ipv4: ERROR: code indent should use tabs where possible
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75 struct list_head list;
76 #ifdef CONFIG_NET_NS
77 struct net *net;
78 #endif
79 u32 id;
80 struct sock __rcu *mroute_sk;
81 struct timer_list ipmr_expire_timer;
82 struct list_head mfc_unres_queue;
83 struct list_head mfc_cache_array[MFC_LINES];
84 struct vif_device vif_table[MAXVIFS];
85 int maxvif;
86 atomic_t cache_resolve_queue_len;
87 bool mroute_do_assert;
88 bool mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 int mroute_reg_vif_num;
91 #endif
92 };
93
94 struct ipmr_rule {
95 struct fib_rule common;
96 };
97
98 struct ipmr_result {
99 struct mr_table *mrt;
100 };
101
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103 * Note that the changes are semaphored via rtnl_lock.
104 */
105
106 static DEFINE_RWLOCK(mrt_lock);
107
108 /*
109 * Multicast router control variables
110 */
111
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116
117 /* We return to original Alan's scheme. Hash table of resolved
118 * entries is changed only in process context and protected
119 * with weak lock mrt_lock. Queue of unresolved entries is protected
120 * with strong spinlock mfc_unres_lock.
121 *
122 * In this case data path is free of exclusive locks at all.
123 */
124
125 static struct kmem_cache *mrt_cachep __read_mostly;
126
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static void ipmr_free_table(struct mr_table *mrt);
129
130 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
131 struct sk_buff *skb, struct mfc_cache *cache,
132 int local);
133 static int ipmr_cache_report(struct mr_table *mrt,
134 struct sk_buff *pkt, vifi_t vifi, int assert);
135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
136 struct mfc_cache *c, struct rtmsg *rtm);
137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
138 int cmd);
139 static void mroute_clean_tables(struct mr_table *mrt);
140 static void ipmr_expire_process(unsigned long arg);
141
142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
143 #define ipmr_for_each_table(mrt, net) \
144 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
145
146 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
147 {
148 struct mr_table *mrt;
149
150 ipmr_for_each_table(mrt, net) {
151 if (mrt->id == id)
152 return mrt;
153 }
154 return NULL;
155 }
156
157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
158 struct mr_table **mrt)
159 {
160 struct ipmr_result res;
161 struct fib_lookup_arg arg = { .result = &res, };
162 int err;
163
164 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
165 flowi4_to_flowi(flp4), 0, &arg);
166 if (err < 0)
167 return err;
168 *mrt = res.mrt;
169 return 0;
170 }
171
172 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
173 int flags, struct fib_lookup_arg *arg)
174 {
175 struct ipmr_result *res = arg->result;
176 struct mr_table *mrt;
177
178 switch (rule->action) {
179 case FR_ACT_TO_TBL:
180 break;
181 case FR_ACT_UNREACHABLE:
182 return -ENETUNREACH;
183 case FR_ACT_PROHIBIT:
184 return -EACCES;
185 case FR_ACT_BLACKHOLE:
186 default:
187 return -EINVAL;
188 }
189
190 mrt = ipmr_get_table(rule->fr_net, rule->table);
191 if (mrt == NULL)
192 return -EAGAIN;
193 res->mrt = mrt;
194 return 0;
195 }
196
197 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
198 {
199 return 1;
200 }
201
202 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
203 FRA_GENERIC_POLICY,
204 };
205
206 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
207 struct fib_rule_hdr *frh, struct nlattr **tb)
208 {
209 return 0;
210 }
211
212 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
213 struct nlattr **tb)
214 {
215 return 1;
216 }
217
218 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
219 struct fib_rule_hdr *frh)
220 {
221 frh->dst_len = 0;
222 frh->src_len = 0;
223 frh->tos = 0;
224 return 0;
225 }
226
227 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
228 .family = RTNL_FAMILY_IPMR,
229 .rule_size = sizeof(struct ipmr_rule),
230 .addr_size = sizeof(u32),
231 .action = ipmr_rule_action,
232 .match = ipmr_rule_match,
233 .configure = ipmr_rule_configure,
234 .compare = ipmr_rule_compare,
235 .default_pref = fib_default_rule_pref,
236 .fill = ipmr_rule_fill,
237 .nlgroup = RTNLGRP_IPV4_RULE,
238 .policy = ipmr_rule_policy,
239 .owner = THIS_MODULE,
240 };
241
242 static int __net_init ipmr_rules_init(struct net *net)
243 {
244 struct fib_rules_ops *ops;
245 struct mr_table *mrt;
246 int err;
247
248 ops = fib_rules_register(&ipmr_rules_ops_template, net);
249 if (IS_ERR(ops))
250 return PTR_ERR(ops);
251
252 INIT_LIST_HEAD(&net->ipv4.mr_tables);
253
254 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
255 if (mrt == NULL) {
256 err = -ENOMEM;
257 goto err1;
258 }
259
260 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
261 if (err < 0)
262 goto err2;
263
264 net->ipv4.mr_rules_ops = ops;
265 return 0;
266
267 err2:
268 kfree(mrt);
269 err1:
270 fib_rules_unregister(ops);
271 return err;
272 }
273
274 static void __net_exit ipmr_rules_exit(struct net *net)
275 {
276 struct mr_table *mrt, *next;
277
278 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
279 list_del(&mrt->list);
280 ipmr_free_table(mrt);
281 }
282 fib_rules_unregister(net->ipv4.mr_rules_ops);
283 }
284 #else
285 #define ipmr_for_each_table(mrt, net) \
286 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
287
288 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
289 {
290 return net->ipv4.mrt;
291 }
292
293 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
294 struct mr_table **mrt)
295 {
296 *mrt = net->ipv4.mrt;
297 return 0;
298 }
299
300 static int __net_init ipmr_rules_init(struct net *net)
301 {
302 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
303 return net->ipv4.mrt ? 0 : -ENOMEM;
304 }
305
306 static void __net_exit ipmr_rules_exit(struct net *net)
307 {
308 ipmr_free_table(net->ipv4.mrt);
309 }
310 #endif
311
312 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
313 {
314 struct mr_table *mrt;
315 unsigned int i;
316
317 mrt = ipmr_get_table(net, id);
318 if (mrt != NULL)
319 return mrt;
320
321 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
322 if (mrt == NULL)
323 return NULL;
324 write_pnet(&mrt->net, net);
325 mrt->id = id;
326
327 /* Forwarding cache */
328 for (i = 0; i < MFC_LINES; i++)
329 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
330
331 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
332
333 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
334 (unsigned long)mrt);
335
336 #ifdef CONFIG_IP_PIMSM
337 mrt->mroute_reg_vif_num = -1;
338 #endif
339 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
340 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
341 #endif
342 return mrt;
343 }
344
345 static void ipmr_free_table(struct mr_table *mrt)
346 {
347 del_timer_sync(&mrt->ipmr_expire_timer);
348 mroute_clean_tables(mrt);
349 kfree(mrt);
350 }
351
352 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
353
354 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
355 {
356 struct net *net = dev_net(dev);
357
358 dev_close(dev);
359
360 dev = __dev_get_by_name(net, "tunl0");
361 if (dev) {
362 const struct net_device_ops *ops = dev->netdev_ops;
363 struct ifreq ifr;
364 struct ip_tunnel_parm p;
365
366 memset(&p, 0, sizeof(p));
367 p.iph.daddr = v->vifc_rmt_addr.s_addr;
368 p.iph.saddr = v->vifc_lcl_addr.s_addr;
369 p.iph.version = 4;
370 p.iph.ihl = 5;
371 p.iph.protocol = IPPROTO_IPIP;
372 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
373 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
374
375 if (ops->ndo_do_ioctl) {
376 mm_segment_t oldfs = get_fs();
377
378 set_fs(KERNEL_DS);
379 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
380 set_fs(oldfs);
381 }
382 }
383 }
384
385 static
386 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
387 {
388 struct net_device *dev;
389
390 dev = __dev_get_by_name(net, "tunl0");
391
392 if (dev) {
393 const struct net_device_ops *ops = dev->netdev_ops;
394 int err;
395 struct ifreq ifr;
396 struct ip_tunnel_parm p;
397 struct in_device *in_dev;
398
399 memset(&p, 0, sizeof(p));
400 p.iph.daddr = v->vifc_rmt_addr.s_addr;
401 p.iph.saddr = v->vifc_lcl_addr.s_addr;
402 p.iph.version = 4;
403 p.iph.ihl = 5;
404 p.iph.protocol = IPPROTO_IPIP;
405 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
406 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
407
408 if (ops->ndo_do_ioctl) {
409 mm_segment_t oldfs = get_fs();
410
411 set_fs(KERNEL_DS);
412 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
413 set_fs(oldfs);
414 } else {
415 err = -EOPNOTSUPP;
416 }
417 dev = NULL;
418
419 if (err == 0 &&
420 (dev = __dev_get_by_name(net, p.name)) != NULL) {
421 dev->flags |= IFF_MULTICAST;
422
423 in_dev = __in_dev_get_rtnl(dev);
424 if (in_dev == NULL)
425 goto failure;
426
427 ipv4_devconf_setall(in_dev);
428 neigh_parms_data_state_setall(in_dev->arp_parms);
429 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
430
431 if (dev_open(dev))
432 goto failure;
433 dev_hold(dev);
434 }
435 }
436 return dev;
437
438 failure:
439 /* allow the register to be completed before unregistering. */
440 rtnl_unlock();
441 rtnl_lock();
442
443 unregister_netdevice(dev);
