[INET]: Consolidate xxx_the secret_rebuild
[deliverable/linux.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9 *
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
12 *
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
23 */
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
78 /*
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
83 */
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
86
87 /*
88 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 * by TTL.
91 */
92 .timeout = IP_FRAG_TIME,
93 .secret_interval = 10 * 60 * HZ,
94 };
95
96 static struct inet_frags ip4_frags;
97
98 int ip_frag_nqueues(void)
99 {
100 return ip4_frags.nqueues;
101 }
102
103 int ip_frag_mem(void)
104 {
105 return atomic_read(&ip4_frags.mem);
106 }
107
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
110
111 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
112 {
113 return jhash_3words((__force u32)id << 16 | prot,
114 (__force u32)saddr, (__force u32)daddr,
115 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
116 }
117
118 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
119 {
120 struct ipq *ipq;
121
122 ipq = container_of(q, struct ipq, q);
123 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
124 }
125
126 /* Memory Tracking Functions. */
127 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
128 {
129 if (work)
130 *work -= skb->truesize;
131 atomic_sub(skb->truesize, &ip4_frags.mem);
132 kfree_skb(skb);
133 }
134
135 static __inline__ void frag_free_queue(struct ipq *qp, int *work)
136 {
137 if (work)
138 *work -= sizeof(struct ipq);
139 atomic_sub(sizeof(struct ipq), &ip4_frags.mem);
140 kfree(qp);
141 }
142
143 static __inline__ struct ipq *frag_alloc_queue(void)
144 {
145 struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC);
146
147 if (!qp)
148 return NULL;
149 atomic_add(sizeof(struct ipq), &ip4_frags.mem);
150 return qp;
151 }
152
153
154 /* Destruction primitives. */
155
156 /* Complete destruction of ipq. */
157 static void ip_frag_destroy(struct ipq *qp, int *work)
158 {
159 struct sk_buff *fp;
160
161 BUG_TRAP(qp->q.last_in&COMPLETE);
162 BUG_TRAP(del_timer(&qp->q.timer) == 0);
163
164 if (qp->peer)
165 inet_putpeer(qp->peer);
166
167 /* Release all fragment data. */
168 fp = qp->q.fragments;
169 while (fp) {
170 struct sk_buff *xp = fp->next;
171
172 frag_kfree_skb(fp, work);
173 fp = xp;
174 }
175
176 /* Finally, release the queue descriptor itself. */
177 frag_free_queue(qp, work);
178 }
179
180 static __inline__ void ipq_put(struct ipq *ipq, int *work)
181 {
182 if (atomic_dec_and_test(&ipq->q.refcnt))
183 ip_frag_destroy(ipq, work);
184 }
185
186 /* Kill ipq entry. It is not destroyed immediately,
187 * because caller (and someone more) holds reference count.
188 */
189 static void ipq_kill(struct ipq *ipq)
190 {
191 inet_frag_kill(&ipq->q, &ip4_frags);
192 }
193
194 /* Memory limiting on fragments. Evictor trashes the oldest
195 * fragment queue until we are back under the threshold.
196 */
197 static void ip_evictor(void)
198 {
199 struct ipq *qp;
200 struct list_head *tmp;
201 int work;
202
203 work = atomic_read(&ip4_frags.mem) - ip4_frags_ctl.low_thresh;
204 if (work <= 0)
205 return;
206
207 while (work > 0) {
208 read_lock(&ip4_frags.lock);
209 if (list_empty(&ip4_frags.lru_list)) {
210 read_unlock(&ip4_frags.lock);
211 return;
212 }
213 tmp = ip4_frags.lru_list.next;
214 qp = list_entry(tmp, struct ipq, q.lru_list);
215 atomic_inc(&qp->q.refcnt);
216 read_unlock(&ip4_frags.lock);
217
218 spin_lock(&qp->q.lock);
219 if (!(qp->q.last_in&COMPLETE))
220 ipq_kill(qp);
221 spin_unlock(&qp->q.lock);
222
223 ipq_put(qp, &work);
224 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
225 }
226 }
227
228 /*
229 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
230 */
231 static void ip_expire(unsigned long arg)
232 {
233 struct ipq *qp = (struct ipq *) arg;
234
235 spin_lock(&qp->q.lock);
236
237 if (qp->q.last_in & COMPLETE)
238 goto out;
239
240 ipq_kill(qp);
241
242 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
243 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
244
245 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
246 struct sk_buff *head = qp->q.fragments;
247 /* Send an ICMP "Fragment Reassembly Timeout" message. */
248 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
249 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
250 dev_put(head->dev);
251 }
252 }
253 out:
254 spin_unlock(&qp->q.lock);
255 ipq_put(qp, NULL);
256 }
257
258 /* Creation primitives. */
259
260 static struct ipq *ip_frag_intern(struct ipq *qp_in)
261 {
262 struct ipq *qp;
263 #ifdef CONFIG_SMP
264 struct hlist_node *n;
265 #endif
266 unsigned int hash;
267
268 write_lock(&ip4_frags.lock);
269 hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr,
270 qp_in->protocol);
271 #ifdef CONFIG_SMP
272 /* With SMP race we have to recheck hash table, because
273 * such entry could be created on other cpu, while we
274 * promoted read lock to write lock.
