Merge branch 'mailbox-for-next' of git://git.linaro.org/landing-teams/working/fujitsu...
[deliverable/linux.git] / net / ipv4 / ip_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The Internet Protocol (IP) output module.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
17 *
18 * See ip_input.c for original log
19 *
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
43 */
44
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/netlink.h>
80 #include <linux/tcp.h>
81
82 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
83 EXPORT_SYMBOL(sysctl_ip_default_ttl);
84
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 unsigned int mtu,
88 int (*output)(struct net *, struct sock *, struct sk_buff *));
89
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 iph->check = 0;
94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 struct iphdr *iph = ip_hdr(skb);
101
102 iph->tot_len = htons(skb->len);
103 ip_send_check(iph);
104 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
105 net, sk, skb, NULL, skb_dst(skb)->dev,
106 dst_output);
107 }
108
109 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
110 {
111 int err;
112
113 err = __ip_local_out(net, sk, skb);
114 if (likely(err == 1))
115 err = dst_output(net, sk, skb);
116
117 return err;
118 }
119 EXPORT_SYMBOL_GPL(ip_local_out);
120
121 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
122 {
123 int ttl = inet->uc_ttl;
124
125 if (ttl < 0)
126 ttl = ip4_dst_hoplimit(dst);
127 return ttl;
128 }
129
130 /*
131 * Add an ip header to a skbuff and send it out.
132 *
133 */
134 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
135 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
136 {
137 struct inet_sock *inet = inet_sk(sk);
138 struct rtable *rt = skb_rtable(skb);
139 struct net *net = sock_net(sk);
140 struct iphdr *iph;
141
142 /* Build the IP header. */
143 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
144 skb_reset_network_header(skb);
145 iph = ip_hdr(skb);
146 iph->version = 4;
147 iph->ihl = 5;
148 iph->tos = inet->tos;
149 iph->ttl = ip_select_ttl(inet, &rt->dst);
150 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
151 iph->saddr = saddr;
152 iph->protocol = sk->sk_protocol;
153 if (ip_dont_fragment(sk, &rt->dst)) {
154 iph->frag_off = htons(IP_DF);
155 iph->id = 0;
156 } else {
157 iph->frag_off = 0;
158 __ip_select_ident(net, iph, 1);
159 }
160
161 if (opt && opt->opt.optlen) {
162 iph->ihl += opt->opt.optlen>>2;
163 ip_options_build(skb, &opt->opt, daddr, rt, 0);
164 }
165
166 skb->priority = sk->sk_priority;
167 skb->mark = sk->sk_mark;
168
169 /* Send it out. */
170 return ip_local_out(net, skb->sk, skb);
171 }
172 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
173
174 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
175 {
176 struct dst_entry *dst = skb_dst(skb);
177 struct rtable *rt = (struct rtable *)dst;
178 struct net_device *dev = dst->dev;
179 unsigned int hh_len = LL_RESERVED_SPACE(dev);
180 struct neighbour *neigh;
181 u32 nexthop;
182
183 if (rt->rt_type == RTN_MULTICAST) {
184 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
185 } else if (rt->rt_type == RTN_BROADCAST)
186 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
187
188 /* Be paranoid, rather than too clever. */
189 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
190 struct sk_buff *skb2;
191
192 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
193 if (!skb2) {
194 kfree_skb(skb);
195 return -ENOMEM;
196 }
197 if (skb->sk)
198 skb_set_owner_w(skb2, skb->sk);
199 consume_skb(skb);
200 skb = skb2;
201 }
202
203 rcu_read_lock_bh();
204 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
205 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
206 if (unlikely(!neigh))
207 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
208 if (!IS_ERR(neigh)) {
209 int res = dst_neigh_output(dst, neigh, skb);
210
211 rcu_read_unlock_bh();
212 return res;
213 }
214 rcu_read_unlock_bh();
215
216 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
217 __func__);
218 kfree_skb(skb);
219 return -EINVAL;
220 }
221
222 static int ip_finish_output_gso(struct net *net, struct sock *sk,
223 struct sk_buff *skb, unsigned int mtu)
224 {
225 netdev_features_t features;
226 struct sk_buff *segs;
227 int ret = 0;
228
229 /* common case: locally created skb or seglen is <= mtu */
230 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
231 skb_gso_network_seglen(skb) <= mtu)
232 return ip_finish_output2(net, sk, skb);
233
234 /* Slowpath - GSO segment length is exceeding the dst MTU.
235 *
236 * This can happen in two cases:
237 * 1) TCP GRO packet, DF bit not set
238 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
239 * from host network stack.
240 */
241 features = netif_skb_features(skb);
242 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
243 if (IS_ERR_OR_NULL(segs)) {
244 kfree_skb(skb);
245 return -ENOMEM;
246 }
247
248 consume_skb(skb);
249
250 do {
251 struct sk_buff *nskb = segs->next;
252 int err;
253
254 segs->next = NULL;
255 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
256
257 if (err && ret == 0)
258 ret = err;
259 segs = nskb;
260 } while (segs);
261
262 return ret;
263 }
264
265 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
266 {
267 unsigned int mtu;
268
269 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
270 /* Policy lookup after SNAT yielded a new policy */
271 if (skb_dst(skb)->xfrm) {
272 IPCB(skb)->flags |= IPSKB_REROUTED;
273 return dst_output(net, sk, skb);
274 }
275 #endif
276 mtu = ip_skb_dst_mtu(skb);
277 if (skb_is_gso(skb))
278 return ip_finish_output_gso(net, sk, skb, mtu);
279
280 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
281 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
282
283 return ip_finish_output2(net, sk, skb);
284 }
285
286 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
287 {
288 struct rtable *rt = skb_rtable(skb);
289 struct net_device *dev = rt->dst.dev;
290
291 /*
292 * If the indicated interface is up and running, send the packet.
