[IPV4] fib_trie: Fix sparse warnings.
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
51 */
52
53 #define VERSION "0.408"
54
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <linux/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include "fib_lookup.h"
84
85 #define MAX_STAT_DEPTH 32
86
87 #define KEYLENGTH (8*sizeof(t_key))
88
89 typedef unsigned int t_key;
90
91 #define T_TNODE 0
92 #define T_LEAF 1
93 #define NODE_TYPE_MASK 0x1UL
94 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
96 #define IS_TNODE(n) (!(n->parent & T_LEAF))
97 #define IS_LEAF(n) (n->parent & T_LEAF)
98
99 struct node {
100 t_key key;
101 unsigned long parent;
102 };
103
104 struct leaf {
105 t_key key;
106 unsigned long parent;
107 struct hlist_head list;
108 struct rcu_head rcu;
109 };
110
111 struct leaf_info {
112 struct hlist_node hlist;
113 struct rcu_head rcu;
114 int plen;
115 struct list_head falh;
116 };
117
118 struct tnode {
119 t_key key;
120 unsigned long parent;
121 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
122 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
123 unsigned short full_children; /* KEYLENGTH bits needed */
124 unsigned short empty_children; /* KEYLENGTH bits needed */
125 struct rcu_head rcu;
126 struct node *child[0];
127 };
128
129 #ifdef CONFIG_IP_FIB_TRIE_STATS
130 struct trie_use_stats {
131 unsigned int gets;
132 unsigned int backtrack;
133 unsigned int semantic_match_passed;
134 unsigned int semantic_match_miss;
135 unsigned int null_node_hit;
136 unsigned int resize_node_skipped;
137 };
138 #endif
139
140 struct trie_stat {
141 unsigned int totdepth;
142 unsigned int maxdepth;
143 unsigned int tnodes;
144 unsigned int leaves;
145 unsigned int nullpointers;
146 unsigned int nodesizes[MAX_STAT_DEPTH];
147 };
148
149 struct trie {
150 struct node *trie;
151 #ifdef CONFIG_IP_FIB_TRIE_STATS
152 struct trie_use_stats stats;
153 #endif
154 int size;
155 };
156
157 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
158 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
159 static struct node *resize(struct trie *t, struct tnode *tn);
160 static struct tnode *inflate(struct trie *t, struct tnode *tn);
161 static struct tnode *halve(struct trie *t, struct tnode *tn);
162 static void tnode_free(struct tnode *tn);
163
164 static struct kmem_cache *fn_alias_kmem __read_mostly;
165
166 static inline struct tnode *node_parent(struct node *node)
167 {
168 struct tnode *ret;
169
170 ret = (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171 return rcu_dereference(ret);
172 }
173
174 static inline void node_set_parent(struct node *node, struct tnode *ptr)
175 {
176 rcu_assign_pointer(node->parent,
177 (unsigned long)ptr | NODE_TYPE(node));
178 }
179
180 /* rcu_read_lock needs to be hold by caller from readside */
181
182 static inline struct node *tnode_get_child(struct tnode *tn, int i)
183 {
184 BUG_ON(i >= 1 << tn->bits);
185
186 return rcu_dereference(tn->child[i]);
187 }
188
189 static inline int tnode_child_length(const struct tnode *tn)
190 {
191 return 1 << tn->bits;
192 }
193
194 static inline t_key mask_pfx(t_key k, unsigned short l)
195 {
196 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
197 }
198
199 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
200 {
201 if (offset < KEYLENGTH)
202 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
203 else
204 return 0;
205 }
206
207 static inline int tkey_equals(t_key a, t_key b)
208 {
209 return a == b;
210 }
211
212 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
213 {
214 if (bits == 0 || offset >= KEYLENGTH)
215 return 1;
216 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
217 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
218 }
219
220 static inline int tkey_mismatch(t_key a, int offset, t_key b)
221 {
222 t_key diff = a ^ b;
223 int i = offset;
224
225 if (!diff)
226 return 0;
227 while ((diff << i) >> (KEYLENGTH-1) == 0)
228 i++;
229 return i;
230 }
231
232 /*
233 To understand this stuff, an understanding of keys and all their bits is
234 necessary. Every node in the trie has a key associated with it, but not
235 all of the bits in that key are significant.
236
237 Consider a node 'n' and its parent 'tp'.
238
239 If n is a leaf, every bit in its key is significant. Its presence is
240 necessitated by path compression, since during a tree traversal (when
241 searching for a leaf - unless we are doing an insertion) we will completely
242 ignore all skipped bits we encounter. Thus we need to verify, at the end of
243 a potentially successful search, that we have indeed been walking the
244 correct key path.
245
246 Note that we can never "miss" the correct key in the tree if present by
247 following the wrong path. Path compression ensures that segments of the key
248 that are the same for all keys with a given prefix are skipped, but the
249 skipped part *is* identical for each node in the subtrie below the skipped
250 bit! trie_insert() in this implementation takes care of that - note the
251 call to tkey_sub_equals() in trie_insert().
252
253 if n is an internal node - a 'tnode' here, the various parts of its key
254 have many different meanings.
255
256 Example:
257 _________________________________________________________________
258 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
259 -----------------------------------------------------------------
260 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
261
262 _________________________________________________________________
263 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
264 -----------------------------------------------------------------
265 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
266
267 tp->pos = 7
268 tp->bits = 3
269 n->pos = 15
270 n->bits = 4
271
272 First, let's just ignore the bits that come before the parent tp, that is
273 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
274 not use them for anything.
275
276 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
277 index into the parent's child array. That is, they will be used to find
278 'n' among tp's children.
279
280 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
281 for the node n.
282
283 All the bits we have seen so far are significant to the node n. The rest
284 of the bits are really not needed or indeed known in n->key.
285
286 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
287 n's child array, and will of course be different for each child.
288
289
290 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
291 at this point.
292
293 */
294
295 static inline void check_tnode(const struct tnode *tn)
296 {
297 WARN_ON(tn && tn->pos+tn->bits > 32);
298 }
299
300 static const int halve_threshold = 25;
301 static const int inflate_threshold = 50;
302 static const int halve_threshold_root = 8;
303 static const int inflate_threshold_root = 15;
304
305
306 static void __alias_free_mem(struct rcu_head *head)
307 {
308 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
309 kmem_cache_free(fn_alias_kmem, fa);
310 }
311
312 static inline void alias_free_mem_rcu(struct fib_alias *fa)
313 {
314 call_rcu(&fa->rcu, __alias_free_mem);
315 }
316
317 static void __leaf_free_rcu(struct rcu_head *head)
318 {
319 kfree(container_of(head, struct leaf, rcu));
320 }
321
322 static void __leaf_info_free_rcu(struct rcu_head *head)
323 {
324 kfree(container_of(head, struct leaf_info, rcu));
325 }
326
327 static inline void free_leaf_info(struct leaf_info *leaf)
328 {
329 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
330 }
331
332 static struct tnode *tnode_alloc(unsigned int size)
333 {
334 struct page *pages;
335
336 if (size <= PAGE_SIZE)
337 return kcalloc(size, 1, GFP_KERNEL);
338
339 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
340 if (!pages)
341 return NULL;
342
343 return page_address(pages);
344 }
345
346 static void __tnode_free_rcu(struct rcu_head *head)
347 {
348 struct tnode *tn = container_of(head, struct tnode, rcu);
349 unsigned int size = sizeof(struct tnode) +
350 (1 << tn->bits) * sizeof(struct node *);
351
352 if (size <= PAGE_SIZE)
353 kfree(tn);
354 else
355 free_pages((unsigned long)tn, get_order(size));
356 }
357
358 static inline void tnode_free(struct tnode *tn)
359 {
360 if (IS_LEAF(tn)) {
361 struct leaf *l = (struct leaf *) tn;
362 call_rcu_bh(&l->rcu, __leaf_free_rcu);
363 } else
364 call_rcu(&tn->rcu, __tnode_free_rcu);
365 }
366
367 static struct leaf *leaf_new(void)
368 {
369 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
370 if (l) {
371 l->parent = T_LEAF;
372 INIT_HLIST_HEAD(&l->list);
373 }
374 return l;
375 }
376
377 static struct leaf_info *leaf_info_new(int plen)
378 {
379 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
380 if (li) {
381 li->plen = plen;
382 INIT_LIST_HEAD(&li->falh);
383 }
384 return li;
385 }
386
387 static struct tnode* tnode_new(t_key key, int pos, int bits)
388 {
389 int nchildren = 1<<bits;
390 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
391 struct tnode *tn = tnode_alloc(sz);
392
393 if (tn) {
394 memset(tn, 0, sz);
395 tn->parent = T_TNODE;
396 tn->pos = pos;
397 tn->bits = bits;
398 tn->key = key;
399 tn->full_children = 0;
400 tn->empty_children = 1<<bits;
401 }
402
403 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
404 (unsigned int) (sizeof(struct node) * 1<<bits));
405 return tn;
406 }
407
408 /*
409 * Check whether a tnode 'n' is "full", i.e. it is an internal node
410 * and no bits are skipped. See discussion in dyntree paper p. 6
411 */
412
413 static inline int tnode_full(const struct tnode *tn, const struct node *n)
414 {
415 if (n == NULL || IS_LEAF(n))
416 return 0;
417
418 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
419 }
420
421 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
422 {
423 tnode_put_child_reorg(tn, i, n, -1);
424 }
425
426 /*
427 * Add a child at position i overwriting the old value.
