Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next
[deliverable/linux.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 EXPORT_SYMBOL(ip_send_check);
94
95 int __ip_local_out(struct sk_buff *skb)
96 {
97 struct iphdr *iph = ip_hdr(skb);
98
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
103 }
104
105 int ip_local_out(struct sk_buff *skb)
106 {
107 int err;
108
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
112
113 return err;
114 }
115 EXPORT_SYMBOL_GPL(ip_local_out);
116
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 {
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
127 }
128
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 int ttl = inet->uc_ttl;
132
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
136 }
137
138 /*
139 * Add an ip header to a skbuff and send it out.
140 *
141 */
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144 {
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
148
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 iph->saddr = saddr;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
165
166 if (opt && opt->opt.optlen) {
167 iph->ihl += opt->opt.optlen>>2;
168 ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 }
170
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
173
174 /* Send it out. */
175 return ip_local_out(skb);
176 }
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 struct neighbour *neigh;
186
187 if (rt->rt_type == RTN_MULTICAST) {
188 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
189 } else if (rt->rt_type == RTN_BROADCAST)
190 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191
192 /* Be paranoid, rather than too clever. */
193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 struct sk_buff *skb2;
195
196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 if (skb2 == NULL) {
198 kfree_skb(skb);
199 return -ENOMEM;
200 }
201 if (skb->sk)
202 skb_set_owner_w(skb2, skb->sk);
203 kfree_skb(skb);
204 skb = skb2;
205 }
206
207 neigh = dst->neighbour;
208 if (neigh) {
209 struct hh_cache *hh = &neigh->hh;
210 if (hh->hh_len)
211 return neigh_hh_output(hh, skb);
212 else
213 return dst->neighbour->output(skb);
214 }
215 if (net_ratelimit())
216 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
217 kfree_skb(skb);
218 return -EINVAL;
219 }
220
221 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
222 {
223 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
224
225 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
226 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
227 }
228
229 static int ip_finish_output(struct sk_buff *skb)
230 {
231 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
232 /* Policy lookup after SNAT yielded a new policy */
233 if (skb_dst(skb)->xfrm != NULL) {
234 IPCB(skb)->flags |= IPSKB_REROUTED;
235 return dst_output(skb);
236 }
237 #endif
238 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
239 return ip_fragment(skb, ip_finish_output2);
240 else
241 return ip_finish_output2(skb);
242 }
243
244 int ip_mc_output(struct sk_buff *skb)
245 {
246 struct sock *sk = skb->sk;
247 struct rtable *rt = skb_rtable(skb);
248 struct net_device *dev = rt->dst.dev;
249
250 /*
251 * If the indicated interface is up and running, send the packet.
252 */
253 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
254
255 skb->dev = dev;
256 skb->protocol = htons(ETH_P_IP);
257
258 /*
259 * Multicasts are looped back for other local users
260 */
261
262 if (rt->rt_flags&RTCF_MULTICAST) {
263 if (sk_mc_loop(sk)
264 #ifdef CONFIG_IP_MROUTE
265 /* Small optimization: do not loopback not local frames,
266 which returned after forwarding; they will be dropped
267 by ip_mr_input in any case.
268 Note, that local frames are looped back to be delivered
269 to local recipients.
270
271 This check is duplicated in ip_mr_input at the moment.
272 */
273 &&
274 ((rt->rt_flags & RTCF_LOCAL) ||
275 !(IPCB(skb)->flags & IPSKB_FORWARDED))
276 #endif
277 ) {
278 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
279 if (newskb)
280 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
281 newskb, NULL, newskb->dev,
282 ip_dev_loopback_xmit);
283 }
284
285 /* Multicasts with ttl 0 must not go beyond the host */
286
287 if (ip_hdr(skb)->ttl == 0) {
288 kfree_skb(skb);
289 return 0;
290 }
291 }
292
293 if (rt->rt_flags&RTCF_BROADCAST) {
294 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
295 if (newskb)
296 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
297 NULL, newskb->dev, ip_dev_loopback_xmit);
298 }
299
300 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
301 skb->dev, ip_finish_output,
302 !(IPCB(skb)->flags & IPSKB_REROUTED));
303 }
304
305 int ip_output(struct sk_buff *skb)
306 {
307 struct net_device *dev = skb_dst(skb)->dev;
308
309 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
310
311 skb->dev = dev;
312 skb->protocol = htons(ETH_P_IP);
313
314 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
315 ip_finish_output,
316 !(IPCB(skb)->flags & IPSKB_REROUTED));
317 }
318
319 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
320 {
321 struct sock *sk = skb->sk;
322 struct inet_sock *inet = inet_sk(sk);
323 struct ip_options_rcu *inet_opt;
324 struct flowi4 *fl4;
325 struct rtable *rt;
326 struct iphdr *iph;
327 int res;
328
329 /* Skip all of this if the packet is already routed,
330 * f.e. by something like SCTP.
