seq, "\nCounters:\n---------\n");
2125 seq_printf(seq,"gets = %u\n", stats->gets);
2126 seq_printf(seq,"backtracks = %u\n", stats->backtrack);
2127 seq_printf(seq,"semantic match passed = %u\n", stats->semantic_match_passed);
2128 seq_printf(seq,"semantic match miss = %u\n", stats->semantic_match_miss);
2129 seq_printf(seq,"null node hit= %u\n", stats->null_node_hit);
2130 seq_printf(seq,"skipped node resize = %u\n\n", stats->resize_node_skipped);
2131 }
2132 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2133
2134
2135 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2136 {
2137 struct net *net = (struct net *)seq->private;
2138 struct trie *trie_local, *trie_main;
2139 struct trie_stat *stat;
2140 struct fib_table *tb;
2141
2142 trie_local = NULL;
2143 tb = fib_get_table(net, RT_TABLE_LOCAL);
2144 if (tb)
2145 trie_local = (struct trie *) tb->tb_data;
2146
2147 trie_main = NULL;
2148 tb = fib_get_table(net, RT_TABLE_MAIN);
2149 if (tb)
2150 trie_main = (struct trie *) tb->tb_data;
2151
2152
2153 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2154 if (!stat)
2155 return -ENOMEM;
2156
2157 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2158 sizeof(struct leaf), sizeof(struct tnode));
2159
2160 if (trie_local) {
2161 seq_printf(seq, "Local:\n");
2162 trie_collect_stats(trie_local, stat);
2163 trie_show_stats(seq, stat);
2164 #ifdef CONFIG_IP_FIB_TRIE_STATS
2165 trie_show_usage(seq, &trie_local->stats);
2166 #endif
2167 }
2168
2169 if (trie_main) {
2170 seq_printf(seq, "Main:\n");
2171 trie_collect_stats(trie_main, stat);
2172 trie_show_stats(seq, stat);
2173 #ifdef CONFIG_IP_FIB_TRIE_STATS
2174 trie_show_usage(seq, &trie_main->stats);
2175 #endif
2176 }
2177 kfree(stat);
2178
2179 return 0;
2180 }
2181
2182 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2183 {
2184 int err;
2185 struct net *net;
2186
2187 net = get_proc_net(inode);
2188 if (net == NULL)
2189 return -ENXIO;
2190 err = single_open(file, fib_triestat_seq_show, net);
2191 if (err < 0) {
2192 put_net(net);
2193 return err;
2194 }
2195 return 0;
2196 }
2197
2198 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2199 {
2200 struct seq_file *seq = f->private_data;
2201 put_net(seq->private);
2202 return single_release(ino, f);
2203 }
2204
2205 static const struct file_operations fib_triestat_fops = {
2206 .owner = THIS_MODULE,
2207 .open = fib_triestat_seq_open,
2208 .read = seq_read,
2209 .llseek = seq_lseek,
2210 .release = fib_triestat_seq_release,
2211 };
2212
2213 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2214 loff_t pos)
2215 {
2216 loff_t idx = 0;
2217 struct node *n;
2218
2219 for (n = fib_trie_get_first(iter, iter->trie_local);
2220 n; ++idx, n = fib_trie_get_next(iter)) {
2221 if (pos == idx)
2222 return n;
2223 }
2224
2225 for (n = fib_trie_get_first(iter, iter->trie_main);
2226 n; ++idx, n = fib_trie_get_next(iter)) {
2227 if (pos == idx)
2228 return n;
2229 }
2230 return NULL;
2231 }
2232
2233 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2234 __acquires(RCU)
2235 {
2236 struct fib_trie_iter *iter = seq->private;
2237 struct fib_table *tb;
2238
2239 if (!iter->trie_local) {
2240 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2241 if (tb)
2242 iter->trie_local = (struct trie *) tb->tb_data;
2243 }
2244 if (!iter->trie_main) {
2245 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2246 if (tb)
2247 iter->trie_main = (struct trie *) tb->tb_data;
2248 }
2249 rcu_read_lock();
2250 if (*pos == 0)
2251 return SEQ_START_TOKEN;
2252 return fib_trie_get_idx(iter, *pos - 1);
2253 }
2254
2255 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2256 {
2257 struct fib_trie_iter *iter = seq->private;
2258 void *l = v;
2259
2260 ++*pos;
2261 if (v == SEQ_START_TOKEN)
2262 return fib_trie_get_idx(iter, 0);
2263
2264 v = fib_trie_get_next(iter);
2265 BUG_ON(v == l);
2266 if (v)
2267 return v;
2268
