[INET]: kmalloc+memset -> kzalloc in frag_alloc_queue
[deliverable/linux.git] / net / ipv4 / ip_fragment.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The IP fragmentation functionality.
7 *
8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $
9 *
10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox <Alan.Cox@linux.org>
12 *
13 * Fixes:
14 * Alan Cox : Split from ip.c , see ip_input.c for history.
15 * David S. Miller : Begin massive cleanup...
16 * Andi Kleen : Add sysctls.
17 * xxxx : Overlapfrag bug.
18 * Ultima : ip_expire() kernel panic.
19 * Bill Hawes : Frag accounting and evictor fixes.
20 * John McDonald : 0 length frag bug.
21 * Alexey Kuznetsov: SMP races, threading, cleanup.
22 * Patrick McHardy : LRU queue of frag heads for evictor.
23 */
24
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <net/sock.h>
38 #include <net/ip.h>
39 #include <net/icmp.h>
40 #include <net/checksum.h>
41 #include <net/inetpeer.h>
42 #include <net/inet_frag.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/inet.h>
46 #include <linux/netfilter_ipv4.h>
47
48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
50 * as well. Or notify me, at least. --ANK
51 */
52
53 int sysctl_ipfrag_max_dist __read_mostly = 64;
54
55 struct ipfrag_skb_cb
56 {
57 struct inet_skb_parm h;
58 int offset;
59 };
60
61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb))
62
63 /* Describe an entry in the "incomplete datagrams" queue. */
64 struct ipq {
65 struct inet_frag_queue q;
66
67 u32 user;
68 __be32 saddr;
69 __be32 daddr;
70 __be16 id;
71 u8 protocol;
72 int iif;
73 unsigned int rid;
74 struct inet_peer *peer;
75 };
76
77 struct inet_frags_ctl ip4_frags_ctl __read_mostly = {
78 /*
79 * Fragment cache limits. We will commit 256K at one time. Should we
80 * cross that limit we will prune down to 192K. This should cope with
81 * even the most extreme cases without allowing an attacker to
82 * measurably harm machine performance.
83 */
84 .high_thresh = 256 * 1024,
85 .low_thresh = 192 * 1024,
86
87 /*
88 * Important NOTE! Fragment queue must be destroyed before MSL expires.
89 * RFC791 is wrong proposing to prolongate timer each fragment arrival
90 * by TTL.
91 */
92 .timeout = IP_FRAG_TIME,
93 .secret_interval = 10 * 60 * HZ,
94 };
95
96 static struct inet_frags ip4_frags;
97
98 int ip_frag_nqueues(void)
99 {
100 return ip4_frags.nqueues;
101 }
102
103 int ip_frag_mem(void)
104 {
105 return atomic_read(&ip4_frags.mem);
106 }
107
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 struct net_device *dev);
110
111 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
112 {
113 return jhash_3words((__force u32)id << 16 | prot,
114 (__force u32)saddr, (__force u32)daddr,
115 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
116 }
117
118 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
119 {
120 struct ipq *ipq;
121
122 ipq = container_of(q, struct ipq, q);
123 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
124 }
125
126 /* Memory Tracking Functions. */
127 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work)
128 {
129 if (work)
130 *work -= skb->truesize;
131 atomic_sub(skb->truesize, &ip4_frags.mem);
132 kfree_skb(skb);
133 }
134
135 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
136 {
137 struct ipq *qp;
138
139 qp = container_of(q, struct ipq, q);
140 if (qp->peer)
141 inet_putpeer(qp->peer);
142 kfree(qp);
143 }
144
145 static __inline__ struct ipq *frag_alloc_queue(void)
146 {
147 struct ipq *qp = kzalloc(sizeof(struct ipq), GFP_ATOMIC);
148
149 if (!qp)
150 return NULL;
151 atomic_add(sizeof(struct ipq), &ip4_frags.mem);
152 return qp;
153 }
154
155
156 /* Destruction primitives. */
157
158 static __inline__ void ipq_put(struct ipq *ipq)
159 {
160 inet_frag_put(&ipq->q, &ip4_frags);
161 }
162
163 /* Kill ipq entry. It is not destroyed immediately,
164 * because caller (and someone more) holds reference count.