331 */
332 rcu_read_lock();
333 inet_opt = rcu_dereference(inet->inet_opt);
334 fl4 = &fl->u.ip4;
335 rt = skb_rtable(skb);
336 if (rt != NULL)
337 goto packet_routed;
338
339 /* Make sure we can route this packet. */
340 rt = (struct rtable *)__sk_dst_check(sk, 0);
341 if (rt == NULL) {
342 __be32 daddr;
343
344 /* Use correct destination address if we have options. */
345 daddr = inet->inet_daddr;
346 if (inet_opt && inet_opt->opt.srr)
347 daddr = inet_opt->opt.faddr;
348
349 /* If this fails, retransmit mechanism of transport layer will
350 * keep trying until route appears or the connection times
351 * itself out.
352 */
353 rt = ip_route_output_ports(sock_net(sk), fl4, sk,
354 daddr, inet->inet_saddr,
355 inet->inet_dport,
356 inet->inet_sport,
357 sk->sk_protocol,
358 RT_CONN_FLAGS(sk),
359 sk->sk_bound_dev_if);
360 if (IS_ERR(rt))
361 goto no_route;
362 sk_setup_caps(sk, &rt->dst);
363 }
364 skb_dst_set_noref(skb, &rt->dst);
365
366 packet_routed:
367 if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
368 goto no_route;
369
370 /* OK, we know where to send it, allocate and build IP header. */
371 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
372 skb_reset_network_header(skb);
373 iph = ip_hdr(skb);
374 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
376 iph->frag_off = htons(IP_DF);
377 else
378 iph->frag_off = 0;
379 iph->ttl = ip_select_ttl(inet, &rt->dst);
380 iph->protocol = sk->sk_protocol;
381 iph->saddr = fl4->saddr;
382 iph->daddr = fl4->daddr;
383 /* Transport layer set skb->h.foo itself. */
384
385 if (inet_opt && inet_opt->opt.optlen) {
386 iph->ihl += inet_opt->opt.optlen >> 2;
387 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
388 }
389
390 ip_select_ident_more(iph, &rt->dst, sk,
391 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392
393 skb->priority = sk->sk_priority;
394 skb->mark = sk->sk_mark;
395
396 res = ip_local_out(skb);
397 rcu_read_unlock();
398 return res;
399
400 no_route:
401 rcu_read_unlock();
402 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 kfree_skb(skb);
404 return -EHOSTUNREACH;
405 }
406 EXPORT_SYMBOL(ip_queue_xmit);
407
408
409 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
410 {
411 to->pkt_type = from->pkt_type;
412 to->priority = from->priority;
413 to->protocol = from->protocol;
414 skb_dst_drop(to);
415 skb_dst_copy(to, from);
416 to->dev = from->dev;
417 to->mark = from->mark;
418
419 /* Copy the flags to each fragment. */
420 IPCB(to)->flags = IPCB(from)->flags;
421
422 #ifdef CONFIG_NET_SCHED
423 to->tc_index = from->tc_index;
424 #endif
425 nf_copy(to, from);
426 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
427 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
428 to->nf_trace = from->nf_trace;
429 #endif
430 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
431 to->ipvs_property = from->ipvs_property;
432 #endif
433 skb_copy_secmark(to, from);
434 }
435
436 /*
437 * This IP datagram is too large to be sent in one piece. Break it up into
438 * smaller pieces (each of size equal to IP header plus
439 * a block of the data of the original IP data part) that will yet fit in a
440 * single device frame, and queue such a frame for sending.
441 */
442
443 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
444 {
445 struct iphdr *iph;
446 int ptr;
447 struct net_device *dev;
448 struct sk_buff *skb2;
449 unsigned int mtu, hlen, left, len, ll_rs;
450 int offset;
451 __be16 not_last_frag;
452 struct rtable *rt = skb_rtable(skb);
453 int err = 0;
454
455 dev = rt->dst.dev;
456
457 /*
458 * Point into the IP datagram header.
459 */
460
461 iph = ip_hdr(skb);
462
463 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 htonl(ip_skb_dst_mtu(skb)));
467 kfree_skb(skb);
468 return -EMSGSIZE;
469 }
470
471 /*
472 * Setup starting values.
473 */
474
475 hlen = iph->ihl * 4;
476 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 if (skb->nf_bridge)
479 mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482
483 /* When frag_list is given, use it. First, check its validity:
484 * some transformers could create wrong frag_list or break existing
485 * one, it is not prohibited. In this case fall back to copying.
486 *
487 * LATER: this step can be merged to real generation of fragments,
488 * we can switch to copy when see the first bad fragment.