275 */
276 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
277 if (qp->id == qp_in->id &&
278 qp->saddr == qp_in->saddr &&
279 qp->daddr == qp_in->daddr &&
280 qp->protocol == qp_in->protocol &&
281 qp->user == qp_in->user) {
282 atomic_inc(&qp->q.refcnt);
283 write_unlock(&ip4_frags.lock);
284 qp_in->q.last_in |= COMPLETE;
285 ipq_put(qp_in, NULL);
286 return qp;
287 }
288 }
289 #endif
290 qp = qp_in;
291
292 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout))
293 atomic_inc(&qp->q.refcnt);
294
295 atomic_inc(&qp->q.refcnt);
296 hlist_add_head(&qp->q.list, &ip4_frags.hash[hash]);
297 INIT_LIST_HEAD(&qp->q.lru_list);
298 list_add_tail(&qp->q.lru_list, &ip4_frags.lru_list);
299 ip4_frags.nqueues++;
300 write_unlock(&ip4_frags.lock);
301 return qp;
302 }
303
304 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
305 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user)
306 {
307 struct ipq *qp;
308
309 if ((qp = frag_alloc_queue()) == NULL)
310 goto out_nomem;
311
312 qp->protocol = iph->protocol;
313 qp->q.last_in = 0;
314 qp->id = iph->id;
315 qp->saddr = iph->saddr;
316 qp->daddr = iph->daddr;
317 qp->user = user;
318 qp->q.len = 0;
319 qp->q.meat = 0;
320 qp->q.fragments = NULL;
321 qp->iif = 0;
322 qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
323
324 /* Initialize a timer for this entry. */
325 init_timer(&qp->q.timer);
326 qp->q.timer.data = (unsigned long) qp; /* pointer to queue */
327 qp->q.timer.function = ip_expire; /* expire function */
328 spin_lock_init(&qp->q.lock);
329 atomic_set(&qp->q.refcnt, 1);
330
331 return ip_frag_intern(qp);
332
333 out_nomem:
334 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
335 return NULL;
336 }
337
338 /* Find the correct entry in the "incomplete datagrams" queue for
339 * this IP datagram, and create new one, if nothing is found.
340 */
341 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
342 {
343 __be16 id = iph->id;
344 __be32 saddr = iph->saddr;
345 __be32 daddr = iph->daddr;
346 __u8 protocol = iph->protocol;
347 unsigned int hash;
348 struct ipq *qp;
349 struct hlist_node *n;
350
351 read_lock(&ip4_frags.lock);
352 hash = ipqhashfn(id, saddr, daddr, protocol);
353 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
354 if (qp->id == id &&
355 qp->saddr == saddr &&
356 qp->daddr == daddr &&
357 qp->protocol == protocol &&
358 qp->user == user) {
359 atomic_inc(&qp->q.refcnt);
360 read_unlock(&ip4_frags.lock);
361 return qp;
362 }
363 }
364 read_unlock(&ip4_frags.lock);
365
366 return ip_frag_create(iph, user);
367 }
368
369 /* Is the fragment too far ahead to be part of ipq? */
370 static inline int ip_frag_too_far(struct ipq *qp)
371 {
372 struct inet_peer *peer = qp->peer;
373 unsigned int max = sysctl_ipfrag_max_dist;
374 unsigned int start, end;
375
376 int rc;
377
378 if (!peer || !max)
379 return 0;
380
381 start = qp->rid;
382 end = atomic_inc_return(&peer->rid);
383 qp->rid = end;
384
385 rc = qp->q.fragments && (end - start) > max;
386
387 if (rc) {
388 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
389 }
390
391 return rc;
392 }
393
394 static int ip_frag_reinit(struct ipq *qp)
395 {
396 struct sk_buff *fp;
397
398 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
399 atomic_inc(&qp->q.refcnt);
400 return -ETIMEDOUT;
401 }
402
403 fp = qp->q.fragments;
404 do {
405 struct sk_buff *xp = fp->next;
406 frag_kfree_skb(fp, NULL);
407 fp = xp;
408 } while (fp);
409
410 qp->q.last_in = 0;
411 qp->q.len = 0;
412 qp->q.meat = 0;
413 qp->q.fragments = NULL;
414 qp->iif = 0;
415
416 return 0;
417 }
418
419 /* Add new segment to existing queue. */
420 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
421 {
422 struct sk_buff *prev, *next;
423 struct net_device *dev;
424 int flags, offset;
425 int ihl, end;
426 int err = -ENOENT;
427
428 if (qp->q.last_in & COMPLETE)
429 goto err;
430
431 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
432 unlikely(ip_frag_too_far(qp)) &&
433 unlikely(err = ip_frag_reinit(qp))) {
434 ipq_kill(qp);
435 goto err;
436 }
437
438 offset = ntohs(ip_hdr(skb)->frag_off);
439 flags = offset & ~IP_OFFSET;
440 offset &= IP_OFFSET;
441 offset <<= 3; /* offset is in 8-byte chunks */
442 ihl = ip_hdrlen(skb);
443
444 /* Determine the position of this fragment. */
445 end = offset + skb->len - ihl;
446 err = -EINVAL;
447
448 /* Is this the final fragment? */
449 if ((flags & IP_MF) == 0) {
450 /* If we already have some bits beyond end
451 * or have different end, the segment is corrrupted.