444 return NULL;
445 }
446
447 #ifdef CONFIG_IP_PIMSM
448
449 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
450 {
451 struct net *net = dev_net(dev);
452 struct mr_table *mrt;
453 struct flowi4 fl4 = {
454 .flowi4_oif = dev->ifindex,
455 .flowi4_iif = skb->skb_iif,
456 .flowi4_mark = skb->mark,
457 };
458 int err;
459
460 err = ipmr_fib_lookup(net, &fl4, &mrt);
461 if (err < 0) {
462 kfree_skb(skb);
463 return err;
464 }
465
466 read_lock(&mrt_lock);
467 dev->stats.tx_bytes += skb->len;
468 dev->stats.tx_packets++;
469 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
470 read_unlock(&mrt_lock);
471 kfree_skb(skb);
472 return NETDEV_TX_OK;
473 }
474
475 static const struct net_device_ops reg_vif_netdev_ops = {
476 .ndo_start_xmit = reg_vif_xmit,
477 };
478
479 static void reg_vif_setup(struct net_device *dev)
480 {
481 dev->type = ARPHRD_PIMREG;
482 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
483 dev->flags = IFF_NOARP;
484 dev->netdev_ops = &reg_vif_netdev_ops,
485 dev->destructor = free_netdev;
486 dev->features |= NETIF_F_NETNS_LOCAL;
487 }
488
489 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
490 {
491 struct net_device *dev;
492 struct in_device *in_dev;
493 char name[IFNAMSIZ];
494
495 if (mrt->id == RT_TABLE_DEFAULT)
496 sprintf(name, "pimreg");
497 else
498 sprintf(name, "pimreg%u", mrt->id);
499
500 dev = alloc_netdev(0, name, reg_vif_setup);
501
502 if (dev == NULL)
503 return NULL;
504
505 dev_net_set(dev, net);
506
507 if (register_netdevice(dev)) {
508 free_netdev(dev);
509 return NULL;
510 }
511 dev->iflink = 0;
512
513 rcu_read_lock();
514 in_dev = __in_dev_get_rcu(dev);
515 if (!in_dev) {
516 rcu_read_unlock();
517 goto failure;
518 }
519
520 ipv4_devconf_setall(in_dev);
521 neigh_parms_data_state_setall(in_dev->arp_parms);
522 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
523 rcu_read_unlock();
524
525 if (dev_open(dev))
526 goto failure;
527
528 dev_hold(dev);
529
530 return dev;
531
532 failure:
533 /* allow the register to be completed before unregistering. */
534 rtnl_unlock();
535 rtnl_lock();
536
537 unregister_netdevice(dev);
538 return NULL;
539 }
540 #endif
541
542 /**
543 * vif_delete - Delete a VIF entry
544 * @notify: Set to 1, if the caller is a notifier_call
545 */
546
547 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
548 struct list_head *head)
549 {
550 struct vif_device *v;
551 struct net_device *dev;
552 struct in_device *in_dev;
553
554 if (vifi < 0 || vifi >= mrt->maxvif)
555 return -EADDRNOTAVAIL;
556
557 v = &mrt->vif_table[vifi];
558
559 write_lock_bh(&mrt_lock);
560 dev = v->dev;
561 v->dev = NULL;
562
563 if (!dev) {
564 write_unlock_bh(&mrt_lock);
565 return -EADDRNOTAVAIL;
566 }
567
568 #ifdef CONFIG_IP_PIMSM
569 if (vifi == mrt->mroute_reg_vif_num)
570 mrt->mroute_reg_vif_num = -1;
571 #endif
572
573 if (vifi + 1 == mrt->maxvif) {
574 int tmp;
575
576 for (tmp = vifi - 1; tmp >= 0; tmp--) {
577 if (VIF_EXISTS(mrt, tmp))
578 break;
579 }
580 mrt->maxvif = tmp+1;
581 }
582
583 write_unlock_bh(&mrt_lock);
584
585 dev_set_allmulti(dev, -1);
586
587 in_dev = __in_dev_get_rtnl(dev);
588 if (in_dev) {
589 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
590 inet_netconf_notify_devconf(dev_net(dev),
591 NETCONFA_MC_FORWARDING,
592 dev->ifindex, &in_dev->cnf);
593 ip_rt_multicast_event(in_dev);
594 }
595
596 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
597 unregister_netdevice_queue(dev, head);
598
599 dev_put(dev);
600 return 0;
601 }
602
603 static void ipmr_cache_free_rcu(struct rcu_head *head)
604 {
605 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
606
607 kmem_cache_free(mrt_cachep, c);
608 }
609
610 static inline void ipmr_cache_free(struct mfc_cache *c)
611 {
612 call_rcu(&c->rcu, ipmr_cache_free_rcu);
613 }
614
615 /* Destroy an unresolved cache entry, killing queued skbs
616 * and reporting error to netlink readers.
617 */
618
619 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
620 {
621 struct net *net = read_pnet(&mrt->net);
622 struct sk_buff *skb;
623 struct nlmsgerr *e;
624
625 atomic_dec(&mrt->cache_resolve_queue_len);
626
627 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
628 if (ip_hdr(skb)->version == 0) {
629 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
630 nlh->nlmsg_type = NLMSG_ERROR;
631 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
632 skb_trim(skb, nlh->nlmsg_len);
633 e = nlmsg_data(nlh);
634 e->error = -ETIMEDOUT;
635 memset(&e->msg, 0, sizeof(e->msg));
636
637 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
638 } else {
639 kfree_skb(skb);
640 }
641 }
642
643 ipmr_cache_free(c);
644 }
645
646
647 /* Timer process for the unresolved queue. */
648
649 static void ipmr_expire_process(unsigned long arg)
650 {
651 struct mr_table *mrt = (struct mr_table *)arg;
652 unsigned long now;
653 unsigned long expires;
654 struct mfc_cache *c, *next;
655
656 if (!spin_trylock(&mfc_unres_lock)) {
657 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
658 return;
659 }
660
661 if (list_empty(&mrt->mfc_unres_queue))
662 goto out;
663
664 now = jiffies;
665 expires = 10*HZ;
666
667 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
668 if (time_after(c->mfc_un.unres.expires, now)) {
669 unsigned long interval = c->mfc_un.unres.expires - now;
670 if (interval < expires)
671 expires = interval;
672 continue;
673 }
674
675 list_del(&c->list);
676 mroute_netlink_event(mrt, c, RTM_DELROUTE);
677 ipmr_destroy_unres(mrt, c);
678 }
679
680 if (!list_empty(&mrt->mfc_unres_queue))
681 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
682
683 out:
684 spin_unlock(&mfc_unres_lock);
685 }
686
687 /* Fill oifs list. It is called under write locked mrt_lock. */
688
689 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
690 unsigned char *ttls)
691 {
692 int vifi;
693
694 cache->mfc_un.res.minvif = MAXVIFS;
695 cache->mfc_un.res.maxvif = 0;
696 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
697
698 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
699 if (VIF_EXISTS(mrt, vifi) &&
700 ttls[vifi] && ttls[vifi] < 255) {
701 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
702 if (cache->mfc_un.res.minvif > vifi)
703 cache->mfc_un.res.minvif = vifi;
704 if (cache->mfc_un.res.maxvif <= vifi)
705 cache->mfc_un.res.maxvif = vifi + 1;
706 }
707 }
708 }
709
710 static int vif_add(struct net *net, struct mr_table *mrt,
711 struct vifctl *vifc, int mrtsock)
712 {
713 int vifi = vifc->vifc_vifi;
714 struct vif_device *v = &mrt->vif_table[vifi];
715 struct net_device *dev;
716 struct in_device *in_dev;
717 int err;
718
719 /* Is vif busy ? */
720 if (VIF_EXISTS(mrt, vifi))
721 return -EADDRINUSE;
722
723 switch (vifc->vifc_flags) {
724 #ifdef CONFIG_IP_PIMSM
725 case VIFF_REGISTER:
726 /*
727 * Special Purpose VIF in PIM
728 * All the packets will be sent to the daemon
729 */
730 if (mrt->mroute_reg_vif_num >= 0)
731 return -EADDRINUSE;
732 dev = ipmr_reg_vif(net, mrt);
733 if (!dev)
734 return -ENOBUFS;
735 err = dev_set_allmulti(dev, 1);
736 if (err) {
737 unregister_netdevice(dev);
738 dev_put(dev);
739 return err;
740 }
741 break;
742 #endif
743 case VIFF_TUNNEL:
744 dev = ipmr_new_tunnel(net, vifc);
745 if (!dev)
746 return -ENOBUFS;
747 err = dev_set_allmulti(dev, 1);
748 if (err) {
749 ipmr_del_tunnel(dev, vifc);
750 dev_put(dev);
751 return err;
752 }
753 break;
754
755 case VIFF_USE_IFINDEX:
756 case 0:
757 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
758 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
759 if (dev && __in_dev_get_rtnl(dev) == NULL) {
760 dev_put(dev);
761 return -EADDRNOTAVAIL;
762 }
763 } else {
764 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
765 }
766 if (!dev)
767 return -EADDRNOTAVAIL;
768 err = dev_set_allmulti(dev, 1);
769 if (err) {
770 dev_put(dev);
771 return err;
772 }
773 break;
774 default:
775 return -EINVAL;
776 }
777
778 in_dev = __in_dev_get_rtnl(dev);
779 if (!in_dev) {
780 dev_put(dev);
781 return -EADDRNOTAVAIL;
782 }
783 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
784 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
785 &in_dev->cnf);
786 ip_rt_multicast_event(in_dev);
787
788 /* Fill in the VIF structures */
789
790 v->rate_limit = vifc->vifc_rate_limit;
791 v->local = vifc->vifc_lcl_addr.s_addr;
792 v->remote = vifc->vifc_rmt_addr.s_addr;
793 v->flags = vifc->vifc_flags;
794 if (!mrtsock)
795 v->flags |= VIFF_STATIC;
796 v->threshold = vifc->vifc_threshold;
797 v->bytes_in = 0;
798 v->bytes_out = 0;
799 v->pkt_in = 0;
800 v->pkt_out = 0;
801 v->link = dev->ifindex;
802 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
803 v->link = dev->iflink;
804
805 /* And finish update writing critical data */
806 write_lock_bh(&mrt_lock);
807 v->dev = dev;
808 #ifdef CONFIG_IP_PIMSM
809 if (v->flags & VIFF_REGISTER)
810 mrt->mroute_reg_vif_num = vifi;
811 #endif
812 if (vifi+1 > mrt->maxvif)
813 mrt->maxvif = vifi+1;
814 write_unlock_bh(&mrt_lock);
815 return 0;
816 }
817
818 /* called with rcu_read_lock() */
819 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
820 __be32 origin,
821 __be32 mcastgrp)
822 {
823 int line = MFC_HASH(mcastgrp, origin);
824 struct mfc_cache *c;
825
826 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
