[IPV4] fib_trie: avoid extra search on delete
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct node {
100 unsigned long parent;
101 t_key key;
102 };
103
104 struct leaf {
105 unsigned long parent;
106 t_key key;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
127 };
128
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
137 };
138 #endif
139
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int prefixes;
147 unsigned int nodesizes[MAX_STAT_DEPTH];
148 };
149
150 struct trie {
151 struct node *trie;
152 #ifdef CONFIG_IP_FIB_TRIE_STATS
153 struct trie_use_stats stats;
154 #endif
155 };
156
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
159 int wasfull);
160 static struct node *resize(struct trie *t, struct tnode *tn);
161 static struct tnode *inflate(struct trie *t, struct tnode *tn);
162 static struct tnode *halve(struct trie *t, struct tnode *tn);
163 static void tnode_free(struct tnode *tn);
164
165 static struct kmem_cache *fn_alias_kmem __read_mostly;
166 static struct kmem_cache *trie_leaf_kmem __read_mostly;
167
168 static inline struct tnode *node_parent(struct node *node)
169 {
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 }
172
173 static inline struct tnode *node_parent_rcu(struct node *node)
174 {
175 struct tnode *ret = node_parent(node);
176
177 return rcu_dereference(ret);
178 }
179
180 static inline void node_set_parent(struct node *node, struct tnode *ptr)
181 {
182 rcu_assign_pointer(node->parent,
183 (unsigned long)ptr | NODE_TYPE(node));
184 }
185
186 static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
187 {
188 BUG_ON(i >= 1U << tn->bits);
189
190 return tn->child[i];
191 }
192
193 static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
194 {
195 struct node *ret = tnode_get_child(tn, i);
196
197 return rcu_dereference(ret);
198 }
199
200 static inline int tnode_child_length(const struct tnode *tn)
201 {
202 return 1 << tn->bits;
203 }
204
205 static inline t_key mask_pfx(t_key k, unsigned short l)
206 {
207 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
208 }
209
210 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
211 {
212 if (offset < KEYLENGTH)
213 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
214 else
215 return 0;
216 }
217
218 static inline int tkey_equals(t_key a, t_key b)
219 {
220 return a == b;
221 }
222
223 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
224 {
225 if (bits == 0 || offset >= KEYLENGTH)
226 return 1;
227 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
228 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
229 }
230
231 static inline int tkey_mismatch(t_key a, int offset, t_key b)
232 {
233 t_key diff = a ^ b;
234 int i = offset;
235
236 if (!diff)
237 return 0;
238 while ((diff << i) >> (KEYLENGTH-1) == 0)
239 i++;
240 return i;
241 }
242
243 /*
244 To understand this stuff, an understanding of keys and all their bits is
245 necessary. Every node in the trie has a key associated with it, but not
246 all of the bits in that key are significant.
247
248 Consider a node 'n' and its parent 'tp'.
249
250 If n is a leaf, every bit in its key is significant. Its presence is
251 necessitated by path compression, since during a tree traversal (when
252 searching for a leaf - unless we are doing an insertion) we will completely
253 ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 a potentially successful search, that we have indeed been walking the
255 correct key path.
256
257 Note that we can never "miss" the correct key in the tree if present by
258 following the wrong path. Path compression ensures that segments of the key
259 that are the same for all keys with a given prefix are skipped, but the
260 skipped part *is* identical for each node in the subtrie below the skipped
261 bit! trie_insert() in this implementation takes care of that - note the
262 call to tkey_sub_equals() in trie_insert().
263
264 if n is an internal node - a 'tnode' here, the various parts of its key
265 have many different meanings.
266
267 Example:
268 _________________________________________________________________
269 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
270 -----------------------------------------------------------------
271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
272
273 _________________________________________________________________
274 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
275 -----------------------------------------------------------------
276 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
277
278 tp->pos = 7
279 tp->bits = 3
280 n->pos = 15
281 n->bits = 4
282
283 First, let's just ignore the bits that come before the parent tp, that is
284 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
285 not use them for anything.
286
287 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
288 index into the parent's child array. That is, they will be used to find
289 'n' among tp's children.
290
291 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
292 for the node n.
293
294 All the bits we have seen so far are significant to the node n. The rest
295 of the bits are really not needed or indeed known in n->key.
296
297 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
298 n's child array, and will of course be different for each child.
299
300
301 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
302 at this point.
303
304 */
305
306 static inline void check_tnode(const struct tnode *tn)
307 {
308 WARN_ON(tn && tn->pos+tn->bits > 32);
309 }
310
311 static const int halve_threshold = 25;
312 static const int inflate_threshold = 50;
313 static const int halve_threshold_root = 8;
314 static const int inflate_threshold_root = 15;
315
316
317 static void __alias_free_mem(struct rcu_head *head)
318 {
319 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
320 kmem_cache_free(fn_alias_kmem, fa);
321 }
322
323 static inline void alias_free_mem_rcu(struct fib_alias *fa)
324 {
325 call_rcu(&fa->rcu, __alias_free_mem);
326 }
327
328 static void __leaf_free_rcu(struct rcu_head *head)
329 {
330 struct leaf *l = container_of(head, struct leaf, rcu);
331 kmem_cache_free(trie_leaf_kmem, l);
332 }
333
334 static void __leaf_info_free_rcu(struct rcu_head *head)
335 {
336 kfree(container_of(head, struct leaf_info, rcu));
337 }
338
339 static inline void free_leaf_info(struct leaf_info *leaf)
340 {
341 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
342 }
343
344 static struct tnode *tnode_alloc(size_t size)
345 {
346 struct page *pages;
347
348 if (size <= PAGE_SIZE)
349 return kzalloc(size, GFP_KERNEL);
350
351 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
352 if (!pages)
353 return NULL;
354
355 return page_address(pages);
356 }
357
358 static void __tnode_free_rcu(struct rcu_head *head)
359 {
360 struct tnode *tn = container_of(head, struct tnode, rcu);
361 size_t size = sizeof(struct tnode) +
362 (sizeof(struct node *) << tn->bits);
363
364 if (size <= PAGE_SIZE)
365 kfree(tn);
366 else
367 free_pages((unsigned long)tn, get_order(size));
368 }
369
370 static inline void tnode_free(struct tnode *tn)
371 {
372 if (IS_LEAF(tn)) {
373 struct leaf *l = (struct leaf *) tn;
374 call_rcu_bh(&l->rcu, __leaf_free_rcu);
375 } else
376 call_rcu(&tn->rcu, __tnode_free_rcu);
377 }
378
379 static struct leaf *leaf_new(void)
380 {
381 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
382 if (l) {
383 l->parent = T_LEAF;
384 INIT_HLIST_HEAD(&l->list);
385 }
386 return l;
387 }
388
389 static struct leaf_info *leaf_info_new(int plen)
390 {
391 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
392 if (li) {
393 li->plen = plen;
394 INIT_LIST_HEAD(&li->falh);
395 }
396 return li;
397 }
398
399 static struct tnode *tnode_new(t_key key, int pos, int bits)
400 {
401 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
402 struct tnode *tn = tnode_alloc(sz);
403
404 if (tn) {
405 tn->parent = T_TNODE;
406 tn->pos = pos;
407 tn->bits = bits;
408 tn->key = key;
409 tn->full_children = 0;
410 tn->empty_children = 1<<bits;
411 }
412
413 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
414 (unsigned long) (sizeof(struct node) << bits));
415 return tn;
416 }
417
418 /*
419 * Check whether a tnode 'n' is "full", i.e. it is an internal node
420 * and no bits are skipped. See discussion in dyntree paper p. 6
421 */
422
423 static inline int tnode_full(const struct tnode *tn, const struct node *n)
424 {
425 if (n == NULL || IS_LEAF(n))
426 return 0;
427
428 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
429 }
430
431 static inline void put_child(struct trie *t, struct tnode *tn, int i,
432 struct node *n)
433 {
434 tnode_put_child_reorg(tn, i, n, -1);
435 }
436
437 /*
438 * Add a child at position i overwriting the old value.
439 * Update the value of full_children and empty_children.