165 */
166 static void ipq_kill(struct ipq *ipq)
167 {
168 inet_frag_kill(&ipq->q, &ip4_frags);
169 }
170
171 /* Memory limiting on fragments. Evictor trashes the oldest
172 * fragment queue until we are back under the threshold.
173 */
174 static void ip_evictor(void)
175 {
176 int evicted;
177
178 evicted = inet_frag_evictor(&ip4_frags);
179 if (evicted)
180 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted);
181 }
182
183 /*
184 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
185 */
186 static void ip_expire(unsigned long arg)
187 {
188 struct ipq *qp = (struct ipq *) arg;
189
190 spin_lock(&qp->q.lock);
191
192 if (qp->q.last_in & COMPLETE)
193 goto out;
194
195 ipq_kill(qp);
196
197 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT);
198 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
199
200 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) {
201 struct sk_buff *head = qp->q.fragments;
202 /* Send an ICMP "Fragment Reassembly Timeout" message. */
203 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) {
204 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
205 dev_put(head->dev);
206 }
207 }
208 out:
209 spin_unlock(&qp->q.lock);
210 ipq_put(qp);
211 }
212
213 /* Creation primitives. */
214
215 static struct ipq *ip_frag_intern(struct ipq *qp_in)
216 {
217 struct ipq *qp;
218 #ifdef CONFIG_SMP
219 struct hlist_node *n;
220 #endif
221 unsigned int hash;
222
223 write_lock(&ip4_frags.lock);
224 hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr,
225 qp_in->protocol);
226 #ifdef CONFIG_SMP
227 /* With SMP race we have to recheck hash table, because
228 * such entry could be created on other cpu, while we
229 * promoted read lock to write lock.
230 */
231 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
232 if (qp->id == qp_in->id &&
233 qp->saddr == qp_in->saddr &&
234 qp->daddr == qp_in->daddr &&
235 qp->protocol == qp_in->protocol &&
236 qp->user == qp_in->user) {
237 atomic_inc(&qp->q.refcnt);
238 write_unlock(&ip4_frags.lock);
239 qp_in->q.last_in |= COMPLETE;
240 ipq_put(qp_in);
241 return qp;
242 }
243 }
244 #endif
245 qp = qp_in;
246
247 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout))
248 atomic_inc(&qp->q.refcnt);
249
250 atomic_inc(&qp->q.refcnt);
251 hlist_add_head(&qp->q.list, &ip4_frags.hash[hash]);
252 INIT_LIST_HEAD(&qp->q.lru_list);
253 list_add_tail(&qp->q.lru_list, &ip4_frags.lru_list);
254 ip4_frags.nqueues++;
255 write_unlock(&ip4_frags.lock);
256 return qp;
257 }
258
259 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */
260 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user)
261 {
262 struct ipq *qp;
263
264 if ((qp = frag_alloc_queue()) == NULL)
265 goto out_nomem;
266
267 qp->protocol = iph->protocol;
268 qp->id = iph->id;
269 qp->saddr = iph->saddr;
270 qp->daddr = iph->daddr;
271 qp->user = user;
272 qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL;
273
274 /* Initialize a timer for this entry. */
275 init_timer(&qp->q.timer);
276 qp->q.timer.data = (unsigned long) qp; /* pointer to queue */
277 qp->q.timer.function = ip_expire; /* expire function */
278 spin_lock_init(&qp->q.lock);
279 atomic_set(&qp->q.refcnt, 1);
280
281 return ip_frag_intern(qp);
282
283 out_nomem:
284 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
285 return NULL;
286 }
287
288 /* Find the correct entry in the "incomplete datagrams" queue for
289 * this IP datagram, and create new one, if nothing is found.