827 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
828 return c;
829 }
830 return NULL;
831 }
832
833 /* Look for a (*,*,oif) entry */
834 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
835 int vifi)
836 {
837 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
838 struct mfc_cache *c;
839
840 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
841 if (c->mfc_origin == htonl(INADDR_ANY) &&
842 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
843 c->mfc_un.res.ttls[vifi] < 255)
844 return c;
845
846 return NULL;
847 }
848
849 /* Look for a (*,G) entry */
850 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
851 __be32 mcastgrp, int vifi)
852 {
853 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
854 struct mfc_cache *c, *proxy;
855
856 if (mcastgrp == htonl(INADDR_ANY))
857 goto skip;
858
859 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
860 if (c->mfc_origin == htonl(INADDR_ANY) &&
861 c->mfc_mcastgrp == mcastgrp) {
862 if (c->mfc_un.res.ttls[vifi] < 255)
863 return c;
864
865 /* It's ok if the vifi is part of the static tree */
866 proxy = ipmr_cache_find_any_parent(mrt,
867 c->mfc_parent);
868 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
869 return c;
870 }
871
872 skip:
873 return ipmr_cache_find_any_parent(mrt, vifi);
874 }
875
876 /*
877 * Allocate a multicast cache entry
878 */
879 static struct mfc_cache *ipmr_cache_alloc(void)
880 {
881 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
882
883 if (c)
884 c->mfc_un.res.minvif = MAXVIFS;
885 return c;
886 }
887
888 static struct mfc_cache *ipmr_cache_alloc_unres(void)
889 {
890 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
891
892 if (c) {
893 skb_queue_head_init(&c->mfc_un.unres.unresolved);
894 c->mfc_un.unres.expires = jiffies + 10*HZ;
895 }
896 return c;
897 }
898
899 /*
900 * A cache entry has gone into a resolved state from queued
901 */
902
903 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
904 struct mfc_cache *uc, struct mfc_cache *c)
905 {
906 struct sk_buff *skb;
907 struct nlmsgerr *e;
908
909 /* Play the pending entries through our router */
910
911 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
912 if (ip_hdr(skb)->version == 0) {
913 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
914
915 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
916 nlh->nlmsg_len = skb_tail_pointer(skb) -
917 (u8 *)nlh;
918 } else {
919 nlh->nlmsg_type = NLMSG_ERROR;
920 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
921 skb_trim(skb, nlh->nlmsg_len);
922 e = nlmsg_data(nlh);
923 e->error = -EMSGSIZE;
924 memset(&e->msg, 0, sizeof(e->msg));
925 }
926
927 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
928 } else {
929 ip_mr_forward(net, mrt, skb, c, 0);
930 }
931 }
932 }
933
934 /*
935 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
936 * expects the following bizarre scheme.
937 *
938 * Called under mrt_lock.
939 */
940
941 static int ipmr_cache_report(struct mr_table *mrt,
942 struct sk_buff *pkt, vifi_t vifi, int assert)
943 {
944 struct sk_buff *skb;
945 const int ihl = ip_hdrlen(pkt);
946 struct igmphdr *igmp;
947 struct igmpmsg *msg;
948 struct sock *mroute_sk;
949 int ret;
950
951 #ifdef CONFIG_IP_PIMSM
952 if (assert == IGMPMSG_WHOLEPKT)
953 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
954 else
955 #endif
956 skb = alloc_skb(128, GFP_ATOMIC);
957
958 if (!skb)
959 return -ENOBUFS;
960
961 #ifdef CONFIG_IP_PIMSM
962 if (assert == IGMPMSG_WHOLEPKT) {
963 /* Ugly, but we have no choice with this interface.
964 * Duplicate old header, fix ihl, length etc.
965 * And all this only to mangle msg->im_msgtype and
966 * to set msg->im_mbz to "mbz" :-)
967 */
968 skb_push(skb, sizeof(struct iphdr));
969 skb_reset_network_header(skb);
970 skb_reset_transport_header(skb);
971 msg = (struct igmpmsg *)skb_network_header(skb);
972 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
973 msg->im_msgtype = IGMPMSG_WHOLEPKT;
974 msg->im_mbz = 0;
975 msg->im_vif = mrt->mroute_reg_vif_num;
976 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
977 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
978 sizeof(struct iphdr));
979 } else
980 #endif
981 {
982
983 /* Copy the IP header */
984
985 skb_set_network_header(skb, skb->len);
986 skb_put(skb, ihl);
987 skb_copy_to_linear_data(skb, pkt->data, ihl);
988 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
989 msg = (struct igmpmsg *)skb_network_header(skb);
990 msg->im_vif = vifi;
991 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
992
993 /* Add our header */
994
995 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
996 igmp->type =
997 msg->im_msgtype = assert;
998 igmp->code = 0;
999 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1000 skb->transport_header = skb->network_header;
1001 }
1002
1003 rcu_read_lock();
1004 mroute_sk = rcu_dereference(mrt->mroute_sk);
1005 if (mroute_sk == NULL) {
1006 rcu_read_unlock();
1007 kfree_skb(skb);
1008 return -EINVAL;
1009 }
1010
1011 /* Deliver to mrouted */
1012
1013 ret = sock_queue_rcv_skb(mroute_sk, skb);
1014 rcu_read_unlock();
1015 if (ret < 0) {
1016 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1017 kfree_skb(skb);
1018 }
1019
1020 return ret;
1021 }
1022
1023 /*
1024 * Queue a packet for resolution. It gets locked cache entry!
1025 */
1026
1027 static int
1028 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1029 {
1030 bool found = false;
1031 int err;
1032 struct mfc_cache *c;
1033 const struct iphdr *iph = ip_hdr(skb);
1034
1035 spin_lock_bh(&mfc_unres_lock);
1036 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1037 if (c->mfc_mcastgrp == iph->daddr &&
1038 c->mfc_origin == iph->saddr) {
1039 found = true;
1040 break;
1041 }
1042 }
1043
1044 if (!found) {
1045 /* Create a new entry if allowable */
1046
1047 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1048 (c = ipmr_cache_alloc_unres()) == NULL) {
1049 spin_unlock_bh(&mfc_unres_lock);
1050
1051 kfree_skb(skb);
1052 return -ENOBUFS;
1053 }
1054
1055 /* Fill in the new cache entry */
1056
1057 c->mfc_parent = -1;
1058 c->mfc_origin = iph->saddr;
1059 c->mfc_mcastgrp = iph->daddr;
1060
1061 /* Reflect first query at mrouted. */
1062
1063 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1064 if (err < 0) {
1065 /* If the report failed throw the cache entry
1066 out - Brad Parker
1067 */
1068 spin_unlock_bh(&mfc_unres_lock);
1069
1070 ipmr_cache_free(c);
1071 kfree_skb(skb);
1072 return err;
1073 }
1074
1075 atomic_inc(&mrt->cache_resolve_queue_len);
1076 list_add(&c->list, &mrt->mfc_unres_queue);
1077 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1078
1079 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1080 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1081 }
1082
1083 /* See if we can append the packet */
1084
1085 if (c->mfc_un.unres.unresolved.qlen > 3) {
1086 kfree_skb(skb);
1087 err = -ENOBUFS;
1088 } else {
1089 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1090 err = 0;
1091 }
1092
1093 spin_unlock_bh(&mfc_unres_lock);
1094 return err;
1095 }
1096
1097 /*
1098 * MFC cache manipulation by user space mroute daemon
1099 */
1100
1101 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1102 {
1103 int line;
1104 struct mfc_cache *c, *next;
1105
1106 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1107
1108 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1109 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1110 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1111 (parent == -1 || parent == c->mfc_parent)) {
1112 list_del_rcu(&c->list);
1113 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1114 ipmr_cache_free(c);
1115 return 0;
1116 }
1117 }
1118 return -ENOENT;
1119 }
1120
1121 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1122 struct mfcctl *mfc, int mrtsock, int parent)
1123 {
1124 bool found = false;
1125 int line;
1126 struct mfc_cache *uc, *c;
1127
1128 if (mfc->mfcc_parent >= MAXVIFS)
1129 return -ENFILE;
1130
1131 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1132
1133 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1134 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1135 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1136 (parent == -1 || parent == c->mfc_parent)) {
1137 found = true;
1138 break;
1139 }
1140 }
1141
1142 if (found) {
1143 write_lock_bh(&mrt_lock);
1144 c->mfc_parent = mfc->mfcc_parent;
1145 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1146 if (!mrtsock)
1147 c->mfc_flags |= MFC_STATIC;
1148 write_unlock_bh(&mrt_lock);
1149 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1150 return 0;
1151 }
1152
1153 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1154 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1155 return -EINVAL;
1156
1157 c = ipmr_cache_alloc();
1158 if (c == NULL)
1159 return -ENOMEM;
1160
1161 c->mfc_origin = mfc->mfcc_origin.s_addr;
1162 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1163 c->mfc_parent = mfc->mfcc_parent;
1164 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1165 if (!mrtsock)
1166 c->mfc_flags |= MFC_STATIC;
1167
1168 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1169
1170 /*
1171 * Check to see if we resolved a queued list. If so we
1172 * need to send on the frames and tidy up.