440 */
441
442 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
443 int wasfull)
444 {
445 struct node *chi = tn->child[i];
446 int isfull;
447
448 BUG_ON(i >= 1<<tn->bits);
449
450
451 /* update emptyChildren */
452 if (n == NULL && chi != NULL)
453 tn->empty_children++;
454 else if (n != NULL && chi == NULL)
455 tn->empty_children--;
456
457 /* update fullChildren */
458 if (wasfull == -1)
459 wasfull = tnode_full(tn, chi);
460
461 isfull = tnode_full(tn, n);
462 if (wasfull && !isfull)
463 tn->full_children--;
464 else if (!wasfull && isfull)
465 tn->full_children++;
466
467 if (n)
468 node_set_parent(n, tn);
469
470 rcu_assign_pointer(tn->child[i], n);
471 }
472
473 static struct node *resize(struct trie *t, struct tnode *tn)
474 {
475 int i;
476 int err = 0;
477 struct tnode *old_tn;
478 int inflate_threshold_use;
479 int halve_threshold_use;
480 int max_resize;
481
482 if (!tn)
483 return NULL;
484
485 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
486 tn, inflate_threshold, halve_threshold);
487
488 /* No children */
489 if (tn->empty_children == tnode_child_length(tn)) {
490 tnode_free(tn);
491 return NULL;
492 }
493 /* One child */
494 if (tn->empty_children == tnode_child_length(tn) - 1)
495 for (i = 0; i < tnode_child_length(tn); i++) {
496 struct node *n;
497
498 n = tn->child[i];
499 if (!n)
500 continue;
501
502 /* compress one level */
503 node_set_parent(n, NULL);
504 tnode_free(tn);
505 return n;
506 }
507 /*
508 * Double as long as the resulting node has a number of
509 * nonempty nodes that are above the threshold.
510 */
511
512 /*
513 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
514 * the Helsinki University of Technology and Matti Tikkanen of Nokia
515 * Telecommunications, page 6:
516 * "A node is doubled if the ratio of non-empty children to all
517 * children in the *doubled* node is at least 'high'."
518 *
519 * 'high' in this instance is the variable 'inflate_threshold'. It
520 * is expressed as a percentage, so we multiply it with
521 * tnode_child_length() and instead of multiplying by 2 (since the
522 * child array will be doubled by inflate()) and multiplying
523 * the left-hand side by 100 (to handle the percentage thing) we
524 * multiply the left-hand side by 50.
525 *
526 * The left-hand side may look a bit weird: tnode_child_length(tn)
527 * - tn->empty_children is of course the number of non-null children
528 * in the current node. tn->full_children is the number of "full"
529 * children, that is non-null tnodes with a skip value of 0.
530 * All of those will be doubled in the resulting inflated tnode, so
531 * we just count them one extra time here.
532 *
533 * A clearer way to write this would be:
534 *
535 * to_be_doubled = tn->full_children;
536 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
537 * tn->full_children;
538 *
539 * new_child_length = tnode_child_length(tn) * 2;
540 *
541 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
542 * new_child_length;
543 * if (new_fill_factor >= inflate_threshold)
544 *
545 * ...and so on, tho it would mess up the while () loop.
546 *
547 * anyway,
548 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
549 * inflate_threshold
550 *
551 * avoid a division:
552 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
553 * inflate_threshold * new_child_length
554 *
555 * expand not_to_be_doubled and to_be_doubled, and shorten:
556 * 100 * (tnode_child_length(tn) - tn->empty_children +
557 * tn->full_children) >= inflate_threshold * new_child_length
558 *
559 * expand new_child_length:
560 * 100 * (tnode_child_length(tn) - tn->empty_children +
561 * tn->full_children) >=
562 * inflate_threshold * tnode_child_length(tn) * 2
563 *
564 * shorten again:
565 * 50 * (tn->full_children + tnode_child_length(tn) -
566 * tn->empty_children) >= inflate_threshold *
567 * tnode_child_length(tn)
568 *
569 */
570
571 check_tnode(tn);
572
573 /* Keep root node larger */
574
575 if (!tn->parent)
576 inflate_threshold_use = inflate_threshold_root;
577 else
578 inflate_threshold_use = inflate_threshold;
579
580 err = 0;
581 max_resize = 10;
582 while ((tn->full_children > 0 && max_resize-- &&
583 50 * (tn->full_children + tnode_child_length(tn)
584 - tn->empty_children)
585 >= inflate_threshold_use * tnode_child_length(tn))) {
586
587 old_tn = tn;
588 tn = inflate(t, tn);
589
590 if (IS_ERR(tn)) {
591 tn = old_tn;
592 #ifdef CONFIG_IP_FIB_TRIE_STATS
593 t->stats.resize_node_skipped++;
594 #endif
595 break;
596 }
597 }
598
599 if (max_resize < 0) {
600 if (!tn->parent)
601 pr_warning("Fix inflate_threshold_root."
602 " Now=%d size=%d bits\n",
603 inflate_threshold_root, tn->bits);
604 else
605 pr_warning("Fix inflate_threshold."
606 " Now=%d size=%d bits\n",
607 inflate_threshold, tn->bits);
608 }
609
610 check_tnode(tn);
611
612 /*
613 * Halve as long as the number of empty children in this
614 * node is above threshold.
615 */
616
617
618 /* Keep root node larger */
619
620 if (!tn->parent)
621 halve_threshold_use = halve_threshold_root;
622 else
623 halve_threshold_use = halve_threshold;
624
625 err = 0;
626 max_resize = 10;
627 while (tn->bits > 1 && max_resize-- &&
628 100 * (tnode_child_length(tn) - tn->empty_children) <
629 halve_threshold_use * tnode_child_length(tn)) {
630
631 old_tn = tn;
632 tn = halve(t, tn);
633 if (IS_ERR(tn)) {
634 tn = old_tn;
635 #ifdef CONFIG_IP_FIB_TRIE_STATS
636 t->stats.resize_node_skipped++;
637 #endif
638 break;
639 }
640 }
641
642 if (max_resize < 0) {
643 if (!tn->parent)
644 pr_warning("Fix halve_threshold_root."
645 " Now=%d size=%d bits\n",
646 halve_threshold_root, tn->bits);
647 else
648 pr_warning("Fix halve_threshold."
649 " Now=%d size=%d bits\n",
650 halve_threshold, tn->bits);
651 }
652
653 /* Only one child remains */
654 if (tn->empty_children == tnode_child_length(tn) - 1)
655 for (i = 0; i < tnode_child_length(tn); i++) {
656 struct node *n;
657
658 n = tn->child[i];
659 if (!n)
660 continue;
661
662 /* compress one level */
663
664 node_set_parent(n, NULL);
665 tnode_free(tn);
666 return n;
667 }
668
669 return (struct node *) tn;
670 }
671
672 static struct tnode *inflate(struct trie *t, struct tnode *tn)
673 {
674 struct tnode *oldtnode = tn;
675 int olen = tnode_child_length(tn);
676 int i;
677
678 pr_debug("In inflate\n");
679
680 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
681
682 if (!tn)
683 return ERR_PTR(-ENOMEM);
684
685 /*
686 * Preallocate and store tnodes before the actual work so we
687 * don't get into an inconsistent state if memory allocation
688 * fails. In case of failure we return the oldnode and inflate
689 * of tnode is ignored.
690 */
691
692 for (i = 0; i < olen; i++) {
693 struct tnode *inode;
694
695 inode = (struct tnode *) tnode_get_child(oldtnode, i);
696 if (inode &&
697 IS_TNODE(inode) &&
698 inode->pos == oldtnode->pos + oldtnode->bits &&
699 inode->bits > 1) {
700 struct tnode *left, *right;
701 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
702
703 left = tnode_new(inode->key&(~m), inode->pos + 1,
704 inode->bits - 1);
705 if (!left)
706 goto nomem;
707
708 right = tnode_new(inode->key|m, inode->pos + 1,
709 inode->bits - 1);
710
711 if (!right) {
712 tnode_free(left);
713 goto nomem;
714 }
715
716 put_child(t, tn, 2*i, (struct node *) left);
717 put_child(t, tn, 2*i+1, (struct node *) right);
718 }
719 }
720
721 for (i = 0; i < olen; i++) {
722 struct tnode *inode;
723 struct node *node = tnode_get_child(oldtnode, i);
724 struct tnode *left, *right;
725 int size, j;
726
727 /* An empty child */
728 if (node == NULL)
729 continue;
730
731 /* A leaf or an internal node with skipped bits */
732
733 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
734 tn->pos + tn->bits - 1) {
735 if (tkey_extract_bits(node->key,
736 oldtnode->pos + oldtnode->bits,
737 1) == 0)
738 put_child(t, tn, 2*i, node);
739 else
740 put_child(t, tn, 2*i+1, node);
741 continue;
742 }
743
744 /* An internal node with two children */
745 inode = (struct tnode *) node;
746
747 if (inode->bits == 1) {
748 put_child(t, tn, 2*i, inode->child[0]);
749 put_child(t, tn, 2*i+1, inode->child[1]);
750
751 tnode_free(inode);
752 continue;
753 }
754
755 /* An internal node with more than two children */
756
757 /* We will replace this node 'inode' with two new
758 * ones, 'left' and 'right', each with half of the
759 * original children. The two new nodes will have
760 * a position one bit further down the key and this
761 * means that the "significant" part of their keys
762 * (see the discussion near the top of this file)
763 * will differ by one bit, which will be "0" in
764 * left's key and "1" in right's key. Since we are
765 * moving the key position by one step, the bit that
766 * we are moving away from - the bit at position
767 * (inode->pos) - is the one that will differ between
768 * left and right. So... we synthesize that bit in the
769 * two new keys.