2269 /* continue scan in next trie */
2270 if (iter->trie == iter->trie_local)
2271 return fib_trie_get_first(iter, iter->trie_main);
2272
2273 return NULL;
2274 }
2275
2276 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2277 __releases(RCU)
2278 {
2279 rcu_read_unlock();
2280 }
2281
2282 static void seq_indent(struct seq_file *seq, int n)
2283 {
2284 while (n-- > 0) seq_puts(seq, " ");
2285 }
2286
2287 static inline const char *rtn_scope(enum rt_scope_t s)
2288 {
2289 static char buf[32];
2290
2291 switch (s) {
2292 case RT_SCOPE_UNIVERSE: return "universe";
2293 case RT_SCOPE_SITE: return "site";
2294 case RT_SCOPE_LINK: return "link";
2295 case RT_SCOPE_HOST: return "host";
2296 case RT_SCOPE_NOWHERE: return "nowhere";
2297 default:
2298 snprintf(buf, sizeof(buf), "scope=%d", s);
2299 return buf;
2300 }
2301 }
2302
2303 static const char *rtn_type_names[__RTN_MAX] = {
2304 [RTN_UNSPEC] = "UNSPEC",
2305 [RTN_UNICAST] = "UNICAST",
2306 [RTN_LOCAL] = "LOCAL",
2307 [RTN_BROADCAST] = "BROADCAST",
2308 [RTN_ANYCAST] = "ANYCAST",
2309 [RTN_MULTICAST] = "MULTICAST",
2310 [RTN_BLACKHOLE] = "BLACKHOLE",
2311 [RTN_UNREACHABLE] = "UNREACHABLE",
2312 [RTN_PROHIBIT] = "PROHIBIT",
2313 [RTN_THROW] = "THROW",
2314 [RTN_NAT] = "NAT",
2315 [RTN_XRESOLVE] = "XRESOLVE",
2316 };
2317
2318 static inline const char *rtn_type(unsigned t)
2319 {
2320 static char buf[32];
2321
2322 if (t < __RTN_MAX && rtn_type_names[t])
2323 return rtn_type_names[t];
2324 snprintf(buf, sizeof(buf), "type %u", t);
2325 return buf;
2326 }
2327
2328 /* Pretty print the trie */
2329 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2330 {
2331 const struct fib_trie_iter *iter = seq->private;
2332 struct node *n = v;
2333
2334 if (v == SEQ_START_TOKEN)
2335 return 0;
2336
2337 if (!node_parent(n)) {
2338 if (iter->trie == iter->trie_local)
2339 seq_puts(seq, "<local>:\n");
2340 else
2341 seq_puts(seq, "<main>:\n");
2342 }
2343
2344 if (IS_TNODE(n)) {
2345 struct tnode *tn = (struct tnode *) n;
2346 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2347
2348 seq_indent(seq, iter->depth-1);
2349 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2350 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2351 tn->empty_children);
2352
2353 } else {
2354 struct leaf *l = (struct leaf *) n;
2355 int i;
2356 __be32 val = htonl(l->key);
2357
2358 seq_indent(seq, iter->depth);
2359 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2360 for (i = 32; i >= 0; i--) {
2361 struct leaf_info *li = find_leaf_info(l, i);
2362 if (li) {
2363 struct fib_alias *fa;
2364 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2365 seq_indent(seq, iter->depth+1);
2366 seq_printf(seq, " /%d %s %s", i,
2367 rtn_scope(fa->fa_scope),
2368 rtn_type(fa->fa_type));
2369 if (fa->fa_tos)
2370 seq_printf(seq, "tos =%d\n",
2371 fa->fa_tos);
2372 seq_putc(seq, '\n');
2373 }
2374 }
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 static const struct seq_operations fib_trie_seq_ops = {
2382 .start = fib_trie_seq_start,
2383 .next = fib_trie_seq_next,
2384 .stop = fib_trie_seq_stop,
2385 .show = fib_trie_seq_show,
2386 };
2387
2388 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2389 {
2390 return seq_open_net(inode, file, &fib_trie_seq_ops,
2391 sizeof(struct fib_trie_iter));
2392 }
2393
2394 static const struct file_operations fib_trie_fops = {
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
2399 .release = seq_release_net,
2400 };
2401
2402 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2403 {
2404 static unsigned type2flags[RTN_MAX + 1] = {
2405 [7] = RTF_REJECT, [8] = RTF_REJECT,
2406 };
2407 unsigned flags = type2flags[type];
2408
2409 if (fi && fi->fib_nh->nh_gw)
2410 flags |= RTF_GATEWAY;
2411 if (mask == htonl(0xFFFFFFFF))
2412 flags |= RTF_HOST;
2413 flags |= RTF_UP;
2414 return flags;
2415 }
2416
2417 /*
2418 * This outputs /proc/net/route.