1173 */
1174 found = false;
1175 spin_lock_bh(&mfc_unres_lock);
1176 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1177 if (uc->mfc_origin == c->mfc_origin &&
1178 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1179 list_del(&uc->list);
1180 atomic_dec(&mrt->cache_resolve_queue_len);
1181 found = true;
1182 break;
1183 }
1184 }
1185 if (list_empty(&mrt->mfc_unres_queue))
1186 del_timer(&mrt->ipmr_expire_timer);
1187 spin_unlock_bh(&mfc_unres_lock);
1188
1189 if (found) {
1190 ipmr_cache_resolve(net, mrt, uc, c);
1191 ipmr_cache_free(uc);
1192 }
1193 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1194 return 0;
1195 }
1196
1197 /*
1198 * Close the multicast socket, and clear the vif tables etc
1199 */
1200
1201 static void mroute_clean_tables(struct mr_table *mrt)
1202 {
1203 int i;
1204 LIST_HEAD(list);
1205 struct mfc_cache *c, *next;
1206
1207 /* Shut down all active vif entries */
1208
1209 for (i = 0; i < mrt->maxvif; i++) {
1210 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1211 vif_delete(mrt, i, 0, &list);
1212 }
1213 unregister_netdevice_many(&list);
1214
1215 /* Wipe the cache */
1216
1217 for (i = 0; i < MFC_LINES; i++) {
1218 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1219 if (c->mfc_flags & MFC_STATIC)
1220 continue;
1221 list_del_rcu(&c->list);
1222 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1223 ipmr_cache_free(c);
1224 }
1225 }
1226
1227 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1228 spin_lock_bh(&mfc_unres_lock);
1229 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1230 list_del(&c->list);
1231 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1232 ipmr_destroy_unres(mrt, c);
1233 }
1234 spin_unlock_bh(&mfc_unres_lock);
1235 }
1236 }
1237
1238 /* called from ip_ra_control(), before an RCU grace period,
1239 * we dont need to call synchronize_rcu() here
1240 */
1241 static void mrtsock_destruct(struct sock *sk)
1242 {
1243 struct net *net = sock_net(sk);
1244 struct mr_table *mrt;
1245
1246 rtnl_lock();
1247 ipmr_for_each_table(mrt, net) {
1248 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1249 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1250 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1251 NETCONFA_IFINDEX_ALL,
1252 net->ipv4.devconf_all);
1253 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1254 mroute_clean_tables(mrt);
1255 }
1256 }
1257 rtnl_unlock();
1258 }
1259
1260 /*
1261 * Socket options and virtual interface manipulation. The whole
1262 * virtual interface system is a complete heap, but unfortunately
1263 * that's how BSD mrouted happens to think. Maybe one day with a proper
1264 * MOSPF/PIM router set up we can clean this up.
1265 */
1266
1267 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1268 {
1269 int ret, parent = 0;
1270 struct vifctl vif;
1271 struct mfcctl mfc;
1272 struct net *net = sock_net(sk);
1273 struct mr_table *mrt;
1274
1275 if (sk->sk_type != SOCK_RAW ||
1276 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1277 return -EOPNOTSUPP;
1278
1279 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1280 if (mrt == NULL)
1281 return -ENOENT;
1282
1283 if (optname != MRT_INIT) {
1284 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1285 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1286 return -EACCES;
1287 }
1288
1289 switch (optname) {
1290 case MRT_INIT:
1291 if (optlen != sizeof(int))
1292 return -EINVAL;
1293
1294 rtnl_lock();
1295 if (rtnl_dereference(mrt->mroute_sk)) {
1296 rtnl_unlock();
1297 return -EADDRINUSE;
1298 }
1299
1300 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1301 if (ret == 0) {
1302 rcu_assign_pointer(mrt->mroute_sk, sk);
1303 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1304 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1305 NETCONFA_IFINDEX_ALL,
1306 net->ipv4.devconf_all);
1307 }
1308 rtnl_unlock();
1309 return ret;
1310 case MRT_DONE:
1311 if (sk != rcu_access_pointer(mrt->mroute_sk))
1312 return -EACCES;
1313 return ip_ra_control(sk, 0, NULL);
1314 case MRT_ADD_VIF:
1315 case MRT_DEL_VIF:
1316 if (optlen != sizeof(vif))
1317 return -EINVAL;
1318 if (copy_from_user(&vif, optval, sizeof(vif)))
1319 return -EFAULT;
1320 if (vif.vifc_vifi >= MAXVIFS)
1321 return -ENFILE;
1322 rtnl_lock();
1323 if (optname == MRT_ADD_VIF) {
1324 ret = vif_add(net, mrt, &vif,
1325 sk == rtnl_dereference(mrt->mroute_sk));
1326 } else {
1327 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1328 }
1329 rtnl_unlock();
1330 return ret;
1331
1332 /*
1333 * Manipulate the forwarding caches. These live
1334 * in a sort of kernel/user symbiosis.
1335 */
1336 case MRT_ADD_MFC:
1337 case MRT_DEL_MFC:
1338 parent = -1;
1339 case MRT_ADD_MFC_PROXY:
1340 case MRT_DEL_MFC_PROXY:
1341 if (optlen != sizeof(mfc))
1342 return -EINVAL;
1343 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1344 return -EFAULT;
1345 if (parent == 0)
1346 parent = mfc.mfcc_parent;
1347 rtnl_lock();
1348 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1349 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1350 else
1351 ret = ipmr_mfc_add(net, mrt, &mfc,
1352 sk == rtnl_dereference(mrt->mroute_sk),
1353 parent);
1354 rtnl_unlock();
1355 return ret;
1356 /*
1357 * Control PIM assert.
1358 */
1359 case MRT_ASSERT:
1360 {
1361 int v;
1362 if (optlen != sizeof(v))
1363 return -EINVAL;
1364 if (get_user(v, (int __user *)optval))
1365 return -EFAULT;
1366 mrt->mroute_do_assert = v;
1367 return 0;
1368 }
1369 #ifdef CONFIG_IP_PIMSM
1370 case MRT_PIM:
1371 {
1372 int v;
1373
1374 if (optlen != sizeof(v))
1375 return -EINVAL;
1376 if (get_user(v, (int __user *)optval))
1377 return -EFAULT;
1378 v = !!v;
1379
1380 rtnl_lock();
1381 ret = 0;
1382 if (v != mrt->mroute_do_pim) {
1383 mrt->mroute_do_pim = v;
1384 mrt->mroute_do_assert = v;
1385 }
1386 rtnl_unlock();
1387 return ret;
1388 }
1389 #endif
1390 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1391 case MRT_TABLE:
1392 {
1393 u32 v;
1394
1395 if (optlen != sizeof(u32))
1396 return -EINVAL;
1397 if (get_user(v, (u32 __user *)optval))
1398 return -EFAULT;
1399
1400 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1401 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1402 return -EINVAL;
1403
1404 rtnl_lock();
1405 ret = 0;
1406 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1407 ret = -EBUSY;
1408 } else {
1409 if (!ipmr_new_table(net, v))
1410 ret = -ENOMEM;
1411 else
1412 raw_sk(sk)->ipmr_table = v;
1413 }
1414 rtnl_unlock();
1415 return ret;
1416 }
1417 #endif
1418 /*
1419 * Spurious command, or MRT_VERSION which you cannot
1420 * set.
1421 */
1422 default:
1423 return -ENOPROTOOPT;
1424 }
1425 }
1426
1427 /*
1428 * Getsock opt support for the multicast routing system.
1429 */
1430
1431 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1432 {
1433 int olr;
1434 int val;
1435 struct net *net = sock_net(sk);
1436 struct mr_table *mrt;
1437
1438 if (sk->sk_type != SOCK_RAW ||
1439 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1440 return -EOPNOTSUPP;
1441
1442 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1443 if (mrt == NULL)
1444 return -ENOENT;
1445
1446 if (optname != MRT_VERSION &&
1447 #ifdef CONFIG_IP_PIMSM
1448 optname != MRT_PIM &&
1449 #endif
1450 optname != MRT_ASSERT)
1451 return -ENOPROTOOPT;
1452
1453 if (get_user(olr, optlen))
1454 return -EFAULT;
1455
1456 olr = min_t(unsigned int, olr, sizeof(int));
1457 if (olr < 0)
1458 return -EINVAL;
1459
1460 if (put_user(olr, optlen))
1461 return -EFAULT;
1462 if (optname == MRT_VERSION)
1463 val = 0x0305;
1464 #ifdef CONFIG_IP_PIMSM
1465 else if (optname == MRT_PIM)
1466 val = mrt->mroute_do_pim;
1467 #endif
1468 else
1469 val = mrt->mroute_do_assert;
1470 if (copy_to_user(optval, &val, olr))
1471 return -EFAULT;
1472 return 0;
1473 }
1474
1475 /*
1476 * The IP multicast ioctl support routines.