770 * The mask 'm' below will be a single "one" bit at
771 * the position (inode->pos)
772 */
773
774 /* Use the old key, but set the new significant
775 * bit to zero.
776 */
777
778 left = (struct tnode *) tnode_get_child(tn, 2*i);
779 put_child(t, tn, 2*i, NULL);
780
781 BUG_ON(!left);
782
783 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
784 put_child(t, tn, 2*i+1, NULL);
785
786 BUG_ON(!right);
787
788 size = tnode_child_length(left);
789 for (j = 0; j < size; j++) {
790 put_child(t, left, j, inode->child[j]);
791 put_child(t, right, j, inode->child[j + size]);
792 }
793 put_child(t, tn, 2*i, resize(t, left));
794 put_child(t, tn, 2*i+1, resize(t, right));
795
796 tnode_free(inode);
797 }
798 tnode_free(oldtnode);
799 return tn;
800 nomem:
801 {
802 int size = tnode_child_length(tn);
803 int j;
804
805 for (j = 0; j < size; j++)
806 if (tn->child[j])
807 tnode_free((struct tnode *)tn->child[j]);
808
809 tnode_free(tn);
810
811 return ERR_PTR(-ENOMEM);
812 }
813 }
814
815 static struct tnode *halve(struct trie *t, struct tnode *tn)
816 {
817 struct tnode *oldtnode = tn;
818 struct node *left, *right;
819 int i;
820 int olen = tnode_child_length(tn);
821
822 pr_debug("In halve\n");
823
824 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
825
826 if (!tn)
827 return ERR_PTR(-ENOMEM);
828
829 /*
830 * Preallocate and store tnodes before the actual work so we
831 * don't get into an inconsistent state if memory allocation
832 * fails. In case of failure we return the oldnode and halve
833 * of tnode is ignored.
834 */
835
836 for (i = 0; i < olen; i += 2) {
837 left = tnode_get_child(oldtnode, i);
838 right = tnode_get_child(oldtnode, i+1);
839
840 /* Two nonempty children */
841 if (left && right) {
842 struct tnode *newn;
843
844 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
845
846 if (!newn)
847 goto nomem;
848
849 put_child(t, tn, i/2, (struct node *)newn);
850 }
851
852 }
853
854 for (i = 0; i < olen; i += 2) {
855 struct tnode *newBinNode;
856
857 left = tnode_get_child(oldtnode, i);
858 right = tnode_get_child(oldtnode, i+1);
859
860 /* At least one of the children is empty */
861 if (left == NULL) {
862 if (right == NULL) /* Both are empty */
863 continue;
864 put_child(t, tn, i/2, right);
865 continue;
866 }
867
868 if (right == NULL) {
869 put_child(t, tn, i/2, left);
870 continue;
871 }
872
873 /* Two nonempty children */
874 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
875 put_child(t, tn, i/2, NULL);
876 put_child(t, newBinNode, 0, left);
877 put_child(t, newBinNode, 1, right);
878 put_child(t, tn, i/2, resize(t, newBinNode));
879 }
880 tnode_free(oldtnode);
881 return tn;
882 nomem:
883 {
884 int size = tnode_child_length(tn);
885 int j;
886
887 for (j = 0; j < size; j++)
888 if (tn->child[j])
889 tnode_free((struct tnode *)tn->child[j]);
890
891 tnode_free(tn);
892
893 return ERR_PTR(-ENOMEM);
894 }
895 }
896
897 /* readside must use rcu_read_lock currently dump routines
898 via get_fa_head and dump */
899
900 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
901 {
902 struct hlist_head *head = &l->list;
903 struct hlist_node *node;
904 struct leaf_info *li;
905
906 hlist_for_each_entry_rcu(li, node, head, hlist)
907 if (li->plen == plen)
908 return li;
909
910 return NULL;
911 }
912
913 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
914 {
915 struct leaf_info *li = find_leaf_info(l, plen);
916
917 if (!li)
918 return NULL;
919
920 return &li->falh;
921 }
922
923 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
924 {
925 struct leaf_info *li = NULL, *last = NULL;
926 struct hlist_node *node;
927
928 if (hlist_empty(head)) {
929 hlist_add_head_rcu(&new->hlist, head);
930 } else {
931 hlist_for_each_entry(li, node, head, hlist) {
932 if (new->plen > li->plen)
933 break;
934
935 last = li;
936 }
937 if (last)
938 hlist_add_after_rcu(&last->hlist, &new->hlist);
939 else
940 hlist_add_before_rcu(&new->hlist, &li->hlist);
941 }
942 }
943
944 /* rcu_read_lock needs to be hold by caller from readside */
945
946 static struct leaf *
947 fib_find_node(struct trie *t, u32 key)
948 {
949 int pos;
950 struct tnode *tn;
951 struct node *n;
952
953 pos = 0;
954 n = rcu_dereference(t->trie);
955
956 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
957 tn = (struct tnode *) n;
958
959 check_tnode(tn);
960
961 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
962 pos = tn->pos + tn->bits;
963 n = tnode_get_child_rcu(tn,
964 tkey_extract_bits(key,
965 tn->pos,
966 tn->bits));
967 } else
968 break;
969 }
970 /* Case we have found a leaf. Compare prefixes */
971
972 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
973 return (struct leaf *)n;
974
975 return NULL;
976 }
977
978 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
979 {
980 int wasfull;
981 t_key cindex, key = tn->key;
982 struct tnode *tp;
983
984 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
985 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
986 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
987 tn = (struct tnode *) resize(t, (struct tnode *)tn);
988
989 tnode_put_child_reorg((struct tnode *)tp, cindex,
990 (struct node *)tn, wasfull);
991
992 tp = node_parent((struct node *) tn);
993 if (!tp)
994 break;
995 tn = tp;
996 }
997
998 /* Handle last (top) tnode */
999 if (IS_TNODE(tn))
1000 tn = (struct tnode *)resize(t, (struct tnode *)tn);
1001
1002 return (struct node *)tn;
1003 }
1004
1005 /* only used from updater-side */
1006
1007 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1008 {
1009 int pos, newpos;
1010 struct tnode *tp = NULL, *tn = NULL;
1011 struct node *n;
1012 struct leaf *l;
1013 int missbit;
1014 struct list_head *fa_head = NULL;
1015 struct leaf_info *li;
1016 t_key cindex;
1017
1018 pos = 0;
1019 n = t->trie;
1020
1021 /* If we point to NULL, stop. Either the tree is empty and we should
1022 * just put a new leaf in if, or we have reached an empty child slot,
1023 * and we should just put our new leaf in that.
1024 * If we point to a T_TNODE, check if it matches our key. Note that
1025 * a T_TNODE might be skipping any number of bits - its 'pos' need
1026 * not be the parent's 'pos'+'bits'!
1027 *
1028 * If it does match the current key, get pos/bits from it, extract
1029 * the index from our key, push the T_TNODE and walk the tree.
1030 *
1031 * If it doesn't, we have to replace it with a new T_TNODE.
1032 *
1033 * If we point to a T_LEAF, it might or might not have the same key
1034 * as we do. If it does, just change the value, update the T_LEAF's
1035 * value, and return it.
1036 * If it doesn't, we need to replace it with a T_TNODE.