293 */
294 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
295
296 skb->dev = dev;
297 skb->protocol = htons(ETH_P_IP);
298
299 /*
300 * Multicasts are looped back for other local users
301 */
302
303 if (rt->rt_flags&RTCF_MULTICAST) {
304 if (sk_mc_loop(sk)
305 #ifdef CONFIG_IP_MROUTE
306 /* Small optimization: do not loopback not local frames,
307 which returned after forwarding; they will be dropped
308 by ip_mr_input in any case.
309 Note, that local frames are looped back to be delivered
310 to local recipients.
311
312 This check is duplicated in ip_mr_input at the moment.
313 */
314 &&
315 ((rt->rt_flags & RTCF_LOCAL) ||
316 !(IPCB(skb)->flags & IPSKB_FORWARDED))
317 #endif
318 ) {
319 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
320 if (newskb)
321 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
322 net, sk, newskb, NULL, newskb->dev,
323 dev_loopback_xmit);
324 }
325
326 /* Multicasts with ttl 0 must not go beyond the host */
327
328 if (ip_hdr(skb)->ttl == 0) {
329 kfree_skb(skb);
330 return 0;
331 }
332 }
333
334 if (rt->rt_flags&RTCF_BROADCAST) {
335 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
336 if (newskb)
337 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
338 net, sk, newskb, NULL, newskb->dev,
339 dev_loopback_xmit);
340 }
341
342 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
343 net, sk, skb, NULL, skb->dev,
344 ip_finish_output,
345 !(IPCB(skb)->flags & IPSKB_REROUTED));
346 }
347
348 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
349 {
350 struct net_device *dev = skb_dst(skb)->dev;
351
352 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
353
354 skb->dev = dev;
355 skb->protocol = htons(ETH_P_IP);
356
357 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
358 net, sk, skb, NULL, dev,
359 ip_finish_output,
360 !(IPCB(skb)->flags & IPSKB_REROUTED));
361 }
362
363 /*
364 * copy saddr and daddr, possibly using 64bit load/stores
365 * Equivalent to :
366 * iph->saddr = fl4->saddr;
367 * iph->daddr = fl4->daddr;
368 */
369 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
370 {
371 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
372 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
373 memcpy(&iph->saddr, &fl4->saddr,
374 sizeof(fl4->saddr) + sizeof(fl4->daddr));
375 }
376
377 /* Note: skb->sk can be different from sk, in case of tunnels */
378 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
379 {
380 struct inet_sock *inet = inet_sk(sk);
381 struct net *net = sock_net(sk);
382 struct ip_options_rcu *inet_opt;
383 struct flowi4 *fl4;
384 struct rtable *rt;
385 struct iphdr *iph;
386 int res;
387
388 /* Skip all of this if the packet is already routed,
389 * f.e. by something like SCTP.
390 */
391 rcu_read_lock();
392 inet_opt = rcu_dereference(inet->inet_opt);
393 fl4 = &fl->u.ip4;
394 rt = skb_rtable(skb);
395 if (rt)
396 goto packet_routed;
397
398 /* Make sure we can route this packet. */
399 rt = (struct rtable *)__sk_dst_check(sk, 0);
400 if (!rt) {
401 __be32 daddr;
402
403 /* Use correct destination address if we have options. */
404 daddr = inet->inet_daddr;
405 if (inet_opt && inet_opt->opt.srr)
406 daddr = inet_opt->opt.faddr;
407
408 /* If this fails, retransmit mechanism of transport layer will
409 * keep trying until route appears or the connection times
410 * itself out.
411 */
412 rt = ip_route_output_ports(net, fl4, sk,
413 daddr, inet->inet_saddr,
414 inet->inet_dport,
415 inet->inet_sport,
416 sk->sk_protocol,
417 RT_CONN_FLAGS(sk),
418 sk->sk_bound_dev_if);
419 if (IS_ERR(rt))
420 goto no_route;
421 sk_setup_caps(sk, &rt->dst);
422 }
423 skb_dst_set_noref(skb, &rt->dst);
424
425 packet_routed:
426 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
427 goto no_route;
428
429 /* OK, we know where to send it, allocate and build IP header. */
430 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
431 skb_reset_network_header(skb);
432 iph = ip_hdr(skb);
433 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
434 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
435 iph->frag_off = htons(IP_DF);
436 else
437 iph->frag_off = 0;
438 iph->ttl = ip_select_ttl(inet, &rt->dst);
439 iph->protocol = sk->sk_protocol;
440 ip_copy_addrs(iph, fl4);
441
442 /* Transport layer set skb->h.foo itself. */
443
444 if (inet_opt && inet_opt->opt.optlen) {
445 iph->ihl += inet_opt->opt.optlen >> 2;
446 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
447 }
448
449 ip_select_ident_segs(net, skb, sk,
450 skb_shinfo(skb)->gso_segs ?: 1);
451
452 /* TODO : should we use skb->sk here instead of sk ? */
453 skb->priority = sk->sk_priority;
454 skb->mark = sk->sk_mark;
455
456 res = ip_local_out(net, sk, skb);
457 rcu_read_unlock();
458 return res;
459
460 no_route:
461 rcu_read_unlock();
462 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
463 kfree_skb(skb);
464 return -EHOSTUNREACH;
465 }
466 EXPORT_SYMBOL(ip_queue_xmit);
467
468 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
469 {
470 to->pkt_type = from->pkt_type;
471 to->priority = from->priority;
472 to->protocol = from->protocol;
473 skb_dst_drop(to);
474 skb_dst_copy(to, from);
475 to->dev = from->dev;
476 to->mark = from->mark;
477
478 /* Copy the flags to each fragment. */
479 IPCB(to)->flags = IPCB(from)->flags;
480
481 #ifdef CONFIG_NET_SCHED
482 to->tc_index = from->tc_index;
483 #endif
484 nf_copy(to, from);
485 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
486 to->ipvs_property = from->ipvs_property;
487 #endif
488 skb_copy_secmark(to, from);
489 }
490
491 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
492 unsigned int mtu,
493 int (*output)(struct net *, struct sock *, struct sk_buff *))
494 {
495 struct iphdr *iph = ip_hdr(skb);
496
497 if ((iph->frag_off & htons(IP_DF)) == 0)
498 return ip_do_fragment(net, sk, skb, output);
499
500 if (unlikely(!skb->ignore_df ||
501 (IPCB(skb)->frag_max_size &&
502 IPCB(skb)->frag_max_size > mtu))) {
503 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
504 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
505 htonl(mtu));
506 kfree_skb(skb);
507 return -EMSGSIZE;
508 }
509
510 return ip_do_fragment(net, sk, skb, output);
511 }
512
513 /*
514 * This IP datagram is too large to be sent in one piece. Break it up into
515 * smaller pieces (each of size equal to IP header plus
516 * a block of the data of the original IP data part) that will yet fit in a
517 * single device frame, and queue such a frame for sending.