428 * Update the value of full_children and empty_children.
429 */
430
431 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
432 {
433 struct node *chi = tn->child[i];
434 int isfull;
435
436 BUG_ON(i >= 1<<tn->bits);
437
438
439 /* update emptyChildren */
440 if (n == NULL && chi != NULL)
441 tn->empty_children++;
442 else if (n != NULL && chi == NULL)
443 tn->empty_children--;
444
445 /* update fullChildren */
446 if (wasfull == -1)
447 wasfull = tnode_full(tn, chi);
448
449 isfull = tnode_full(tn, n);
450 if (wasfull && !isfull)
451 tn->full_children--;
452 else if (!wasfull && isfull)
453 tn->full_children++;
454
455 if (n)
456 node_set_parent(n, tn);
457
458 rcu_assign_pointer(tn->child[i], n);
459 }
460
461 static struct node *resize(struct trie *t, struct tnode *tn)
462 {
463 int i;
464 int err = 0;
465 struct tnode *old_tn;
466 int inflate_threshold_use;
467 int halve_threshold_use;
468 int max_resize;
469
470 if (!tn)
471 return NULL;
472
473 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
474 tn, inflate_threshold, halve_threshold);
475
476 /* No children */
477 if (tn->empty_children == tnode_child_length(tn)) {
478 tnode_free(tn);
479 return NULL;
480 }
481 /* One child */
482 if (tn->empty_children == tnode_child_length(tn) - 1)
483 for (i = 0; i < tnode_child_length(tn); i++) {
484 struct node *n;
485
486 n = tn->child[i];
487 if (!n)
488 continue;
489
490 /* compress one level */
491 node_set_parent(n, NULL);
492 tnode_free(tn);
493 return n;
494 }
495 /*
496 * Double as long as the resulting node has a number of
497 * nonempty nodes that are above the threshold.
498 */
499
500 /*
501 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
502 * the Helsinki University of Technology and Matti Tikkanen of Nokia
503 * Telecommunications, page 6:
504 * "A node is doubled if the ratio of non-empty children to all
505 * children in the *doubled* node is at least 'high'."
506 *
507 * 'high' in this instance is the variable 'inflate_threshold'. It
508 * is expressed as a percentage, so we multiply it with
509 * tnode_child_length() and instead of multiplying by 2 (since the
510 * child array will be doubled by inflate()) and multiplying
511 * the left-hand side by 100 (to handle the percentage thing) we
512 * multiply the left-hand side by 50.
513 *
514 * The left-hand side may look a bit weird: tnode_child_length(tn)
515 * - tn->empty_children is of course the number of non-null children
516 * in the current node. tn->full_children is the number of "full"
517 * children, that is non-null tnodes with a skip value of 0.
518 * All of those will be doubled in the resulting inflated tnode, so
519 * we just count them one extra time here.
520 *
521 * A clearer way to write this would be:
522 *
523 * to_be_doubled = tn->full_children;
524 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
525 * tn->full_children;
526 *
527 * new_child_length = tnode_child_length(tn) * 2;
528 *
529 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
530 * new_child_length;
531 * if (new_fill_factor >= inflate_threshold)
532 *
533 * ...and so on, tho it would mess up the while () loop.
534 *
535 * anyway,
536 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
537 * inflate_threshold
538 *
539 * avoid a division:
540 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
541 * inflate_threshold * new_child_length
542 *
543 * expand not_to_be_doubled and to_be_doubled, and shorten:
544 * 100 * (tnode_child_length(tn) - tn->empty_children +
545 * tn->full_children) >= inflate_threshold * new_child_length
546 *
547 * expand new_child_length:
548 * 100 * (tnode_child_length(tn) - tn->empty_children +
549 * tn->full_children) >=
550 * inflate_threshold * tnode_child_length(tn) * 2
551 *
552 * shorten again:
553 * 50 * (tn->full_children + tnode_child_length(tn) -
554 * tn->empty_children) >= inflate_threshold *
555 * tnode_child_length(tn)
556 *
557 */
558
559 check_tnode(tn);
560
561 /* Keep root node larger */
562
563 if (!tn->parent)
564 inflate_threshold_use = inflate_threshold_root;
565 else
566 inflate_threshold_use = inflate_threshold;
567
568 err = 0;
569 max_resize = 10;
570 while ((tn->full_children > 0 && max_resize-- &&
571 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
572 inflate_threshold_use * tnode_child_length(tn))) {
573
574 old_tn = tn;
575 tn = inflate(t, tn);
576 if (IS_ERR(tn)) {
577 tn = old_tn;
578 #ifdef CONFIG_IP_FIB_TRIE_STATS
579 t->stats.resize_node_skipped++;
580 #endif
581 break;
582 }
583 }
584
585 if (max_resize < 0) {
586 if (!tn->parent)
587 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
588 inflate_threshold_root, tn->bits);
589 else
590 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
591 inflate_threshold, tn->bits);
592 }
593
594 check_tnode(tn);
595
596 /*
597 * Halve as long as the number of empty children in this
598 * node is above threshold.
599 */
600
601
602 /* Keep root node larger */
603
604 if (!tn->parent)
605 halve_threshold_use = halve_threshold_root;
606 else
607 halve_threshold_use = halve_threshold;
608
609 err = 0;
610 max_resize = 10;
611 while (tn->bits > 1 && max_resize-- &&
612 100 * (tnode_child_length(tn) - tn->empty_children) <
613 halve_threshold_use * tnode_child_length(tn)) {
614
615 old_tn = tn;
616 tn = halve(t, tn);
617 if (IS_ERR(tn)) {
618 tn = old_tn;
619 #ifdef CONFIG_IP_FIB_TRIE_STATS
620 t->stats.resize_node_skipped++;
621 #endif
622 break;
623 }
624 }
625
626 if (max_resize < 0) {
627 if (!tn->parent)
628 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
629 halve_threshold_root, tn->bits);
630 else
631 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
632 halve_threshold, tn->bits);
633 }
634
635 /* Only one child remains */
636 if (tn->empty_children == tnode_child_length(tn) - 1)
637 for (i = 0; i < tnode_child_length(tn); i++) {
638 struct node *n;
639
640 n = tn->child[i];
641 if (!n)
642 continue;
643
644 /* compress one level */
645
646 node_set_parent(n, NULL);
647 tnode_free(tn);
648 return n;
649 }
650
651 return (struct node *) tn;
652 }
653
654 static struct tnode *inflate(struct trie *t, struct tnode *tn)
655 {
656 struct tnode *oldtnode = tn;
657 int olen = tnode_child_length(tn);
658 int i;
659
660 pr_debug("In inflate\n");
661
662 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
663
664 if (!tn)
665 return ERR_PTR(-ENOMEM);
666
667 /*
668 * Preallocate and store tnodes before the actual work so we
669 * don't get into an inconsistent state if memory allocation
670 * fails. In case of failure we return the oldnode and inflate
671 * of tnode is ignored.
672 */
673
674 for (i = 0; i < olen; i++) {
675 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
676
677 if (inode &&
678 IS_TNODE(inode) &&
679 inode->pos == oldtnode->pos + oldtnode->bits &&
680 inode->bits > 1) {
681 struct tnode *left, *right;
682 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
683
684 left = tnode_new(inode->key&(~m), inode->pos + 1,
685 inode->bits - 1);
686 if (!left)
687 goto nomem;
688
689 right = tnode_new(inode->key|m, inode->pos + 1,
690 inode->bits - 1);
691
692 if (!right) {
693 tnode_free(left);
694 goto nomem;
695 }
696
697 put_child(t, tn, 2*i, (struct node *) left);
698 put_child(t, tn, 2*i+1, (struct node *) right);
699 }
700 }
701
702 for (i = 0; i < olen; i++) {
703 struct tnode *inode;
704 struct node *node = tnode_get_child(oldtnode, i);
705 struct tnode *left, *right;
706 int size, j;
707
708 /* An empty child */
709 if (node == NULL)
710 continue;
711
712 /* A leaf or an internal node with skipped bits */
713
714 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
715 tn->pos + tn->bits - 1) {
716 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
717 1) == 0)
718 put_child(t, tn, 2*i, node);
719 else
720 put_child(t, tn, 2*i+1, node);
721 continue;
722 }
723
724 /* An internal node with two children */
725 inode = (struct tnode *) node;
726
727 if (inode->bits == 1) {
728 put_child(t, tn, 2*i, inode->child[0]);
729 put_child(t, tn, 2*i+1, inode->child[1]);
730
731 tnode_free(inode);
732 continue;
733 }
734
735 /* An internal node with more than two children */
736
737 /* We will replace this node 'inode' with two new
738 * ones, 'left' and 'right', each with half of the
739 * original children. The two new nodes will have
740 * a position one bit further down the key and this
741 * means that the "significant" part of their keys
742 * (see the discussion near the top of this file)
743 * will differ by one bit, which will be "0" in
744 * left's key and "1" in right's key. Since we are
745 * moving the key position by one step, the bit that
746 * we are moving away from - the bit at position
747 * (inode->pos) - is the one that will differ between
748 * left and right. So... we synthesize that bit in the
749 * two new keys.