1037 */
1038
1039 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1040 tn = (struct tnode *) n;
1041
1042 check_tnode(tn);
1043
1044 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1045 tp = tn;
1046 pos = tn->pos + tn->bits;
1047 n = tnode_get_child(tn,
1048 tkey_extract_bits(key,
1049 tn->pos,
1050 tn->bits));
1051
1052 BUG_ON(n && node_parent(n) != tn);
1053 } else
1054 break;
1055 }
1056
1057 /*
1058 * n ----> NULL, LEAF or TNODE
1059 *
1060 * tp is n's (parent) ----> NULL or TNODE
1061 */
1062
1063 BUG_ON(tp && IS_LEAF(tp));
1064
1065 /* Case 1: n is a leaf. Compare prefixes */
1066
1067 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1068 l = (struct leaf *) n;
1069 li = leaf_info_new(plen);
1070
1071 if (!li)
1072 return NULL;
1073
1074 fa_head = &li->falh;
1075 insert_leaf_info(&l->list, li);
1076 goto done;
1077 }
1078 l = leaf_new();
1079
1080 if (!l)
1081 return NULL;
1082
1083 l->key = key;
1084 li = leaf_info_new(plen);
1085
1086 if (!li) {
1087 tnode_free((struct tnode *) l);
1088 return NULL;
1089 }
1090
1091 fa_head = &li->falh;
1092 insert_leaf_info(&l->list, li);
1093
1094 if (t->trie && n == NULL) {
1095 /* Case 2: n is NULL, and will just insert a new leaf */
1096
1097 node_set_parent((struct node *)l, tp);
1098
1099 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1100 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1101 } else {
1102 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1103 /*
1104 * Add a new tnode here
1105 * first tnode need some special handling
1106 */
1107
1108 if (tp)
1109 pos = tp->pos+tp->bits;
1110 else
1111 pos = 0;
1112
1113 if (n) {
1114 newpos = tkey_mismatch(key, pos, n->key);
1115 tn = tnode_new(n->key, newpos, 1);
1116 } else {
1117 newpos = 0;
1118 tn = tnode_new(key, newpos, 1); /* First tnode */
1119 }
1120
1121 if (!tn) {
1122 free_leaf_info(li);
1123 tnode_free((struct tnode *) l);
1124 return NULL;
1125 }
1126
1127 node_set_parent((struct node *)tn, tp);
1128
1129 missbit = tkey_extract_bits(key, newpos, 1);
1130 put_child(t, tn, missbit, (struct node *)l);
1131 put_child(t, tn, 1-missbit, n);
1132
1133 if (tp) {
1134 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1135 put_child(t, (struct tnode *)tp, cindex,
1136 (struct node *)tn);
1137 } else {
1138 rcu_assign_pointer(t->trie, (struct node *)tn);
1139 tp = tn;
1140 }
1141 }
1142
1143 if (tp && tp->pos + tp->bits > 32)
1144 pr_warning("fib_trie"
1145 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1146 tp, tp->pos, tp->bits, key, plen);
1147
1148 /* Rebalance the trie */
1149
1150 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1151 done:
1152 return fa_head;
1153 }
1154
1155 /*
1156 * Caller must hold RTNL.
1157 */
1158 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1159 {
1160 struct trie *t = (struct trie *) tb->tb_data;
1161 struct fib_alias *fa, *new_fa;
1162 struct list_head *fa_head = NULL;
1163 struct fib_info *fi;
1164 int plen = cfg->fc_dst_len;
1165 u8 tos = cfg->fc_tos;
1166 u32 key, mask;
1167 int err;
1168 struct leaf *l;
1169
1170 if (plen > 32)
1171 return -EINVAL;
1172
1173 key = ntohl(cfg->fc_dst);
1174
1175 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1176
1177 mask = ntohl(inet_make_mask(plen));
1178
1179 if (key & ~mask)
1180 return -EINVAL;
1181
1182 key = key & mask;
1183
1184 fi = fib_create_info(cfg);
1185 if (IS_ERR(fi)) {
1186 err = PTR_ERR(fi);
1187 goto err;
1188 }
1189
1190 l = fib_find_node(t, key);
1191 fa = NULL;
1192
1193 if (l) {
1194 fa_head = get_fa_head(l, plen);
1195 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1196 }
1197
1198 /* Now fa, if non-NULL, points to the first fib alias
1199 * with the same keys [prefix,tos,priority], if such key already
1200 * exists or to the node before which we will insert new one.
1201 *
1202 * If fa is NULL, we will need to allocate a new one and
1203 * insert to the head of f.
1204 *
1205 * If f is NULL, no fib node matched the destination key
1206 * and we need to allocate a new one of those as well.
1207 */
1208
1209 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1210 struct fib_alias *fa_orig;
1211
1212 err = -EEXIST;
1213 if (cfg->fc_nlflags & NLM_F_EXCL)
1214 goto out;
1215
1216 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1217 struct fib_info *fi_drop;
1218 u8 state;
1219
1220 if (fi->fib_treeref > 1)
1221 goto out;
1222
1223 err = -ENOBUFS;
1224 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1225 if (new_fa == NULL)
1226 goto out;
1227
1228 fi_drop = fa->fa_info;
1229 new_fa->fa_tos = fa->fa_tos;
1230 new_fa->fa_info = fi;
1231 new_fa->fa_type = cfg->fc_type;
1232 new_fa->fa_scope = cfg->fc_scope;
1233 state = fa->fa_state;
1234 new_fa->fa_state &= ~FA_S_ACCESSED;
1235
1236 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1237 alias_free_mem_rcu(fa);
1238
1239 fib_release_info(fi_drop);
1240 if (state & FA_S_ACCESSED)
1241 rt_cache_flush(-1);
1242 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1243 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1244
1245 goto succeeded;
1246 }
1247 /* Error if we find a perfect match which
1248 * uses the same scope, type, and nexthop
1249 * information.
1250 */
1251 fa_orig = fa;
1252 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1253 if (fa->fa_tos != tos)
1254 break;
1255 if (fa->fa_info->fib_priority != fi->fib_priority)
1256 break;
1257 if (fa->fa_type == cfg->fc_type &&
1258 fa->fa_scope == cfg->fc_scope &&
1259 fa->fa_info == fi)
1260 goto out;
1261 }
1262
1263 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1264 fa = fa_orig;
1265 }
1266 err = -ENOENT;
1267 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1268 goto out;
1269
1270 err = -ENOBUFS;
1271 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1272 if (new_fa == NULL)
1273 goto out;
1274
1275 new_fa->fa_info = fi;
1276 new_fa->fa_tos = tos;
1277 new_fa->fa_type = cfg->fc_type;
1278 new_fa->fa_scope = cfg->fc_scope;
1279 new_fa->fa_state = 0;
1280 /*
1281 * Insert new entry to the list.
1282 */
1283
1284 if (!fa_head) {
1285 fa_head = fib_insert_node(t, key, plen);
1286 if (unlikely(!fa_head)) {
1287 err = -ENOMEM;
1288 goto out_free_new_fa;
1289 }
1290 }
1291
1292 list_add_tail_rcu(&new_fa->fa_list,
1293 (fa ? &fa->fa_list : fa_head));
1294
1295 rt_cache_flush(-1);
1296 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1297 &cfg->fc_nlinfo, 0);
1298 succeeded:
1299 return 0;
1300
1301 out_free_new_fa:
1302 kmem_cache_free(fn_alias_kmem, new_fa);
1303 out:
1304 fib_release_info(fi);
1305 err:
1306 return err;
1307 }
1308
1309
1310 /* should be called with rcu_read_lock */
1311 static int check_leaf(struct trie *t, struct leaf *l,
1312 t_key key, const struct flowi *flp,
1313 struct fib_result *res)
1314 {
1315 struct leaf_info *li;
1316 struct hlist_head *hhead = &l->list;
1317 struct hlist_node *node;
1318
1319 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1320 int err;
1321 int plen = li->plen;
1322 __be32 mask = inet_make_mask(plen);
1323
1324 if (l->key != (key & ntohl(mask)))
1325 continue;
1326
1327 err = fib_semantic_match(&li->falh, flp, res,
1328 htonl(l->key), mask, plen);
1329
1330 #ifdef CONFIG_IP_FIB_TRIE_STATS
1331 if (err <= 0)
1332 t->stats.semantic_match_passed++;
1333 else
1334 t->stats.semantic_match_miss++;
1335 #endif
1336 if (err <= 0)
1337 return plen;
1338 }
1339
1340 return -1;
1341 }
1342
1343 static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1344 struct fib_result *res)
1345 {
1346 struct trie *t = (struct trie *) tb->tb_data;
1347 int plen, ret = 0;
1348 struct node *n;
1349 struct tnode *pn;
1350 int pos, bits;
1351 t_key key = ntohl(flp->fl4_dst);
1352 int chopped_off;
1353 t_key cindex = 0;
1354 int current_prefix_length = KEYLENGTH;
1355 struct tnode *cn;
1356 t_key node_prefix, key_prefix, pref_mismatch;
1357 int mp;
1358
1359 rcu_read_lock();
1360
1361 n = rcu_dereference(t->trie);
1362 if (!n)
1363 goto failed;
1364
1365 #ifdef CONFIG_IP_FIB_TRIE_STATS
1366 t->stats.gets++;
1367 #endif
1368
1369 /* Just a leaf? */
1370 if (IS_LEAF(n)) {
1371 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1372 if (plen < 0)
1373 goto failed;
1374 ret = 0;
1375 goto found;
1376 }
1377
1378 pn = (struct tnode *) n;
1379 chopped_off = 0;
1380
1381 while (pn) {
1382 pos = pn->pos;
1383 bits = pn->bits;
1384
1385 if (!chopped_off)
1386 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1387 pos, bits);
1388
1389 n = tnode_get_child(pn, cindex);
1390
1391 if (n == NULL) {
1392 #ifdef CONFIG_IP_FIB_TRIE_STATS
1393 t->stats.null_node_hit++;
1394 #endif
1395 goto backtrace;
1396 }
1397
1398 if (IS_LEAF(n)) {
1399 plen = check_leaf(t, (struct leaf *)n, key, flp, res);
1400 if (plen < 0)
1401 goto backtrace;
1402
1403 ret = 0;
1404 goto found;
1405 }
1406
1407 cn = (struct tnode *)n;
1408
1409 /*
1410 * It's a tnode, and we can do some extra checks here if we
1411 * like, to avoid descending into a dead-end branch.