518 */
519
520 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
521 int (*output)(struct net *, struct sock *, struct sk_buff *))
522 {
523 struct iphdr *iph;
524 int ptr;
525 struct net_device *dev;
526 struct sk_buff *skb2;
527 unsigned int mtu, hlen, left, len, ll_rs;
528 int offset;
529 __be16 not_last_frag;
530 struct rtable *rt = skb_rtable(skb);
531 int err = 0;
532
533 dev = rt->dst.dev;
534
535 /* for offloaded checksums cleanup checksum before fragmentation */
536 if (skb->ip_summed == CHECKSUM_PARTIAL &&
537 (err = skb_checksum_help(skb)))
538 goto fail;
539
540 /*
541 * Point into the IP datagram header.
542 */
543
544 iph = ip_hdr(skb);
545
546 mtu = ip_skb_dst_mtu(skb);
547 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
548 mtu = IPCB(skb)->frag_max_size;
549
550 /*
551 * Setup starting values.
552 */
553
554 hlen = iph->ihl * 4;
555 mtu = mtu - hlen; /* Size of data space */
556 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
557
558 /* When frag_list is given, use it. First, check its validity:
559 * some transformers could create wrong frag_list or break existing
560 * one, it is not prohibited. In this case fall back to copying.
561 *
562 * LATER: this step can be merged to real generation of fragments,
563 * we can switch to copy when see the first bad fragment.
564 */
565 if (skb_has_frag_list(skb)) {
566 struct sk_buff *frag, *frag2;
567 int first_len = skb_pagelen(skb);
568
569 if (first_len - hlen > mtu ||
570 ((first_len - hlen) & 7) ||
571 ip_is_fragment(iph) ||
572 skb_cloned(skb))
573 goto slow_path;
574
575 skb_walk_frags(skb, frag) {
576 /* Correct geometry. */
577 if (frag->len > mtu ||
578 ((frag->len & 7) && frag->next) ||
579 skb_headroom(frag) < hlen)
580 goto slow_path_clean;
581
582 /* Partially cloned skb? */
583 if (skb_shared(frag))
584 goto slow_path_clean;
585
586 BUG_ON(frag->sk);
587 if (skb->sk) {
588 frag->sk = skb->sk;
589 frag->destructor = sock_wfree;
590 }
591 skb->truesize -= frag->truesize;
592 }
593
594 /* Everything is OK. Generate! */
595
596 err = 0;
597 offset = 0;
598 frag = skb_shinfo(skb)->frag_list;
599 skb_frag_list_init(skb);
600 skb->data_len = first_len - skb_headlen(skb);
601 skb->len = first_len;
602 iph->tot_len = htons(first_len);
603 iph->frag_off = htons(IP_MF);
604 ip_send_check(iph);
605
606 for (;;) {
607 /* Prepare header of the next frame,
608 * before previous one went down. */
609 if (frag) {
610 frag->ip_summed = CHECKSUM_NONE;
611 skb_reset_transport_header(frag);
612 __skb_push(frag, hlen);
613 skb_reset_network_header(frag);
614 memcpy(skb_network_header(frag), iph, hlen);
615 iph = ip_hdr(frag);
616 iph->tot_len = htons(frag->len);
617 ip_copy_metadata(frag, skb);
618 if (offset == 0)
619 ip_options_fragment(frag);
620 offset += skb->len - hlen;
621 iph->frag_off = htons(offset>>3);
622 if (frag->next)
623 iph->frag_off |= htons(IP_MF);
624 /* Ready, complete checksum */
625 ip_send_check(iph);
626 }
627
628 err = output(net, sk, skb);
629
630 if (!err)
631 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
632 if (err || !frag)
633 break;
634
635 skb = frag;
636 frag = skb->next;
637 skb->next = NULL;
638 }
639
640 if (err == 0) {
641 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
642 return 0;
643 }
644
645 while (frag) {
646 skb = frag->next;
647 kfree_skb(frag);
648 frag = skb;
649 }
650 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
651 return err;
652
653 slow_path_clean:
654 skb_walk_frags(skb, frag2) {
655 if (frag2 == frag)
656 break;
657 frag2->sk = NULL;
658 frag2->destructor = NULL;
659 skb->truesize += frag2->truesize;
660 }
661 }
662
663 slow_path:
664 iph = ip_hdr(skb);
665
666 left = skb->len - hlen; /* Space per frame */
667 ptr = hlen; /* Where to start from */
668
669 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
670
671 /*
672 * Fragment the datagram.
