[INET]: Consolidate xxx_frag_intern
[deliverable/linux.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9 *
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
12 *
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
23 */
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
78 /*
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
83 */
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
86
87 /*
88 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 * by TTL.
91 */
92 .timeout = IP_FRAG_TIME,
93 .secret_interval = 10 * 60 * HZ,
94 };
95
96 static struct inet_frags ip4_frags;
97
98 int ip_frag_nqueues(void)
99 {
100 return ip4_frags.nqueues;
101 }
102
103 int ip_frag_mem(void)
104 {
105 return atomic_read(&ip4_frags.mem);
106 }
107
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
110
111 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
112 {
113 return jhash_3words((__force u32)id << 16 | prot,
114 (__force u32)saddr, (__force u32)daddr,
115 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
116 }
117
118 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
119 {
120 struct ipq *ipq;
121
122 ipq = container_of(q, struct ipq, q);
123 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
124 }
125
126 static int ip4_frag_equal(struct inet_frag_queue *q1,
127 struct inet_frag_queue *q2)
128 {
129 struct ipq *qp1, *qp2;
130
131 qp1 = container_of(q1, struct ipq, q);
132 qp2 = container_of(q2, struct ipq, q);
133 return (qp1->id == qp2->id &&
134 qp1->saddr == qp2->saddr &&
135 qp1->daddr == qp2->daddr &&
136 qp1->protocol == qp2->protocol &&
137 qp1->user == qp2->user);
138 }
139
140 /* Memory Tracking Functions. */
141 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
142 {
143 if (work)
144 *work -= skb->truesize;
145 atomic_sub(skb->truesize, &ip4_frags.mem);
146 kfree_skb(skb);
147 }
148
149 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 struct ipq *qp;
152
153 qp = container_of(q, struct ipq, q);
154 if (qp->peer)
155 inet_putpeer(qp->peer);
156 kfree(qp);
157 }
158
159 static __inline__ struct ipq *frag_alloc_queue(void)
160 {
161 struct ipq *qp = kzalloc(sizeof(struct ipq), GFP_ATOMIC);
162
163 if (!qp)
164 return NULL;
165 atomic_add(sizeof(struct ipq), &ip4_frags.mem);
166 return qp;
167 }
168
169
170 /* Destruction primitives. */
171
172 static __inline__ void ipq_put(struct ipq *ipq)
173 {
174 inet_frag_put(&ipq->q, &ip4_frags);
175 }
176
177 /* Kill ipq entry. It is not destroyed immediately,
178 * because caller (and someone more) holds reference count.
179 */
180 static void ipq_kill(struct ipq *ipq)
181 {
182 inet_frag_kill(&ipq->q, &ip4_frags);
183 }
184
185 /* Memory limiting on fragments. Evictor trashes the oldest
186 * fragment queue until we are back under the threshold.
187 */
188 static void ip_evictor(void)
189 {
190 int evicted;
191
192 evicted = inet_frag_evictor(&ip4_frags);
193 if (evicted)
194 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
195 }
196
197 /*
198 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
199 */
200 static void ip_expire(unsigned long arg)
201 {
202 struct ipq *qp = (struct ipq *) arg;
203
204 spin_lock(&qp->q.lock);
205
206 if (qp->q.last_in & COMPLETE)
207 goto out;
208
209 ipq_kill(qp);
210
211 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
212 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
213
214 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
215 struct sk_buff *head = qp->q.fragments;
216 /* Send an ICMP "Fragment Reassembly Timeout" message. */
217 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
218 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
219 dev_put(head->dev);
220 }
221 }
222 out:
223 spin_unlock(&qp->q.lock);
224 ipq_put(qp);
225 }
226
227 /* Creation primitives. */
228
229 static struct ipq *ip_frag_intern(struct ipq *qp_in, unsigned int hash)
230 {
231 struct inet_frag_queue *q;
232
233 q = inet_frag_intern(&qp_in->q, &ip4_frags, hash);
234 return container_of(q, struct ipq, q);
235 }
236
237 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
238 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user, unsigned int h)
239 {
240 struct ipq *qp;
241
242 if ((qp = frag_alloc_queue()) == NULL)
243 goto out_nomem;
244
245 qp->protocol = iph->protocol;
246 qp->id = iph->id;
247 qp->saddr = iph->saddr;
248 qp->daddr = iph->daddr;
249 qp->user = user;
250 qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
251
252 /* Initialize a timer for this entry. */
253 init_timer(&qp->q.timer);
254 qp->q.timer.data = (unsigned long) qp; /* pointer to queue */
255 qp->q.timer.function = ip_expire; /* expire function */
256 spin_lock_init(&qp->q.lock);
257 atomic_set(&qp->q.refcnt, 1);
258
259 return ip_frag_intern(qp, h);
260
261 out_nomem:
262 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
263 return NULL;
264 }
265
266 /* Find the correct entry in the "incomplete datagrams" queue for
267 * this IP datagram, and create new one, if nothing is found.