1412 * This tnode is in the parent's child array at index
1413 * key[p_pos..p_pos+p_bits] but potentially with some bits
1414 * chopped off, so in reality the index may be just a
1415 * subprefix, padded with zero at the end.
1416 * We can also take a look at any skipped bits in this
1417 * tnode - everything up to p_pos is supposed to be ok,
1418 * and the non-chopped bits of the index (se previous
1419 * paragraph) are also guaranteed ok, but the rest is
1420 * considered unknown.
1421 *
1422 * The skipped bits are key[pos+bits..cn->pos].
1423 */
1424
1425 /* If current_prefix_length < pos+bits, we are already doing
1426 * actual prefix matching, which means everything from
1427 * pos+(bits-chopped_off) onward must be zero along some
1428 * branch of this subtree - otherwise there is *no* valid
1429 * prefix present. Here we can only check the skipped
1430 * bits. Remember, since we have already indexed into the
1431 * parent's child array, we know that the bits we chopped of
1432 * *are* zero.
1433 */
1434
1435 /* NOTA BENE: Checking only skipped bits
1436 for the new node here */
1437
1438 if (current_prefix_length < pos+bits) {
1439 if (tkey_extract_bits(cn->key, current_prefix_length,
1440 cn->pos - current_prefix_length)
1441 || !(cn->child[0]))
1442 goto backtrace;
1443 }
1444
1445 /*
1446 * If chopped_off=0, the index is fully validated and we
1447 * only need to look at the skipped bits for this, the new,
1448 * tnode. What we actually want to do is to find out if
1449 * these skipped bits match our key perfectly, or if we will
1450 * have to count on finding a matching prefix further down,
1451 * because if we do, we would like to have some way of
1452 * verifying the existence of such a prefix at this point.
1453 */
1454
1455 /* The only thing we can do at this point is to verify that
1456 * any such matching prefix can indeed be a prefix to our
1457 * key, and if the bits in the node we are inspecting that
1458 * do not match our key are not ZERO, this cannot be true.
1459 * Thus, find out where there is a mismatch (before cn->pos)
1460 * and verify that all the mismatching bits are zero in the
1461 * new tnode's key.
1462 */
1463
1464 /*
1465 * Note: We aren't very concerned about the piece of
1466 * the key that precede pn->pos+pn->bits, since these
1467 * have already been checked. The bits after cn->pos
1468 * aren't checked since these are by definition
1469 * "unknown" at this point. Thus, what we want to see
1470 * is if we are about to enter the "prefix matching"
1471 * state, and in that case verify that the skipped
1472 * bits that will prevail throughout this subtree are
1473 * zero, as they have to be if we are to find a
1474 * matching prefix.
1475 */
1476
1477 node_prefix = mask_pfx(cn->key, cn->pos);
1478 key_prefix = mask_pfx(key, cn->pos);
1479 pref_mismatch = key_prefix^node_prefix;
1480 mp = 0;
1481
1482 /*
1483 * In short: If skipped bits in this node do not match
1484 * the search key, enter the "prefix matching"
1485 * state.directly.
1486 */
1487 if (pref_mismatch) {
1488 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1489 mp++;
1490 pref_mismatch = pref_mismatch << 1;
1491 }
1492 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1493
1494 if (key_prefix != 0)
1495 goto backtrace;
1496
1497 if (current_prefix_length >= cn->pos)
1498 current_prefix_length = mp;
1499 }
1500
1501 pn = (struct tnode *)n; /* Descend */
1502 chopped_off = 0;
1503 continue;
1504
1505 backtrace:
1506 chopped_off++;
1507
1508 /* As zero don't change the child key (cindex) */
1509 while ((chopped_off <= pn->bits)
1510 && !(cindex & (1<<(chopped_off-1))))
1511 chopped_off++;
1512
1513 /* Decrease current_... with bits chopped off */
1514 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1515 current_prefix_length = pn->pos + pn->bits
1516 - chopped_off;
1517
1518 /*
1519 * Either we do the actual chop off according or if we have
1520 * chopped off all bits in this tnode walk up to our parent.
1521 */
1522
1523 if (chopped_off <= pn->bits) {
1524 cindex &= ~(1 << (chopped_off-1));
1525 } else {
1526 struct tnode *parent = node_parent((struct node *) pn);
1527 if (!parent)
1528 goto failed;
1529
1530 /* Get Child's index */
1531 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1532 pn = parent;
1533 chopped_off = 0;
1534
1535 #ifdef CONFIG_IP_FIB_TRIE_STATS
1536 t->stats.backtrack++;
1537 #endif
1538 goto backtrace;
1539 }
1540 }
1541 failed:
1542 ret = 1;
1543 found:
1544 rcu_read_unlock();
1545 return ret;
1546 }
1547
1548 /*
1549 * Remove the leaf and return parent.
1550 */
1551 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1552 {
1553 struct tnode *tp = node_parent((struct node *) l);
1554
1555 pr_debug("entering trie_leaf_remove(%p)\n", l);
1556
1557 if (tp) {
1558 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1559 put_child(t, (struct tnode *)tp, cindex, NULL);
1560 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1561 } else
1562 rcu_assign_pointer(t->trie, NULL);
1563
1564 tnode_free((struct tnode *) l);
1565 }
1566
1567 /*
1568 * Caller must hold RTNL.
1569 */
1570 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1571 {
1572 struct trie *t = (struct trie *) tb->tb_data;
1573 u32 key, mask;
1574 int plen = cfg->fc_dst_len;
1575 u8 tos = cfg->fc_tos;
1576 struct fib_alias *fa, *fa_to_delete;
1577 struct list_head *fa_head;
1578 struct leaf *l;
1579 struct leaf_info *li;
1580
1581 if (plen > 32)
1582 return -EINVAL;
1583
1584 key = ntohl(cfg->fc_dst);
1585 mask = ntohl(inet_make_mask(plen));
1586
1587 if (key & ~mask)
1588 return -EINVAL;
1589
1590 key = key & mask;
1591 l = fib_find_node(t, key);
1592
1593 if (!l)
1594 return -ESRCH;
1595
1596 fa_head = get_fa_head(l, plen);
1597 fa = fib_find_alias(fa_head, tos, 0);
1598
1599 if (!fa)
1600 return -ESRCH;
1601
1602 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1603
1604 fa_to_delete = NULL;
1605 fa_head = fa->fa_list.prev;
1606
1607 list_for_each_entry(fa, fa_head, fa_list) {
1608 struct fib_info *fi = fa->fa_info;
1609
1610 if (fa->fa_tos != tos)
1611 break;
1612
1613 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1614 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1615 fa->fa_scope == cfg->fc_scope) &&
1616 (!cfg->fc_protocol ||
1617 fi->fib_protocol == cfg->fc_protocol) &&
1618 fib_nh_match(cfg, fi) == 0) {
1619 fa_to_delete = fa;
1620 break;
1621 }
1622 }
1623
1624 if (!fa_to_delete)
1625 return -ESRCH;
1626
1627 fa = fa_to_delete;
1628 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1629 &cfg->fc_nlinfo, 0);
1630
1631 l = fib_find_node(t, key);
1632 li = find_leaf_info(l, plen);
1633
1634 list_del_rcu(&fa->fa_list);
1635
1636 if (list_empty(fa_head)) {
1637 hlist_del_rcu(&li->hlist);
1638 free_leaf_info(li);
1639 }
1640
1641 if (hlist_empty(&l->list))
1642 trie_leaf_remove(t, l);
1643
1644 if (fa->fa_state & FA_S_ACCESSED)
1645 rt_cache_flush(-1);
1646
1647 fib_release_info(fa->fa_info);
1648 alias_free_mem_rcu(fa);
1649 return 0;
1650 }
1651
1652 static int trie_flush_list(struct trie *t, struct list_head *head)
1653 {
1654 struct fib_alias *fa, *fa_node;
1655 int found = 0;
1656
1657 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1658 struct fib_info *fi = fa->fa_info;
1659
1660 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1661 list_del_rcu(&fa->fa_list);
1662 fib_release_info(fa->fa_info);
1663 alias_free_mem_rcu(fa);
1664 found++;
1665 }
1666 }
1667 return found;
1668 }
1669
1670 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1671 {
1672 int found = 0;
1673 struct hlist_head *lih = &l->list;
1674 struct hlist_node *node, *tmp;
1675 struct leaf_info *li = NULL;
1676
1677 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1678 found += trie_flush_list(t, &li->falh);
1679
1680 if (list_empty(&li->falh)) {
1681 hlist_del_rcu(&li->hlist);
1682 free_leaf_info(li);
1683 }
1684 }
1685 return found;
1686 }
1687
1688 /*
1689 * Scan for the next right leaf starting at node p->child[idx]
1690 * Since we have back pointer, no recursion necessary.