673 */
674
675 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
676 not_last_frag = iph->frag_off & htons(IP_MF);
677
678 /*
679 * Keep copying data until we run out.
680 */
681
682 while (left > 0) {
683 len = left;
684 /* IF: it doesn't fit, use 'mtu' - the data space left */
685 if (len > mtu)
686 len = mtu;
687 /* IF: we are not sending up to and including the packet end
688 then align the next start on an eight byte boundary */
689 if (len < left) {
690 len &= ~7;
691 }
692
693 /* Allocate buffer */
694 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
695 if (!skb2) {
696 err = -ENOMEM;
697 goto fail;
698 }
699
700 /*
701 * Set up data on packet
702 */
703
704 ip_copy_metadata(skb2, skb);
705 skb_reserve(skb2, ll_rs);
706 skb_put(skb2, len + hlen);
707 skb_reset_network_header(skb2);
708 skb2->transport_header = skb2->network_header + hlen;
709
710 /*
711 * Charge the memory for the fragment to any owner
712 * it might possess
713 */
714
715 if (skb->sk)
716 skb_set_owner_w(skb2, skb->sk);
717
718 /*
719 * Copy the packet header into the new buffer.
720 */
721
722 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
723
724 /*
725 * Copy a block of the IP datagram.
726 */
727 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
728 BUG();
729 left -= len;
730
731 /*
732 * Fill in the new header fields.
733 */
734 iph = ip_hdr(skb2);
735 iph->frag_off = htons((offset >> 3));
736
737 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
738 iph->frag_off |= htons(IP_DF);
739
740 /* ANK: dirty, but effective trick. Upgrade options only if
741 * the segment to be fragmented was THE FIRST (otherwise,
742 * options are already fixed) and make it ONCE
743 * on the initial skb, so that all the following fragments
744 * will inherit fixed options.
745 */
746 if (offset == 0)
747 ip_options_fragment(skb);
748
749 /*
750 * Added AC : If we are fragmenting a fragment that's not the
751 * last fragment then keep MF on each bit
752 */
753 if (left > 0 || not_last_frag)
754 iph->frag_off |= htons(IP_MF);
755 ptr += len;
756 offset += len;
757
758 /*
759 * Put this fragment into the sending queue.
760 */
761 iph->tot_len = htons(len + hlen);
762
763 ip_send_check(iph);
764
765 err = output(net, sk, skb2);
766 if (err)
767 goto fail;
768
769 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
770 }
771 consume_skb(skb);
772 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
773 return err;
774
775 fail:
776 kfree_skb(skb);
777 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
778 return err;
779 }
780 EXPORT_SYMBOL(ip_do_fragment);
781
782 int
783 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
784 {
785 struct msghdr *msg = from;
786
787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
788 if (copy_from_iter(to, len, &msg->msg_iter) != len)
789 return -EFAULT;
790 } else {
791 __wsum csum = 0;
792 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
793 return -EFAULT;
794 skb->csum = csum_block_add(skb->csum, csum, odd);
795 }
796 return 0;
797 }
798 EXPORT_SYMBOL(ip_generic_getfrag);
799
800 static inline __wsum
801 csum_page(struct page *page, int offset, int copy)
802 {
803 char *kaddr;
804 __wsum csum;
805 kaddr = kmap(page);
806 csum = csum_partial(kaddr + offset, copy, 0);
807 kunmap(page);
808 return csum;
809 }
810
811 static inline int ip_ufo_append_data(struct sock *sk,
812 struct sk_buff_head *queue,
813 int getfrag(void *from, char *to, int offset, int len,
814 int odd, struct sk_buff *skb),
815 void *from, int length, int hh_len, int fragheaderlen,
816 int transhdrlen, int maxfraglen, unsigned int flags)
817 {
818 struct sk_buff *skb;
819 int err;
820
821 /* There is support for UDP fragmentation offload by network
822 * device, so create one single skb packet containing complete
823 * udp datagram
824 */
825 skb = skb_peek_tail(queue);
826 if (!skb) {
827 skb = sock_alloc_send_skb(sk,
828 hh_len + fragheaderlen + transhdrlen + 20,
829 (flags & MSG_DONTWAIT), &err);
830
831 if (!skb)
832 return err;
833
834 /* reserve space for Hardware header */
835 skb_reserve(skb, hh_len);
836
837 /* create space for UDP/IP header */
838 skb_put(skb, fragheaderlen + transhdrlen);
839
840 /* initialize network header pointer */
841 skb_reset_network_header(skb);
842
843 /* initialize protocol header pointer */
844 skb->transport_header = skb->network_header + fragheaderlen;
845
846 skb->csum = 0;
847
848 __skb_queue_tail(queue, skb);
849 } else if (skb_is_gso(skb)) {
850 goto append;
851 }
852
853 skb->ip_summed = CHECKSUM_PARTIAL;
854 /* specify the length of each IP datagram fragment */
855 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
856 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
857
858 append:
859 return skb_append_datato_frags(sk, skb, getfrag, from,
860 (length - transhdrlen));
861 }
862
863 static int __ip_append_data(struct sock *sk,
864 struct flowi4 *fl4,
865 struct sk_buff_head *queue,
866 struct inet_cork *cork,
867 struct page_frag *pfrag,
868 int getfrag(void *from, char *to, int offset,
869 int len, int odd, struct sk_buff *skb),
870 void *from, int length, int transhdrlen,
871 unsigned int flags)
872 {
873 struct inet_sock *inet = inet_sk(sk);
874 struct sk_buff *skb;
875
876 struct ip_options *opt = cork->opt;
877 int hh_len;
878 int exthdrlen;
879 int mtu;
880 int copy;
881 int err;
882 int offset = 0;
883 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
884 int csummode = CHECKSUM_NONE;
885 struct rtable *rt = (struct rtable *)cork->dst;
886 u32 tskey = 0;
887
888 skb = skb_peek_tail(queue);
889
890 exthdrlen = !skb ? rt->dst.header_len : 0;
891 mtu = cork->fragsize;
892 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
893 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
894 tskey = sk->sk_tskey++;
895
896 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
897
898 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
899 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
900 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
901
902 if (cork->length + length > maxnonfragsize - fragheaderlen) {
903 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
904 mtu - (opt ? opt->optlen : 0));
905 return -EMSGSIZE;
906 }
907
908 /*
909 * transhdrlen > 0 means that this is the first fragment and we wish
910 * it won't be fragmented in the future.