268 */
269 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
270 {
271 __be16 id = iph->id;
272 __be32 saddr = iph->saddr;
273 __be32 daddr = iph->daddr;
274 __u8 protocol = iph->protocol;
275 unsigned int hash;
276 struct ipq *qp;
277 struct hlist_node *n;
278
279 read_lock(&ip4_frags.lock);
280 hash = ipqhashfn(id, saddr, daddr, protocol);
281 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
282 if (qp->id == id &&
283 qp->saddr == saddr &&
284 qp->daddr == daddr &&
285 qp->protocol == protocol &&
286 qp->user == user) {
287 atomic_inc(&qp->q.refcnt);
288 read_unlock(&ip4_frags.lock);
289 return qp;
290 }
291 }
292 read_unlock(&ip4_frags.lock);
293
294 return ip_frag_create(iph, user, hash);
295 }
296
297 /* Is the fragment too far ahead to be part of ipq? */
298 static inline int ip_frag_too_far(struct ipq *qp)
299 {
300 struct inet_peer *peer = qp->peer;
301 unsigned int max = sysctl_ipfrag_max_dist;
302 unsigned int start, end;
303
304 int rc;
305
306 if (!peer || !max)
307 return 0;
308
309 start = qp->rid;
310 end = atomic_inc_return(&peer->rid);
311 qp->rid = end;
312
313 rc = qp->q.fragments && (end - start) > max;
314
315 if (rc) {
316 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
317 }
318
319 return rc;
320 }
321
322 static int ip_frag_reinit(struct ipq *qp)
323 {
324 struct sk_buff *fp;
325
326 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
327 atomic_inc(&qp->q.refcnt);
328 return -ETIMEDOUT;
329 }
330
331 fp = qp->q.fragments;
332 do {
333 struct sk_buff *xp = fp->next;
334 frag_kfree_skb(fp, NULL);
335 fp = xp;
336 } while (fp);
337
338 qp->q.last_in = 0;
339 qp->q.len = 0;
340 qp->q.meat = 0;
341 qp->q.fragments = NULL;
342 qp->iif = 0;
343
344 return 0;
345 }
346
347 /* Add new segment to existing queue. */
348 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
349 {
350 struct sk_buff *prev, *next;
351 struct net_device *dev;
352 int flags, offset;
353 int ihl, end;
354 int err = -ENOENT;
355
356 if (qp->q.last_in & COMPLETE)
357 goto err;
358
359 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
360 unlikely(ip_frag_too_far(qp)) &&
361 unlikely(err = ip_frag_reinit(qp))) {
362 ipq_kill(qp);
363 goto err;
364 }
365
366 offset = ntohs(ip_hdr(skb)->frag_off);
367 flags = offset & ~IP_OFFSET;
368 offset &= IP_OFFSET;
369 offset <<= 3; /* offset is in 8-byte chunks */
370 ihl = ip_hdrlen(skb);
371
372 /* Determine the position of this fragment. */
373 end = offset + skb->len - ihl;
374 err = -EINVAL;
375
376 /* Is this the final fragment? */
377 if ((flags & IP_MF) == 0) {
378 /* If we already have some bits beyond end
379 * or have different end, the segment is corrrupted.