452 */
453 if (end < qp->q.len ||
454 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
455 goto err;
456 qp->q.last_in |= LAST_IN;
457 qp->q.len = end;
458 } else {
459 if (end&7) {
460 end &= ~7;
461 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
462 skb->ip_summed = CHECKSUM_NONE;
463 }
464 if (end > qp->q.len) {
465 /* Some bits beyond end -> corruption. */
466 if (qp->q.last_in & LAST_IN)
467 goto err;
468 qp->q.len = end;
469 }
470 }
471 if (end == offset)
472 goto err;
473
474 err = -ENOMEM;
475 if (pskb_pull(skb, ihl) == NULL)
476 goto err;
477
478 err = pskb_trim_rcsum(skb, end - offset);
479 if (err)
480 goto err;
481
482 /* Find out which fragments are in front and at the back of us
483 * in the chain of fragments so far. We must know where to put
484 * this fragment, right?
485 */
486 prev = NULL;
487 for (next = qp->q.fragments; next != NULL; next = next->next) {
488 if (FRAG_CB(next)->offset >= offset)
489 break; /* bingo! */
490 prev = next;
491 }
492
493 /* We found where to put this one. Check for overlap with
494 * preceding fragment, and, if needed, align things so that
495 * any overlaps are eliminated.
496 */
497 if (prev) {
498 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
499
500 if (i > 0) {
501 offset += i;
502 err = -EINVAL;
503 if (end <= offset)
504 goto err;
505 err = -ENOMEM;
506 if (!pskb_pull(skb, i))
507 goto err;
508 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
509 skb->ip_summed = CHECKSUM_NONE;
510 }
511 }
512
513 err = -ENOMEM;
514
515 while (next && FRAG_CB(next)->offset < end) {
516 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
517
518 if (i < next->len) {
519 /* Eat head of the next overlapped fragment
520 * and leave the loop. The next ones cannot overlap.
521 */
522 if (!pskb_pull(next, i))
523 goto err;
524 FRAG_CB(next)->offset += i;
525 qp->q.meat -= i;
526 if (next->ip_summed != CHECKSUM_UNNECESSARY)
527 next->ip_summed = CHECKSUM_NONE;
528 break;
529 } else {
530 struct sk_buff *free_it = next;
531
532 /* Old fragment is completely overridden with
533 * new one drop it.
