[NETNS][FRAGS]: Make the net.ipv4.ipfrag_timeout work in namespaces.
[deliverable/linux.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9 *
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
12 *
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
23 */
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 static int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 static struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
78 /*
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
83 */
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
86 .secret_interval = 10 * 60 * HZ,
87 };
88
89 static struct inet_frags ip4_frags;
90
91 int ip_frag_nqueues(struct net *net)
92 {
93 return net->ipv4.frags.nqueues;
94 }
95
96 int ip_frag_mem(struct net *net)
97 {
98 return atomic_read(&net->ipv4.frags.mem);
99 }
100
101 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
102 struct net_device *dev);
103
104 struct ip4_create_arg {
105 struct iphdr *iph;
106 u32 user;
107 };
108
109 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
110 {
111 return jhash_3words((__force u32)id << 16 | prot,
112 (__force u32)saddr, (__force u32)daddr,
113 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
114 }
115
116 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
117 {
118 struct ipq *ipq;
119
120 ipq = container_of(q, struct ipq, q);
121 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
122 }
123
124 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
125 {
126 struct ipq *qp;
127 struct ip4_create_arg *arg = a;
128
129 qp = container_of(q, struct ipq, q);
130 return (qp->id == arg->iph->id &&
131 qp->saddr == arg->iph->saddr &&
132 qp->daddr == arg->iph->daddr &&
133 qp->protocol == arg->iph->protocol &&
134 qp->user == arg->user);
135 }
136
137 /* Memory Tracking Functions. */
138 static __inline__ void frag_kfree_skb(struct netns_frags *nf,
139 struct sk_buff *skb, int *work)
140 {
141 if (work)
142 *work -= skb->truesize;
143 atomic_sub(skb->truesize, &nf->mem);
144 kfree_skb(skb);
145 }
146
147 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
148 {
149 struct ipq *qp = container_of(q, struct ipq, q);
150 struct ip4_create_arg *arg = a;
151
152 qp->protocol = arg->iph->protocol;
153 qp->id = arg->iph->id;
154 qp->saddr = arg->iph->saddr;
155 qp->daddr = arg->iph->daddr;
156 qp->user = arg->user;
157 qp->peer = sysctl_ipfrag_max_dist ?
158 inet_getpeer(arg->iph->saddr, 1) : NULL;
159 }
160
161 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
162 {
163 struct ipq *qp;
164
165 qp = container_of(q, struct ipq, q);
166 if (qp->peer)
167 inet_putpeer(qp->peer);
168 }
169
170
171 /* Destruction primitives. */
172
173 static __inline__ void ipq_put(struct ipq *ipq)
174 {
175 inet_frag_put(&ipq->q, &ip4_frags);
176 }
177
178 /* Kill ipq entry. It is not destroyed immediately,
179 * because caller (and someone more) holds reference count.
180 */
181 static void ipq_kill(struct ipq *ipq)
182 {
183 inet_frag_kill(&ipq->q, &ip4_frags);
184 }
185
186 /* Memory limiting on fragments. Evictor trashes the oldest
187 * fragment queue until we are back under the threshold.
188 */
189 static void ip_evictor(struct net *net)
190 {
191 int evicted;
192
193 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
194 if (evicted)
195 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
196 }
197
198 /*
199 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
200 */
201 static void ip_expire(unsigned long arg)
202 {
203 struct ipq *qp;
204
205 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
206
207 spin_lock(&qp->q.lock);
208
209 if (qp->q.last_in & COMPLETE)
210 goto out;
211
212 ipq_kill(qp);
213
214 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
215 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
216
217 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
218 struct sk_buff *head = qp->q.fragments;
219 /* Send an ICMP "Fragment Reassembly Timeout" message. */
220 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
221 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
222 dev_put(head->dev);
223 }
224 }
225 out:
226 spin_unlock(&qp->q.lock);
227 ipq_put(qp);
228 }
229
230 /* Find the correct entry in the "incomplete datagrams" queue for
231 * this IP datagram, and create new one, if nothing is found.