489 */
490 if (skb_has_frag_list(skb)) {
491 struct sk_buff *frag, *frag2;
492 int first_len = skb_pagelen(skb);
493
494 if (first_len - hlen > mtu ||
495 ((first_len - hlen) & 7) ||
496 ip_is_fragment(iph) ||
497 skb_cloned(skb))
498 goto slow_path;
499
500 skb_walk_frags(skb, frag) {
501 /* Correct geometry. */
502 if (frag->len > mtu ||
503 ((frag->len & 7) && frag->next) ||
504 skb_headroom(frag) < hlen)
505 goto slow_path_clean;
506
507 /* Partially cloned skb? */
508 if (skb_shared(frag))
509 goto slow_path_clean;
510
511 BUG_ON(frag->sk);
512 if (skb->sk) {
513 frag->sk = skb->sk;
514 frag->destructor = sock_wfree;
515 }
516 skb->truesize -= frag->truesize;
517 }
518
519 /* Everything is OK. Generate! */
520
521 err = 0;
522 offset = 0;
523 frag = skb_shinfo(skb)->frag_list;
524 skb_frag_list_init(skb);
525 skb->data_len = first_len - skb_headlen(skb);
526 skb->len = first_len;
527 iph->tot_len = htons(first_len);
528 iph->frag_off = htons(IP_MF);
529 ip_send_check(iph);
530
531 for (;;) {
532 /* Prepare header of the next frame,
533 * before previous one went down. */
534 if (frag) {
535 frag->ip_summed = CHECKSUM_NONE;
536 skb_reset_transport_header(frag);
537 __skb_push(frag, hlen);
538 skb_reset_network_header(frag);
539 memcpy(skb_network_header(frag), iph, hlen);
540 iph = ip_hdr(frag);
541 iph->tot_len = htons(frag->len);
542 ip_copy_metadata(frag, skb);
543 if (offset == 0)
544 ip_options_fragment(frag);
545 offset += skb->len - hlen;
546 iph->frag_off = htons(offset>>3);
547 if (frag->next != NULL)
548 iph->frag_off |= htons(IP_MF);
549 /* Ready, complete checksum */
550 ip_send_check(iph);
551 }
552
553 err = output(skb);
554
555 if (!err)
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
557 if (err || !frag)
558 break;
559
560 skb = frag;
561 frag = skb->next;
562 skb->next = NULL;
563 }
564
565 if (err == 0) {
566 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
567 return 0;
568 }
569
570 while (frag) {
571 skb = frag->next;
572 kfree_skb(frag);
573 frag = skb;
574 }
575 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
576 return err;
577
578 slow_path_clean:
579 skb_walk_frags(skb, frag2) {
580 if (frag2 == frag)
581 break;
582 frag2->sk = NULL;
583 frag2->destructor = NULL;
584 skb->truesize += frag2->truesize;
585 }
586 }
587
588 slow_path:
589 left = skb->len - hlen; /* Space per frame */
590 ptr = hlen; /* Where to start from */
591
592 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
593 * we need to make room for the encapsulating header
594 */
595 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
596
597 /*
598 * Fragment the datagram.
599 */
600
601 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
602 not_last_frag = iph->frag_off & htons(IP_MF);
603
604 /*
605 * Keep copying data until we run out.
606 */
607
608 while (left > 0) {
609 len = left;
610 /* IF: it doesn't fit, use 'mtu' - the data space left */
611 if (len > mtu)
612 len = mtu;
613 /* IF: we are not sending up to and including the packet end
614 then align the next start on an eight byte boundary */
615 if (len < left) {
616 len &= ~7;
617 }
618 /*
619 * Allocate buffer.
620 */
621
622 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
623 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
624 err = -ENOMEM;
625 goto fail;
626 }
627
628 /*
629 * Set up data on packet
630 */
631
632 ip_copy_metadata(skb2, skb);
633 skb_reserve(skb2, ll_rs);
634 skb_put(skb2, len + hlen);
635 skb_reset_network_header(skb2);
636 skb2->transport_header = skb2->network_header + hlen;
637
638 /*
639 * Charge the memory for the fragment to any owner
640 * it might possess
641 */
642
643 if (skb->sk)
644 skb_set_owner_w(skb2, skb->sk);
645
646 /*
647 * Copy the packet header into the new buffer.
648 */
649
650 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
651
652 /*
653 * Copy a block of the IP datagram.
654 */
655 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
656 BUG();
657 left -= len;
658
659 /*
660 * Fill in the new header fields.
661 */
662 iph = ip_hdr(skb2);
663 iph->frag_off = htons((offset >> 3));
664
665 /* ANK: dirty, but effective trick. Upgrade options only if
666 * the segment to be fragmented was THE FIRST (otherwise,
667 * options are already fixed) and make it ONCE
668 * on the initial skb, so that all the following fragments
669 * will inherit fixed options.
670 */
671 if (offset == 0)
672 ip_options_fragment(skb);
673
674 /*
675 * Added AC : If we are fragmenting a fragment that's not the
676 * last fragment then keep MF on each bit
677 */
678 if (left > 0 || not_last_frag)
679 iph->frag_off |= htons(IP_MF);
680 ptr += len;
681 offset += len;
682
683 /*
684 * Put this fragment into the sending queue.