2419 * The format of the file is not supposed to be changed
2420 * and needs to be same as fib_hash output to avoid breaking
2421 * legacy utilities
2422 */
2423 static int fib_route_seq_show(struct seq_file *seq, void *v)
2424 {
2425 const struct fib_trie_iter *iter = seq->private;
2426 struct leaf *l = v;
2427 int i;
2428 char bf[128];
2429
2430 if (v == SEQ_START_TOKEN) {
2431 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2432 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2433 "\tWindow\tIRTT");
2434 return 0;
2435 }
2436
2437 if (iter->trie == iter->trie_local)
2438 return 0;
2439 if (IS_TNODE(l))
2440 return 0;
2441
2442 for (i=32; i>=0; i--) {
2443 struct leaf_info *li = find_leaf_info(l, i);
2444 struct fib_alias *fa;
2445 __be32 mask, prefix;
2446
2447 if (!li)
2448 continue;
2449
2450 mask = inet_make_mask(li->plen);
2451 prefix = htonl(l->key);
2452
2453 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2454 const struct fib_info *fi = fa->fa_info;
2455 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2456
2457 if (fa->fa_type == RTN_BROADCAST
2458 || fa->fa_type == RTN_MULTICAST)
2459 continue;
2460
2461 if (fi)
2462 snprintf(bf, sizeof(bf),
2463 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2464 fi->fib_dev ? fi->fib_dev->name : "*",
2465 prefix,
2466 fi->fib_nh->nh_gw, flags, 0, 0,
2467 fi->fib_priority,
2468 mask,
2469 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2470 fi->fib_window,
2471 fi->fib_rtt >> 3);
2472 else
2473 snprintf(bf, sizeof(bf),
2474 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2475 prefix, 0, flags, 0, 0, 0,
2476 mask, 0, 0, 0);
2477
2478 seq_printf(seq, "%-127s\n", bf);
2479 }
2480 }
2481
2482 return 0;
2483 }
2484
2485 static const struct seq_operations fib_route_seq_ops = {
2486 .start = fib_trie_seq_start,
2487 .next = fib_trie_seq_next,
2488 .stop = fib_trie_seq_stop,
2489 .show = fib_route_seq_show,
2490 };
2491
2492 static int fib_route_seq_open(struct inode *inode, struct file *file)
2493 {
2494 return seq_open_net(inode, file, &fib_route_seq_ops,
2495 sizeof(struct fib_trie_iter));
2496 }
2497
2498 static const struct file_operations fib_route_fops = {
2499 .owner = THIS_MODULE,
2500 .open = fib_route_seq_open,
2501 .read = seq_read,
2502 .llseek = seq_lseek,
2503 .release = seq_release_net,
2504 };
2505
2506 int __net_init fib_proc_init(struct net *net)
2507 {
2508 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2509 goto out1;
2510
2511 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2512 &fib_triestat_fops))
2513 goto out2;
2514
2515 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2516 goto out3;
2517
2518 return 0;
2519
2520 out3:
2521 proc_net_remove(net, "fib_triestat");
2522 out2:
2523 proc_net_remove(net, "fib_trie");
2524 out1:
2525 return -ENOMEM;
2526 }
2527
2528 void __net_exit fib_proc_exit(struct net *net)
2529 {
2530 proc_net_remove(net, "fib_trie");
2531 proc_net_remove(net, "fib_triestat");
2532 proc_net_remove(net, "route");
2533 }
2534
2535 #endif /* CONFIG_PROC_FS */
This page took 0.09704 seconds and 6 git commands to generate.