750 * The mask 'm' below will be a single "one" bit at
751 * the position (inode->pos)
752 */
753
754 /* Use the old key, but set the new significant
755 * bit to zero.
756 */
757
758 left = (struct tnode *) tnode_get_child(tn, 2*i);
759 put_child(t, tn, 2*i, NULL);
760
761 BUG_ON(!left);
762
763 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
764 put_child(t, tn, 2*i+1, NULL);
765
766 BUG_ON(!right);
767
768 size = tnode_child_length(left);
769 for (j = 0; j < size; j++) {
770 put_child(t, left, j, inode->child[j]);
771 put_child(t, right, j, inode->child[j + size]);
772 }
773 put_child(t, tn, 2*i, resize(t, left));
774 put_child(t, tn, 2*i+1, resize(t, right));
775
776 tnode_free(inode);
777 }
778 tnode_free(oldtnode);
779 return tn;
780 nomem:
781 {
782 int size = tnode_child_length(tn);
783 int j;
784
785 for (j = 0; j < size; j++)
786 if (tn->child[j])
787 tnode_free((struct tnode *)tn->child[j]);
788
789 tnode_free(tn);
790
791 return ERR_PTR(-ENOMEM);
792 }
793 }
794
795 static struct tnode *halve(struct trie *t, struct tnode *tn)
796 {
797 struct tnode *oldtnode = tn;
798 struct node *left, *right;
799 int i;
800 int olen = tnode_child_length(tn);
801
802 pr_debug("In halve\n");
803
804 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
805
806 if (!tn)
807 return ERR_PTR(-ENOMEM);
808
809 /*
810 * Preallocate and store tnodes before the actual work so we
811 * don't get into an inconsistent state if memory allocation
812 * fails. In case of failure we return the oldnode and halve
813 * of tnode is ignored.
814 */
815
816 for (i = 0; i < olen; i += 2) {
817 left = tnode_get_child(oldtnode, i);
818 right = tnode_get_child(oldtnode, i+1);
819
820 /* Two nonempty children */
821 if (left && right) {
822 struct tnode *newn;
823
824 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
825
826 if (!newn)
827 goto nomem;
828
829 put_child(t, tn, i/2, (struct node *)newn);
830 }
831
832 }
833
834 for (i = 0; i < olen; i += 2) {
835 struct tnode *newBinNode;
836
837 left = tnode_get_child(oldtnode, i);
838 right = tnode_get_child(oldtnode, i+1);
839
840 /* At least one of the children is empty */
841 if (left == NULL) {
842 if (right == NULL) /* Both are empty */
843 continue;
844 put_child(t, tn, i/2, right);
845 continue;
846 }
847
848 if (right == NULL) {
849 put_child(t, tn, i/2, left);
850 continue;
851 }
852
853 /* Two nonempty children */
854 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
855 put_child(t, tn, i/2, NULL);
856 put_child(t, newBinNode, 0, left);
857 put_child(t, newBinNode, 1, right);
858 put_child(t, tn, i/2, resize(t, newBinNode));
859 }
860 tnode_free(oldtnode);
861 return tn;
862 nomem:
863 {
864 int size = tnode_child_length(tn);
865 int j;
866
867 for (j = 0; j < size; j++)
868 if (tn->child[j])
869 tnode_free((struct tnode *)tn->child[j]);
870
871 tnode_free(tn);
872
873 return ERR_PTR(-ENOMEM);
874 }
875 }
876
877 /* readside must use rcu_read_lock currently dump routines
878 via get_fa_head and dump */
879
880 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
881 {
882 struct hlist_head *head = &l->list;
883 struct hlist_node *node;
884 struct leaf_info *li;
885
886 hlist_for_each_entry_rcu(li, node, head, hlist)
887 if (li->plen == plen)
888 return li;
889
890 return NULL;
891 }
892
893 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
894 {
895 struct leaf_info *li = find_leaf_info(l, plen);
896
897 if (!li)
898 return NULL;
899
900 return &li->falh;
901 }
902
903 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
904 {
905 struct leaf_info *li = NULL, *last = NULL;
906 struct hlist_node *node;
907
908 if (hlist_empty(head)) {
909 hlist_add_head_rcu(&new->hlist, head);
910 } else {
911 hlist_for_each_entry(li, node, head, hlist) {
912 if (new->plen > li->plen)
913 break;
914
915 last = li;
916 }
917 if (last)
918 hlist_add_after_rcu(&last->hlist, &new->hlist);
919 else
920 hlist_add_before_rcu(&new->hlist, &li->hlist);
921 }
922 }
923
924 /* rcu_read_lock needs to be hold by caller from readside */
925
926 static struct leaf *
927 fib_find_node(struct trie *t, u32 key)
928 {
929 int pos;
930 struct tnode *tn;
931 struct node *n;
932
933 pos = 0;
934 n = rcu_dereference(t->trie);
935
936 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
937 tn = (struct tnode *) n;
938
939 check_tnode(tn);
940
941 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
942 pos = tn->pos + tn->bits;
943 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
944 } else
945 break;
946 }
947 /* Case we have found a leaf. Compare prefixes */
948
949 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
950 return (struct leaf *)n;
951
952 return NULL;
953 }
954
955 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
956 {
957 int wasfull;
958 t_key cindex, key = tn->key;
959 struct tnode *tp;
960
961 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
962 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
963 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
964 tn = (struct tnode *) resize (t, (struct tnode *)tn);
965 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
966
967 tp = node_parent((struct node *) tn);
968 if (!tp)
969 break;
970 tn = tp;
971 }
972
973 /* Handle last (top) tnode */
974 if (IS_TNODE(tn))
975 tn = (struct tnode*) resize(t, (struct tnode *)tn);
976
977 return (struct node*) tn;
978 }
979
980 /* only used from updater-side */
981
982 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
983 {
984 int pos, newpos;
985 struct tnode *tp = NULL, *tn = NULL;
986 struct node *n;
987 struct leaf *l;
988 int missbit;
989 struct list_head *fa_head = NULL;
990 struct leaf_info *li;
991 t_key cindex;
992
993 pos = 0;
994 n = t->trie;
995
996 /* If we point to NULL, stop. Either the tree is empty and we should
997 * just put a new leaf in if, or we have reached an empty child slot,
998 * and we should just put our new leaf in that.
999 * If we point to a T_TNODE, check if it matches our key. Note that
1000 * a T_TNODE might be skipping any number of bits - its 'pos' need
1001 * not be the parent's 'pos'+'bits'!
1002 *
1003 * If it does match the current key, get pos/bits from it, extract
1004 * the index from our key, push the T_TNODE and walk the tree.
1005 *
1006 * If it doesn't, we have to replace it with a new T_TNODE.
1007 *
1008 * If we point to a T_LEAF, it might or might not have the same key
1009 * as we do. If it does, just change the value, update the T_LEAF's
1010 * value, and return it.
1011 * If it doesn't, we need to replace it with a T_TNODE.