911 */
912 if (transhdrlen &&
913 length + fragheaderlen <= mtu &&
914 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
915 !(flags & MSG_MORE) &&
916 !exthdrlen)
917 csummode = CHECKSUM_PARTIAL;
918
919 cork->length += length;
920 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
921 (sk->sk_protocol == IPPROTO_UDP) &&
922 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
923 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
924 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
925 hh_len, fragheaderlen, transhdrlen,
926 maxfraglen, flags);
927 if (err)
928 goto error;
929 return 0;
930 }
931
932 /* So, what's going on in the loop below?
933 *
934 * We use calculated fragment length to generate chained skb,
935 * each of segments is IP fragment ready for sending to network after
936 * adding appropriate IP header.
937 */
938
939 if (!skb)
940 goto alloc_new_skb;
941
942 while (length > 0) {
943 /* Check if the remaining data fits into current packet. */
944 copy = mtu - skb->len;
945 if (copy < length)
946 copy = maxfraglen - skb->len;
947 if (copy <= 0) {
948 char *data;
949 unsigned int datalen;
950 unsigned int fraglen;
951 unsigned int fraggap;
952 unsigned int alloclen;
953 struct sk_buff *skb_prev;
954 alloc_new_skb:
955 skb_prev = skb;
956 if (skb_prev)
957 fraggap = skb_prev->len - maxfraglen;
958 else
959 fraggap = 0;
960
961 /*
962 * If remaining data exceeds the mtu,
963 * we know we need more fragment(s).
964 */
965 datalen = length + fraggap;
966 if (datalen > mtu - fragheaderlen)
967 datalen = maxfraglen - fragheaderlen;
968 fraglen = datalen + fragheaderlen;
969
970 if ((flags & MSG_MORE) &&
971 !(rt->dst.dev->features&NETIF_F_SG))
972 alloclen = mtu;
973 else
974 alloclen = fraglen;
975
976 alloclen += exthdrlen;
977
978 /* The last fragment gets additional space at tail.
979 * Note, with MSG_MORE we overallocate on fragments,
980 * because we have no idea what fragment will be
981 * the last.
982 */
983 if (datalen == length + fraggap)
984 alloclen += rt->dst.trailer_len;
985
986 if (transhdrlen) {
987 skb = sock_alloc_send_skb(sk,
988 alloclen + hh_len + 15,
989 (flags & MSG_DONTWAIT), &err);
990 } else {
991 skb = NULL;
992 if (atomic_read(&sk->sk_wmem_alloc) <=
993 2 * sk->sk_sndbuf)
994 skb = sock_wmalloc(sk,
995 alloclen + hh_len + 15, 1,
996 sk->sk_allocation);
997 if (unlikely(!skb))
998 err = -ENOBUFS;
999 }
1000 if (!skb)
1001 goto error;
1002
1003 /*
1004 * Fill in the control structures
1005 */
1006 skb->ip_summed = csummode;
1007 skb->csum = 0;
1008 skb_reserve(skb, hh_len);
1009
1010 /* only the initial fragment is time stamped */
1011 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1012 cork->tx_flags = 0;
1013 skb_shinfo(skb)->tskey = tskey;
1014 tskey = 0;
1015
1016 /*
1017 * Find where to start putting bytes.
1018 */
1019 data = skb_put(skb, fraglen + exthdrlen);
1020 skb_set_network_header(skb, exthdrlen);
1021 skb->transport_header = (skb->network_header +
1022 fragheaderlen);
1023 data += fragheaderlen + exthdrlen;
1024
1025 if (fraggap) {
1026 skb->csum = skb_copy_and_csum_bits(
1027 skb_prev, maxfraglen,
1028 data + transhdrlen, fraggap, 0);
1029 skb_prev->csum = csum_sub(skb_prev->csum,
1030 skb->csum);
1031 data += fraggap;
1032 pskb_trim_unique(skb_prev, maxfraglen);
1033 }
1034
1035 copy = datalen - transhdrlen - fraggap;
1036 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1037 err = -EFAULT;
1038 kfree_skb(skb);
1039 goto error;
1040 }
1041
1042 offset += copy;
1043 length -= datalen - fraggap;
1044 transhdrlen = 0;
1045 exthdrlen = 0;
1046 csummode = CHECKSUM_NONE;
1047
1048 /*
1049 * Put the packet on the pending queue.