685 */
686 iph->tot_len = htons(len + hlen);
687
688 ip_send_check(iph);
689
690 err = output(skb2);
691 if (err)
692 goto fail;
693
694 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
695 }
696 kfree_skb(skb);
697 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
698 return err;
699
700 fail:
701 kfree_skb(skb);
702 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
703 return err;
704 }
705 EXPORT_SYMBOL(ip_fragment);
706
707 int
708 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
709 {
710 struct iovec *iov = from;
711
712 if (skb->ip_summed == CHECKSUM_PARTIAL) {
713 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
714 return -EFAULT;
715 } else {
716 __wsum csum = 0;
717 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
718 return -EFAULT;
719 skb->csum = csum_block_add(skb->csum, csum, odd);
720 }
721 return 0;
722 }
723 EXPORT_SYMBOL(ip_generic_getfrag);
724
725 static inline __wsum
726 csum_page(struct page *page, int offset, int copy)
727 {
728 char *kaddr;
729 __wsum csum;
730 kaddr = kmap(page);
731 csum = csum_partial(kaddr + offset, copy, 0);
732 kunmap(page);
733 return csum;
734 }
735
736 static inline int ip_ufo_append_data(struct sock *sk,
737 struct sk_buff_head *queue,
738 int getfrag(void *from, char *to, int offset, int len,
739 int odd, struct sk_buff *skb),
740 void *from, int length, int hh_len, int fragheaderlen,
741 int transhdrlen, int mtu, unsigned int flags)
742 {
743 struct sk_buff *skb;
744 int err;
745
746 /* There is support for UDP fragmentation offload by network
747 * device, so create one single skb packet containing complete
748 * udp datagram
749 */
750 if ((skb = skb_peek_tail(queue)) == NULL) {
751 skb = sock_alloc_send_skb(sk,
752 hh_len + fragheaderlen + transhdrlen + 20,
753 (flags & MSG_DONTWAIT), &err);
754
755 if (skb == NULL)
756 return err;
757
758 /* reserve space for Hardware header */
759 skb_reserve(skb, hh_len);
760
761 /* create space for UDP/IP header */
762 skb_put(skb, fragheaderlen + transhdrlen);
763
764 /* initialize network header pointer */
765 skb_reset_network_header(skb);
766
767 /* initialize protocol header pointer */
768 skb->transport_header = skb->network_header + fragheaderlen;
769
770 skb->ip_summed = CHECKSUM_PARTIAL;
771 skb->csum = 0;
772
773 /* specify the length of each IP datagram fragment */
774 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
775 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
776 __skb_queue_tail(queue, skb);
777 }
778
779 return skb_append_datato_frags(sk, skb, getfrag, from,
780 (length - transhdrlen));
781 }
782
783 static int __ip_append_data(struct sock *sk,
784 struct flowi4 *fl4,
785 struct sk_buff_head *queue,
786 struct inet_cork *cork,
787 int getfrag(void *from, char *to, int offset,
788 int len, int odd, struct sk_buff *skb),
789 void *from, int length, int transhdrlen,
790 unsigned int flags)
791 {
792 struct inet_sock *inet = inet_sk(sk);
793 struct sk_buff *skb;
794
795 struct ip_options *opt = cork->opt;
796 int hh_len;
797 int exthdrlen;
798 int mtu;
799 int copy;
800 int err;
801 int offset = 0;
802 unsigned int maxfraglen, fragheaderlen;
803 int csummode = CHECKSUM_NONE;
804 struct rtable *rt = (struct rtable *)cork->dst;
805
806 skb = skb_peek_tail(queue);
807
808 exthdrlen = !skb ? rt->dst.header_len : 0;
809 mtu = cork->fragsize;
810
811 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
812
813 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
814 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
815
816 if (cork->length + length > 0xFFFF - fragheaderlen) {
817 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
818 mtu-exthdrlen);
819 return -EMSGSIZE;
820 }
821
822 /*
823 * transhdrlen > 0 means that this is the first fragment and we wish
824 * it won't be fragmented in the future.
825 */
826 if (transhdrlen &&
827 length + fragheaderlen <= mtu &&
828 rt->dst.dev->features & NETIF_F_V4_CSUM &&
829 !exthdrlen)
830 csummode = CHECKSUM_PARTIAL;
831
832 cork->length += length;
833 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
834 (sk->sk_protocol == IPPROTO_UDP) &&
835 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
836 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
837 hh_len, fragheaderlen, transhdrlen,
838 mtu, flags);
839 if (err)
840 goto error;
841 return 0;
842 }
843
844 /* So, what's going on in the loop below?
845 *
846 * We use calculated fragment length to generate chained skb,
847 * each of segments is IP fragment ready for sending to network after
848 * adding appropriate IP header.
849 */
850
851 if (!skb)
852 goto alloc_new_skb;
853
854 while (length > 0) {
855 /* Check if the remaining data fits into current packet. */
856 copy = mtu - skb->len;
857 if (copy < length)
858 copy = maxfraglen - skb->len;
859 if (copy <= 0) {
860 char *data;
861 unsigned int datalen;
862 unsigned int fraglen;
863 unsigned int fraggap;
864 unsigned int alloclen;
865 struct sk_buff *skb_prev;
866 alloc_new_skb:
867 skb_prev = skb;
868 if (skb_prev)
869 fraggap = skb_prev->len - maxfraglen;
870 else
871 fraggap = 0;
872
873 /*
874 * If remaining data exceeds the mtu,
875 * we know we need more fragment(s).