1012 */
1013
1014 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1015 tn = (struct tnode *) n;
1016
1017 check_tnode(tn);
1018
1019 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1020 tp = tn;
1021 pos = tn->pos + tn->bits;
1022 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1023
1024 BUG_ON(n && node_parent(n) != tn);
1025 } else
1026 break;
1027 }
1028
1029 /*
1030 * n ----> NULL, LEAF or TNODE
1031 *
1032 * tp is n's (parent) ----> NULL or TNODE
1033 */
1034
1035 BUG_ON(tp && IS_LEAF(tp));
1036
1037 /* Case 1: n is a leaf. Compare prefixes */
1038
1039 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1040 l = (struct leaf *) n;
1041 li = leaf_info_new(plen);
1042
1043 if (!li)
1044 return NULL;
1045
1046 fa_head = &li->falh;
1047 insert_leaf_info(&l->list, li);
1048 goto done;
1049 }
1050 t->size++;
1051 l = leaf_new();
1052
1053 if (!l)
1054 return NULL;
1055
1056 l->key = key;
1057 li = leaf_info_new(plen);
1058
1059 if (!li) {
1060 tnode_free((struct tnode *) l);
1061 return NULL;
1062 }
1063
1064 fa_head = &li->falh;
1065 insert_leaf_info(&l->list, li);
1066
1067 if (t->trie && n == NULL) {
1068 /* Case 2: n is NULL, and will just insert a new leaf */
1069
1070 node_set_parent((struct node *)l, tp);
1071
1072 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1073 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1074 } else {
1075 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1076 /*
1077 * Add a new tnode here
1078 * first tnode need some special handling
1079 */
1080
1081 if (tp)
1082 pos = tp->pos+tp->bits;
1083 else
1084 pos = 0;
1085
1086 if (n) {
1087 newpos = tkey_mismatch(key, pos, n->key);
1088 tn = tnode_new(n->key, newpos, 1);
1089 } else {
1090 newpos = 0;
1091 tn = tnode_new(key, newpos, 1); /* First tnode */
1092 }
1093
1094 if (!tn) {
1095 free_leaf_info(li);
1096 tnode_free((struct tnode *) l);
1097 return NULL;
1098 }
1099
1100 node_set_parent((struct node *)tn, tp);
1101
1102 missbit = tkey_extract_bits(key, newpos, 1);
1103 put_child(t, tn, missbit, (struct node *)l);
1104 put_child(t, tn, 1-missbit, n);
1105
1106 if (tp) {
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1109 } else {
1110 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1111 tp = tn;
1112 }
1113 }
1114
1115 if (tp && tp->pos + tp->bits > 32)
1116 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1117 tp, tp->pos, tp->bits, key, plen);
1118
1119 /* Rebalance the trie */
1120
1121 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1122 done:
1123 return fa_head;
1124 }
1125
1126 /*
1127 * Caller must hold RTNL.
1128 */
1129 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1130 {
1131 struct trie *t = (struct trie *) tb->tb_data;
1132 struct fib_alias *fa, *new_fa;
1133 struct list_head *fa_head = NULL;
1134 struct fib_info *fi;
1135 int plen = cfg->fc_dst_len;
1136 u8 tos = cfg->fc_tos;
1137 u32 key, mask;
1138 int err;
1139 struct leaf *l;
1140
1141 if (plen > 32)
1142 return -EINVAL;
1143
1144 key = ntohl(cfg->fc_dst);
1145
1146 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1147
1148 mask = ntohl(inet_make_mask(plen));
1149
1150 if (key & ~mask)
1151 return -EINVAL;
1152
1153 key = key & mask;
1154
1155 fi = fib_create_info(cfg);
1156 if (IS_ERR(fi)) {
1157 err = PTR_ERR(fi);
1158 goto err;
1159 }
1160
1161 l = fib_find_node(t, key);
1162 fa = NULL;
1163
1164 if (l) {
1165 fa_head = get_fa_head(l, plen);
1166 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1167 }
1168
1169 /* Now fa, if non-NULL, points to the first fib alias
1170 * with the same keys [prefix,tos,priority], if such key already
1171 * exists or to the node before which we will insert new one.
1172 *
1173 * If fa is NULL, we will need to allocate a new one and
1174 * insert to the head of f.
1175 *
1176 * If f is NULL, no fib node matched the destination key
1177 * and we need to allocate a new one of those as well.
1178 */
1179
1180 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1181 struct fib_alias *fa_orig;
1182
1183 err = -EEXIST;
1184 if (cfg->fc_nlflags & NLM_F_EXCL)
1185 goto out;
1186
1187 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1188 struct fib_info *fi_drop;
1189 u8 state;
1190
1191 if (fi->fib_treeref > 1)
1192 goto out;
1193
1194 err = -ENOBUFS;
1195 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1196 if (new_fa == NULL)
1197 goto out;
1198
1199 fi_drop = fa->fa_info;
1200 new_fa->fa_tos = fa->fa_tos;
1201 new_fa->fa_info = fi;
1202 new_fa->fa_type = cfg->fc_type;
1203 new_fa->fa_scope = cfg->fc_scope;
1204 state = fa->fa_state;
1205 new_fa->fa_state &= ~FA_S_ACCESSED;
1206
1207 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1208 alias_free_mem_rcu(fa);
1209
1210 fib_release_info(fi_drop);
1211 if (state & FA_S_ACCESSED)
1212 rt_cache_flush(-1);
1213 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1214 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1215
1216 goto succeeded;
1217 }
1218 /* Error if we find a perfect match which
1219 * uses the same scope, type, and nexthop
1220 * information.
1221 */
1222 fa_orig = fa;
1223 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1224 if (fa->fa_tos != tos)
1225 break;
1226 if (fa->fa_info->fib_priority != fi->fib_priority)
1227 break;
1228 if (fa->fa_type == cfg->fc_type &&
1229 fa->fa_scope == cfg->fc_scope &&
1230 fa->fa_info == fi) {
1231 goto out;
1232 }
1233 }
1234 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1235 fa = fa_orig;
1236 }
1237 err = -ENOENT;
1238 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1239 goto out;
1240
1241 err = -ENOBUFS;
1242 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1243 if (new_fa == NULL)
1244 goto out;
1245
1246 new_fa->fa_info = fi;
1247 new_fa->fa_tos = tos;
1248 new_fa->fa_type = cfg->fc_type;
1249 new_fa->fa_scope = cfg->fc_scope;
1250 new_fa->fa_state = 0;
1251 /*
1252 * Insert new entry to the list.
1253 */
1254
1255 if (!fa_head) {
1256 fa_head = fib_insert_node(t, key, plen);
1257 if (unlikely(!fa_head)) {
1258 err = -ENOMEM;
1259 goto out_free_new_fa;
1260 }
1261 }
1262
1263 list_add_tail_rcu(&new_fa->fa_list,
1264 (fa ? &fa->fa_list : fa_head));
1265
1266 rt_cache_flush(-1);
1267 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1268 &cfg->fc_nlinfo, 0);
1269 succeeded:
1270 return 0;
1271
1272 out_free_new_fa:
1273 kmem_cache_free(fn_alias_kmem, new_fa);
1274 out:
1275 fib_release_info(fi);
1276 err:
1277 return err;
1278 }
1279
1280
1281 /* should be called with rcu_read_lock */
1282 static inline int check_leaf(struct trie *t, struct leaf *l,
1283 t_key key, int *plen, const struct flowi *flp,
1284 struct fib_result *res)
1285 {
1286 int err, i;
1287 __be32 mask;
1288 struct leaf_info *li;
1289 struct hlist_head *hhead = &l->list;
1290 struct hlist_node *node;
1291
1292 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1293 i = li->plen;
1294 mask = inet_make_mask(i);
1295 if (l->key != (key & ntohl(mask)))
1296 continue;
1297
1298 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1299 *plen = i;
1300 #ifdef CONFIG_IP_FIB_TRIE_STATS
1301 t->stats.semantic_match_passed++;
1302 #endif
1303 return err;
1304 }
1305 #ifdef CONFIG_IP_FIB_TRIE_STATS
1306 t->stats.semantic_match_miss++;
1307 #endif
1308 }
1309 return 1;
1310 }
1311
1312 static int
1313 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1314 {
1315 struct trie *t = (struct trie *) tb->tb_data;
1316 int plen, ret = 0;
1317 struct node *n;
1318 struct tnode *pn;
1319 int pos, bits;
1320 t_key key = ntohl(flp->fl4_dst);
1321 int chopped_off;
1322 t_key cindex = 0;
1323 int current_prefix_length = KEYLENGTH;
1324 struct tnode *cn;
1325 t_key node_prefix, key_prefix, pref_mismatch;
1326 int mp;
1327
1328 rcu_read_lock();
1329
1330 n = rcu_dereference(t->trie);
1331 if (!n)
1332 goto failed;
1333
1334 #ifdef CONFIG_IP_FIB_TRIE_STATS
1335 t->stats.gets++;
1336 #endif
1337
1338 /* Just a leaf? */
1339 if (IS_LEAF(n)) {
1340 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1341 goto found;
1342 goto failed;
1343 }
1344 pn = (struct tnode *) n;
1345 chopped_off = 0;
1346
1347 while (pn) {
1348 pos = pn->pos;
1349 bits = pn->bits;
1350
1351 if (!chopped_off)
1352 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1353 pos, bits);
1354
1355 n = tnode_get_child(pn, cindex);
1356
1357 if (n == NULL) {
1358 #ifdef CONFIG_IP_FIB_TRIE_STATS
1359 t->stats.null_node_hit++;
1360 #endif
1361 goto backtrace;
1362 }
1363
1364 if (IS_LEAF(n)) {
1365 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1366 goto found;
1367 else
1368 goto backtrace;
1369 }
1370
1371 #define HL_OPTIMIZE
1372 #ifdef HL_OPTIMIZE
1373 cn = (struct tnode *)n;
1374
1375 /*
1376 * It's a tnode, and we can do some extra checks here if we
1377 * like, to avoid descending into a dead-end branch.