1691 */
1692 static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
1693 {
1694 do {
1695 t_key idx;
1696
1697 if (c)
1698 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1699 else
1700 idx = 0;
1701
1702 while (idx < 1u << p->bits) {
1703 c = tnode_get_child_rcu(p, idx++);
1704 if (!c)
1705 continue;
1706
1707 if (IS_LEAF(c)) {
1708 prefetch(p->child[idx]);
1709 return (struct leaf *) c;
1710 }
1711
1712 /* Rescan start scanning in new node */
1713 p = (struct tnode *) c;
1714 idx = 0;
1715 }
1716
1717 /* Node empty, walk back up to parent */
1718 c = (struct node *) p;
1719 } while ( (p = node_parent_rcu(c)) != NULL);
1720
1721 return NULL; /* Root of trie */
1722 }
1723
1724
1725 static struct leaf *trie_firstleaf(struct trie *t)
1726 {
1727 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1728
1729 if (!n)
1730 return NULL;
1731
1732 if (IS_LEAF(n)) /* trie is just a leaf */
1733 return (struct leaf *) n;
1734
1735 return leaf_walk_rcu(n, NULL);
1736 }
1737
1738 static struct leaf *trie_nextleaf(struct leaf *l)
1739 {
1740 struct node *c = (struct node *) l;
1741 struct tnode *p = node_parent(c);
1742
1743 if (!p)
1744 return NULL; /* trie with just one leaf */
1745
1746 return leaf_walk_rcu(p, c);
1747 }
1748
1749 /*
1750 * Caller must hold RTNL.
1751 */
1752 static int fn_trie_flush(struct fib_table *tb)
1753 {
1754 struct trie *t = (struct trie *) tb->tb_data;
1755 struct leaf *l, *ll = NULL;
1756 int found = 0;
1757
1758 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1759 found += trie_flush_leaf(t, l);
1760
1761 if (ll && hlist_empty(&ll->list))
1762 trie_leaf_remove(t, ll);
1763 ll = l;
1764 }
1765
1766 if (ll && hlist_empty(&ll->list))
1767 trie_leaf_remove(t, ll);
1768
1769 pr_debug("trie_flush found=%d\n", found);
1770 return found;
1771 }
1772
1773 static void fn_trie_select_default(struct fib_table *tb,
1774 const struct flowi *flp,
1775 struct fib_result *res)
1776 {
1777 struct trie *t = (struct trie *) tb->tb_data;
1778 int order, last_idx;
1779 struct fib_info *fi = NULL;
1780 struct fib_info *last_resort;
1781 struct fib_alias *fa = NULL;
1782 struct list_head *fa_head;
1783 struct leaf *l;
1784
1785 last_idx = -1;
1786 last_resort = NULL;
1787 order = -1;
1788
1789 rcu_read_lock();
1790
1791 l = fib_find_node(t, 0);
1792 if (!l)
1793 goto out;
1794
1795 fa_head = get_fa_head(l, 0);
1796 if (!fa_head)
1797 goto out;
1798
1799 if (list_empty(fa_head))
1800 goto out;
1801
1802 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1803 struct fib_info *next_fi = fa->fa_info;
1804
1805 if (fa->fa_scope != res->scope ||
1806 fa->fa_type != RTN_UNICAST)
1807 continue;
1808
1809 if (next_fi->fib_priority > res->fi->fib_priority)
1810 break;
1811 if (!next_fi->fib_nh[0].nh_gw ||
1812 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1813 continue;
1814 fa->fa_state |= FA_S_ACCESSED;
1815
1816 if (fi == NULL) {
1817 if (next_fi != res->fi)
1818 break;
1819 } else if (!fib_detect_death(fi, order, &last_resort,
1820 &last_idx, tb->tb_default)) {
1821 fib_result_assign(res, fi);
1822 tb->tb_default = order;
1823 goto out;
1824 }
1825 fi = next_fi;
1826 order++;
1827 }
1828 if (order <= 0 || fi == NULL) {
1829 tb->tb_default = -1;
1830 goto out;
1831 }
1832
1833 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1834 tb->tb_default)) {
1835 fib_result_assign(res, fi);
1836 tb->tb_default = order;
1837 goto out;
1838 }
1839 if (last_idx >= 0)
1840 fib_result_assign(res, last_resort);
1841 tb->tb_default = last_idx;
1842 out:
1843 rcu_read_unlock();
1844 }
1845
1846 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1847 struct fib_table *tb,
1848 struct sk_buff *skb, struct netlink_callback *cb)
1849 {
1850 int i, s_i;
1851 struct fib_alias *fa;
1852
1853 __be32 xkey = htonl(key);
1854
1855 s_i = cb->args[4];
1856 i = 0;
1857
1858 /* rcu_read_lock is hold by caller */
1859
1860 list_for_each_entry_rcu(fa, fah, fa_list) {
1861 if (i < s_i) {
1862 i++;
1863 continue;
1864 }
1865
1866 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1867 cb->nlh->nlmsg_seq,
1868 RTM_NEWROUTE,
1869 tb->tb_id,
1870 fa->fa_type,
1871 fa->fa_scope,
1872 xkey,
1873 plen,
1874 fa->fa_tos,
1875 fa->fa_info, NLM_F_MULTI) < 0) {
1876 cb->args[4] = i;
1877 return -1;
1878 }
1879 i++;
1880 }
1881 cb->args[4] = i;
1882 return skb->len;
1883 }
1884
1885
1886 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1887 struct sk_buff *skb, struct netlink_callback *cb)
1888 {
1889 struct leaf_info *li;
1890 struct hlist_node *node;
1891 int i, s_i;
1892
1893 s_i = cb->args[3];
1894 i = 0;
1895
1896 /* rcu_read_lock is hold by caller */
1897 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1898 if (i < s_i) {
1899 i++;
1900 continue;
1901 }
1902
1903 if (i > s_i)
1904 cb->args[4] = 0;
1905
1906 if (list_empty(&li->falh))
1907 continue;
1908
1909 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1910 cb->args[3] = i;
1911 return -1;
1912 }
1913 i++;
1914 }
1915
1916 cb->args[3] = i;
1917 return skb->len;
1918 }
1919
1920
1921
1922 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1923 struct netlink_callback *cb)
1924 {
1925 struct leaf *l;
1926 struct trie *t = (struct trie *) tb->tb_data;
1927 int h = 0;
1928 int s_h = cb->args[2];
1929
1930 rcu_read_lock();
1931 for (h = 0, l = trie_firstleaf(t); l != NULL; h++, l = trie_nextleaf(l)) {
1932 if (h < s_h)
1933 continue;
1934
1935 if (h > s_h) {
1936 cb->args[3] = 0;
1937 cb->args[4] = 0;
1938 }
1939
1940 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1941 rcu_read_unlock();
1942 cb->args[2] = h;
1943 return -1;
1944 }
1945 }
1946 rcu_read_unlock();
1947
1948 cb->args[2] = h;
1949 return skb->len;
1950 }
1951
1952 void __init fib_hash_init(void)
1953 {
1954 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1955 sizeof(struct fib_alias),
1956 0, SLAB_PANIC, NULL);
1957
1958 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1959 max(sizeof(struct leaf),
1960 sizeof(struct leaf_info)),
1961 0, SLAB_PANIC, NULL);
1962 }
1963
1964
1965 /* Fix more generic FIB names for init later */
1966 struct fib_table *fib_hash_table(u32 id)
1967 {
1968 struct fib_table *tb;
1969 struct trie *t;
1970
1971 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1972 GFP_KERNEL);
1973 if (tb == NULL)
1974 return NULL;
1975
1976 tb->tb_id = id;
1977 tb->tb_default = -1;
1978 tb->tb_lookup = fn_trie_lookup;
1979 tb->tb_insert = fn_trie_insert;
1980 tb->tb_delete = fn_trie_delete;
1981 tb->tb_flush = fn_trie_flush;
1982 tb->tb_select_default = fn_trie_select_default;
1983 tb->tb_dump = fn_trie_dump;
1984
1985 t = (struct trie *) tb->tb_data;
1986 memset(t, 0, sizeof(*t));
1987
1988 if (id == RT_TABLE_LOCAL)
1989 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
1990
1991 return tb;
1992 }
1993
1994 #ifdef CONFIG_PROC_FS
1995 /* Depth first Trie walk iterator */
1996 struct fib_trie_iter {
1997 struct seq_net_private p;
1998 struct trie *trie_local, *trie_main;
1999 struct tnode *tnode;
2000 struct trie *trie;
2001 unsigned index;
2002 unsigned depth;
2003 };
2004
2005 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
2006 {
2007 struct tnode *tn = iter->tnode;
2008 unsigned cindex = iter->index;
2009 struct tnode *p;
2010
