Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <linux/types.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/timer.h>
35 #include <linux/mm.h>
36 #include <linux/kernel.h>
37 #include <linux/fcntl.h>
38 #include <linux/stat.h>
39 #include <linux/socket.h>
40 #include <linux/in.h>
41 #include <linux/inet.h>
42 #include <linux/netdevice.h>
43 #include <linux/inetdevice.h>
44 #include <linux/igmp.h>
45 #include <linux/proc_fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/mroute.h>
48 #include <linux/init.h>
49 #include <linux/if_ether.h>
50 #include <linux/slab.h>
51 #include <net/net_namespace.h>
52 #include <net/ip.h>
53 #include <net/protocol.h>
54 #include <linux/skbuff.h>
55 #include <net/route.h>
56 #include <net/sock.h>
57 #include <net/icmp.h>
58 #include <net/udp.h>
59 #include <net/raw.h>
60 #include <linux/notifier.h>
61 #include <linux/if_arp.h>
62 #include <linux/netfilter_ipv4.h>
63 #include <linux/compat.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
71 #endif
72
73 struct mr_table {
74 struct list_head list;
75 #ifdef CONFIG_NET_NS
76 struct net *net;
77 #endif
78 u32 id;
79 struct sock __rcu *mroute_sk;
80 struct timer_list ipmr_expire_timer;
81 struct list_head mfc_unres_queue;
82 struct list_head mfc_cache_array[MFC_LINES];
83 struct vif_device vif_table[MAXVIFS];
84 int maxvif;
85 atomic_t cache_resolve_queue_len;
86 int mroute_do_assert;
87 int mroute_do_pim;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89 int mroute_reg_vif_num;
90 #endif
91 };
92
93 struct ipmr_rule {
94 struct fib_rule common;
95 };
96
97 struct ipmr_result {
98 struct mr_table *mrt;
99 };
100
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102 * Note that the changes are semaphored via rtnl_lock.
103 */
104
105 static DEFINE_RWLOCK(mrt_lock);
106
107 /*
108 * Multicast router control variables
109 */
110
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
115
116 /* We return to original Alan's scheme. Hash table of resolved
117 * entries is changed only in process context and protected
118 * with weak lock mrt_lock. Queue of unresolved entries is protected
119 * with strong spinlock mfc_unres_lock.
120 *
121 * In this case data path is free of exclusive locks at all.
122 */
123
124 static struct kmem_cache *mrt_cachep __read_mostly;
125
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128 struct sk_buff *skb, struct mfc_cache *cache,
129 int local);
130 static int ipmr_cache_report(struct mr_table *mrt,
131 struct sk_buff *pkt, vifi_t vifi, int assert);
132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133 struct mfc_cache *c, struct rtmsg *rtm);
134 static void ipmr_expire_process(unsigned long arg);
135
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139
140 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141 {
142 struct mr_table *mrt;
143
144 ipmr_for_each_table(mrt, net) {
145 if (mrt->id == id)
146 return mrt;
147 }
148 return NULL;
149 }
150
151 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
152 struct mr_table **mrt)
153 {
154 struct ipmr_result res;
155 struct fib_lookup_arg arg = { .result = &res, };
156 int err;
157
158 err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
159 if (err < 0)
160 return err;
161 *mrt = res.mrt;
162 return 0;
163 }
164
165 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
166 int flags, struct fib_lookup_arg *arg)
167 {
168 struct ipmr_result *res = arg->result;
169 struct mr_table *mrt;
170
171 switch (rule->action) {
172 case FR_ACT_TO_TBL:
173 break;
174 case FR_ACT_UNREACHABLE:
175 return -ENETUNREACH;
176 case FR_ACT_PROHIBIT:
177 return -EACCES;
178 case FR_ACT_BLACKHOLE:
179 default:
180 return -EINVAL;
181 }
182
183 mrt = ipmr_get_table(rule->fr_net, rule->table);
184 if (mrt == NULL)
185 return -EAGAIN;
186 res->mrt = mrt;
187 return 0;
188 }
189
190 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
191 {
192 return 1;
193 }
194
195 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
196 FRA_GENERIC_POLICY,