1477 */
1478
1479 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1480 {
1481 struct sioc_sg_req sr;
1482 struct sioc_vif_req vr;
1483 struct vif_device *vif;
1484 struct mfc_cache *c;
1485 struct net *net = sock_net(sk);
1486 struct mr_table *mrt;
1487
1488 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1489 if (mrt == NULL)
1490 return -ENOENT;
1491
1492 switch (cmd) {
1493 case SIOCGETVIFCNT:
1494 if (copy_from_user(&vr, arg, sizeof(vr)))
1495 return -EFAULT;
1496 if (vr.vifi >= mrt->maxvif)
1497 return -EINVAL;
1498 read_lock(&mrt_lock);
1499 vif = &mrt->vif_table[vr.vifi];
1500 if (VIF_EXISTS(mrt, vr.vifi)) {
1501 vr.icount = vif->pkt_in;
1502 vr.ocount = vif->pkt_out;
1503 vr.ibytes = vif->bytes_in;
1504 vr.obytes = vif->bytes_out;
1505 read_unlock(&mrt_lock);
1506
1507 if (copy_to_user(arg, &vr, sizeof(vr)))
1508 return -EFAULT;
1509 return 0;
1510 }
1511 read_unlock(&mrt_lock);
1512 return -EADDRNOTAVAIL;
1513 case SIOCGETSGCNT:
1514 if (copy_from_user(&sr, arg, sizeof(sr)))
1515 return -EFAULT;
1516
1517 rcu_read_lock();
1518 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1519 if (c) {
1520 sr.pktcnt = c->mfc_un.res.pkt;
1521 sr.bytecnt = c->mfc_un.res.bytes;
1522 sr.wrong_if = c->mfc_un.res.wrong_if;
1523 rcu_read_unlock();
1524
1525 if (copy_to_user(arg, &sr, sizeof(sr)))
1526 return -EFAULT;
1527 return 0;
1528 }
1529 rcu_read_unlock();
1530 return -EADDRNOTAVAIL;
1531 default:
1532 return -ENOIOCTLCMD;
1533 }
1534 }
1535
1536 #ifdef CONFIG_COMPAT
1537 struct compat_sioc_sg_req {
1538 struct in_addr src;
1539 struct in_addr grp;
1540 compat_ulong_t pktcnt;
1541 compat_ulong_t bytecnt;
1542 compat_ulong_t wrong_if;
1543 };
1544
1545 struct compat_sioc_vif_req {
1546 vifi_t vifi; /* Which iface */
1547 compat_ulong_t icount;
1548 compat_ulong_t ocount;
1549 compat_ulong_t ibytes;
1550 compat_ulong_t obytes;
1551 };
1552
1553 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1554 {
1555 struct compat_sioc_sg_req sr;
1556 struct compat_sioc_vif_req vr;
1557 struct vif_device *vif;
1558 struct mfc_cache *c;
1559 struct net *net = sock_net(sk);
1560 struct mr_table *mrt;
1561
1562 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1563 if (mrt == NULL)
1564 return -ENOENT;
1565
1566 switch (cmd) {
1567 case SIOCGETVIFCNT:
1568 if (copy_from_user(&vr, arg, sizeof(vr)))
1569 return -EFAULT;
1570 if (vr.vifi >= mrt->maxvif)
1571 return -EINVAL;
1572 read_lock(&mrt_lock);
1573 vif = &mrt->vif_table[vr.vifi];
1574 if (VIF_EXISTS(mrt, vr.vifi)) {
1575 vr.icount = vif->pkt_in;
1576 vr.ocount = vif->pkt_out;
1577 vr.ibytes = vif->bytes_in;
1578 vr.obytes = vif->bytes_out;
1579 read_unlock(&mrt_lock);
1580
1581 if (copy_to_user(arg, &vr, sizeof(vr)))
1582 return -EFAULT;
1583 return 0;
1584 }
1585 read_unlock(&mrt_lock);
1586 return -EADDRNOTAVAIL;
1587 case SIOCGETSGCNT:
1588 if (copy_from_user(&sr, arg, sizeof(sr)))
1589 return -EFAULT;
1590
1591 rcu_read_lock();
1592 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1593 if (c) {
1594 sr.pktcnt = c->mfc_un.res.pkt;
1595 sr.bytecnt = c->mfc_un.res.bytes;
1596 sr.wrong_if = c->mfc_un.res.wrong_if;
1597 rcu_read_unlock();
1598
1599 if (copy_to_user(arg, &sr, sizeof(sr)))
1600 return -EFAULT;
1601 return 0;
1602 }
1603 rcu_read_unlock();
1604 return -EADDRNOTAVAIL;
1605 default:
1606 return -ENOIOCTLCMD;
1607 }
1608 }
1609 #endif
1610
1611
1612 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1613 {
1614 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1615 struct net *net = dev_net(dev);
1616 struct mr_table *mrt;
1617 struct vif_device *v;
1618 int ct;
1619
1620 if (event != NETDEV_UNREGISTER)
1621 return NOTIFY_DONE;
1622
1623 ipmr_for_each_table(mrt, net) {
1624 v = &mrt->vif_table[0];
1625 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1626 if (v->dev == dev)
1627 vif_delete(mrt, ct, 1, NULL);
1628 }
1629 }
1630 return NOTIFY_DONE;
1631 }
1632
1633
1634 static struct notifier_block ip_mr_notifier = {
1635 .notifier_call = ipmr_device_event,
1636 };
1637
1638 /*
1639 * Encapsulate a packet by attaching a valid IPIP header to it.
1640 * This avoids tunnel drivers and other mess and gives us the speed so
1641 * important for multicast video.
1642 */
1643
1644 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1645 {
1646 struct iphdr *iph;
1647 const struct iphdr *old_iph = ip_hdr(skb);
1648
1649 skb_push(skb, sizeof(struct iphdr));
1650 skb->transport_header = skb->network_header;
1651 skb_reset_network_header(skb);
1652 iph = ip_hdr(skb);
1653
1654 iph->version = 4;
1655 iph->tos = old_iph->tos;
1656 iph->ttl = old_iph->ttl;
1657 iph->frag_off = 0;
1658 iph->daddr = daddr;
1659 iph->saddr = saddr;
1660 iph->protocol = IPPROTO_IPIP;
1661 iph->ihl = 5;
1662 iph->tot_len = htons(skb->len);
1663 ip_select_ident(skb, skb_dst(skb), NULL);
1664 ip_send_check(iph);
1665
1666 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1667 nf_reset(skb);
1668 }
1669
1670 static inline int ipmr_forward_finish(struct sk_buff *skb)
1671 {
1672 struct ip_options *opt = &(IPCB(skb)->opt);
1673
1674 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1675 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1676
1677 if (unlikely(opt->optlen))
1678 ip_forward_options(skb);
1679
1680 return dst_output(skb);
1681 }
1682
1683 /*
1684 * Processing handlers for ipmr_forward
1685 */
1686
1687 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1688 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1689 {
1690 const struct iphdr *iph = ip_hdr(skb);
1691 struct vif_device *vif = &mrt->vif_table[vifi];
1692 struct net_device *dev;
1693 struct rtable *rt;
1694 struct flowi4 fl4;
1695 int encap = 0;
1696
1697 if (vif->dev == NULL)
1698 goto out_free;
1699
1700 #ifdef CONFIG_IP_PIMSM
1701 if (vif->flags & VIFF_REGISTER) {
1702 vif->pkt_out++;
1703 vif->bytes_out += skb->len;
1704 vif->dev->stats.tx_bytes += skb->len;
1705 vif->dev->stats.tx_packets++;
1706 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1707 goto out_free;
1708 }
1709 #endif
1710
1711 if (vif->flags & VIFF_TUNNEL) {
1712 rt = ip_route_output_ports(net, &fl4, NULL,
1713 vif->remote, vif->local,
1714 0, 0,
1715 IPPROTO_IPIP,
1716 RT_TOS(iph->tos), vif->link);
1717 if (IS_ERR(rt))
1718 goto out_free;
1719 encap = sizeof(struct iphdr);
1720 } else {
1721 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1722 0, 0,
1723 IPPROTO_IPIP,
1724 RT_TOS(iph->tos), vif->link);
1725 if (IS_ERR(rt))
1726 goto out_free;
1727 }
1728
1729 dev = rt->dst.dev;
1730
1731 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1732 /* Do not fragment multicasts. Alas, IPv4 does not
1733 * allow to send ICMP, so that packets will disappear
1734 * to blackhole.
1735 */
1736
1737 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1738 ip_rt_put(rt);
1739 goto out_free;
1740 }
1741
1742 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1743
1744 if (skb_cow(skb, encap)) {
1745 ip_rt_put(rt);
1746 goto out_free;
1747 }
1748
1749 vif->pkt_out++;
1750 vif->bytes_out += skb->len;
1751
1752 skb_dst_drop(skb);
1753 skb_dst_set(skb, &rt->dst);
1754 ip_decrease_ttl(ip_hdr(skb));
1755
1756 /* FIXME: forward and output firewalls used to be called here.
1757 * What do we do with netfilter? -- RR
1758 */
1759 if (vif->flags & VIFF_TUNNEL) {
1760 ip_encap(skb, vif->local, vif->remote);
1761 /* FIXME: extra output firewall step used to be here. --RR */
1762 vif->dev->stats.tx_packets++;
1763 vif->dev->stats.tx_bytes += skb->len;
1764 }
1765
1766 IPCB(skb)->flags |= IPSKB_FORWARDED;
1767
1768 /*
1769 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1770 * not only before forwarding, but after forwarding on all output
1771 * interfaces. It is clear, if mrouter runs a multicasting
1772 * program, it should receive packets not depending to what interface
1773 * program is joined.
1774 * If we will not make it, the program will have to join on all
1775 * interfaces. On the other hand, multihoming host (or router, but
1776 * not mrouter) cannot join to more than one interface - it will
1777 * result in receiving multiple packets.
1778 */
1779 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1780 ipmr_forward_finish);
1781 return;
1782
1783 out_free:
1784 kfree_skb(skb);
1785 }
1786
1787 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1788 {
1789 int ct;
1790
1791 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1792 if (mrt->vif_table[ct].dev == dev)
1793 break;
1794 }
1795 return ct;
1796 }
1797
1798 /* "local" means that we should preserve one skb (for local delivery) */
1799
1800 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1801 struct sk_buff *skb, struct mfc_cache *cache,
1802 int local)
1803 {
1804 int psend = -1;
1805 int vif, ct;
1806 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1807
1808 vif = cache->mfc_parent;
1809 cache->mfc_un.res.pkt++;
1810 cache->mfc_un.res.bytes += skb->len;
1811
1812 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1813 struct mfc_cache *cache_proxy;
1814
1815 /* For an (*,G) entry, we only check that the incomming
1816 * interface is part of the static tree.