876 */
877 datalen = length + fraggap;
878 if (datalen > mtu - fragheaderlen)
879 datalen = maxfraglen - fragheaderlen;
880 fraglen = datalen + fragheaderlen;
881
882 if ((flags & MSG_MORE) &&
883 !(rt->dst.dev->features&NETIF_F_SG))
884 alloclen = mtu;
885 else
886 alloclen = fraglen;
887
888 alloclen += exthdrlen;
889
890 /* The last fragment gets additional space at tail.
891 * Note, with MSG_MORE we overallocate on fragments,
892 * because we have no idea what fragment will be
893 * the last.
894 */
895 if (datalen == length + fraggap)
896 alloclen += rt->dst.trailer_len;
897
898 if (transhdrlen) {
899 skb = sock_alloc_send_skb(sk,
900 alloclen + hh_len + 15,
901 (flags & MSG_DONTWAIT), &err);
902 } else {
903 skb = NULL;
904 if (atomic_read(&sk->sk_wmem_alloc) <=
905 2 * sk->sk_sndbuf)
906 skb = sock_wmalloc(sk,
907 alloclen + hh_len + 15, 1,
908 sk->sk_allocation);
909 if (unlikely(skb == NULL))
910 err = -ENOBUFS;
911 else
912 /* only the initial fragment is
913 time stamped */
914 cork->tx_flags = 0;
915 }
916 if (skb == NULL)
917 goto error;
918
919 /*
920 * Fill in the control structures
921 */
922 skb->ip_summed = csummode;
923 skb->csum = 0;
924 skb_reserve(skb, hh_len);
925 skb_shinfo(skb)->tx_flags = cork->tx_flags;
926
927 /*
928 * Find where to start putting bytes.
929 */
930 data = skb_put(skb, fraglen + exthdrlen);
931 skb_set_network_header(skb, exthdrlen);
932 skb->transport_header = (skb->network_header +
933 fragheaderlen);
934 data += fragheaderlen + exthdrlen;
935
936 if (fraggap) {
937 skb->csum = skb_copy_and_csum_bits(
938 skb_prev, maxfraglen,
939 data + transhdrlen, fraggap, 0);
940 skb_prev->csum = csum_sub(skb_prev->csum,
941 skb->csum);
942 data += fraggap;
943 pskb_trim_unique(skb_prev, maxfraglen);
944 }
945
946 copy = datalen - transhdrlen - fraggap;
947 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
948 err = -EFAULT;
949 kfree_skb(skb);
950 goto error;
951 }
952
953 offset += copy;
954 length -= datalen - fraggap;
955 transhdrlen = 0;
956 exthdrlen = 0;
957 csummode = CHECKSUM_NONE;
958
959 /*
960 * Put the packet on the pending queue.
961 */
962 __skb_queue_tail(queue, skb);
963 continue;
964 }
965
966 if (copy > length)
967 copy = length;
968
969 if (!(rt->dst.dev->features&NETIF_F_SG)) {
970 unsigned int off;
971
972 off = skb->len;
973 if (getfrag(from, skb_put(skb, copy),
974 offset, copy, off, skb) < 0) {
975 __skb_trim(skb, off);
976 err = -EFAULT;
977 goto error;
978 }
979 } else {
980 int i = skb_shinfo(skb)->nr_frags;
981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
982 struct page *page = cork->page;
983 int off = cork->off;
984 unsigned int left;
985
986 if (page && (left = PAGE_SIZE - off) > 0) {
987 if (copy >= left)
988 copy = left;
989 if (page != frag->page) {
990 if (i == MAX_SKB_FRAGS) {
991 err = -EMSGSIZE;
992 goto error;
993 }
994 get_page(page);
995 skb_fill_page_desc(skb, i, page, off, 0);
996 frag = &skb_shinfo(skb)->frags[i];
997 }
998 } else if (i < MAX_SKB_FRAGS) {
999 if (copy > PAGE_SIZE)
1000 copy = PAGE_SIZE;
1001 page = alloc_pages(sk->sk_allocation, 0);
1002 if (page == NULL) {
1003 err = -ENOMEM;
1004 goto error;
1005 }
1006 cork->page = page;
1007 cork->off = 0;
1008
1009 skb_fill_page_desc(skb, i, page, 0, 0);
1010 frag = &skb_shinfo(skb)->frags[i];
1011 } else {
1012 err = -EMSGSIZE;
1013 goto error;
1014 }
1015 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1016 err = -EFAULT;
1017 goto error;
1018 }
1019 cork->off += copy;
1020 frag->size += copy;
1021 skb->len += copy;
1022 skb->data_len += copy;
1023 skb->truesize += copy;
1024 atomic_add(copy, &sk->sk_wmem_alloc);
1025 }
1026 offset += copy;
1027 length -= copy;
1028 }
1029
1030 return 0;
1031
1032 error:
1033 cork->length -= length;
1034 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1035 return err;
1036 }
1037
1038 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1039 struct ipcm_cookie *ipc, struct rtable **rtp)
1040 {
1041 struct inet_sock *inet = inet_sk(sk);
1042 struct ip_options_rcu *opt;
1043 struct rtable *rt;
1044
1045 /*
1046 * setup for corking.