1378 * This tnode is in the parent's child array at index
1379 * key[p_pos..p_pos+p_bits] but potentially with some bits
1380 * chopped off, so in reality the index may be just a
1381 * subprefix, padded with zero at the end.
1382 * We can also take a look at any skipped bits in this
1383 * tnode - everything up to p_pos is supposed to be ok,
1384 * and the non-chopped bits of the index (se previous
1385 * paragraph) are also guaranteed ok, but the rest is
1386 * considered unknown.
1387 *
1388 * The skipped bits are key[pos+bits..cn->pos].
1389 */
1390
1391 /* If current_prefix_length < pos+bits, we are already doing
1392 * actual prefix matching, which means everything from
1393 * pos+(bits-chopped_off) onward must be zero along some
1394 * branch of this subtree - otherwise there is *no* valid
1395 * prefix present. Here we can only check the skipped
1396 * bits. Remember, since we have already indexed into the
1397 * parent's child array, we know that the bits we chopped of
1398 * *are* zero.
1399 */
1400
1401 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1402
1403 if (current_prefix_length < pos+bits) {
1404 if (tkey_extract_bits(cn->key, current_prefix_length,
1405 cn->pos - current_prefix_length) != 0 ||
1406 !(cn->child[0]))
1407 goto backtrace;
1408 }
1409
1410 /*
1411 * If chopped_off=0, the index is fully validated and we
1412 * only need to look at the skipped bits for this, the new,
1413 * tnode. What we actually want to do is to find out if
1414 * these skipped bits match our key perfectly, or if we will
1415 * have to count on finding a matching prefix further down,
1416 * because if we do, we would like to have some way of
1417 * verifying the existence of such a prefix at this point.
1418 */
1419
1420 /* The only thing we can do at this point is to verify that
1421 * any such matching prefix can indeed be a prefix to our
1422 * key, and if the bits in the node we are inspecting that
1423 * do not match our key are not ZERO, this cannot be true.
1424 * Thus, find out where there is a mismatch (before cn->pos)
1425 * and verify that all the mismatching bits are zero in the
1426 * new tnode's key.
1427 */
1428
1429 /* Note: We aren't very concerned about the piece of the key
1430 * that precede pn->pos+pn->bits, since these have already been
1431 * checked. The bits after cn->pos aren't checked since these are
1432 * by definition "unknown" at this point. Thus, what we want to
1433 * see is if we are about to enter the "prefix matching" state,
1434 * and in that case verify that the skipped bits that will prevail
1435 * throughout this subtree are zero, as they have to be if we are
1436 * to find a matching prefix.
1437 */
1438
1439 node_prefix = mask_pfx(cn->key, cn->pos);
1440 key_prefix = mask_pfx(key, cn->pos);
1441 pref_mismatch = key_prefix^node_prefix;
1442 mp = 0;
1443
1444 /* In short: If skipped bits in this node do not match the search
1445 * key, enter the "prefix matching" state.directly.
1446 */
1447 if (pref_mismatch) {
1448 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1449 mp++;
1450 pref_mismatch = pref_mismatch <<1;
1451 }
1452 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1453
1454 if (key_prefix != 0)
1455 goto backtrace;
1456
1457 if (current_prefix_length >= cn->pos)
1458 current_prefix_length = mp;
1459 }
1460 #endif
1461 pn = (struct tnode *)n; /* Descend */
1462 chopped_off = 0;
1463 continue;
1464
1465 backtrace:
1466 chopped_off++;
1467
1468 /* As zero don't change the child key (cindex) */
1469 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1470 chopped_off++;
1471
1472 /* Decrease current_... with bits chopped off */
1473 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1474 current_prefix_length = pn->pos + pn->bits - chopped_off;
1475
1476 /*
1477 * Either we do the actual chop off according or if we have
1478 * chopped off all bits in this tnode walk up to our parent.
1479 */
1480
1481 if (chopped_off <= pn->bits) {
1482 cindex &= ~(1 << (chopped_off-1));
1483 } else {
1484 struct tnode *parent = node_parent((struct node *) pn);
1485 if (!parent)
1486 goto failed;
1487
1488 /* Get Child's index */
1489 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1490 pn = parent;
1491 chopped_off = 0;
1492
1493 #ifdef CONFIG_IP_FIB_TRIE_STATS
1494 t->stats.backtrack++;
1495 #endif
1496 goto backtrace;
1497 }
1498 }
1499 failed:
1500 ret = 1;
1501 found:
1502 rcu_read_unlock();
1503 return ret;
1504 }
1505
1506 /* only called from updater side */
1507 static int trie_leaf_remove(struct trie *t, t_key key)
1508 {
1509 t_key cindex;
1510 struct tnode *tp = NULL;
1511 struct node *n = t->trie;
1512 struct leaf *l;
1513
1514 pr_debug("entering trie_leaf_remove(%p)\n", n);
1515
1516 /* Note that in the case skipped bits, those bits are *not* checked!
1517 * When we finish this, we will have NULL or a T_LEAF, and the
1518 * T_LEAF may or may not match our key.
1519 */
1520
1521 while (n != NULL && IS_TNODE(n)) {
1522 struct tnode *tn = (struct tnode *) n;
1523 check_tnode(tn);
1524 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1525
1526 BUG_ON(n && node_parent(n) != tn);
1527 }
1528 l = (struct leaf *) n;
1529
1530 if (!n || !tkey_equals(l->key, key))
1531 return 0;
1532
1533 /*
1534 * Key found.
1535 * Remove the leaf and rebalance the tree
1536 */
1537
1538 t->size--;
1539
1540 tp = node_parent(n);
1541 tnode_free((struct tnode *) n);
1542
1543 if (tp) {
1544 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1545 put_child(t, (struct tnode *)tp, cindex, NULL);
1546 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1547 } else
1548 rcu_assign_pointer(t->trie, NULL);
1549
1550 return 1;
1551 }
1552
1553 /*
1554 * Caller must hold RTNL.
1555 */
1556 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1557 {
1558 struct trie *t = (struct trie *) tb->tb_data;
1559 u32 key, mask;
1560 int plen = cfg->fc_dst_len;
1561 u8 tos = cfg->fc_tos;
1562 struct fib_alias *fa, *fa_to_delete;
1563 struct list_head *fa_head;
1564 struct leaf *l;
1565 struct leaf_info *li;
1566
1567 if (plen > 32)
1568 return -EINVAL;
1569
1570 key = ntohl(cfg->fc_dst);
1571 mask = ntohl(inet_make_mask(plen));
1572
1573 if (key & ~mask)
1574 return -EINVAL;
1575
1576 key = key & mask;
1577 l = fib_find_node(t, key);
1578
1579 if (!l)
1580 return -ESRCH;
1581
1582 fa_head = get_fa_head(l, plen);
1583 fa = fib_find_alias(fa_head, tos, 0);
1584
1585 if (!fa)
1586 return -ESRCH;
1587
1588 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1589
1590 fa_to_delete = NULL;
1591 fa_head = fa->fa_list.prev;
1592
1593 list_for_each_entry(fa, fa_head, fa_list) {
1594 struct fib_info *fi = fa->fa_info;
1595
1596 if (fa->fa_tos != tos)
1597 break;
1598
1599 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1600 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1601 fa->fa_scope == cfg->fc_scope) &&
1602 (!cfg->fc_protocol ||
1603 fi->fib_protocol == cfg->fc_protocol) &&
1604 fib_nh_match(cfg, fi) == 0) {
1605 fa_to_delete = fa;
1606 break;
1607 }
1608 }
1609
1610 if (!fa_to_delete)
1611 return -ESRCH;
1612
1613 fa = fa_to_delete;
1614 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1615 &cfg->fc_nlinfo, 0);
1616
1617 l = fib_find_node(t, key);
1618 li = find_leaf_info(l, plen);
1619
1620 list_del_rcu(&fa->fa_list);
1621
1622 if (list_empty(fa_head)) {
1623 hlist_del_rcu(&li->hlist);
1624 free_leaf_info(li);
1625 }
1626
1627 if (hlist_empty(&l->list))
1628 trie_leaf_remove(t, key);
1629
1630 if (fa->fa_state & FA_S_ACCESSED)
1631 rt_cache_flush(-1);
1632
1633 fib_release_info(fa->fa_info);
1634 alias_free_mem_rcu(fa);
1635 return 0;
1636 }
1637
1638 static int trie_flush_list(struct trie *t, struct list_head *head)
1639 {
1640 struct fib_alias *fa, *fa_node;
1641 int found = 0;
1642
1643 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1644 struct fib_info *fi = fa->fa_info;
1645
1646 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1647 list_del_rcu(&fa->fa_list);
1648 fib_release_info(fa->fa_info);
1649 alias_free_mem_rcu(fa);
1650 found++;
1651 }
1652 }
1653 return found;
1654 }
1655
1656 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1657 {
1658 int found = 0;
1659 struct hlist_head *lih = &l->list;
1660 struct hlist_node *node, *tmp;
1661 struct leaf_info *li = NULL;
1662
1663 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1664 found += trie_flush_list(t, &li->falh);
1665
1666 if (list_empty(&li->falh)) {
1667 hlist_del_rcu(&li->hlist);
1668 free_leaf_info(li);
1669 }
1670 }
1671 return found;
1672 }
1673
1674 /* rcu_read_lock needs to be hold by caller from readside */
1675
1676 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1677 {
1678 struct node *c = (struct node *) thisleaf;
1679 struct tnode *p;
1680 int idx;
1681 struct node *trie = rcu_dereference(t->trie);
1682
1683 if (c == NULL) {
1684 if (trie == NULL)
1685 return NULL;
1686
1687 if (IS_LEAF(trie)) /* trie w. just a leaf */
1688 return (struct leaf *) trie;
1689
1690 p = (struct tnode*) trie; /* Start */
1691 } else
1692 p = node_parent(c);
1693
1694 while (p) {
1695 int pos, last;
1696
1697 /* Find the next child of the parent */
1698 if (c)
1699 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1700 else
1701 pos = 0;
1702
1703 last = 1 << p->bits;
1704 for (idx = pos; idx < last ; idx++) {
1705 c = rcu_dereference(p->child[idx]);
1706
1707 if (!c)
1708 continue;
1709
1710 /* Decend if tnode */
1711 while (IS_TNODE(c)) {
1712 p = (struct tnode *) c;
1713 idx = 0;
1714
1715 /* Rightmost non-NULL branch */
1716 if (p && IS_TNODE(p))
1717 while (!(c = rcu_dereference(p->child[idx]))
1718 && idx < (1<<p->bits)) idx++;
1719
1720 /* Done with this tnode? */
1721 if (idx >= (1 << p->bits) || !c)
1722 goto up;
1723 }
1724 return (struct leaf *) c;
1725 }
1726 up:
1727 /* No more children go up one step */
1728 c = (struct node *) p;
1729 p = node_parent(c);
1730 }
1731 return NULL; /* Ready. Root of trie */
1732 }
1733
1734 /*
1735 * Caller must hold RTNL.