290 */
291 static inline struct ipq *ip_find(struct iphdr *iph, u32 user)
292 {
293 __be16 id = iph->id;
294 __be32 saddr = iph->saddr;
295 __be32 daddr = iph->daddr;
296 __u8 protocol = iph->protocol;
297 unsigned int hash;
298 struct ipq *qp;
299 struct hlist_node *n;
300
301 read_lock(&ip4_frags.lock);
302 hash = ipqhashfn(id, saddr, daddr, protocol);
303 hlist_for_each_entry(qp, n, &ip4_frags.hash[hash], q.list) {
304 if (qp->id == id &&
305 qp->saddr == saddr &&
306 qp->daddr == daddr &&
307 qp->protocol == protocol &&
308 qp->user == user) {
309 atomic_inc(&qp->q.refcnt);
310 read_unlock(&ip4_frags.lock);
311 return qp;
312 }
313 }
314 read_unlock(&ip4_frags.lock);
315
316 return ip_frag_create(iph, user);
317 }
318
319 /* Is the fragment too far ahead to be part of ipq? */
320 static inline int ip_frag_too_far(struct ipq *qp)
321 {
322 struct inet_peer *peer = qp->peer;
323 unsigned int max = sysctl_ipfrag_max_dist;
324 unsigned int start, end;
325
326 int rc;
327
328 if (!peer || !max)
329 return 0;
330
331 start = qp->rid;
332 end = atomic_inc_return(&peer->rid);
333 qp->rid = end;
334
335 rc = qp->q.fragments && (end - start) > max;
336
337 if (rc) {
338 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
339 }
340
341 return rc;
342 }
343
344 static int ip_frag_reinit(struct ipq *qp)
345 {
346 struct sk_buff *fp;
347
348 if (!mod_timer(&qp->q.timer, jiffies + ip4_frags_ctl.timeout)) {
349 atomic_inc(&qp->q.refcnt);
350 return -ETIMEDOUT;
351 }
352
353 fp = qp->q.fragments;
354 do {
355 struct sk_buff *xp = fp->next;
356 frag_kfree_skb(fp, NULL);
357 fp = xp;
358 } while (fp);
359
360 qp->q.last_in = 0;
361 qp->q.len = 0;
362 qp->q.meat = 0;
363 qp->q.fragments = NULL;
364 qp->iif = 0;
365
366 return 0;
367 }
368
369 /* Add new segment to existing queue. */
370 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
371 {
372 struct sk_buff *prev, *next;
373 struct net_device *dev;
374 int flags, offset;
375 int ihl, end;
376 int err = -ENOENT;
377
378 if (qp->q.last_in & COMPLETE)
379 goto err;
380
381 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
382 unlikely(ip_frag_too_far(qp)) &&
383 unlikely(err = ip_frag_reinit(qp))) {
384 ipq_kill(qp);
385 goto err;
386 }
387
388 offset = ntohs(ip_hdr(skb)->frag_off);
389 flags = offset & ~IP_OFFSET;
390 offset &= IP_OFFSET;
391 offset <<= 3; /* offset is in 8-byte chunks */
392 ihl = ip_hdrlen(skb);
393
394 /* Determine the position of this fragment. */
395 end = offset + skb->len - ihl;
396 err = -EINVAL;
397
398 /* Is this the final fragment? */
399 if ((flags & IP_MF) == 0) {
400 /* If we already have some bits beyond end
401 * or have different end, the segment is corrrupted.
402 */
403 if (end < qp->q.len ||
404 ((qp->q.last_in & LAST_IN) && end != qp->q.len))
405 goto err;
406 qp->q.last_in |= LAST_IN;
407 qp->q.len = end;
408 } else {
409 if (end&7) {
410 end &= ~7;
411 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
412 skb->ip_summed = CHECKSUM_NONE;
413 }
414 if (end > qp->q.len) {
415 /* Some bits beyond end -> corruption. */
416 if (qp->q.last_in & LAST_IN)
417 goto err;
418 qp->q.len = end;
419 }
420 }
421 if (end == offset)
422 goto err;
423
424 err = -ENOMEM;
425 if (pskb_pull(skb, ihl) == NULL)
426 goto err;
427
428 err = pskb_trim_rcsum(skb, end - offset);
429 if (err)
430 goto err;
431
432 /* Find out which fragments are in front and at the back of us
433 * in the chain of fragments so far. We must know where to put
434 * this fragment, right?