232 */
233 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
234 {
235 struct inet_frag_queue *q;
236 struct ip4_create_arg arg;
237 unsigned int hash;
238
239 arg.iph = iph;
240 arg.user = user;
241 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
242
243 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
244 if (q == NULL)
245 goto out_nomem;
246
247 return container_of(q, struct ipq, q);
248
249 out_nomem:
250 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
251 return NULL;
252 }
253
254 /* Is the fragment too far ahead to be part of ipq? */
255 static inline int ip_frag_too_far(struct ipq *qp)
256 {
257 struct inet_peer *peer = qp->peer;
258 unsigned int max = sysctl_ipfrag_max_dist;
259 unsigned int start, end;
260
261 int rc;
262
263 if (!peer || !max)
264 return 0;
265
266 start = qp->rid;
267 end = atomic_inc_return(&peer->rid);
268 qp->rid = end;
269
270 rc = qp->q.fragments && (end - start) > max;
271
272 if (rc) {
273 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
274 }
275
276 return rc;
277 }
278
279 static int ip_frag_reinit(struct ipq *qp)
280 {
281 struct sk_buff *fp;
282
283 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
284 atomic_inc(&qp->q.refcnt);
285 return -ETIMEDOUT;
286 }
287
288 fp = qp->q.fragments;
289 do {
290 struct sk_buff *xp = fp->next;
291 frag_kfree_skb(qp->q.net, fp, NULL);
292 fp = xp;
293 } while (fp);
294
295 qp->q.last_in = 0;
296 qp->q.len = 0;
297 qp->q.meat = 0;
298 qp->q.fragments = NULL;
299 qp->iif = 0;
300
301 return 0;
302 }
303
304 /* Add new segment to existing queue. */
305 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
306 {
307 struct sk_buff *prev, *next;
308 struct net_device *dev;
309 int flags, offset;
310 int ihl, end;
311 int err = -ENOENT;
312
313 if (qp->q.last_in & COMPLETE)
314 goto err;
315
316 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
317 unlikely(ip_frag_too_far(qp)) &&
318 unlikely(err = ip_frag_reinit(qp))) {
319 ipq_kill(qp);
320 goto err;
321 }
322
323 offset = ntohs(ip_hdr(skb)->frag_off);
324 flags = offset & ~IP_OFFSET;
325 offset &= IP_OFFSET;
326 offset <<= 3; /* offset is in 8-byte chunks */
327 ihl = ip_hdrlen(skb);
328
329 /* Determine the position of this fragment. */
330 end = offset + skb->len - ihl;
331 err = -EINVAL;
332
333 /* Is this the final fragment? */
334 if ((flags & IP_MF) == 0) {
335 /* If we already have some bits beyond end
336 * or have different end, the segment is corrrupted.
337 */
338 if (end < qp->q.len ||
339 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
340 goto err;
341 qp->q.last_in |= LAST_IN;
342 qp->q.len = end;
343 } else {
344 if (end&7) {
345 end &= ~7;
346 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
347 skb->ip_summed = CHECKSUM_NONE;
348 }
349 if (end > qp->q.len) {
350 /* Some bits beyond end -> corruption. */
351 if (qp->q.last_in & LAST_IN)
352 goto err;
353 qp->q.len = end;
354 }
355 }
356 if (end == offset)
357 goto err;
358
359 err = -ENOMEM;
360 if (pskb_pull(skb, ihl) == NULL)
361 goto err;
362
363 err = pskb_trim_rcsum(skb, end - offset);
364 if (err)
365 goto err;
366
367 /* Find out which fragments are in front and at the back of us
368 * in the chain of fragments so far. We must know where to put
369 * this fragment, right?
370 */
371 prev = NULL;
372 for (next = qp->q.fragments; next != NULL; next = next->next) {
373 if (FRAG_CB(next)->offset >= offset)
374 break; /* bingo! */
375 prev = next;
376 }
377
378 /* We found where to put this one. Check for overlap with
379 * preceding fragment, and, if needed, align things so that
380 * any overlaps are eliminated.
381 */
382 if (prev) {
383 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
384
385 if (i > 0) {
386 offset += i;
387 err = -EINVAL;
388 if (end <= offset)
389 goto err;
390 err = -ENOMEM;
391 if (!pskb_pull(skb, i))
392 goto err;
393 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
394 skb->ip_summed = CHECKSUM_NONE;
395 }
396 }
397
398 err = -ENOMEM;
399
400 while (next && FRAG_CB(next)->offset < end) {
401 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
402
403 if (i < next->len) {
404 /* Eat head of the next overlapped fragment
405 * and leave the loop. The next ones cannot overlap.
406 */
407 if (!pskb_pull(next, i))
408 goto err;
409 FRAG_CB(next)->offset += i;
410 qp->q.meat -= i;
411 if (next->ip_summed != CHECKSUM_UNNECESSARY)
412 next->ip_summed = CHECKSUM_NONE;
413 break;
414 } else {
415 struct sk_buff *free_it = next;
416
417 /* Old fragment is completely overridden with
418 * new one drop it.