1047 */
1048 opt = ipc->opt;
1049 if (opt) {
1050 if (cork->opt == NULL) {
1051 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1052 sk->sk_allocation);
1053 if (unlikely(cork->opt == NULL))
1054 return -ENOBUFS;
1055 }
1056 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1057 cork->flags |= IPCORK_OPT;
1058 cork->addr = ipc->addr;
1059 }
1060 rt = *rtp;
1061 if (unlikely(!rt))
1062 return -EFAULT;
1063 /*
1064 * We steal reference to this route, caller should not release it
1065 */
1066 *rtp = NULL;
1067 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1068 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1069 cork->dst = &rt->dst;
1070 cork->length = 0;
1071 cork->tx_flags = ipc->tx_flags;
1072 cork->page = NULL;
1073 cork->off = 0;
1074
1075 return 0;
1076 }
1077
1078 /*
1079 * ip_append_data() and ip_append_page() can make one large IP datagram
1080 * from many pieces of data. Each pieces will be holded on the socket
1081 * until ip_push_pending_frames() is called. Each piece can be a page
1082 * or non-page data.
1083 *
1084 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1085 * this interface potentially.
1086 *
1087 * LATER: length must be adjusted by pad at tail, when it is required.
1088 */
1089 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1090 int getfrag(void *from, char *to, int offset, int len,
1091 int odd, struct sk_buff *skb),
1092 void *from, int length, int transhdrlen,
1093 struct ipcm_cookie *ipc, struct rtable **rtp,
1094 unsigned int flags)
1095 {
1096 struct inet_sock *inet = inet_sk(sk);
1097 int err;
1098
1099 if (flags&MSG_PROBE)
1100 return 0;
1101
1102 if (skb_queue_empty(&sk->sk_write_queue)) {
1103 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1104 if (err)
1105 return err;
1106 } else {
1107 transhdrlen = 0;
1108 }
1109
1110 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1111 from, length, transhdrlen, flags);
1112 }
1113
1114 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1115 int offset, size_t size, int flags)
1116 {
1117 struct inet_sock *inet = inet_sk(sk);
1118 struct sk_buff *skb;
1119 struct rtable *rt;
1120 struct ip_options *opt = NULL;
1121 struct inet_cork *cork;
1122 int hh_len;
1123 int mtu;
1124 int len;
1125 int err;
1126 unsigned int maxfraglen, fragheaderlen, fraggap;
1127
1128 if (inet->hdrincl)
1129 return -EPERM;
1130
1131 if (flags&MSG_PROBE)
1132 return 0;
1133
1134 if (skb_queue_empty(&sk->sk_write_queue))
1135 return -EINVAL;
1136
1137 cork = &inet->cork.base;
1138 rt = (struct rtable *)cork->dst;
1139 if (cork->flags & IPCORK_OPT)
1140 opt = cork->opt;
1141
1142 if (!(rt->dst.dev->features&NETIF_F_SG))
1143 return -EOPNOTSUPP;
1144
1145 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1146 mtu = cork->fragsize;
1147
1148 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1149 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1150
1151 if (cork->length + size > 0xFFFF - fragheaderlen) {
1152 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1153 return -EMSGSIZE;
1154 }
1155
1156 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1157 return -EINVAL;
1158
1159 cork->length += size;
1160 if ((size + skb->len > mtu) &&
1161 (sk->sk_protocol == IPPROTO_UDP) &&
1162 (rt->dst.dev->features & NETIF_F_UFO)) {
1163 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1164 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1165 }
1166
1167
1168 while (size > 0) {
1169 int i;
1170
1171 if (skb_is_gso(skb))
1172 len = size;
1173 else {
1174
1175 /* Check if the remaining data fits into current packet. */
1176 len = mtu - skb->len;
1177 if (len < size)
1178 len = maxfraglen - skb->len;
1179 }
1180 if (len <= 0) {
1181 struct sk_buff *skb_prev;
1182 int alloclen;
1183
1184 skb_prev = skb;
1185 fraggap = skb_prev->len - maxfraglen;
1186
1187 alloclen = fragheaderlen + hh_len + fraggap + 15;
1188 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1189 if (unlikely(!skb)) {
1190 err = -ENOBUFS;
1191 goto error;
1192 }
1193
1194 /*
1195 * Fill in the control structures
1196 */
1197 skb->ip_summed = CHECKSUM_NONE;
1198 skb->csum = 0;
1199 skb_reserve(skb, hh_len);
1200
1201 /*
1202 * Find where to start putting bytes.
1203 */
1204 skb_put(skb, fragheaderlen + fraggap);
1205 skb_reset_network_header(skb);
1206 skb->transport_header = (skb->network_header +
1207 fragheaderlen);
1208 if (fraggap) {
1209 skb->csum = skb_copy_and_csum_bits(skb_prev,
1210 maxfraglen,
1211 skb_transport_header(skb),
1212 fraggap, 0);
1213 skb_prev->csum = csum_sub(skb_prev->csum,
1214 skb->csum);
1215 pskb_trim_unique(skb_prev, maxfraglen);
1216 }
1217
1218 /*
1219 * Put the packet on the pending queue.