1050 */
1051 __skb_queue_tail(queue, skb);
1052 continue;
1053 }
1054
1055 if (copy > length)
1056 copy = length;
1057
1058 if (!(rt->dst.dev->features&NETIF_F_SG)) {
1059 unsigned int off;
1060
1061 off = skb->len;
1062 if (getfrag(from, skb_put(skb, copy),
1063 offset, copy, off, skb) < 0) {
1064 __skb_trim(skb, off);
1065 err = -EFAULT;
1066 goto error;
1067 }
1068 } else {
1069 int i = skb_shinfo(skb)->nr_frags;
1070
1071 err = -ENOMEM;
1072 if (!sk_page_frag_refill(sk, pfrag))
1073 goto error;
1074
1075 if (!skb_can_coalesce(skb, i, pfrag->page,
1076 pfrag->offset)) {
1077 err = -EMSGSIZE;
1078 if (i == MAX_SKB_FRAGS)
1079 goto error;
1080
1081 __skb_fill_page_desc(skb, i, pfrag->page,
1082 pfrag->offset, 0);
1083 skb_shinfo(skb)->nr_frags = ++i;
1084 get_page(pfrag->page);
1085 }
1086 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1087 if (getfrag(from,
1088 page_address(pfrag->page) + pfrag->offset,
1089 offset, copy, skb->len, skb) < 0)
1090 goto error_efault;
1091
1092 pfrag->offset += copy;
1093 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1094 skb->len += copy;
1095 skb->data_len += copy;
1096 skb->truesize += copy;
1097 atomic_add(copy, &sk->sk_wmem_alloc);
1098 }
1099 offset += copy;
1100 length -= copy;
1101 }
1102
1103 return 0;
1104
1105 error_efault:
1106 err = -EFAULT;
1107 error:
1108 cork->length -= length;
1109 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1110 return err;
1111 }
1112
1113 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1114 struct ipcm_cookie *ipc, struct rtable **rtp)
1115 {
1116 struct ip_options_rcu *opt;
1117 struct rtable *rt;
1118
1119 /*
1120 * setup for corking.
1121 */
1122 opt = ipc->opt;
1123 if (opt) {
1124 if (!cork->opt) {
1125 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1126 sk->sk_allocation);
1127 if (unlikely(!cork->opt))
1128 return -ENOBUFS;
1129 }
1130 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1131 cork->flags |= IPCORK_OPT;
1132 cork->addr = ipc->addr;
1133 }
1134 rt = *rtp;
1135 if (unlikely(!rt))
1136 return -EFAULT;
1137 /*
1138 * We steal reference to this route, caller should not release it
1139 */
1140 *rtp = NULL;
1141 cork->fragsize = ip_sk_use_pmtu(sk) ?
1142 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1143 cork->dst = &rt->dst;
1144 cork->length = 0;
1145 cork->ttl = ipc->ttl;
1146 cork->tos = ipc->tos;
1147 cork->priority = ipc->priority;
1148 cork->tx_flags = ipc->tx_flags;
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * ip_append_data() and ip_append_page() can make one large IP datagram
1155 * from many pieces of data. Each pieces will be holded on the socket
1156 * until ip_push_pending_frames() is called. Each piece can be a page
1157 * or non-page data.
1158 *
1159 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1160 * this interface potentially.
1161 *
1162 * LATER: length must be adjusted by pad at tail, when it is required.
1163 */
1164 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1165 int getfrag(void *from, char *to, int offset, int len,
1166 int odd, struct sk_buff *skb),
1167 void *from, int length, int transhdrlen,
1168 struct ipcm_cookie *ipc, struct rtable **rtp,
1169 unsigned int flags)
1170 {
1171 struct inet_sock *inet = inet_sk(sk);
1172 int err;
1173
1174 if (flags&MSG_PROBE)
1175 return 0;
1176
1177 if (skb_queue_empty(&sk->sk_write_queue)) {
1178 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1179 if (err)
1180 return err;
1181 } else {
1182 transhdrlen = 0;
1183 }
1184
1185 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1186 sk_page_frag(sk), getfrag,
1187 from, length, transhdrlen, flags);
1188 }
1189
1190 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1191 int offset, size_t size, int flags)
1192 {
1193 struct inet_sock *inet = inet_sk(sk);
1194 struct sk_buff *skb;
1195 struct rtable *rt;
1196 struct ip_options *opt = NULL;
1197 struct inet_cork *cork;
1198 int hh_len;
1199 int mtu;
1200 int len;
1201 int err;
1202 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1203
1204 if (inet->hdrincl)
1205 return -EPERM;
1206
1207 if (flags&MSG_PROBE)
1208 return 0;
1209
1210 if (skb_queue_empty(&sk->sk_write_queue))
1211 return -EINVAL;
1212
1213 cork = &inet->cork.base;
1214 rt = (struct rtable *)cork->dst;
1215 if (cork->flags & IPCORK_OPT)
1216 opt = cork->opt;
1217
1218 if (!(rt->dst.dev->features&NETIF_F_SG))
1219 return -EOPNOTSUPP;
1220
1221 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1222 mtu = cork->fragsize;
1223
1224 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1225 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1226 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1227
1228 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1229 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1230 mtu - (opt ? opt->optlen : 0));
1231 return -EMSGSIZE;
1232 }
1233
1234 skb = skb_peek_tail(&sk->sk_write_queue);
1235 if (!skb)
1236 return -EINVAL;
1237
1238 cork->length += size;
1239 if ((size + skb->len > mtu) &&
1240 (sk->sk_protocol == IPPROTO_UDP) &&
1241 (rt->dst.dev->features & NETIF_F_UFO)) {
1242 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1243 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1244 }
1245
1246 while (size > 0) {
1247 if (skb_is_gso(skb)) {
1248 len = size;
1249 } else {
1250
1251 /* Check if the remaining data fits into current packet. */
1252 len = mtu - skb->len;
1253 if (len < size)
1254 len = maxfraglen - skb->len;
1255 }
1256 if (len <= 0) {
1257 struct sk_buff *skb_prev;
1258 int alloclen;
1259
1260 skb_prev = skb;
1261 fraggap = skb_prev->len - maxfraglen;
1262
1263 alloclen = fragheaderlen + hh_len + fraggap + 15;
1264 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1265 if (unlikely(!skb)) {
1266 err = -ENOBUFS;
1267 goto error;
1268 }
1269
1270 /*
1271 * Fill in the control structures
1272 */
1273 skb->ip_summed = CHECKSUM_NONE;
1274 skb->csum = 0;
1275 skb_reserve(skb, hh_len);
1276
1277 /*
1278 * Find where to start putting bytes.