1736 */
1737 static int fn_trie_flush(struct fib_table *tb)
1738 {
1739 struct trie *t = (struct trie *) tb->tb_data;
1740 struct leaf *ll = NULL, *l = NULL;
1741 int found = 0, h;
1742
1743 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1744 found += trie_flush_leaf(t, l);
1745
1746 if (ll && hlist_empty(&ll->list))
1747 trie_leaf_remove(t, ll->key);
1748 ll = l;
1749 }
1750
1751 if (ll && hlist_empty(&ll->list))
1752 trie_leaf_remove(t, ll->key);
1753
1754 pr_debug("trie_flush found=%d\n", found);
1755 return found;
1756 }
1757
1758 static void
1759 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1760 {
1761 struct trie *t = (struct trie *) tb->tb_data;
1762 int order, last_idx;
1763 struct fib_info *fi = NULL;
1764 struct fib_info *last_resort;
1765 struct fib_alias *fa = NULL;
1766 struct list_head *fa_head;
1767 struct leaf *l;
1768
1769 last_idx = -1;
1770 last_resort = NULL;
1771 order = -1;
1772
1773 rcu_read_lock();
1774
1775 l = fib_find_node(t, 0);
1776 if (!l)
1777 goto out;
1778
1779 fa_head = get_fa_head(l, 0);
1780 if (!fa_head)
1781 goto out;
1782
1783 if (list_empty(fa_head))
1784 goto out;
1785
1786 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1787 struct fib_info *next_fi = fa->fa_info;
1788
1789 if (fa->fa_scope != res->scope ||
1790 fa->fa_type != RTN_UNICAST)
1791 continue;
1792
1793 if (next_fi->fib_priority > res->fi->fib_priority)
1794 break;
1795 if (!next_fi->fib_nh[0].nh_gw ||
1796 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1797 continue;
1798 fa->fa_state |= FA_S_ACCESSED;
1799
1800 if (fi == NULL) {
1801 if (next_fi != res->fi)
1802 break;
1803 } else if (!fib_detect_death(fi, order, &last_resort,
1804 &last_idx, tb->tb_default)) {
1805 fib_result_assign(res, fi);
1806 tb->tb_default = order;
1807 goto out;
1808 }
1809 fi = next_fi;
1810 order++;
1811 }
1812 if (order <= 0 || fi == NULL) {
1813 tb->tb_default = -1;
1814 goto out;
1815 }
1816
1817 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1818 tb->tb_default)) {
1819 fib_result_assign(res, fi);
1820 tb->tb_default = order;
1821 goto out;
1822 }
1823 if (last_idx >= 0)
1824 fib_result_assign(res, last_resort);
1825 tb->tb_default = last_idx;
1826 out:
1827 rcu_read_unlock();
1828 }
1829
1830 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1831 struct sk_buff *skb, struct netlink_callback *cb)
1832 {
1833 int i, s_i;
1834 struct fib_alias *fa;
1835
1836 __be32 xkey = htonl(key);
1837
1838 s_i = cb->args[4];
1839 i = 0;
1840
1841 /* rcu_read_lock is hold by caller */
1842
1843 list_for_each_entry_rcu(fa, fah, fa_list) {
1844 if (i < s_i) {
1845 i++;
1846 continue;
1847 }
1848 BUG_ON(!fa->fa_info);
1849
1850 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1851 cb->nlh->nlmsg_seq,
1852 RTM_NEWROUTE,
1853 tb->tb_id,
1854 fa->fa_type,
1855 fa->fa_scope,
1856 xkey,
1857 plen,
1858 fa->fa_tos,
1859 fa->fa_info, 0) < 0) {
1860 cb->args[4] = i;
1861 return -1;
1862 }
1863 i++;
1864 }
1865 cb->args[4] = i;
1866 return skb->len;
1867 }
1868
1869 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1870 struct netlink_callback *cb)
1871 {
1872 int h, s_h;
1873 struct list_head *fa_head;
1874 struct leaf *l = NULL;
1875
1876 s_h = cb->args[3];
1877
1878 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1879 if (h < s_h)
1880 continue;
1881 if (h > s_h)
1882 memset(&cb->args[4], 0,
1883 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1884
1885 fa_head = get_fa_head(l, plen);
1886
1887 if (!fa_head)
1888 continue;
1889
1890 if (list_empty(fa_head))
1891 continue;
1892
1893 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1894 cb->args[3] = h;
1895 return -1;
1896 }
1897 }
1898 cb->args[3] = h;
1899 return skb->len;
1900 }
1901
1902 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1903 {
1904 int m, s_m;
1905 struct trie *t = (struct trie *) tb->tb_data;
1906
1907 s_m = cb->args[2];
1908
1909 rcu_read_lock();
1910 for (m = 0; m <= 32; m++) {
1911 if (m < s_m)
1912 continue;
1913 if (m > s_m)
1914 memset(&cb->args[3], 0,
1915 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1916
1917 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1918 cb->args[2] = m;
1919 goto out;
1920 }
1921 }
1922 rcu_read_unlock();
1923 cb->args[2] = m;
1924 return skb->len;
1925 out:
1926 rcu_read_unlock();
1927 return -1;
1928 }
1929
1930 /* Fix more generic FIB names for init later */
1931
1932 struct fib_table *fib_hash_init(u32 id)
1933 {
1934 struct fib_table *tb;
1935 struct trie *t;
1936
1937 if (fn_alias_kmem == NULL)
1938 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1939 sizeof(struct fib_alias),
1940 0, SLAB_HWCACHE_ALIGN,
1941 NULL);
1942
1943 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1944 GFP_KERNEL);
1945 if (tb == NULL)
1946 return NULL;
1947
1948 tb->tb_id = id;
1949 tb->tb_default = -1;
1950 tb->tb_lookup = fn_trie_lookup;
1951 tb->tb_insert = fn_trie_insert;
1952 tb->tb_delete = fn_trie_delete;
1953 tb->tb_flush = fn_trie_flush;
1954 tb->tb_select_default = fn_trie_select_default;
1955 tb->tb_dump = fn_trie_dump;
1956
1957 t = (struct trie *) tb->tb_data;
1958 memset(t, 0, sizeof(*t));
1959
1960 if (id == RT_TABLE_LOCAL)
1961 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1962
1963 return tb;
1964 }
1965
1966 #ifdef CONFIG_PROC_FS
1967 /* Depth first Trie walk iterator */
1968 struct fib_trie_iter {
1969 struct seq_net_private p;
1970 struct trie *trie_local, *trie_main;
1971 struct tnode *tnode;
1972 struct trie *trie;
1973 unsigned index;
1974 unsigned depth;
1975 };
1976
1977 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1978 {
1979 struct tnode *tn = iter->tnode;
1980 unsigned cindex = iter->index;
1981 struct tnode *p;
1982
1983 /* A single entry routing table */
1984 if (!tn)
1985 return NULL;
1986
1987 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1988 iter->tnode, iter->index, iter->depth);
1989 rescan:
1990 while (cindex < (1<<tn->bits)) {
1991 struct node *n = tnode_get_child(tn, cindex);
1992
1993 if (n) {
1994 if (IS_LEAF(n)) {
1995 iter->tnode = tn;
1996 iter->index = cindex + 1;
1997 } else {
1998 /* push down one level */
1999 iter->tnode = (struct tnode *) n;
2000 iter->index = 0;
2001 ++iter->depth;
2002 }
2003 return n;
2004 }
2005
2006 ++cindex;
2007 }
2008
2009 /* Current node exhausted, pop back up */
2010 p = node_parent((struct node *)tn);
2011 if (p) {
2012 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2013 tn = p;
2014 --iter->depth;
2015 goto rescan;
2016 }
2017
2018 /* got root? */
2019 return NULL;
2020 }
2021
2022 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2023 struct trie *t)
2024 {
2025 struct node *n ;
2026
2027 if (!t)
2028 return NULL;