380 */
381 if (end < qp->q.len ||
382 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
383 goto err;
384 qp->q.last_in |= LAST_IN;
385 qp->q.len = end;
386 } else {
387 if (end&7) {
388 end &= ~7;
389 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
390 skb->ip_summed = CHECKSUM_NONE;
391 }
392 if (end > qp->q.len) {
393 /* Some bits beyond end -> corruption. */
394 if (qp->q.last_in & LAST_IN)
395 goto err;
396 qp->q.len = end;
397 }
398 }
399 if (end == offset)
400 goto err;
401
402 err = -ENOMEM;
403 if (pskb_pull(skb, ihl) == NULL)
404 goto err;
405
406 err = pskb_trim_rcsum(skb, end - offset);
407 if (err)
408 goto err;
409
410 /* Find out which fragments are in front and at the back of us
411 * in the chain of fragments so far. We must know where to put
412 * this fragment, right?
413 */
414 prev = NULL;
415 for (next = qp->q.fragments; next != NULL; next = next->next) {
416 if (FRAG_CB(next)->offset >= offset)
417 break; /* bingo! */
418 prev = next;
419 }
420
421 /* We found where to put this one. Check for overlap with
422 * preceding fragment, and, if needed, align things so that
423 * any overlaps are eliminated.
424 */
425 if (prev) {
426 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
427
428 if (i > 0) {
429 offset += i;
430 err = -EINVAL;
431 if (end <= offset)
432 goto err;
433 err = -ENOMEM;
434 if (!pskb_pull(skb, i))
435 goto err;
436 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
437 skb->ip_summed = CHECKSUM_NONE;
438 }
439 }
440
441 err = -ENOMEM;
442
443 while (next && FRAG_CB(next)->offset < end) {
444 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
445
446 if (i < next->len) {
447 /* Eat head of the next overlapped fragment
448 * and leave the loop. The next ones cannot overlap.
449 */
450 if (!pskb_pull(next, i))
451 goto err;
452 FRAG_CB(next)->offset += i;
453 qp->q.meat -= i;
454 if (next->ip_summed != CHECKSUM_UNNECESSARY)
455 next->ip_summed = CHECKSUM_NONE;
456 break;
457 } else {
458 struct sk_buff *free_it = next;
459
460 /* Old fragment is completely overridden with
461 * new one drop it.
462 */
463 next = next->next;
464
465 if (prev)
466 prev->next = next;
467 else
468 qp->q.fragments = next;
469
470 qp->q.meat -= free_it->len;
471 frag_kfree_skb(free_it, NULL);
472 }
473 }
474
475 FRAG_CB(skb)->offset = offset;
476
477 /* Insert this fragment in the chain of fragments. */
478 skb->next = next;
479 if (prev)
480 prev->next = skb;
481 else
482 qp->q.fragments = skb;
483
484 dev = skb->dev;
485 if (dev) {
486 qp->iif = dev->ifindex;
487 skb->dev = NULL;
488 }
489 qp->q.stamp = skb->tstamp;
490 qp->q.meat += skb->len;
491 atomic_add(skb->truesize, &ip4_frags.mem);
492 if (offset == 0)
493 qp->q.last_in |= FIRST_IN;
494
495 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
496 return ip_frag_reasm(qp, prev, dev);
497
498 write_lock(&ip4_frags.lock);
499 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
500 write_unlock(&ip4_frags.lock);
501 return -EINPROGRESS;
502
503 err:
504 kfree_skb(skb);
505 return err;
506 }
507
508
509 /* Build a new IP datagram from all its fragments. */
510
511 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
512 struct net_device *dev)
513 {
514 struct iphdr *iph;
515 struct sk_buff *fp, *head = qp->q.fragments;
516 int len;
517 int ihlen;
518 int err;
519
520 ipq_kill(qp);
521
522 /* Make the one we just received the head. */
523 if (prev) {
524 head = prev->next;
525 fp = skb_clone(head, GFP_ATOMIC);
526
527 if (!fp)
528 goto out_nomem;
529
530 fp->next = head->next;
531 prev->next = fp;
532
533 skb_morph(head, qp->q.fragments);