1279 */
1280 skb_put(skb, fragheaderlen + fraggap);
1281 skb_reset_network_header(skb);
1282 skb->transport_header = (skb->network_header +
1283 fragheaderlen);
1284 if (fraggap) {
1285 skb->csum = skb_copy_and_csum_bits(skb_prev,
1286 maxfraglen,
1287 skb_transport_header(skb),
1288 fraggap, 0);
1289 skb_prev->csum = csum_sub(skb_prev->csum,
1290 skb->csum);
1291 pskb_trim_unique(skb_prev, maxfraglen);
1292 }
1293
1294 /*
1295 * Put the packet on the pending queue.
1296 */
1297 __skb_queue_tail(&sk->sk_write_queue, skb);
1298 continue;
1299 }
1300
1301 if (len > size)
1302 len = size;
1303
1304 if (skb_append_pagefrags(skb, page, offset, len)) {
1305 err = -EMSGSIZE;
1306 goto error;
1307 }
1308
1309 if (skb->ip_summed == CHECKSUM_NONE) {
1310 __wsum csum;
1311 csum = csum_page(page, offset, len);
1312 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1313 }
1314
1315 skb->len += len;
1316 skb->data_len += len;
1317 skb->truesize += len;
1318 atomic_add(len, &sk->sk_wmem_alloc);
1319 offset += len;
1320 size -= len;
1321 }
1322 return 0;
1323
1324 error:
1325 cork->length -= size;
1326 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1327 return err;
1328 }
1329
1330 static void ip_cork_release(struct inet_cork *cork)
1331 {
1332 cork->flags &= ~IPCORK_OPT;
1333 kfree(cork->opt);
1334 cork->opt = NULL;
1335 dst_release(cork->dst);
1336 cork->dst = NULL;
1337 }
1338
1339 /*
1340 * Combined all pending IP fragments on the socket as one IP datagram
1341 * and push them out.
1342 */
1343 struct sk_buff *__ip_make_skb(struct sock *sk,
1344 struct flowi4 *fl4,
1345 struct sk_buff_head *queue,
1346 struct inet_cork *cork)
1347 {
1348 struct sk_buff *skb, *tmp_skb;
1349 struct sk_buff **tail_skb;
1350 struct inet_sock *inet = inet_sk(sk);
1351 struct net *net = sock_net(sk);
1352 struct ip_options *opt = NULL;
1353 struct rtable *rt = (struct rtable *)cork->dst;
1354 struct iphdr *iph;
1355 __be16 df = 0;
1356 __u8 ttl;
1357
1358 skb = __skb_dequeue(queue);
1359 if (!skb)
1360 goto out;
1361 tail_skb = &(skb_shinfo(skb)->frag_list);
1362
1363 /* move skb->data to ip header from ext header */
1364 if (skb->data < skb_network_header(skb))
1365 __skb_pull(skb, skb_network_offset(skb));
1366 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1367 __skb_pull(tmp_skb, skb_network_header_len(skb));
1368 *tail_skb = tmp_skb;
1369 tail_skb = &(tmp_skb->next);
1370 skb->len += tmp_skb->len;
1371 skb->data_len += tmp_skb->len;
1372 skb->truesize += tmp_skb->truesize;
1373 tmp_skb->destructor = NULL;
1374 tmp_skb->sk = NULL;
1375 }
1376
1377 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1378 * to fragment the frame generated here. No matter, what transforms
1379 * how transforms change size of the packet, it will come out.
1380 */
1381 skb->ignore_df = ip_sk_ignore_df(sk);
1382
1383 /* DF bit is set when we want to see DF on outgoing frames.
1384 * If ignore_df is set too, we still allow to fragment this frame
1385 * locally. */
1386 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1387 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1388 (skb->len <= dst_mtu(&rt->dst) &&
1389 ip_dont_fragment(sk, &rt->dst)))
1390 df = htons(IP_DF);
1391
1392 if (cork->flags & IPCORK_OPT)
1393 opt = cork->opt;
1394
1395 if (cork->ttl != 0)
1396 ttl = cork->ttl;
1397 else if (rt->rt_type == RTN_MULTICAST)
1398 ttl = inet->mc_ttl;
1399 else
1400 ttl = ip_select_ttl(inet, &rt->dst);
1401
1402 iph = ip_hdr(skb);
1403 iph->version = 4;
1404 iph->ihl = 5;
1405 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1406 iph->frag_off = df;
1407 iph->ttl = ttl;
1408 iph->protocol = sk->sk_protocol;
1409 ip_copy_addrs(iph, fl4);
1410 ip_select_ident(net, skb, sk);
1411
1412 if (opt) {
1413 iph->ihl += opt->optlen>>2;
1414 ip_options_build(skb, opt, cork->addr, rt, 0);
1415 }
1416
1417 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1418 skb->mark = sk->sk_mark;
1419 /*
1420 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1421 * on dst refcount
1422 */
1423 cork->dst = NULL;
1424 skb_dst_set(skb, &rt->dst);
1425
1426 if (iph->protocol == IPPROTO_ICMP)
1427 icmp_out_count(net, ((struct icmphdr *)
1428 skb_transport_header(skb))->type);
1429
1430 ip_cork_release(cork);
1431 out:
1432 return skb;
1433 }
1434
1435 int ip_send_skb(struct net *net, struct sk_buff *skb)
1436 {
1437 int err;
1438
1439 err = ip_local_out(net, skb->sk, skb);
1440 if (err) {
1441 if (err > 0)
1442 err = net_xmit_errno(err);
1443 if (err)
1444 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1445 }
1446
1447 return err;
1448 }
1449
1450 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1451 {
1452 struct sk_buff *skb;
1453
1454 skb = ip_finish_skb(sk, fl4);
1455 if (!skb)
1456 return 0;
1457
1458 /* Netfilter gets whole the not fragmented skb. */
1459 return ip_send_skb(sock_net(sk), skb);
1460 }
1461
1462 /*
1463 * Throw away all pending data on the socket.