2029
2030 n = rcu_dereference(t->trie);
2031
2032 if (!iter)
2033 return NULL;
2034
2035 if (n) {
2036 if (IS_TNODE(n)) {
2037 iter->tnode = (struct tnode *) n;
2038 iter->trie = t;
2039 iter->index = 0;
2040 iter->depth = 1;
2041 } else {
2042 iter->tnode = NULL;
2043 iter->trie = t;
2044 iter->index = 0;
2045 iter->depth = 0;
2046 }
2047 return n;
2048 }
2049 return NULL;
2050 }
2051
2052 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2053 {
2054 struct node *n;
2055 struct fib_trie_iter iter;
2056
2057 memset(s, 0, sizeof(*s));
2058
2059 rcu_read_lock();
2060 for (n = fib_trie_get_first(&iter, t); n;
2061 n = fib_trie_get_next(&iter)) {
2062 if (IS_LEAF(n)) {
2063 s->leaves++;
2064 s->totdepth += iter.depth;
2065 if (iter.depth > s->maxdepth)
2066 s->maxdepth = iter.depth;
2067 } else {
2068 const struct tnode *tn = (const struct tnode *) n;
2069 int i;
2070
2071 s->tnodes++;
2072 if (tn->bits < MAX_STAT_DEPTH)
2073 s->nodesizes[tn->bits]++;
2074
2075 for (i = 0; i < (1<<tn->bits); i++)
2076 if (!tn->child[i])
2077 s->nullpointers++;
2078 }
2079 }
2080 rcu_read_unlock();
2081 }
2082
2083 /*
2084 * This outputs /proc/net/fib_triestats
2085 */
2086 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2087 {
2088 unsigned i, max, pointers, bytes, avdepth;
2089
2090 if (stat->leaves)
2091 avdepth = stat->totdepth*100 / stat->leaves;
2092 else
2093 avdepth = 0;
2094
2095 seq_printf(seq, "\tAver depth: %u.%02d\n", avdepth / 100, avdepth % 100 );
2096 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2097
2098 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2099
2100 bytes = sizeof(struct leaf) * stat->leaves;
2101 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2102 bytes += sizeof(struct tnode) * stat->tnodes;
2103
2104 max = MAX_STAT_DEPTH;
2105 while (max > 0 && stat->nodesizes[max-1] == 0)
2106 max--;
2107
2108 pointers = 0;
2109 for (i = 1; i <= max; i++)
2110 if (stat->nodesizes[i] != 0) {
2111 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2112 pointers += (1<<i) * stat->nodesizes[i];
2113 }
2114 seq_putc(seq, '\n');
2115 seq_printf(seq, "\tPointers: %u\n", pointers);
2116
2117 bytes += sizeof(struct node *) * pointers;
2118 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2119 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2120 }
2121
2122 #ifdef CONFIG_IP_FIB_TRIE_STATS
2123 static void trie_show_usage(struct seq_file *seq,
2124 const struct trie_use_stats *stats)
2125 {
2126 seq_printf(seq, "\nCounters:\n---------\n");
2127 seq_printf(seq,"gets = %u\n", stats->gets);
2128 seq_printf(seq,"backtracks = %u\n", stats->backtrack);
2129 seq_printf(seq,"semantic match passed = %u\n", stats->semantic_match_passed);
2130 seq_printf(seq,"semantic match miss = %u\n", stats->semantic_match_miss);
2131 seq_printf(seq,"null node hit= %u\n", stats->null_node_hit);
2132 seq_printf(seq,"skipped node resize = %u\n\n", stats->resize_node_skipped);
2133 }
2134 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2135
2136
2137 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2138 {
2139 struct net *net = (struct net *)seq->private;
2140 struct trie *trie_local, *trie_main;
2141 struct trie_stat *stat;
2142 struct fib_table *tb;
2143
2144 trie_local = NULL;
2145 tb = fib_get_table(net, RT_TABLE_LOCAL);
2146 if (tb)
2147 trie_local = (struct trie *) tb->tb_data;
2148
2149 trie_main = NULL;
2150 tb = fib_get_table(net, RT_TABLE_MAIN);
2151 if (tb)
2152 trie_main = (struct trie *) tb->tb_data;
2153
2154
2155 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2156 if (!stat)
2157 return -ENOMEM;
2158
2159 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2160 sizeof(struct leaf), sizeof(struct tnode));
2161
2162 if (trie_local) {
2163 seq_printf(seq, "Local:\n");
2164 trie_collect_stats(trie_local, stat);
2165 trie_show_stats(seq, stat);
2166 #ifdef CONFIG_IP_FIB_TRIE_STATS
2167 trie_show_usage(seq, &trie_local->stats);
2168 #endif
2169 }
2170
2171 if (trie_main) {
2172 seq_printf(seq, "Main:\n");
2173 trie_collect_stats(trie_main, stat);
2174 trie_show_stats(seq, stat);
2175 #ifdef CONFIG_IP_FIB_TRIE_STATS
2176 trie_show_usage(seq, &trie_main->stats);
2177 #endif
2178 }
2179 kfree(stat);
2180
2181 return 0;
2182 }
2183
2184 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2185 {
2186 int err;
2187 struct net *net;
2188
2189 net = get_proc_net(inode);
2190 if (net == NULL)
2191 return -ENXIO;
2192 err = single_open(file, fib_triestat_seq_show, net);
2193 if (err < 0) {
2194 put_net(net);
2195 return err;
2196 }
2197 return 0;
2198 }
2199
2200 static int fib_triestat_seq_release(struct inode *ino, struct file *f)
2201 {
2202 struct seq_file *seq = f->private_data;
2203 put_net(seq->private);
2204 return single_release(ino, f);
2205 }
2206
2207 static const struct file_operations fib_triestat_fops = {
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
2212 .release = fib_triestat_seq_release,
2213 };
2214
2215 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2216 loff_t pos)
2217 {
2218 loff_t idx = 0;
2219 struct node *n;
2220
2221 for (n = fib_trie_get_first(iter, iter->trie_local);
2222 n; ++idx, n = fib_trie_get_next(iter)) {
2223 if (pos == idx)
2224 return n;
2225 }
2226
2227 for (n = fib_trie_get_first(iter, iter->trie_main);
2228 n; ++idx, n = fib_trie_get_next(iter)) {
2229 if (pos == idx)
2230 return n;
2231 }
2232 return NULL;
2233 }
2234
2235 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2236 __acquires(RCU)
2237 {
2238 struct fib_trie_iter *iter = seq->private;
2239 struct fib_table *tb;
2240
2241 if (!iter->trie_local) {
2242 tb = fib_get_table(iter->p.net, RT_TABLE_LOCAL);
2243 if (tb)
2244 iter->trie_local = (struct trie *) tb->tb_data;
2245 }
2246 if (!iter->trie_main) {
2247 tb = fib_get_table(iter->p.net, RT_TABLE_MAIN);
2248 if (tb)
2249 iter->trie_main = (struct trie *) tb->tb_data;
2250 }
2251 rcu_read_lock();
2252 if (*pos == 0)
2253 return SEQ_START_TOKEN;
2254 return fib_trie_get_idx(iter, *pos - 1);
2255 }
2256
2257 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2258 {
2259 struct fib_trie_iter *iter = seq->private;
2260 void *l = v;
2261
2262 ++*pos;
2263 if (v == SEQ_START_TOKEN)
2264 return fib_trie_get_idx(iter, 0);
2265
2266 v = fib_trie_get_next(iter);
2267 BUG_ON(v == l);
2268 if (v)
2269 return v;
2270
2271 /* continue scan in next trie */
2272 if (iter->trie == iter->trie_local)
2273 return fib_trie_get_first(iter, iter->trie_main);
2274
2275 return NULL;
2276 }
2277
2278 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2279 __releases(RCU)
2280 {
2281 rcu_read_unlock();
2282 }
2283
2284 static void seq_indent(struct seq_file *seq, int n)
2285 {