534 head->next = qp->q.fragments->next;
535
536 kfree_skb(qp->q.fragments);
537 qp->q.fragments = head;
538 }
539
540 BUG_TRAP(head != NULL);
541 BUG_TRAP(FRAG_CB(head)->offset == 0);
542
543 /* Allocate a new buffer for the datagram. */
544 ihlen = ip_hdrlen(head);
545 len = ihlen + qp->q.len;
546
547 err = -E2BIG;
548 if (len > 65535)
549 goto out_oversize;
550
551 /* Head of list must not be cloned. */
552 err = -ENOMEM;
553 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
554 goto out_nomem;
555
556 /* If the first fragment is fragmented itself, we split
557 * it to two chunks: the first with data and paged part
558 * and the second, holding only fragments. */
559 if (skb_shinfo(head)->frag_list) {
560 struct sk_buff *clone;
561 int i, plen = 0;
562
563 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
564 goto out_nomem;
565 clone->next = head->next;
566 head->next = clone;
567 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
568 skb_shinfo(head)->frag_list = NULL;
569 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
570 plen += skb_shinfo(head)->frags[i].size;
571 clone->len = clone->data_len = head->data_len - plen;
572 head->data_len -= clone->len;
573 head->len -= clone->len;
574 clone->csum = 0;
575 clone->ip_summed = head->ip_summed;
576 atomic_add(clone->truesize, &ip4_frags.mem);
577 }
578
579 skb_shinfo(head)->frag_list = head->next;
580 skb_push(head, head->data - skb_network_header(head));
581 atomic_sub(head->truesize, &ip4_frags.mem);
582
583 for (fp=head->next; fp; fp = fp->next) {
584 head->data_len += fp->len;
585 head->len += fp->len;
586 if (head->ip_summed != fp->ip_summed)
587 head->ip_summed = CHECKSUM_NONE;
588 else if (head->ip_summed == CHECKSUM_COMPLETE)
589 head->csum = csum_add(head->csum, fp->csum);
590 head->truesize += fp->truesize;
591 atomic_sub(fp->truesize, &ip4_frags.mem);
592 }
593
594 head->next = NULL;
595 head->dev = dev;
596 head->tstamp = qp->q.stamp;
597
598 iph = ip_hdr(head);
599 iph->frag_off = 0;
600 iph->tot_len = htons(len);
601 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
602 qp->q.fragments = NULL;
603 return 0;
604
605 out_nomem:
606 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
607 "queue %p\n", qp);
608 goto out_fail;
609 out_oversize:
610 if (net_ratelimit())
611 printk(KERN_INFO
612 "Oversized IP packet from %d.%d.%d.%d.\n",
613 NIPQUAD(qp->saddr));
614 out_fail:
615 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
616 return err;
617 }
618
619 /* Process an incoming IP datagram fragment. */
620 int ip_defrag(struct sk_buff *skb, u32 user)
621 {
622 struct ipq *qp;
623
624 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
625
626 /* Start by cleaning up the memory. */
627 if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
628 ip_evictor();
629
630 /* Lookup (or create) queue header */
631 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
632 int ret;
633
634 spin_lock(&qp->q.lock);
635
636 ret = ip_frag_queue(qp, skb);
637
638 spin_unlock(&qp->q.lock);
639 ipq_put(qp);
640 return ret;
641 }
642
643 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
644 kfree_skb(skb);
645 return -ENOMEM;
646 }
647
648 void __init ipfrag_init(void)
649 {
650 ip4_frags.ctl = &ip4_frags_ctl;
651 ip4_frags.hashfn = ip4_hashfn;
652 ip4_frags.destructor = ip4_frag_free;
653 ip4_frags.skb_free = NULL;
654 ip4_frags.qsize = sizeof(struct ipq);
655 ip4_frags.equal = ip4_frag_equal;
656 inet_frags_init(&ip4_frags);
657 }
658
659 EXPORT_SYMBOL(ip_defrag);
This page took 0.070787 seconds and 6 git commands to generate.