1817 */
1818 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1819 if (cache_proxy &&
1820 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1821 goto forward;
1822 }
1823
1824 /*
1825 * Wrong interface: drop packet and (maybe) send PIM assert.
1826 */
1827 if (mrt->vif_table[vif].dev != skb->dev) {
1828 if (rt_is_output_route(skb_rtable(skb))) {
1829 /* It is our own packet, looped back.
1830 * Very complicated situation...
1831 *
1832 * The best workaround until routing daemons will be
1833 * fixed is not to redistribute packet, if it was
1834 * send through wrong interface. It means, that
1835 * multicast applications WILL NOT work for
1836 * (S,G), which have default multicast route pointing
1837 * to wrong oif. In any case, it is not a good
1838 * idea to use multicasting applications on router.
1839 */
1840 goto dont_forward;
1841 }
1842
1843 cache->mfc_un.res.wrong_if++;
1844
1845 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1846 /* pimsm uses asserts, when switching from RPT to SPT,
1847 * so that we cannot check that packet arrived on an oif.
1848 * It is bad, but otherwise we would need to move pretty
1849 * large chunk of pimd to kernel. Ough... --ANK
1850 */
1851 (mrt->mroute_do_pim ||
1852 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1853 time_after(jiffies,
1854 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1855 cache->mfc_un.res.last_assert = jiffies;
1856 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1857 }
1858 goto dont_forward;
1859 }
1860
1861 forward:
1862 mrt->vif_table[vif].pkt_in++;
1863 mrt->vif_table[vif].bytes_in += skb->len;
1864
1865 /*
1866 * Forward the frame
1867 */
1868 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1869 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1870 if (true_vifi >= 0 &&
1871 true_vifi != cache->mfc_parent &&
1872 ip_hdr(skb)->ttl >
1873 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1874 /* It's an (*,*) entry and the packet is not coming from
1875 * the upstream: forward the packet to the upstream
1876 * only.
1877 */
1878 psend = cache->mfc_parent;
1879 goto last_forward;
1880 }
1881 goto dont_forward;
1882 }
1883 for (ct = cache->mfc_un.res.maxvif - 1;
1884 ct >= cache->mfc_un.res.minvif; ct--) {
1885 /* For (*,G) entry, don't forward to the incoming interface */
1886 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1887 ct != true_vifi) &&
1888 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1889 if (psend != -1) {
1890 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1891
1892 if (skb2)
1893 ipmr_queue_xmit(net, mrt, skb2, cache,
1894 psend);
1895 }
1896 psend = ct;
1897 }
1898 }
1899 last_forward:
1900 if (psend != -1) {
1901 if (local) {
1902 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1903
1904 if (skb2)
1905 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1906 } else {
1907 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1908 return;
1909 }
1910 }
1911
1912 dont_forward:
1913 if (!local)
1914 kfree_skb(skb);
1915 }
1916
1917 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1918 {
1919 struct rtable *rt = skb_rtable(skb);
1920 struct iphdr *iph = ip_hdr(skb);
1921 struct flowi4 fl4 = {
1922 .daddr = iph->daddr,
1923 .saddr = iph->saddr,
1924 .flowi4_tos = RT_TOS(iph->tos),
1925 .flowi4_oif = (rt_is_output_route(rt) ?
1926 skb->dev->ifindex : 0),
1927 .flowi4_iif = (rt_is_output_route(rt) ?
1928 LOOPBACK_IFINDEX :
1929 skb->dev->ifindex),
1930 .flowi4_mark = skb->mark,
1931 };
1932 struct mr_table *mrt;
1933 int err;
1934
1935 err = ipmr_fib_lookup(net, &fl4, &mrt);
1936 if (err)
1937 return ERR_PTR(err);
1938 return mrt;
1939 }
1940
1941 /*
1942 * Multicast packets for forwarding arrive here
1943 * Called with rcu_read_lock();
1944 */
1945
1946 int ip_mr_input(struct sk_buff *skb)
1947 {
1948 struct mfc_cache *cache;
1949 struct net *net = dev_net(skb->dev);
1950 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1951 struct mr_table *mrt;
1952
1953 /* Packet is looped back after forward, it should not be
1954 * forwarded second time, but still can be delivered locally.
1955 */
1956 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1957 goto dont_forward;
1958
1959 mrt = ipmr_rt_fib_lookup(net, skb);
1960 if (IS_ERR(mrt)) {
1961 kfree_skb(skb);
1962 return PTR_ERR(mrt);
1963 }
1964 if (!local) {
1965 if (IPCB(skb)->opt.router_alert) {
1966 if (ip_call_ra_chain(skb))
1967 return 0;
1968 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1969 /* IGMPv1 (and broken IGMPv2 implementations sort of
1970 * Cisco IOS <= 11.2(8)) do not put router alert
1971 * option to IGMP packets destined to routable
1972 * groups. It is very bad, because it means
1973 * that we can forward NO IGMP messages.
1974 */
1975 struct sock *mroute_sk;
1976
1977 mroute_sk = rcu_dereference(mrt->mroute_sk);
1978 if (mroute_sk) {
1979 nf_reset(skb);
1980 raw_rcv(mroute_sk, skb);
1981 return 0;
1982 }
1983 }
1984 }
1985
1986 /* already under rcu_read_lock() */
1987 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1988 if (cache == NULL) {
1989 int vif = ipmr_find_vif(mrt, skb->dev);
1990
1991 if (vif >= 0)
1992 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1993 vif);
1994 }
1995
1996 /*
1997 * No usable cache entry
1998 */
1999 if (cache == NULL) {
2000 int vif;
2001
2002 if (local) {
2003 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2004 ip_local_deliver(skb);
2005 if (skb2 == NULL)
2006 return -ENOBUFS;
2007 skb = skb2;
2008 }
2009
2010 read_lock(&mrt_lock);
2011 vif = ipmr_find_vif(mrt, skb->dev);
2012 if (vif >= 0) {
2013 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2014 read_unlock(&mrt_lock);
2015
2016 return err2;
2017 }
2018 read_unlock(&mrt_lock);
2019 kfree_skb(skb);
2020 return -ENODEV;
2021 }
2022
2023 read_lock(&mrt_lock);
2024 ip_mr_forward(net, mrt, skb, cache, local);
2025 read_unlock(&mrt_lock);
2026
2027 if (local)
2028 return ip_local_deliver(skb);
2029
2030 return 0;
2031
2032 dont_forward:
2033 if (local)
2034 return ip_local_deliver(skb);
2035 kfree_skb(skb);
2036 return 0;
2037 }
2038
2039 #ifdef CONFIG_IP_PIMSM
2040 /* called with rcu_read_lock() */
2041 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2042 unsigned int pimlen)
2043 {
2044 struct net_device *reg_dev = NULL;
2045 struct iphdr *encap;
2046
2047 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2048 /*
2049 * Check that:
2050 * a. packet is really sent to a multicast group
2051 * b. packet is not a NULL-REGISTER
2052 * c. packet is not truncated
2053 */
2054 if (!ipv4_is_multicast(encap->daddr) ||
2055 encap->tot_len == 0 ||
2056 ntohs(encap->tot_len) + pimlen > skb->len)
2057 return 1;
2058
2059 read_lock(&mrt_lock);
2060 if (mrt->mroute_reg_vif_num >= 0)
2061 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2062 read_unlock(&mrt_lock);
2063
2064 if (reg_dev == NULL)
2065 return 1;
2066
2067 skb->mac_header = skb->network_header;
2068 skb_pull(skb, (u8 *)encap - skb->data);
2069 skb_reset_network_header(skb);
2070 skb->protocol = htons(ETH_P_IP);
2071 skb->ip_summed = CHECKSUM_NONE;
2072
2073 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2074
2075 netif_rx(skb);
2076
2077 return NET_RX_SUCCESS;
2078 }
2079 #endif
2080
2081 #ifdef CONFIG_IP_PIMSM_V1
2082 /*
2083 * Handle IGMP messages of PIMv1
2084 */
2085
2086 int pim_rcv_v1(struct sk_buff *skb)
2087 {
2088 struct igmphdr *pim;
2089 struct net *net = dev_net(skb->dev);
2090 struct mr_table *mrt;
2091
2092 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2093 goto drop;
2094
2095 pim = igmp_hdr(skb);
2096
2097 mrt = ipmr_rt_fib_lookup(net, skb);
2098 if (IS_ERR(mrt))
2099 goto drop;
2100 if (!mrt->mroute_do_pim ||
2101 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2102 goto drop;
2103
2104 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2105 drop:
2106 kfree_skb(skb);
2107 }
2108 return 0;
2109 }
2110 #endif
2111
2112 #ifdef CONFIG_IP_PIMSM_V2
2113 static int pim_rcv(struct sk_buff *skb)
2114 {
2115 struct pimreghdr *pim;
2116 struct net *net = dev_net(skb->dev);
2117 struct mr_table *mrt;
2118
2119 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2120 goto drop;
2121
2122 pim = (struct pimreghdr *)skb_transport_header(skb);
2123 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2124 (pim->flags & PIM_NULL_REGISTER) ||
2125 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2126 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2127 goto drop;
2128