1220 */
1221 __skb_queue_tail(&sk->sk_write_queue, skb);
1222 continue;
1223 }
1224
1225 i = skb_shinfo(skb)->nr_frags;
1226 if (len > size)
1227 len = size;
1228 if (skb_can_coalesce(skb, i, page, offset)) {
1229 skb_shinfo(skb)->frags[i-1].size += len;
1230 } else if (i < MAX_SKB_FRAGS) {
1231 get_page(page);
1232 skb_fill_page_desc(skb, i, page, offset, len);
1233 } else {
1234 err = -EMSGSIZE;
1235 goto error;
1236 }
1237
1238 if (skb->ip_summed == CHECKSUM_NONE) {
1239 __wsum csum;
1240 csum = csum_page(page, offset, len);
1241 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1242 }
1243
1244 skb->len += len;
1245 skb->data_len += len;
1246 skb->truesize += len;
1247 atomic_add(len, &sk->sk_wmem_alloc);
1248 offset += len;
1249 size -= len;
1250 }
1251 return 0;
1252
1253 error:
1254 cork->length -= size;
1255 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1256 return err;
1257 }
1258
1259 static void ip_cork_release(struct inet_cork *cork)
1260 {
1261 cork->flags &= ~IPCORK_OPT;
1262 kfree(cork->opt);
1263 cork->opt = NULL;
1264 dst_release(cork->dst);
1265 cork->dst = NULL;
1266 }
1267
1268 /*
1269 * Combined all pending IP fragments on the socket as one IP datagram
1270 * and push them out.
1271 */
1272 struct sk_buff *__ip_make_skb(struct sock *sk,
1273 struct flowi4 *fl4,
1274 struct sk_buff_head *queue,
1275 struct inet_cork *cork)
1276 {
1277 struct sk_buff *skb, *tmp_skb;
1278 struct sk_buff **tail_skb;
1279 struct inet_sock *inet = inet_sk(sk);
1280 struct net *net = sock_net(sk);
1281 struct ip_options *opt = NULL;
1282 struct rtable *rt = (struct rtable *)cork->dst;
1283 struct iphdr *iph;
1284 __be16 df = 0;
1285 __u8 ttl;
1286
1287 if ((skb = __skb_dequeue(queue)) == NULL)
1288 goto out;
1289 tail_skb = &(skb_shinfo(skb)->frag_list);
1290
1291 /* move skb->data to ip header from ext header */
1292 if (skb->data < skb_network_header(skb))
1293 __skb_pull(skb, skb_network_offset(skb));
1294 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1295 __skb_pull(tmp_skb, skb_network_header_len(skb));
1296 *tail_skb = tmp_skb;
1297 tail_skb = &(tmp_skb->next);
1298 skb->len += tmp_skb->len;
1299 skb->data_len += tmp_skb->len;
1300 skb->truesize += tmp_skb->truesize;
1301 tmp_skb->destructor = NULL;
1302 tmp_skb->sk = NULL;
1303 }
1304
1305 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1306 * to fragment the frame generated here. No matter, what transforms
1307 * how transforms change size of the packet, it will come out.
1308 */
1309 if (inet->pmtudisc < IP_PMTUDISC_DO)
1310 skb->local_df = 1;
1311
1312 /* DF bit is set when we want to see DF on outgoing frames.
1313 * If local_df is set too, we still allow to fragment this frame
1314 * locally. */
1315 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1316 (skb->len <= dst_mtu(&rt->dst) &&
1317 ip_dont_fragment(sk, &rt->dst)))
1318 df = htons(IP_DF);
1319
1320 if (cork->flags & IPCORK_OPT)
1321 opt = cork->opt;
1322
1323 if (rt->rt_type == RTN_MULTICAST)
1324 ttl = inet->mc_ttl;
1325 else
1326 ttl = ip_select_ttl(inet, &rt->dst);
1327
1328 iph = (struct iphdr *)skb->data;
1329 iph->version = 4;
1330 iph->ihl = 5;
1331 iph->tos = inet->tos;
1332 iph->frag_off = df;
1333 ip_select_ident(iph, &rt->dst, sk);
1334 iph->ttl = ttl;
1335 iph->protocol = sk->sk_protocol;
1336 iph->saddr = fl4->saddr;
1337 iph->daddr = fl4->daddr;
1338
1339 if (opt) {
1340 iph->ihl += opt->optlen>>2;
1341 ip_options_build(skb, opt, cork->addr, rt, 0);
1342 }
1343
1344 skb->priority = sk->sk_priority;
1345 skb->mark = sk->sk_mark;
1346 /*
1347 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1348 * on dst refcount
1349 */
1350 cork->dst = NULL;
1351 skb_dst_set(skb, &rt->dst);
1352
1353 if (iph->protocol == IPPROTO_ICMP)
1354 icmp_out_count(net, ((struct icmphdr *)
1355 skb_transport_header(skb))->type);
1356
1357 ip_cork_release(cork);
1358 out:
1359 return skb;
1360 }
1361
1362 int ip_send_skb(struct sk_buff *skb)
1363 {
1364 struct net *net = sock_net(skb->sk);
1365 int err;
1366
1367 err = ip_local_out(skb);
1368 if (err) {
1369 if (err > 0)
1370 err = net_xmit_errno(err);
1371 if (err)
1372 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1373 }
1374
1375 return err;
1376 }
1377
1378 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1379 {
1380 struct sk_buff *skb;
1381
1382 skb = ip_finish_skb(sk, fl4);
1383 if (!skb)
1384 return 0;
1385
1386 /* Netfilter gets whole the not fragmented skb. */
1387 return ip_send_skb(skb);
1388 }
1389
1390 /*
1391 * Throw away all pending data on the socket.