435 */
436 prev = NULL;
437 for (next = qp->q.fragments; next != NULL; next = next->next) {
438 if (FRAG_CB(next)->offset >= offset)
439 break; /* bingo! */
440 prev = next;
441 }
442
443 /* We found where to put this one. Check for overlap with
444 * preceding fragment, and, if needed, align things so that
445 * any overlaps are eliminated.
446 */
447 if (prev) {
448 int i = (FRAG_CB(prev)->offset + prev->len) - offset;
449
450 if (i > 0) {
451 offset += i;
452 err = -EINVAL;
453 if (end <= offset)
454 goto err;
455 err = -ENOMEM;
456 if (!pskb_pull(skb, i))
457 goto err;
458 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
459 skb->ip_summed = CHECKSUM_NONE;
460 }
461 }
462
463 err = -ENOMEM;
464
465 while (next && FRAG_CB(next)->offset < end) {
466 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
467
468 if (i < next->len) {
469 /* Eat head of the next overlapped fragment
470 * and leave the loop. The next ones cannot overlap.
471 */
472 if (!pskb_pull(next, i))
473 goto err;
474 FRAG_CB(next)->offset += i;
475 qp->q.meat -= i;
476 if (next->ip_summed != CHECKSUM_UNNECESSARY)
477 next->ip_summed = CHECKSUM_NONE;
478 break;
479 } else {
480 struct sk_buff *free_it = next;
481
482 /* Old fragment is completely overridden with
483 * new one drop it.
484 */
485 next = next->next;
486
487 if (prev)
488 prev->next = next;
489 else
490 qp->q.fragments = next;
491
492 qp->q.meat -= free_it->len;
493 frag_kfree_skb(free_it, NULL);
494 }
495 }
496
497 FRAG_CB(skb)->offset = offset;
498
499 /* Insert this fragment in the chain of fragments. */
500 skb->next = next;
501 if (prev)
502 prev->next = skb;
503 else
504 qp->q.fragments = skb;
505
506 dev = skb->dev;
507 if (dev) {
508 qp->iif = dev->ifindex;
509 skb->dev = NULL;
510 }
511 qp->q.stamp = skb->tstamp;
512 qp->q.meat += skb->len;
513 atomic_add(skb->truesize, &ip4_frags.mem);
514 if (offset == 0)
515 qp->q.last_in |= FIRST_IN;
516
517 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len)
518 return ip_frag_reasm(qp, prev, dev);
519
520 write_lock(&ip4_frags.lock);
521 list_move_tail(&qp->q.lru_list, &ip4_frags.lru_list);
522 write_unlock(&ip4_frags.lock);
523 return -EINPROGRESS;
524
525 err:
526 kfree_skb(skb);
527 return err;
528 }
529
530
531 /* Build a new IP datagram from all its fragments. */
532
533 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
534 struct net_device *dev)
535 {
536 struct iphdr *iph;
537 struct sk_buff *fp, *head = qp->q.fragments;
538 int len;
539 int ihlen;
540 int err;
541
542 ipq_kill(qp);
543
544 /* Make the one we just received the head. */
545 if (prev) {
546 head = prev->next;
547 fp = skb_clone(head, GFP_ATOMIC);
548
549 if (!fp)
550 goto out_nomem;
551
552 fp->next = head->next;
553 prev->next = fp;
554
555 skb_morph(head, qp->q.fragments);
556 head->next = qp->q.fragments->next;
557
558 kfree_skb(qp->q.fragments);
559 qp->q.fragments = head;
560 }
561
562 BUG_TRAP(head != NULL);
563 BUG_TRAP(FRAG_CB(head)->offset == 0);
564
565 /* Allocate a new buffer for the datagram. */
566 ihlen = ip_hdrlen(head);
567 len = ihlen + qp->q.len;
568
569 err = -E2BIG;
570 if (len > 65535)
571 goto out_oversize;
572