534 */
535 next = next->next;
536
537 if (prev)
538 prev->next = next;
539 else
540 qp->q.fragments = next;
541
542 qp->q.meat -= free_it->len;
543 frag_kfree_skb(free_it, NULL);
544 }
545 }
546
547 FRAG_CB(skb)->offset = offset;
548
549 /* Insert this fragment in the chain of fragments. */
550 skb->next = next;
551 if (prev)
552 prev->next = skb;
553 else
554 qp->q.fragments = skb;
555
556 dev = skb->dev;
557 if (dev) {
558 qp->iif = dev->ifindex;
559 skb->dev = NULL;
560 }
561 qp->q.stamp = skb->tstamp;
562 qp->q.meat += skb->len;
563 atomic_add(skb->truesize, &ip4_frags.mem);
564 if (offset == 0)
565 qp->q.last_in |= FIRST_IN;
566
567 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
568 return ip_frag_reasm(qp, prev, dev);
569
570 write_lock(&ip4_frags.lock);
571 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
572 write_unlock(&ip4_frags.lock);
573 return -EINPROGRESS;
574
575 err:
576 kfree_skb(skb);
577 return err;
578 }
579
580
581 /* Build a new IP datagram from all its fragments. */
582
583 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
584 struct net_device *dev)
585 {
586 struct iphdr *iph;
587 struct sk_buff *fp, *head = qp->q.fragments;
588 int len;
589 int ihlen;
590 int err;
591
592 ipq_kill(qp);
593
594 /* Make the one we just received the head. */
595 if (prev) {
596 head = prev->next;
597 fp = skb_clone(head, GFP_ATOMIC);
598
599 if (!fp)
600 goto out_nomem;
601
602 fp->next = head->next;
603 prev->next = fp;
604
605 skb_morph(head, qp->q.fragments);
606 head->next = qp->q.fragments->next;
607
608 kfree_skb(qp->q.fragments);
609 qp->q.fragments = head;
610 }
611
612 BUG_TRAP(head != NULL);
613 BUG_TRAP(FRAG_CB(head)->offset == 0);
614
615 /* Allocate a new buffer for the datagram. */
616 ihlen = ip_hdrlen(head);
617 len = ihlen + qp->q.len;
618
619 err = -E2BIG;
620 if (len > 65535)
621 goto out_oversize;
622
623 /* Head of list must not be cloned. */
624 err = -ENOMEM;
625 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
626 goto out_nomem;
627
628 /* If the first fragment is fragmented itself, we split
629 * it to two chunks: the first with data and paged part
630 * and the second, holding only fragments. */
631 if (skb_shinfo(head)->frag_list) {
632 struct sk_buff *clone;
633 int i, plen = 0;
634
635 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
636 goto out_nomem;
637 clone->next = head->next;
638 head->next = clone;
639 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
640 skb_shinfo(head)->frag_list = NULL;
641 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
642 plen += skb_shinfo(head)->frags[i].size;
643 clone->len = clone->data_len = head->data_len - plen;
644 head->data_len -= clone->len;
645 head->len -= clone->len;
646 clone->csum = 0;
647 clone->ip_summed = head->ip_summed;
648 atomic_add(clone->truesize, &ip4_frags.mem);
649 }
650
651 skb_shinfo(head)->frag_list = head->next;
652 skb_push(head, head->data - skb_network_header(head));
653 atomic_sub(head->truesize, &ip4_frags.mem);
654
655 for (fp=head->next; fp; fp = fp->next) {
656 head->data_len += fp->len;
657 head->len += fp->len;
658 if (head->ip_summed != fp->ip_summed)
659 head->ip_summed = CHECKSUM_NONE;
660 else if (head->ip_summed == CHECKSUM_COMPLETE)
661 head->csum = csum_add(head->csum, fp->csum);
662 head->truesize += fp->truesize;
663 atomic_sub(fp->truesize, &ip4_frags.mem);
664 }
665
666 head->next = NULL;
667 head->dev = dev;
668 head->tstamp = qp->q.stamp;
669
670 iph = ip_hdr(head);
671 iph->frag_off = 0;
672 iph->tot_len = htons(len);
673 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
674 qp->q.fragments = NULL;
675 return 0;
676
677 out_nomem:
678 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
679 "queue %p\n", qp);
680 goto out_fail;
681 out_oversize:
682 if (net_ratelimit())
683 printk(KERN_INFO
684 "Oversized IP packet from %d.%d.%d.%d.\n",
685 NIPQUAD(qp->saddr));
686 out_fail:
687 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
688 return err;
689 }
690
691 /* Process an incoming IP datagram fragment. */
692 int ip_defrag(struct sk_buff *skb, u32 user)
693 {
694 struct ipq *qp;
695
696 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
697
698 /* Start by cleaning up the memory. */
699 if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
700 ip_evictor();
701
702 /* Lookup (or create) queue header */
703 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
704 int ret;
705
706 spin_lock(&qp->q.lock);
707
708 ret = ip_frag_queue(qp, skb);
709
710 spin_unlock(&qp->q.lock);
711 ipq_put(qp, NULL);
712 return ret;
713 }
714
715 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
716 kfree_skb(skb);
717 return -ENOMEM;
718 }
719
720 void __init ipfrag_init(void)
721 {
722 ip4_frags.ctl = &ip4_frags_ctl;
723 ip4_frags.hashfn = ip4_hashfn;
724 inet_frags_init(&ip4_frags);
725 }
726
727 EXPORT_SYMBOL(ip_defrag);
This page took 0.077086 seconds and 6 git commands to generate.