419 */
420 next = next->next;
421
422 if (prev)
423 prev->next = next;
424 else
425 qp->q.fragments = next;
426
427 qp->q.meat -= free_it->len;
428 frag_kfree_skb(qp->q.net, free_it, NULL);
429 }
430 }
431
432 FRAG_CB(skb)->offset = offset;
433
434 /* Insert this fragment in the chain of fragments. */
435 skb->next = next;
436 if (prev)
437 prev->next = skb;
438 else
439 qp->q.fragments = skb;
440
441 dev = skb->dev;
442 if (dev) {
443 qp->iif = dev->ifindex;
444 skb->dev = NULL;
445 }
446 qp->q.stamp = skb->tstamp;
447 qp->q.meat += skb->len;
448 atomic_add(skb->truesize, &qp->q.net->mem);
449 if (offset == 0)
450 qp->q.last_in |= FIRST_IN;
451
452 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
453 return ip_frag_reasm(qp, prev, dev);
454
455 write_lock(&ip4_frags.lock);
456 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
457 write_unlock(&ip4_frags.lock);
458 return -EINPROGRESS;
459
460 err:
461 kfree_skb(skb);
462 return err;
463 }
464
465
466 /* Build a new IP datagram from all its fragments. */
467
468 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
469 struct net_device *dev)
470 {
471 struct iphdr *iph;
472 struct sk_buff *fp, *head = qp->q.fragments;
473 int len;
474 int ihlen;
475 int err;
476
477 ipq_kill(qp);
478
479 /* Make the one we just received the head. */
480 if (prev) {
481 head = prev->next;
482 fp = skb_clone(head, GFP_ATOMIC);
483 if (!fp)
484 goto out_nomem;
485
486 fp->next = head->next;
487 prev->next = fp;
488
489 skb_morph(head, qp->q.fragments);
490 head->next = qp->q.fragments->next;
491
492 kfree_skb(qp->q.fragments);
493 qp->q.fragments = head;
494 }
495
496 BUG_TRAP(head != NULL);
497 BUG_TRAP(FRAG_CB(head)->offset == 0);
498
499 /* Allocate a new buffer for the datagram. */
500 ihlen = ip_hdrlen(head);
501 len = ihlen + qp->q.len;
502
503 err = -E2BIG;
504 if (len > 65535)
505 goto out_oversize;
506
507 /* Head of list must not be cloned. */
508 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
509 goto out_nomem;
510
511 /* If the first fragment is fragmented itself, we split
512 * it to two chunks: the first with data and paged part
513 * and the second, holding only fragments. */
514 if (skb_shinfo(head)->frag_list) {
515 struct sk_buff *clone;
516 int i, plen = 0;
517
518 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
519 goto out_nomem;
520 clone->next = head->next;
521 head->next = clone;
522 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
523 skb_shinfo(head)->frag_list = NULL;
524 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
525 plen += skb_shinfo(head)->frags[i].size;
526 clone->len = clone->data_len = head->data_len - plen;
527 head->data_len -= clone->len;
528 head->len -= clone->len;
529 clone->csum = 0;
530 clone->ip_summed = head->ip_summed;
531 atomic_add(clone->truesize, &qp->q.net->mem);
532 }
533
534 skb_shinfo(head)->frag_list = head->next;
535 skb_push(head, head->data - skb_network_header(head));
536 atomic_sub(head->truesize, &qp->q.net->mem);
537
538 for (fp=head->next; fp; fp = fp->next) {
539 head->data_len += fp->len;
540 head->len += fp->len;
541 if (head->ip_summed != fp->ip_summed)
542 head->ip_summed = CHECKSUM_NONE;
543 else if (head->ip_summed == CHECKSUM_COMPLETE)
544 head->csum = csum_add(head->csum, fp->csum);
545 head->truesize += fp->truesize;
546 atomic_sub(fp->truesize, &qp->q.net->mem);
547 }
548
549 head->next = NULL;
550 head->dev = dev;
551 head->tstamp = qp->q.stamp;
552
553 iph = ip_hdr(head);
554 iph->frag_off = 0;
555 iph->tot_len = htons(len);
556 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
557 qp->q.fragments = NULL;
558 return 0;
559
560 out_nomem:
561 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
562 "queue %p\n", qp);
563 err = -ENOMEM;
564 goto out_fail;
565 out_oversize:
566 if (net_ratelimit())
567 printk(KERN_INFO
568 "Oversized IP packet from %d.%d.%d.%d.\n",
569 NIPQUAD(qp->saddr));
570 out_fail:
571 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
572 return err;
573 }
574
575 /* Process an incoming IP datagram fragment. */