197 };
198
199 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh, struct nlattr **tb)
201 {
202 return 0;
203 }
204
205 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
206 struct nlattr **tb)
207 {
208 return 1;
209 }
210
211 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
212 struct fib_rule_hdr *frh)
213 {
214 frh->dst_len = 0;
215 frh->src_len = 0;
216 frh->tos = 0;
217 return 0;
218 }
219
220 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
221 .family = RTNL_FAMILY_IPMR,
222 .rule_size = sizeof(struct ipmr_rule),
223 .addr_size = sizeof(u32),
224 .action = ipmr_rule_action,
225 .match = ipmr_rule_match,
226 .configure = ipmr_rule_configure,
227 .compare = ipmr_rule_compare,
228 .default_pref = fib_default_rule_pref,
229 .fill = ipmr_rule_fill,
230 .nlgroup = RTNLGRP_IPV4_RULE,
231 .policy = ipmr_rule_policy,
232 .owner = THIS_MODULE,
233 };
234
235 static int __net_init ipmr_rules_init(struct net *net)
236 {
237 struct fib_rules_ops *ops;
238 struct mr_table *mrt;
239 int err;
240
241 ops = fib_rules_register(&ipmr_rules_ops_template, net);
242 if (IS_ERR(ops))
243 return PTR_ERR(ops);
244
245 INIT_LIST_HEAD(&net->ipv4.mr_tables);
246
247 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
248 if (mrt == NULL) {
249 err = -ENOMEM;
250 goto err1;
251 }
252
253 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
254 if (err < 0)
255 goto err2;
256
257 net->ipv4.mr_rules_ops = ops;
258 return 0;
259
260 err2:
261 kfree(mrt);
262 err1:
263 fib_rules_unregister(ops);
264 return err;
265 }
266
267 static void __net_exit ipmr_rules_exit(struct net *net)
268 {
269 struct mr_table *mrt, *next;
270
271 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
272 list_del(&mrt->list);
273 kfree(mrt);
274 }
275 fib_rules_unregister(net->ipv4.mr_rules_ops);
276 }
277 #else
278 #define ipmr_for_each_table(mrt, net) \
279 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
280
281 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
282 {
283 return net->ipv4.mrt;
284 }
285
286 static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
287 struct mr_table **mrt)
288 {
289 *mrt = net->ipv4.mrt;
290 return 0;
291 }
292
293 static int __net_init ipmr_rules_init(struct net *net)
294 {
295 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
296 return net->ipv4.mrt ? 0 : -ENOMEM;
297 }
298
299 static void __net_exit ipmr_rules_exit(struct net *net)
300 {
301 kfree(net->ipv4.mrt);
302 }
303 #endif
304
305 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
306 {
307 struct mr_table *mrt;
308 unsigned int i;
309
310 mrt = ipmr_get_table(net, id);
311 if (mrt != NULL)
312 return mrt;
313
314 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
315 if (mrt == NULL)
316 return NULL;
317 write_pnet(&mrt->net, net);
318 mrt->id = id;
319
320 /* Forwarding cache */
321 for (i = 0; i < MFC_LINES; i++)
322 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
323
324 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
325
326 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
327 (unsigned long)mrt);
328
329 #ifdef CONFIG_IP_PIMSM
330 mrt->mroute_reg_vif_num = -1;
331 #endif
332 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
333 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
334 #endif
335 return mrt;
336 }
337
338 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
339
340 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
341 {
342 struct net *net = dev_net(dev);
343
344 dev_close(dev);
345
346 dev = __dev_get_by_name(net, "tunl0");
347 if (dev) {
348 const struct net_device_ops *ops = dev->netdev_ops;
349 struct ifreq ifr;
350 struct ip_tunnel_parm p;
351
352 memset(&p, 0, sizeof(p));
353 p.iph.daddr = v->vifc_rmt_addr.s_addr;
354 p.iph.saddr = v->vifc_lcl_addr.s_addr;
355 p.iph.version = 4;
356 p.iph.ihl = 5;
357 p.iph.protocol = IPPROTO_IPIP;
358 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
359 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
360
361 if (ops->ndo_do_ioctl) {