2129 mrt = ipmr_rt_fib_lookup(net, skb);
2130 if (IS_ERR(mrt))
2131 goto drop;
2132 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2133 drop:
2134 kfree_skb(skb);
2135 }
2136 return 0;
2137 }
2138 #endif
2139
2140 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2141 struct mfc_cache *c, struct rtmsg *rtm)
2142 {
2143 int ct;
2144 struct rtnexthop *nhp;
2145 struct nlattr *mp_attr;
2146 struct rta_mfc_stats mfcs;
2147
2148 /* If cache is unresolved, don't try to parse IIF and OIF */
2149 if (c->mfc_parent >= MAXVIFS)
2150 return -ENOENT;
2151
2152 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2153 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2154 return -EMSGSIZE;
2155
2156 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2157 return -EMSGSIZE;
2158
2159 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2160 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2161 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2162 nla_nest_cancel(skb, mp_attr);
2163 return -EMSGSIZE;
2164 }
2165
2166 nhp->rtnh_flags = 0;
2167 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2168 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2169 nhp->rtnh_len = sizeof(*nhp);
2170 }
2171 }
2172
2173 nla_nest_end(skb, mp_attr);
2174
2175 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2176 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2177 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2178 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2179 return -EMSGSIZE;
2180
2181 rtm->rtm_type = RTN_MULTICAST;
2182 return 1;
2183 }
2184
2185 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2186 __be32 saddr, __be32 daddr,
2187 struct rtmsg *rtm, int nowait)
2188 {
2189 struct mfc_cache *cache;
2190 struct mr_table *mrt;
2191 int err;
2192
2193 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2194 if (mrt == NULL)
2195 return -ENOENT;
2196
2197 rcu_read_lock();
2198 cache = ipmr_cache_find(mrt, saddr, daddr);
2199 if (cache == NULL && skb->dev) {
2200 int vif = ipmr_find_vif(mrt, skb->dev);
2201
2202 if (vif >= 0)
2203 cache = ipmr_cache_find_any(mrt, daddr, vif);
2204 }
2205 if (cache == NULL) {
2206 struct sk_buff *skb2;
2207 struct iphdr *iph;
2208 struct net_device *dev;
2209 int vif = -1;
2210
2211 if (nowait) {
2212 rcu_read_unlock();
2213 return -EAGAIN;
2214 }
2215
2216 dev = skb->dev;
2217 read_lock(&mrt_lock);
2218 if (dev)
2219 vif = ipmr_find_vif(mrt, dev);
2220 if (vif < 0) {
2221 read_unlock(&mrt_lock);
2222 rcu_read_unlock();
2223 return -ENODEV;
2224 }
2225 skb2 = skb_clone(skb, GFP_ATOMIC);
2226 if (!skb2) {
2227 read_unlock(&mrt_lock);
2228 rcu_read_unlock();
2229 return -ENOMEM;
2230 }
2231
2232 skb_push(skb2, sizeof(struct iphdr));
2233 skb_reset_network_header(skb2);
2234 iph = ip_hdr(skb2);
2235 iph->ihl = sizeof(struct iphdr) >> 2;
2236 iph->saddr = saddr;
2237 iph->daddr = daddr;
2238 iph->version = 0;
2239 err = ipmr_cache_unresolved(mrt, vif, skb2);
2240 read_unlock(&mrt_lock);
2241 rcu_read_unlock();
2242 return err;
2243 }
2244
2245 read_lock(&mrt_lock);
2246 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2247 cache->mfc_flags |= MFC_NOTIFY;
2248 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2249 read_unlock(&mrt_lock);
2250 rcu_read_unlock();
2251 return err;
2252 }
2253
2254 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2255 u32 portid, u32 seq, struct mfc_cache *c, int cmd)
2256 {
2257 struct nlmsghdr *nlh;
2258 struct rtmsg *rtm;
2259 int err;
2260
2261 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), NLM_F_MULTI);
2262 if (nlh == NULL)
2263 return -EMSGSIZE;
2264
2265 rtm = nlmsg_data(nlh);
2266 rtm->rtm_family = RTNL_FAMILY_IPMR;
2267 rtm->rtm_dst_len = 32;
2268 rtm->rtm_src_len = 32;
2269 rtm->rtm_tos = 0;
2270 rtm->rtm_table = mrt->id;
2271 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2272 goto nla_put_failure;
2273 rtm->rtm_type = RTN_MULTICAST;
2274 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2275 if (c->mfc_flags & MFC_STATIC)
2276 rtm->rtm_protocol = RTPROT_STATIC;
2277 else
2278 rtm->rtm_protocol = RTPROT_MROUTED;
2279 rtm->rtm_flags = 0;
2280
2281 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2282 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2283 goto nla_put_failure;
2284 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2285 /* do not break the dump if cache is unresolved */
2286 if (err < 0 && err != -ENOENT)
2287 goto nla_put_failure;
2288
2289 return nlmsg_end(skb, nlh);
2290
2291 nla_put_failure:
2292 nlmsg_cancel(skb, nlh);
2293 return -EMSGSIZE;
2294 }
2295
2296 static size_t mroute_msgsize(bool unresolved, int maxvif)
2297 {
2298 size_t len =
2299 NLMSG_ALIGN(sizeof(struct rtmsg))
2300 + nla_total_size(4) /* RTA_TABLE */
2301 + nla_total_size(4) /* RTA_SRC */
2302 + nla_total_size(4) /* RTA_DST */
2303 ;
2304
2305 if (!unresolved)
2306 len = len
2307 + nla_total_size(4) /* RTA_IIF */
2308 + nla_total_size(0) /* RTA_MULTIPATH */
2309 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2310 /* RTA_MFC_STATS */
2311 + nla_total_size(sizeof(struct rta_mfc_stats))
2312 ;
2313
2314 return len;
2315 }
2316
2317 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2318 int cmd)
2319 {
2320 struct net *net = read_pnet(&mrt->net);
2321 struct sk_buff *skb;
2322 int err = -ENOBUFS;
2323
2324 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2325 GFP_ATOMIC);
2326 if (skb == NULL)
2327 goto errout;
2328
2329 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd);
2330 if (err < 0)
2331 goto errout;
2332
2333 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2334 return;
2335
2336 errout:
2337 kfree_skb(skb);
2338 if (err < 0)
2339 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2340 }
2341
2342 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2343 {
2344 struct net *net = sock_net(skb->sk);
2345 struct mr_table *mrt;
2346 struct mfc_cache *mfc;
2347 unsigned int t = 0, s_t;
2348 unsigned int h = 0, s_h;
2349 unsigned int e = 0, s_e;
2350
2351 s_t = cb->args[0];
2352 s_h = cb->args[1];
2353 s_e = cb->args[2];
2354
2355 rcu_read_lock();
2356 ipmr_for_each_table(mrt, net) {
2357 if (t < s_t)
2358 goto next_table;
2359 if (t > s_t)
2360 s_h = 0;
2361 for (h = s_h; h < MFC_LINES; h++) {
2362 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2363 if (e < s_e)
2364 goto next_entry;
2365 if (ipmr_fill_mroute(mrt, skb,
2366 NETLINK_CB(cb->skb).portid,
2367 cb->nlh->nlmsg_seq,
2368 mfc, RTM_NEWROUTE) < 0)
2369 goto done;
2370 next_entry:
2371 e++;
2372 }
2373 e = s_e = 0;
2374 }
2375 spin_lock_bh(&mfc_unres_lock);
2376 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2377 if (e < s_e)
2378 goto next_entry2;
2379 if (ipmr_fill_mroute(mrt, skb,
2380 NETLINK_CB(cb->skb).portid,
2381 cb->nlh->nlmsg_seq,
2382 mfc, RTM_NEWROUTE) < 0) {
2383 spin_unlock_bh(&mfc_unres_lock);
2384 goto done;
2385 }
2386 next_entry2:
2387 e++;
2388 }
2389 spin_unlock_bh(&mfc_unres_lock);
2390 e = s_e = 0;
2391 s_h = 0;
2392 next_table:
2393 t++;
2394 }
2395 done:
2396 rcu_read_unlock();
2397
2398 cb->args[2] = e;
2399 cb->args[1] = h;
2400 cb->args[0] = t;
2401
2402 return skb->len;
2403 }
2404
2405 #ifdef CONFIG_PROC_FS
2406 /*
2407 * The /proc interfaces to multicast routing :
2408 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2409 */
2410 struct ipmr_vif_iter {
2411 struct seq_net_private p;
2412 struct mr_table *mrt;
2413 int ct;
2414 };
2415
2416 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2417 struct ipmr_vif_iter *iter,
2418 loff_t pos)
2419 {
2420 struct mr_table *mrt = iter->mrt;
2421
2422 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2423 if (!VIF_EXISTS(mrt, iter->ct))
2424 continue;
2425 if (pos-- == 0)
2426 return &mrt->vif_table[iter->ct];
2427 }
2428 return NULL;
2429 }
2430
2431 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2432 __acquires(mrt_lock)
2433 {
2434 struct ipmr_vif_iter *iter = seq->private;
2435 struct net *net = seq_file_net(seq);
2436 struct mr_table *mrt;
2437
2438 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2439 if (mrt == NULL)
2440 return ERR_PTR(-ENOENT);
2441
2442 iter->mrt = mrt;
2443
2444 read_lock(&mrt_lock);
2445 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2446 : SEQ_START_TOKEN;
2447 }
2448
2449 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450 {
2451 struct ipmr_vif_iter *iter = seq->private;
2452 struct net *net = seq_file_net(seq);
2453 struct mr_table *mrt = iter->mrt;