2011 /* A single entry routing table */
2012 if (!tn)
2013 return NULL;
2014
2015 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2016 iter->tnode, iter->index, iter->depth);
2017 rescan:
2018 while (cindex < (1<<tn->bits)) {
2019 struct node *n = tnode_get_child_rcu(tn, cindex);
2020
2021 if (n) {
2022 if (IS_LEAF(n)) {
2023 iter->tnode = tn;
2024 iter->index = cindex + 1;
2025 } else {
2026 /* push down one level */
2027 iter->tnode = (struct tnode *) n;
2028 iter->index = 0;
2029 ++iter->depth;
2030 }
2031 return n;
2032 }
2033
2034 ++cindex;
2035 }
2036
2037 /* Current node exhausted, pop back up */
2038 p = node_parent_rcu((struct node *)tn);
2039 if (p) {
2040 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2041 tn = p;
2042 --iter->depth;
2043 goto rescan;
2044 }
2045
2046 /* got root? */
2047 return NULL;
2048 }
2049
2050 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2051 struct trie *t)
2052 {
2053 struct node *n ;
2054
2055 if (!t)
2056 return NULL;
2057
2058 n = rcu_dereference(t->trie);
2059
2060 if (!iter)
2061 return NULL;
2062
2063 if (n) {
2064 if (IS_TNODE(n)) {
2065 iter->tnode = (struct tnode *) n;
2066 iter->trie = t;
2067 iter->index = 0;
2068 iter->depth = 1;
2069 } else {
2070 iter->tnode = NULL;
2071 iter->trie = t;
2072 iter->index = 0;
2073 iter->depth = 0;
2074 }
2075 return n;
2076 }
2077 return NULL;
2078 }
2079
2080 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081 {
2082 struct node *n;
2083 struct fib_trie_iter iter;
2084
2085 memset(s, 0, sizeof(*s));
2086
2087 rcu_read_lock();
2088 for (n = fib_trie_get_first(&iter, t); n;
2089 n = fib_trie_get_next(&iter)) {
2090 if (IS_LEAF(n)) {
2091 struct leaf *l = (struct leaf *)n;
2092 struct leaf_info *li;
2093 struct hlist_node *tmp;
2094
2095 s->leaves++;
2096 s->totdepth += iter.depth;
2097 if (iter.depth > s->maxdepth)
2098 s->maxdepth = iter.depth;
2099
2100 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2101 ++s->prefixes;
2102 } else {
2103 const struct tnode *tn = (const struct tnode *) n;
2104 int i;
2105
2106 s->tnodes++;
2107 if (tn->bits < MAX_STAT_DEPTH)
2108 s->nodesizes[tn->bits]++;
2109
2110 for (i = 0; i < (1<<tn->bits); i++)
2111 if (!tn->child[i])
2112 s->nullpointers++;
2113 }
2114 }
2115 rcu_read_unlock();
2116 }
2117
2118 /*
2119 * This outputs /proc/net/fib_triestats
2120 */
2121 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2122 {
2123 unsigned i, max, pointers, bytes, avdepth;
2124
2125 if (stat->leaves)
2126 avdepth = stat->totdepth*100 / stat->leaves;
2127 else
2128 avdepth = 0;
2129
2130 seq_printf(seq, "\tAver depth: %u.%02d\n",
2131 avdepth / 100, avdepth % 100);
2132 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2133
2134 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2135 bytes = sizeof(struct leaf) * stat->leaves;
2136
2137 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2138 bytes += sizeof(struct leaf_info) * stat->prefixes;
2139
2140 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2141 bytes += sizeof(struct tnode) * stat->tnodes;
2142
2143 max = MAX_STAT_DEPTH;
2144 while (max > 0 && stat->nodesizes[max-1] == 0)
2145 max--;
2146
2147 pointers = 0;
2148 for (i = 1; i <= max; i++)
2149 if (stat->nodesizes[i] != 0) {
2150 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2151 pointers += (1<<i) * stat->nodesizes[i];
2152 }
2153 seq_putc(seq, '\n');
2154 seq_printf(seq, "\tPointers: %u\n", pointers);
2155
2156 bytes += sizeof(struct node *) * pointers;
2157 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2158 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2159 }
2160
2161 #ifdef CONFIG_IP_FIB_TRIE_STATS
2162 static void trie_show_usage(struct seq_file *seq,
2163 const struct trie_use_stats *stats)
2164 {
2165 seq_printf(seq, "\nCounters:\n---------\n");
2166 seq_printf(seq, "gets = %u\n", stats->gets);
2167 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2168 seq_printf(seq, "semantic match passed = %u\n",
2169 stats->semantic_match_passed);
2170 seq_printf(seq, "semantic match miss = %u\n",
2171 stats->semantic_match_miss);
2172 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2173 seq_printf(seq, "skipped node resize = %u\n\n",
2174 stats->resize_node_skipped);
2175 }
2176 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2177
2178 static void fib_trie_show(struct seq_file *seq, const char *name,
2179 struct trie *trie)
2180 {
2181 struct trie_stat stat;
2182
2183 trie_collect_stats(trie, &stat);
2184 seq_printf(seq, "%s:\n", name);
2185 trie_show_stats(seq, &stat);
2186 #ifdef CONFIG_IP_FIB_TRIE_STATS
2187 trie_show_usage(seq, &trie->stats);
2188 #endif
2189 }
2190
2191 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2192 {
2193 struct net *net = (struct net *)seq->private;
2194 struct fib_table *tb;
2195
2196 seq_printf(seq,
2197 "Basic info: size of leaf:"
2198 " %Zd bytes, size of tnode: %Zd bytes.\n",
2199 sizeof(struct leaf), sizeof(struct tnode));
2200
2201 tb = fib_get_table(net, RT_TABLE_LOCAL);
2202 if (tb)
2203 fib_trie_show(seq, "Local", (struct trie *) tb->tb_data);
2204
2205 tb = fib_get_table(net, RT_TABLE_MAIN);
2206 if (tb)
2207 fib_trie_show(seq, "Main", (struct trie *) tb->tb_data);
2208
2209 return 0;
2210 }
2211
2212 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2213 {
2214 int err;
2215 struct net *net;
2216
2217 net = get_proc_net(inode);
2218 if (net == NULL)
2219 return -ENXIO;
2220 err = single_open(file, fib_triestat_seq_show, net);
2221 if (err < 0) {
2222 put_net(net);
2223 return err;
2224 }
2225 return 0;
2226 }
2227
2228 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2229 {
2230 struct seq_file *seq = f->private_data;
2231 put_net(seq->private);
2232 return single_release(ino, f);
2233 }
2234
2235 static const struct file_operations fib_triestat_fops = {
2236 .owner = THIS_MODULE,
2237 .open = fib_triestat_seq_open,
2238 .read = seq_read,
2239 .llseek = seq_lseek,
2240 .release = fib_triestat_seq_release,
2241 };
2242
2243 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2244 loff_t pos)
2245 {
2246 loff_t idx = 0;
2247 struct node *n;
2248
2249 for (n = fib_trie_get_first(iter, iter->trie_local);
2250 n; ++idx, n = fib_trie_get_next(iter)) {
2251 if (pos == idx)
2252 return n;
2253 }
2254
2255 for (n = fib_trie_get_first(iter, iter->trie_main);
2256 n; ++idx, n = fib_trie_get_next(iter)) {
2257 if (pos == idx)
2258 return n;
2259 }
2260 return NULL;
2261 }
2262
2263 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2264 __acquires(RCU)
2265 {
2266 struct fib_trie_iter *iter = seq->private;
2267 struct fib_table *tb;
2268
2269 if (!iter->trie_local) {
2270 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2271 if (tb)
2272 iter->trie_local = (struct trie *) tb->tb_data;
2273 }
2274 if (!iter->trie_main) {
2275 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2276 if (tb)
2277 iter->trie_main = (struct trie *) tb->tb_data;
2278 }
2279 rcu_read_lock();
2280 if (*pos == 0)
2281 return SEQ_START_TOKEN;
2282 return fib_trie_get_idx(iter, *pos - 1);
2283 }
2284
2285 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286 {
2287 struct fib_trie_iter *iter = seq->private;
2288 void *l = v;
2289
2290 ++*pos;
2291 if (v == SEQ_START_TOKEN)