576 int ip_defrag(struct sk_buff *skb, u32 user)
577 {
578 struct ipq *qp;
579 struct net *net;
580
581 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
582
583 net = skb->dev->nd_net;
584 /* Start by cleaning up the memory. */
585 if (atomic_read(&net->ipv4.frags.mem) > ip4_frags_ctl.high_thresh)
586 ip_evictor(net);
587
588 /* Lookup (or create) queue header */
589 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
590 int ret;
591
592 spin_lock(&qp->q.lock);
593
594 ret = ip_frag_queue(qp, skb);
595
596 spin_unlock(&qp->q.lock);
597 ipq_put(qp);
598 return ret;
599 }
600
601 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
602 kfree_skb(skb);
603 return -ENOMEM;
604 }
605
606 #ifdef CONFIG_SYSCTL
607 static int zero;
608
609 static struct ctl_table ip4_frags_ctl_table[] = {
610 {
611 .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH,
612 .procname = "ipfrag_high_thresh",
613 .data = &ip4_frags_ctl.high_thresh,
614 .maxlen = sizeof(int),
615 .mode = 0644,
616 .proc_handler = &proc_dointvec
617 },
618 {
619 .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH,
620 .procname = "ipfrag_low_thresh",
621 .data = &ip4_frags_ctl.low_thresh,
622 .maxlen = sizeof(int),
623 .mode = 0644,
624 .proc_handler = &proc_dointvec
625 },
626 {
627 .ctl_name = NET_IPV4_IPFRAG_TIME,
628 .procname = "ipfrag_time",
629 .data = &init_net.ipv4.frags.timeout,
630 .maxlen = sizeof(int),
631 .mode = 0644,
632 .proc_handler = &proc_dointvec_jiffies,
633 .strategy = &sysctl_jiffies
634 },
635 {
636 .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL,
637 .procname = "ipfrag_secret_interval",
638 .data = &ip4_frags_ctl.secret_interval,
639 .maxlen = sizeof(int),
640 .mode = 0644,
641 .proc_handler = &proc_dointvec_jiffies,
642 .strategy = &sysctl_jiffies
643 },
644 {
645 .procname = "ipfrag_max_dist",
646 .data = &sysctl_ipfrag_max_dist,
647 .maxlen = sizeof(int),
648 .mode = 0644,
649 .proc_handler = &proc_dointvec_minmax,
650 .extra1 = &zero
651 },
652 { }
653 };
654
655 static int ip4_frags_ctl_register(struct net *net)
656 {
657 struct ctl_table *table;
658 struct ctl_table_header *hdr;
659
660 table = ip4_frags_ctl_table;
661 if (net != &init_net) {
662 table = kmemdup(table, sizeof(ip4_frags_ctl_table), GFP_KERNEL);
663 if (table == NULL)
664 goto err_alloc;
665
666 table[0].mode &= ~0222;
667 table[1].mode &= ~0222;
668 table[2].data = &net->ipv4.frags.timeout;
669 table[3].mode &= ~0222;
670 table[4].mode &= ~0222;
671 }
672
673 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
674 if (hdr == NULL)
675 goto err_reg;
676
677 net->ipv4.frags_hdr = hdr;
678 return 0;
679
680 err_reg:
681 if (net != &init_net)
682 kfree(table);
683 err_alloc:
684 return -ENOMEM;
685 }
686
687 static void ip4_frags_ctl_unregister(struct net *net)
688 {
689 struct ctl_table *table;
690
691 table = net->ipv4.frags_hdr->ctl_table_arg;
692 unregister_net_sysctl_table(net->ipv4.frags_hdr);
693 kfree(table);
694 }
695 #else
696 static inline int ip4_frags_ctl_register(struct net *net)
697 {
698 return 0;
699 }
700
701 static inline void ip4_frags_ctl_unregister(struct net *net)
702 {
703 }
704 #endif
705
706 static int ipv4_frags_init_net(struct net *net)
707 {
708 /*
709 * Important NOTE! Fragment queue must be destroyed before MSL expires.
710 * RFC791 is wrong proposing to prolongate timer each fragment arrival
711 * by TTL.
712 */
713 net->ipv4.frags.timeout = IP_FRAG_TIME;
714
715 inet_frags_init_net(&net->ipv4.frags);
716
717 return ip4_frags_ctl_register(net);
718 }
719
720 void __init ipfrag_init(void)
721 {
722 ipv4_frags_init_net(&init_net);
723 ip4_frags.ctl = &ip4_frags_ctl;
724 ip4_frags.hashfn = ip4_hashfn;
725 ip4_frags.constructor = ip4_frag_init;
726 ip4_frags.destructor = ip4_frag_free;
727 ip4_frags.skb_free = NULL;
728 ip4_frags.qsize = sizeof(struct ipq);
729 ip4_frags.match = ip4_frag_match;
730 ip4_frags.frag_expire = ip_expire;
731 inet_frags_init(&ip4_frags);
732 }
733
734 EXPORT_SYMBOL(ip_defrag);
This page took 0.048462 seconds and 6 git commands to generate.