2286 while (n-- > 0) seq_puts(seq, " ");
2287 }
2288
2289 static inline const char *rtn_scope(enum rt_scope_t s)
2290 {
2291 static char buf[32];
2292
2293 switch (s) {
2294 case RT_SCOPE_UNIVERSE: return "universe";
2295 case RT_SCOPE_SITE: return "site";
2296 case RT_SCOPE_LINK: return "link";
2297 case RT_SCOPE_HOST: return "host";
2298 case RT_SCOPE_NOWHERE: return "nowhere";
2299 default:
2300 snprintf(buf, sizeof(buf), "scope=%d", s);
2301 return buf;
2302 }
2303 }
2304
2305 static const char *rtn_type_names[__RTN_MAX] = {
2306 [RTN_UNSPEC] = "UNSPEC",
2307 [RTN_UNICAST] = "UNICAST",
2308 [RTN_LOCAL] = "LOCAL",
2309 [RTN_BROADCAST] = "BROADCAST",
2310 [RTN_ANYCAST] = "ANYCAST",
2311 [RTN_MULTICAST] = "MULTICAST",
2312 [RTN_BLACKHOLE] = "BLACKHOLE",
2313 [RTN_UNREACHABLE] = "UNREACHABLE",
2314 [RTN_PROHIBIT] = "PROHIBIT",
2315 [RTN_THROW] = "THROW",
2316 [RTN_NAT] = "NAT",
2317 [RTN_XRESOLVE] = "XRESOLVE",
2318 };
2319
2320 static inline const char *rtn_type(unsigned t)
2321 {
2322 static char buf[32];
2323
2324 if (t < __RTN_MAX && rtn_type_names[t])
2325 return rtn_type_names[t];
2326 snprintf(buf, sizeof(buf), "type %u", t);
2327 return buf;
2328 }
2329
2330 /* Pretty print the trie */
2331 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2332 {
2333 const struct fib_trie_iter *iter = seq->private;
2334 struct node *n = v;
2335
2336 if (v == SEQ_START_TOKEN)
2337 return 0;
2338
2339 if (!node_parent(n)) {
2340 if (iter->trie == iter->trie_local)
2341 seq_puts(seq, "<local>:\n");
2342 else
2343 seq_puts(seq, "<main>:\n");
2344 }
2345
2346 if (IS_TNODE(n)) {
2347 struct tnode *tn = (struct tnode *) n;
2348 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2349
2350 seq_indent(seq, iter->depth-1);
2351 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2352 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2353 tn->empty_children);
2354
2355 } else {
2356 struct leaf *l = (struct leaf *) n;
2357 int i;
2358 __be32 val = htonl(l->key);
2359
2360 seq_indent(seq, iter->depth);
2361 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2362 for (i = 32; i >= 0; i--) {
2363 struct leaf_info *li = find_leaf_info(l, i);
2364 if (li) {
2365 struct fib_alias *fa;
2366 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2367 seq_indent(seq, iter->depth+1);
2368 seq_printf(seq, " /%d %s %s", i,
2369 rtn_scope(fa->fa_scope),
2370 rtn_type(fa->fa_type));
2371 if (fa->fa_tos)
2372 seq_printf(seq, "tos =%d\n",
2373 fa->fa_tos);
2374 seq_putc(seq, '\n');
2375 }
2376 }
2377 }
2378 }
2379
2380 return 0;
2381 }
2382
2383 static const struct seq_operations fib_trie_seq_ops = {
2384 .start = fib_trie_seq_start,
2385 .next = fib_trie_seq_next,
2386 .stop = fib_trie_seq_stop,
2387 .show = fib_trie_seq_show,
2388 };
2389
2390 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2391 {
2392 return seq_open_net(inode, file, &fib_trie_seq_ops,
2393 sizeof(struct fib_trie_iter));
2394 }
2395
2396 static const struct file_operations fib_trie_fops = {
2397 .owner = THIS_MODULE,
2398 .open = fib_trie_seq_open,
2399 .read = seq_read,
2400 .llseek = seq_lseek,
2401 .release = seq_release_net,
2402 };
2403
2404 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2405 {
2406 static unsigned type2flags[RTN_MAX + 1] = {
2407 [7] = RTF_REJECT, [8] = RTF_REJECT,
2408 };
2409 unsigned flags = type2flags[type];
2410
2411 if (fi && fi->fib_nh->nh_gw)
2412 flags |= RTF_GATEWAY;
2413 if (mask == htonl(0xFFFFFFFF))
2414 flags |= RTF_HOST;
2415 flags |= RTF_UP;
2416 return flags;
2417 }
2418
2419 /*
2420 * This outputs /proc/net/route.
2421 * The format of the file is not supposed to be changed
2422 * and needs to be same as fib_hash output to avoid breaking
2423 * legacy utilities
2424 */
2425 static int fib_route_seq_show(struct seq_file *seq, void *v)
2426 {
2427 const struct fib_trie_iter *iter = seq->private;
2428 struct leaf *l = v;
2429 int i;
2430 char bf[128];
2431
2432 if (v == SEQ_START_TOKEN) {
2433 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2434 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2435 "\tWindow\tIRTT");
2436 return 0;
2437 }
2438
2439 if (iter->trie == iter->trie_local)
2440 return 0;
2441 if (IS_TNODE(l))
2442 return 0;
2443
2444 for (i=32; i>=0; i--) {
2445 struct leaf_info *li = find_leaf_info(l, i);
2446 struct fib_alias *fa;
2447 __be32 mask, prefix;
2448
2449 if (!li)
2450 continue;
2451
2452 mask = inet_make_mask(li->plen);
2453 prefix = htonl(l->key);
2454
2455 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2456 const struct fib_info *fi = fa->fa_info;
2457 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2458
2459 if (fa->fa_type == RTN_BROADCAST
2460 || fa->fa_type == RTN_MULTICAST)
2461 continue;
2462
2463 if (fi)
2464 snprintf(bf, sizeof(bf),
2465 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2466 fi->fib_dev ? fi->fib_dev->name : "*",
2467 prefix,
2468 fi->fib_nh->nh_gw, flags, 0, 0,
2469 fi->fib_priority,
2470 mask,
2471 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2472 fi->fib_window,
2473 fi->fib_rtt >> 3);
2474 else
2475 snprintf(bf, sizeof(bf),
2476 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2477 prefix, 0, flags, 0, 0, 0,
2478 mask, 0, 0, 0);
2479
2480 seq_printf(seq, "%-127s\n", bf);
2481 }
2482 }
2483
2484 return 0;
2485 }
2486
2487 static const struct seq_operations fib_route_seq_ops = {
2488 .start = fib_trie_seq_start,
2489 .next = fib_trie_seq_next,
2490 .stop = fib_trie_seq_stop,
2491 .show = fib_route_seq_show,
2492 };
2493
2494 static int fib_route_seq_open(struct inode *inode, struct file *file)
2495 {
2496 return seq_open_net(inode, file, &fib_route_seq_ops,
2497 sizeof(struct fib_trie_iter));
2498 }
2499
2500 static const struct file_operations fib_route_fops = {
2501 .owner = THIS_MODULE,
2502 .open = fib_route_seq_open,
2503 .read = seq_read,
2504 .llseek = seq_lseek,
2505 .release = seq_release_net,
2506 };
2507
2508 int __net_init fib_proc_init(struct net *net)
2509 {
2510 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
2511 goto out1;
2512
2513 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2514 &fib_triestat_fops))
2515 goto out2;
2516
2517 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
2518 goto out3;
2519
2520 return 0;
2521
2522 out3:
2523 proc_net_remove(net, "fib_triestat");
2524 out2:
2525 proc_net_remove(net, "fib_trie");
2526 out1:
2527 return -ENOMEM;
2528 }
2529
2530 void __net_exit fib_proc_exit(struct net *net)
2531 {
2532 proc_net_remove(net, "fib_trie");
2533 proc_net_remove(net, "fib_triestat");
2534 proc_net_remove(net, "route");
2535 }
2536
2537 #endif /* CONFIG_PROC_FS */
This page took 0.118467 seconds and 6 git commands to generate.