362 mm_segment_t oldfs = get_fs();
363
364 set_fs(KERNEL_DS);
365 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
366 set_fs(oldfs);
367 }
368 }
369 }
370
371 static
372 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
373 {
374 struct net_device *dev;
375
376 dev = __dev_get_by_name(net, "tunl0");
377
378 if (dev) {
379 const struct net_device_ops *ops = dev->netdev_ops;
380 int err;
381 struct ifreq ifr;
382 struct ip_tunnel_parm p;
383 struct in_device *in_dev;
384
385 memset(&p, 0, sizeof(p));
386 p.iph.daddr = v->vifc_rmt_addr.s_addr;
387 p.iph.saddr = v->vifc_lcl_addr.s_addr;
388 p.iph.version = 4;
389 p.iph.ihl = 5;
390 p.iph.protocol = IPPROTO_IPIP;
391 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
392 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
393
394 if (ops->ndo_do_ioctl) {
395 mm_segment_t oldfs = get_fs();
396
397 set_fs(KERNEL_DS);
398 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
399 set_fs(oldfs);
400 } else {
401 err = -EOPNOTSUPP;
402 }
403 dev = NULL;
404
405 if (err == 0 &&
406 (dev = __dev_get_by_name(net, p.name)) != NULL) {
407 dev->flags |= IFF_MULTICAST;
408
409 in_dev = __in_dev_get_rtnl(dev);
410 if (in_dev == NULL)
411 goto failure;
412
413 ipv4_devconf_setall(in_dev);
414 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
415
416 if (dev_open(dev))
417 goto failure;
418 dev_hold(dev);
419 }
420 }
421 return dev;
422
423 failure:
424 /* allow the register to be completed before unregistering. */
425 rtnl_unlock();
426 rtnl_lock();
427
428 unregister_netdevice(dev);
429 return NULL;
430 }
431
432 #ifdef CONFIG_IP_PIMSM
433
434 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
435 {
436 struct net *net = dev_net(dev);
437 struct mr_table *mrt;
438 struct flowi fl = {
439 .oif = dev->ifindex,
440 .iif = skb->skb_iif,
441 .mark = skb->mark,
442 };
443 int err;
444
445 err = ipmr_fib_lookup(net, &fl, &mrt);
446 if (err < 0) {
447 kfree_skb(skb);
448 return err;
449 }
450
451 read_lock(&mrt_lock);
452 dev->stats.tx_bytes += skb->len;
453 dev->stats.tx_packets++;
454 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
455 read_unlock(&mrt_lock);
456 kfree_skb(skb);
457 return NETDEV_TX_OK;
458 }
459
460 static const struct net_device_ops reg_vif_netdev_ops = {
461 .ndo_start_xmit = reg_vif_xmit,
462 };
463
464 static void reg_vif_setup(struct net_device *dev)
465 {
466 dev->type = ARPHRD_PIMREG;
467 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
468 dev->flags = IFF_NOARP;
469 dev->netdev_ops = &reg_vif_netdev_ops,
470 dev->destructor = free_netdev;
471 dev->features |= NETIF_F_NETNS_LOCAL;
472 }
473
474 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
475 {
476 struct net_device *dev;
477 struct in_device *in_dev;
478 char name[IFNAMSIZ];
479
480 if (mrt->id == RT_TABLE_DEFAULT)
481 sprintf(name, "pimreg");
482 else
483 sprintf(name, "pimreg%u", mrt->id);
484
485 dev = alloc_netdev(0, name, reg_vif_setup);
486
487 if (dev == NULL)
488 return NULL;
489
490 dev_net_set(dev, net);
491
492 if (register_netdevice(dev)) {
493 free_netdev(dev);
494 return NULL;
495 }
496 dev->iflink = 0;
497
498 rcu_read_lock();
499 in_dev = __in_dev_get_rcu(dev);
500 if (!in_dev) {
501 rcu_read_unlock();
502 goto failure;
503 }
504
505 ipv4_devconf_setall(in_dev);
506 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
507 rcu_read_unlock();
508
509 if (dev_open(dev))
510 goto failure;
511
512 dev_hold(dev);
513
514 return dev;
515
516 failure:
517 /* allow the register to be completed before unregistering. */
518 rtnl_unlock();
519 rtnl_lock();
520
521 unregister_netdevice(dev);
522 return NULL;
523 }
524 #endif
525
526 /*
527 * Delete a VIF entry
528 * @notify: Set to 1, if the caller is a notifier_call
529 */
530
531 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
532 struct list_head *head)
533 {
534 struct vif_device *v;
535 struct net_device *dev;
536 struct in_device *in_dev;
537
538 if (vifi < 0 || vifi >= mrt->maxvif)