2292 return fib_trie_get_idx(iter, 0);
2293
2294 v = fib_trie_get_next(iter);
2295 BUG_ON(v == l);
2296 if (v)
2297 return v;
2298
2299 /* continue scan in next trie */
2300 if (iter->trie == iter->trie_local)
2301 return fib_trie_get_first(iter, iter->trie_main);
2302
2303 return NULL;
2304 }
2305
2306 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2307 __releases(RCU)
2308 {
2309 rcu_read_unlock();
2310 }
2311
2312 static void seq_indent(struct seq_file *seq, int n)
2313 {
2314 while (n-- > 0) seq_puts(seq, " ");
2315 }
2316
2317 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2318 {
2319 switch (s) {
2320 case RT_SCOPE_UNIVERSE: return "universe";
2321 case RT_SCOPE_SITE: return "site";
2322 case RT_SCOPE_LINK: return "link";
2323 case RT_SCOPE_HOST: return "host";
2324 case RT_SCOPE_NOWHERE: return "nowhere";
2325 default:
2326 snprintf(buf, len, "scope=%d", s);
2327 return buf;
2328 }
2329 }
2330
2331 static const char *rtn_type_names[__RTN_MAX] = {
2332 [RTN_UNSPEC] = "UNSPEC",
2333 [RTN_UNICAST] = "UNICAST",
2334 [RTN_LOCAL] = "LOCAL",
2335 [RTN_BROADCAST] = "BROADCAST",
2336 [RTN_ANYCAST] = "ANYCAST",
2337 [RTN_MULTICAST] = "MULTICAST",
2338 [RTN_BLACKHOLE] = "BLACKHOLE",
2339 [RTN_UNREACHABLE] = "UNREACHABLE",
2340 [RTN_PROHIBIT] = "PROHIBIT",
2341 [RTN_THROW] = "THROW",
2342 [RTN_NAT] = "NAT",
2343 [RTN_XRESOLVE] = "XRESOLVE",
2344 };
2345
2346 static inline const char *rtn_type(char *buf, size_t len, unsigned t)
2347 {
2348 if (t < __RTN_MAX && rtn_type_names[t])
2349 return rtn_type_names[t];
2350 snprintf(buf, len, "type %u", t);
2351 return buf;
2352 }
2353
2354 /* Pretty print the trie */
2355 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2356 {
2357 const struct fib_trie_iter *iter = seq->private;
2358 struct node *n = v;
2359
2360 if (v == SEQ_START_TOKEN)
2361 return 0;
2362
2363 if (!node_parent_rcu(n)) {
2364 if (iter->trie == iter->trie_local)
2365 seq_puts(seq, "<local>:\n");
2366 else
2367 seq_puts(seq, "<main>:\n");
2368 }
2369
2370 if (IS_TNODE(n)) {
2371 struct tnode *tn = (struct tnode *) n;
2372 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2373
2374 seq_indent(seq, iter->depth-1);
2375 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2376 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2377 tn->empty_children);
2378
2379 } else {
2380 struct leaf *l = (struct leaf *) n;
2381 struct leaf_info *li;
2382 struct hlist_node *node;
2383
2384 __be32 val = htonl(l->key);
2385
2386 seq_indent(seq, iter->depth);
2387 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2388
2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390 struct fib_alias *fa;
2391
2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393 char buf1[32], buf2[32];
2394
2395 seq_indent(seq, iter->depth+1);
2396 seq_printf(seq, " /%d %s %s", li->plen,
2397 rtn_scope(buf1, sizeof(buf1),
2398 fa->fa_scope),
2399 rtn_type(buf2, sizeof(buf2),
2400 fa->fa_type));
2401 if (fa->fa_tos)
2402 seq_printf(seq, "tos =%d\n",
2403 fa->fa_tos);
2404 seq_putc(seq, '\n');
2405 }
2406 }
2407 }
2408
2409 return 0;
2410 }
2411
2412 static const struct seq_operations fib_trie_seq_ops = {
2413 .start = fib_trie_seq_start,
2414 .next = fib_trie_seq_next,
2415 .stop = fib_trie_seq_stop,
2416 .show = fib_trie_seq_show,
2417 };
2418
2419 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2420 {
2421 return seq_open_net(inode, file, &fib_trie_seq_ops,
2422 sizeof(struct fib_trie_iter));
2423 }
2424
2425 static const struct file_operations fib_trie_fops = {
2426 .owner = THIS_MODULE,
2427 .open = fib_trie_seq_open,
2428 .read = seq_read,
2429 .llseek = seq_lseek,
2430 .release = seq_release_net,
2431 };
2432
2433 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2434 {
2435 static unsigned type2flags[RTN_MAX + 1] = {
2436 [7] = RTF_REJECT, [8] = RTF_REJECT,
2437 };
2438 unsigned flags = type2flags[type];
2439
2440 if (fi && fi->fib_nh->nh_gw)
2441 flags |= RTF_GATEWAY;
2442 if (mask == htonl(0xFFFFFFFF))
2443 flags |= RTF_HOST;
2444 flags |= RTF_UP;
2445 return flags;
2446 }
2447
2448 /*
2449 * This outputs /proc/net/route.
2450 * The format of the file is not supposed to be changed
2451 * and needs to be same as fib_hash output to avoid breaking
2452 * legacy utilities
2453 */
2454 static int fib_route_seq_show(struct seq_file *seq, void *v)
2455 {
2456 const struct fib_trie_iter *iter = seq->private;
2457 struct leaf *l = v;
2458 struct leaf_info *li;
2459 struct hlist_node *node;
2460
2461 if (v == SEQ_START_TOKEN) {
2462 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2463 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2464 "\tWindow\tIRTT");
2465 return 0;
2466 }
2467
2468 if (iter->trie == iter->trie_local)
2469 return 0;
2470
2471 if (IS_TNODE(l))
2472 return 0;
2473
2474 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2475 struct fib_alias *fa;
2476 __be32 mask, prefix;
2477
2478 if (!li)
2479 continue;
2480
2481 mask = inet_make_mask(li->plen);
2482 prefix = htonl(l->key);
2483
2484 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2485 const struct fib_info *fi = fa->fa_info;
2486 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2487 char bf[128];
2488
2489 if (fa->fa_type == RTN_BROADCAST
2490 || fa->fa_type == RTN_MULTICAST)
2491 continue;
2492
2493 if (fi)
2494 snprintf(bf, sizeof(bf),
2495 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2496 fi->fib_dev ? fi->fib_dev->name : "*",
2497 prefix,
2498 fi->fib_nh->nh_gw, flags, 0, 0,
2499 fi->fib_priority,
2500 mask,
2501 (fi->fib_advmss ?
2502 fi->fib_advmss + 40 : 0),
2503 fi->fib_window,
2504 fi->fib_rtt >> 3);
2505 else
2506 snprintf(bf, sizeof(bf),
2507 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2508 prefix, 0, flags, 0, 0, 0,
2509 mask, 0, 0, 0);
2510
2511 seq_printf(seq, "%-127s\n", bf);
2512 }
2513 }
2514
2515 return 0;
2516 }
2517
2518 static const struct seq_operations fib_route_seq_ops = {
2519 .start = fib_trie_seq_start,
2520 .next = fib_trie_seq_next,
2521 .stop = fib_trie_seq_stop,
2522 .show = fib_route_seq_show,
2523 };
2524
2525 static int fib_route_seq_open(struct inode *inode, struct file *file)
2526 {
2527 return seq_open_net(inode, file, &fib_route_seq_ops,
2528 sizeof(struct fib_trie_iter));
2529 }
2530
2531 static const struct file_operations fib_route_fops = {
2532 .owner = THIS_MODULE,
2533 .open = fib_route_seq_open,
2534 .read = seq_read,
2535 .llseek = seq_lseek,
2536 .release = seq_release_net,
2537 };
2538
2539 int __net_init fib_proc_init(struct net *net)
2540 {
2541 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2542 goto out1;
2543
2544 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2545 &fib_triestat_fops))
2546 goto out2;
2547
2548 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2549 goto out3;
2550
2551 return 0;
2552
2553 out3:
2554 proc_net_remove(net, "fib_triestat");
2555 out2:
2556 proc_net_remove(net, "fib_trie");
2557 out1:
2558 return -ENOMEM;
2559 }
2560
2561 void __net_exit fib_proc_exit(struct net *net)
2562 {
2563 proc_net_remove(net, "fib_trie");
2564 proc_net_remove(net, "fib_triestat");
2565 proc_net_remove(net, "route");
2566 }
2567
2568 #endif /* CONFIG_PROC_FS */
This page took 0.119097 seconds and 6 git commands to generate.