1464 */
1465 static void __ip_flush_pending_frames(struct sock *sk,
1466 struct sk_buff_head *queue,
1467 struct inet_cork *cork)
1468 {
1469 struct sk_buff *skb;
1470
1471 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1472 kfree_skb(skb);
1473
1474 ip_cork_release(cork);
1475 }
1476
1477 void ip_flush_pending_frames(struct sock *sk)
1478 {
1479 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1480 }
1481
1482 struct sk_buff *ip_make_skb(struct sock *sk,
1483 struct flowi4 *fl4,
1484 int getfrag(void *from, char *to, int offset,
1485 int len, int odd, struct sk_buff *skb),
1486 void *from, int length, int transhdrlen,
1487 struct ipcm_cookie *ipc, struct rtable **rtp,
1488 unsigned int flags)
1489 {
1490 struct inet_cork cork;
1491 struct sk_buff_head queue;
1492 int err;
1493
1494 if (flags & MSG_PROBE)
1495 return NULL;
1496
1497 __skb_queue_head_init(&queue);
1498
1499 cork.flags = 0;
1500 cork.addr = 0;
1501 cork.opt = NULL;
1502 err = ip_setup_cork(sk, &cork, ipc, rtp);
1503 if (err)
1504 return ERR_PTR(err);
1505
1506 err = __ip_append_data(sk, fl4, &queue, &cork,
1507 &current->task_frag, getfrag,
1508 from, length, transhdrlen, flags);
1509 if (err) {
1510 __ip_flush_pending_frames(sk, &queue, &cork);
1511 return ERR_PTR(err);
1512 }
1513
1514 return __ip_make_skb(sk, fl4, &queue, &cork);
1515 }
1516
1517 /*
1518 * Fetch data from kernel space and fill in checksum if needed.
1519 */
1520 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1521 int len, int odd, struct sk_buff *skb)
1522 {
1523 __wsum csum;
1524
1525 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1526 skb->csum = csum_block_add(skb->csum, csum, odd);
1527 return 0;
1528 }
1529
1530 /*
1531 * Generic function to send a packet as reply to another packet.
1532 * Used to send some TCP resets/acks so far.
1533 */
1534 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1535 const struct ip_options *sopt,
1536 __be32 daddr, __be32 saddr,
1537 const struct ip_reply_arg *arg,
1538 unsigned int len)
1539 {
1540 struct ip_options_data replyopts;
1541 struct ipcm_cookie ipc;
1542 struct flowi4 fl4;
1543 struct rtable *rt = skb_rtable(skb);
1544 struct net *net = sock_net(sk);
1545 struct sk_buff *nskb;
1546 int err;
1547 int oif;
1548
1549 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1550 return;
1551
1552 ipc.addr = daddr;
1553 ipc.opt = NULL;
1554 ipc.tx_flags = 0;
1555 ipc.ttl = 0;
1556 ipc.tos = -1;
1557
1558 if (replyopts.opt.opt.optlen) {
1559 ipc.opt = &replyopts.opt;
1560
1561 if (replyopts.opt.opt.srr)
1562 daddr = replyopts.opt.opt.faddr;
1563 }
1564
1565 oif = arg->bound_dev_if;
1566 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1567 oif = skb->skb_iif;
1568
1569 flowi4_init_output(&fl4, oif,
1570 IP4_REPLY_MARK(net, skb->mark),
1571 RT_TOS(arg->tos),
1572 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1573 ip_reply_arg_flowi_flags(arg),
1574 daddr, saddr,
1575 tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1576 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1577 rt = ip_route_output_key(net, &fl4);
1578 if (IS_ERR(rt))
1579 return;
1580
1581 inet_sk(sk)->tos = arg->tos;
1582
1583 sk->sk_priority = skb->priority;
1584 sk->sk_protocol = ip_hdr(skb)->protocol;
1585 sk->sk_bound_dev_if = arg->bound_dev_if;
1586 sk->sk_sndbuf = sysctl_wmem_default;
1587 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1588 len, 0, &ipc, &rt, MSG_DONTWAIT);
1589 if (unlikely(err)) {
1590 ip_flush_pending_frames(sk);
1591 goto out;
1592 }
1593
1594 nskb = skb_peek(&sk->sk_write_queue);
1595 if (nskb) {
1596 if (arg->csumoffset >= 0)
1597 *((__sum16 *)skb_transport_header(nskb) +
1598 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1599 arg->csum));
1600 nskb->ip_summed = CHECKSUM_NONE;
1601 ip_push_pending_frames(sk, &fl4);
1602 }
1603 out:
1604 ip_rt_put(rt);
1605 }
1606
1607 void __init ip_init(void)
1608 {
1609 ip_rt_init();
1610 inet_initpeers();
1611
1612 #if defined(CONFIG_IP_MULTICAST)
1613 igmp_mc_init();
1614 #endif
1615 }
This page took 0.061948 seconds and 6 git commands to generate.