573 /* Head of list must not be cloned. */
574 err = -ENOMEM;
575 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
576 goto out_nomem;
577
578 /* If the first fragment is fragmented itself, we split
579 * it to two chunks: the first with data and paged part
580 * and the second, holding only fragments. */
581 if (skb_shinfo(head)->frag_list) {
582 struct sk_buff *clone;
583 int i, plen = 0;
584
585 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
586 goto out_nomem;
587 clone->next = head->next;
588 head->next = clone;
589 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
590 skb_shinfo(head)->frag_list = NULL;
591 for (i=0; i<skb_shinfo(head)->nr_frags; i++)
592 plen += skb_shinfo(head)->frags[i].size;
593 clone->len = clone->data_len = head->data_len - plen;
594 head->data_len -= clone->len;
595 head->len -= clone->len;
596 clone->csum = 0;
597 clone->ip_summed = head->ip_summed;
598 atomic_add(clone->truesize, &ip4_frags.mem);
599 }
600
601 skb_shinfo(head)->frag_list = head->next;
602 skb_push(head, head->data - skb_network_header(head));
603 atomic_sub(head->truesize, &ip4_frags.mem);
604
605 for (fp=head->next; fp; fp = fp->next) {
606 head->data_len += fp->len;
607 head->len += fp->len;
608 if (head->ip_summed != fp->ip_summed)
609 head->ip_summed = CHECKSUM_NONE;
610 else if (head->ip_summed == CHECKSUM_COMPLETE)
611 head->csum = csum_add(head->csum, fp->csum);
612 head->truesize += fp->truesize;
613 atomic_sub(fp->truesize, &ip4_frags.mem);
614 }
615
616 head->next = NULL;
617 head->dev = dev;
618 head->tstamp = qp->q.stamp;
619
620 iph = ip_hdr(head);
621 iph->frag_off = 0;
622 iph->tot_len = htons(len);
623 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS);
624 qp->q.fragments = NULL;
625 return 0;
626
627 out_nomem:
628 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
629 "queue %p\n", qp);
630 goto out_fail;
631 out_oversize:
632 if (net_ratelimit())
633 printk(KERN_INFO
634 "Oversized IP packet from %d.%d.%d.%d.\n",
635 NIPQUAD(qp->saddr));
636 out_fail:
637 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
638 return err;
639 }
640
641 /* Process an incoming IP datagram fragment. */
642 int ip_defrag(struct sk_buff *skb, u32 user)
643 {
644 struct ipq *qp;
645
646 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS);
647
648 /* Start by cleaning up the memory. */
649 if (atomic_read(&ip4_frags.mem) > ip4_frags_ctl.high_thresh)
650 ip_evictor();
651
652 /* Lookup (or create) queue header */
653 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) {
654 int ret;
655
656 spin_lock(&qp->q.lock);
657
658 ret = ip_frag_queue(qp, skb);
659
660 spin_unlock(&qp->q.lock);
661 ipq_put(qp);
662 return ret;
663 }
664
665 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS);
666 kfree_skb(skb);
667 return -ENOMEM;
668 }
669
670 void __init ipfrag_init(void)
671 {
672 ip4_frags.ctl = &ip4_frags_ctl;
673 ip4_frags.hashfn = ip4_hashfn;
674 ip4_frags.destructor = ip4_frag_free;
675 ip4_frags.skb_free = NULL;
676 ip4_frags.qsize = sizeof(struct ipq);
677 inet_frags_init(&ip4_frags);
678 }
679
680 EXPORT_SYMBOL(ip_defrag);
This page took 0.060661 seconds and 6 git commands to generate.