1392 */
1393 static void __ip_flush_pending_frames(struct sock *sk,
1394 struct sk_buff_head *queue,
1395 struct inet_cork *cork)
1396 {
1397 struct sk_buff *skb;
1398
1399 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1400 kfree_skb(skb);
1401
1402 ip_cork_release(cork);
1403 }
1404
1405 void ip_flush_pending_frames(struct sock *sk)
1406 {
1407 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1408 }
1409
1410 struct sk_buff *ip_make_skb(struct sock *sk,
1411 struct flowi4 *fl4,
1412 int getfrag(void *from, char *to, int offset,
1413 int len, int odd, struct sk_buff *skb),
1414 void *from, int length, int transhdrlen,
1415 struct ipcm_cookie *ipc, struct rtable **rtp,
1416 unsigned int flags)
1417 {
1418 struct inet_cork cork;
1419 struct sk_buff_head queue;
1420 int err;
1421
1422 if (flags & MSG_PROBE)
1423 return NULL;
1424
1425 __skb_queue_head_init(&queue);
1426
1427 cork.flags = 0;
1428 cork.addr = 0;
1429 cork.opt = NULL;
1430 err = ip_setup_cork(sk, &cork, ipc, rtp);
1431 if (err)
1432 return ERR_PTR(err);
1433
1434 err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1435 from, length, transhdrlen, flags);
1436 if (err) {
1437 __ip_flush_pending_frames(sk, &queue, &cork);
1438 return ERR_PTR(err);
1439 }
1440
1441 return __ip_make_skb(sk, fl4, &queue, &cork);
1442 }
1443
1444 /*
1445 * Fetch data from kernel space and fill in checksum if needed.
1446 */
1447 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1448 int len, int odd, struct sk_buff *skb)
1449 {
1450 __wsum csum;
1451
1452 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1453 skb->csum = csum_block_add(skb->csum, csum, odd);
1454 return 0;
1455 }
1456
1457 /*
1458 * Generic function to send a packet as reply to another packet.
1459 * Used to send TCP resets so far. ICMP should use this function too.
1460 *
1461 * Should run single threaded per socket because it uses the sock
1462 * structure to pass arguments.
1463 */
1464 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1465 struct ip_reply_arg *arg, unsigned int len)
1466 {
1467 struct inet_sock *inet = inet_sk(sk);
1468 struct ip_options_data replyopts;
1469 struct ipcm_cookie ipc;
1470 struct flowi4 fl4;
1471 struct rtable *rt = skb_rtable(skb);
1472
1473 if (ip_options_echo(&replyopts.opt.opt, skb))
1474 return;
1475
1476 ipc.addr = daddr;
1477 ipc.opt = NULL;
1478 ipc.tx_flags = 0;
1479
1480 if (replyopts.opt.opt.optlen) {
1481 ipc.opt = &replyopts.opt;
1482
1483 if (replyopts.opt.opt.srr)
1484 daddr = replyopts.opt.opt.faddr;
1485 }
1486
1487 flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1488 RT_TOS(ip_hdr(skb)->tos),
1489 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1490 ip_reply_arg_flowi_flags(arg),
1491 daddr, rt->rt_spec_dst,
1492 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1493 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1494 rt = ip_route_output_key(sock_net(sk), &fl4);
1495 if (IS_ERR(rt))
1496 return;
1497
1498 /* And let IP do all the hard work.
1499
1500 This chunk is not reenterable, hence spinlock.
1501 Note that it uses the fact, that this function is called
1502 with locally disabled BH and that sk cannot be already spinlocked.
1503 */
1504 bh_lock_sock(sk);
1505 inet->tos = ip_hdr(skb)->tos;
1506 sk->sk_priority = skb->priority;
1507 sk->sk_protocol = ip_hdr(skb)->protocol;
1508 sk->sk_bound_dev_if = arg->bound_dev_if;
1509 ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1510 &ipc, &rt, MSG_DONTWAIT);
1511 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1512 if (arg->csumoffset >= 0)
1513 *((__sum16 *)skb_transport_header(skb) +
1514 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1515 arg->csum));
1516 skb->ip_summed = CHECKSUM_NONE;
1517 ip_push_pending_frames(sk, &fl4);
1518 }
1519
1520 bh_unlock_sock(sk);
1521
1522 ip_rt_put(rt);
1523 }
1524
1525 void __init ip_init(void)
1526 {
1527 ip_rt_init();
1528 inet_initpeers();
1529
1530 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1531 igmp_mc_proc_init();
1532 #endif
1533 }
This page took 0.084516 seconds and 6 git commands to generate.