2454
2455 ++*pos;
2456 if (v == SEQ_START_TOKEN)
2457 return ipmr_vif_seq_idx(net, iter, 0);
2458
2459 while (++iter->ct < mrt->maxvif) {
2460 if (!VIF_EXISTS(mrt, iter->ct))
2461 continue;
2462 return &mrt->vif_table[iter->ct];
2463 }
2464 return NULL;
2465 }
2466
2467 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2468 __releases(mrt_lock)
2469 {
2470 read_unlock(&mrt_lock);
2471 }
2472
2473 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2474 {
2475 struct ipmr_vif_iter *iter = seq->private;
2476 struct mr_table *mrt = iter->mrt;
2477
2478 if (v == SEQ_START_TOKEN) {
2479 seq_puts(seq,
2480 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2481 } else {
2482 const struct vif_device *vif = v;
2483 const char *name = vif->dev ? vif->dev->name : "none";
2484
2485 seq_printf(seq,
2486 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2487 vif - mrt->vif_table,
2488 name, vif->bytes_in, vif->pkt_in,
2489 vif->bytes_out, vif->pkt_out,
2490 vif->flags, vif->local, vif->remote);
2491 }
2492 return 0;
2493 }
2494
2495 static const struct seq_operations ipmr_vif_seq_ops = {
2496 .start = ipmr_vif_seq_start,
2497 .next = ipmr_vif_seq_next,
2498 .stop = ipmr_vif_seq_stop,
2499 .show = ipmr_vif_seq_show,
2500 };
2501
2502 static int ipmr_vif_open(struct inode *inode, struct file *file)
2503 {
2504 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2505 sizeof(struct ipmr_vif_iter));
2506 }
2507
2508 static const struct file_operations ipmr_vif_fops = {
2509 .owner = THIS_MODULE,
2510 .open = ipmr_vif_open,
2511 .read = seq_read,
2512 .llseek = seq_lseek,
2513 .release = seq_release_net,
2514 };
2515
2516 struct ipmr_mfc_iter {
2517 struct seq_net_private p;
2518 struct mr_table *mrt;
2519 struct list_head *cache;
2520 int ct;
2521 };
2522
2523
2524 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2525 struct ipmr_mfc_iter *it, loff_t pos)
2526 {
2527 struct mr_table *mrt = it->mrt;
2528 struct mfc_cache *mfc;
2529
2530 rcu_read_lock();
2531 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2532 it->cache = &mrt->mfc_cache_array[it->ct];
2533 list_for_each_entry_rcu(mfc, it->cache, list)
2534 if (pos-- == 0)
2535 return mfc;
2536 }
2537 rcu_read_unlock();
2538
2539 spin_lock_bh(&mfc_unres_lock);
2540 it->cache = &mrt->mfc_unres_queue;
2541 list_for_each_entry(mfc, it->cache, list)
2542 if (pos-- == 0)
2543 return mfc;
2544 spin_unlock_bh(&mfc_unres_lock);
2545
2546 it->cache = NULL;
2547 return NULL;
2548 }
2549
2550
2551 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2552 {
2553 struct ipmr_mfc_iter *it = seq->private;
2554 struct net *net = seq_file_net(seq);
2555 struct mr_table *mrt;
2556
2557 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2558 if (mrt == NULL)
2559 return ERR_PTR(-ENOENT);
2560
2561 it->mrt = mrt;
2562 it->cache = NULL;
2563 it->ct = 0;
2564 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2565 : SEQ_START_TOKEN;
2566 }
2567
2568 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2569 {
2570 struct mfc_cache *mfc = v;
2571 struct ipmr_mfc_iter *it = seq->private;
2572 struct net *net = seq_file_net(seq);
2573 struct mr_table *mrt = it->mrt;
2574
2575 ++*pos;
2576
2577 if (v == SEQ_START_TOKEN)
2578 return ipmr_mfc_seq_idx(net, seq->private, 0);
2579
2580 if (mfc->list.next != it->cache)
2581 return list_entry(mfc->list.next, struct mfc_cache, list);
2582
2583 if (it->cache == &mrt->mfc_unres_queue)
2584 goto end_of_list;
2585
2586 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2587
2588 while (++it->ct < MFC_LINES) {
2589 it->cache = &mrt->mfc_cache_array[it->ct];
2590 if (list_empty(it->cache))
2591 continue;
2592 return list_first_entry(it->cache, struct mfc_cache, list);
2593 }
2594
2595 /* exhausted cache_array, show unresolved */
2596 rcu_read_unlock();
2597 it->cache = &mrt->mfc_unres_queue;
2598 it->ct = 0;
2599
2600 spin_lock_bh(&mfc_unres_lock);
2601 if (!list_empty(it->cache))
2602 return list_first_entry(it->cache, struct mfc_cache, list);
2603
2604 end_of_list:
2605 spin_unlock_bh(&mfc_unres_lock);
2606 it->cache = NULL;
2607
2608 return NULL;
2609 }
2610
2611 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2612 {
2613 struct ipmr_mfc_iter *it = seq->private;
2614 struct mr_table *mrt = it->mrt;
2615
2616 if (it->cache == &mrt->mfc_unres_queue)
2617 spin_unlock_bh(&mfc_unres_lock);
2618 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2619 rcu_read_unlock();
2620 }
2621
2622 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2623 {
2624 int n;
2625
2626 if (v == SEQ_START_TOKEN) {
2627 seq_puts(seq,
2628 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2629 } else {
2630 const struct mfc_cache *mfc = v;
2631 const struct ipmr_mfc_iter *it = seq->private;
2632 const struct mr_table *mrt = it->mrt;
2633
2634 seq_printf(seq, "%08X %08X %-3hd",
2635 (__force u32) mfc->mfc_mcastgrp,
2636 (__force u32) mfc->mfc_origin,
2637 mfc->mfc_parent);
2638
2639 if (it->cache != &mrt->mfc_unres_queue) {
2640 seq_printf(seq, " %8lu %8lu %8lu",
2641 mfc->mfc_un.res.pkt,
2642 mfc->mfc_un.res.bytes,
2643 mfc->mfc_un.res.wrong_if);
2644 for (n = mfc->mfc_un.res.minvif;
2645 n < mfc->mfc_un.res.maxvif; n++) {
2646 if (VIF_EXISTS(mrt, n) &&
2647 mfc->mfc_un.res.ttls[n] < 255)
2648 seq_printf(seq,
2649 " %2d:%-3d",
2650 n, mfc->mfc_un.res.ttls[n]);
2651 }
2652 } else {
2653 /* unresolved mfc_caches don't contain
2654 * pkt, bytes and wrong_if values
2655 */
2656 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2657 }
2658 seq_putc(seq, '\n');
2659 }
2660 return 0;
2661 }
2662
2663 static const struct seq_operations ipmr_mfc_seq_ops = {
2664 .start = ipmr_mfc_seq_start,
2665 .next = ipmr_mfc_seq_next,
2666 .stop = ipmr_mfc_seq_stop,
2667 .show = ipmr_mfc_seq_show,
2668 };
2669
2670 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2671 {
2672 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2673 sizeof(struct ipmr_mfc_iter));
2674 }
2675
2676 static const struct file_operations ipmr_mfc_fops = {
2677 .owner = THIS_MODULE,
2678 .open = ipmr_mfc_open,
2679 .read = seq_read,
2680 .llseek = seq_lseek,
2681 .release = seq_release_net,
2682 };
2683 #endif
2684
2685 #ifdef CONFIG_IP_PIMSM_V2
2686 static const struct net_protocol pim_protocol = {
2687 .handler = pim_rcv,
2688 .netns_ok = 1,
2689 };
2690 #endif
2691
2692
2693 /*
2694 * Setup for IP multicast routing
2695 */
2696 static int __net_init ipmr_net_init(struct net *net)
2697 {
2698 int err;
2699
2700 err = ipmr_rules_init(net);
2701 if (err < 0)
2702 goto fail;
2703
2704 #ifdef CONFIG_PROC_FS
2705 err = -ENOMEM;
2706 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2707 goto proc_vif_fail;
2708 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2709 goto proc_cache_fail;
2710 #endif
2711 return 0;
2712
2713 #ifdef CONFIG_PROC_FS
2714 proc_cache_fail:
2715 remove_proc_entry("ip_mr_vif", net->proc_net);
2716 proc_vif_fail:
2717 ipmr_rules_exit(net);
2718 #endif
2719 fail:
2720 return err;
2721 }
2722
2723 static void __net_exit ipmr_net_exit(struct net *net)
2724 {
2725 #ifdef CONFIG_PROC_FS
2726 remove_proc_entry("ip_mr_cache", net->proc_net);
2727 remove_proc_entry("ip_mr_vif", net->proc_net);
2728 #endif
2729 ipmr_rules_exit(net);
2730 }
2731
2732 static struct pernet_operations ipmr_net_ops = {
2733 .init = ipmr_net_init,
2734 .exit = ipmr_net_exit,
2735 };
2736
2737 int __init ip_mr_init(void)
2738 {
2739 int err;
2740
2741 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2742 sizeof(struct mfc_cache),
2743 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2744 NULL);
2745 if (!mrt_cachep)
2746 return -ENOMEM;
2747
2748 err = register_pernet_subsys(&ipmr_net_ops);
2749 if (err)
2750 goto reg_pernet_fail;
2751
2752 err = register_netdevice_notifier(&ip_mr_notifier);
2753 if (err)
2754 goto reg_notif_fail;
2755 #ifdef CONFIG_IP_PIMSM_V2
2756 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2757 pr_err("%s: can't add PIM protocol\n", __func__);
2758 err = -EAGAIN;
2759 goto add_proto_fail;
2760 }
2761 #endif
2762 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2763 NULL, ipmr_rtm_dumproute, NULL);
2764 return 0;
2765
2766 #ifdef CONFIG_IP_PIMSM_V2
2767 add_proto_fail:
2768 unregister_netdevice_notifier(&ip_mr_notifier);
2769 #endif
2770 reg_notif_fail:
2771 unregister_pernet_subsys(&ipmr_net_ops);
2772 reg_pernet_fail:
2773 kmem_cache_destroy(mrt_cachep);
2774 return err;
2775 }
This page took 0.098954 seconds and 5 git commands to generate.