539 return -EADDRNOTAVAIL;
540
541 v = &mrt->vif_table[vifi];
542
543 write_lock_bh(&mrt_lock);
544 dev = v->dev;
545 v->dev = NULL;
546
547 if (!dev) {
548 write_unlock_bh(&mrt_lock);
549 return -EADDRNOTAVAIL;
550 }
551
552 #ifdef CONFIG_IP_PIMSM
553 if (vifi == mrt->mroute_reg_vif_num)
554 mrt->mroute_reg_vif_num = -1;
555 #endif
556
557 if (vifi + 1 == mrt->maxvif) {
558 int tmp;
559
560 for (tmp = vifi - 1; tmp >= 0; tmp--) {
561 if (VIF_EXISTS(mrt, tmp))
562 break;
563 }
564 mrt->maxvif = tmp+1;
565 }
566
567 write_unlock_bh(&mrt_lock);
568
569 dev_set_allmulti(dev, -1);
570
571 in_dev = __in_dev_get_rtnl(dev);
572 if (in_dev) {
573 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
574 ip_rt_multicast_event(in_dev);
575 }
576
577 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
578 unregister_netdevice_queue(dev, head);
579
580 dev_put(dev);
581 return 0;
582 }
583
584 static void ipmr_cache_free_rcu(struct rcu_head *head)
585 {
586 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
587
588 kmem_cache_free(mrt_cachep, c);
589 }
590
591 static inline void ipmr_cache_free(struct mfc_cache *c)
592 {
593 call_rcu(&c->rcu, ipmr_cache_free_rcu);
594 }
595
596 /* Destroy an unresolved cache entry, killing queued skbs
597 * and reporting error to netlink readers.
598 */
599
600 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
601 {
602 struct net *net = read_pnet(&mrt->net);
603 struct sk_buff *skb;
604 struct nlmsgerr *e;
605
606 atomic_dec(&mrt->cache_resolve_queue_len);
607
608 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
609 if (ip_hdr(skb)->version == 0) {
610 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
611 nlh->nlmsg_type = NLMSG_ERROR;
612 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
613 skb_trim(skb, nlh->nlmsg_len);
614 e = NLMSG_DATA(nlh);
615 e->error = -ETIMEDOUT;
616 memset(&e->msg, 0, sizeof(e->msg));
617
618 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
619 } else {
620 kfree_skb(skb);
621 }
622 }
623
624 ipmr_cache_free(c);
625 }
626
627
628 /* Timer process for the unresolved queue. */
629
630 static void ipmr_expire_process(unsigned long arg)
631 {
632 struct mr_table *mrt = (struct mr_table *)arg;
633 unsigned long now;
634 unsigned long expires;
635 struct mfc_cache *c, *next;
636
637 if (!spin_trylock(&mfc_unres_lock)) {
638 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
639 return;
640 }
641
642 if (list_empty(&mrt->mfc_unres_queue))
643 goto out;
644
645 now = jiffies;
646 expires = 10*HZ;
647
648 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
649 if (time_after(c->mfc_un.unres.expires, now)) {
650 unsigned long interval = c->mfc_un.unres.expires - now;
651 if (interval < expires)
652 expires = interval;
653 continue;
654 }
655
656 list_del(&c->list);
657 ipmr_destroy_unres(mrt, c);
658 }
659
660 if (!list_empty(&mrt->mfc_unres_queue))
661 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
662
663 out:
664 spin_unlock(&mfc_unres_lock);
665 }
666
667 /* Fill oifs list. It is called under write locked mrt_lock. */
668
669 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
670 unsigned char *ttls)
671 {
672 int vifi;
673
674 cache->mfc_un.res.minvif = MAXVIFS;
675 cache->mfc_un.res.maxvif = 0;
676 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
677
678 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
679 if (VIF_EXISTS(mrt, vifi) &&
680 ttls[vifi] && ttls[vifi] < 255) {
681 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
682 if (cache->mfc_un.res.minvif > vifi)
683 cache->mfc_un.res.minvif = vifi;
684 if (cache->mfc_un.res.maxvif <= vifi)
685 cache->mfc_un.res.maxvif = vifi + 1;
686 }
687 }
688 }
689
690 static int vif_add(struct net *net, struct mr_table *mrt,
691 struct vifctl *vifc, int mrtsock)
692 {
693 int vifi = vifc->vifc_vifi;
694 struct vif_device *v = &mrt->vif_table[vifi];
695 struct net_device *dev;
696 struct in_device *in_dev;
697 int err;
698
699 /* Is vif busy ? */
700 if (VIF_EXISTS(mrt, vifi))
701 return -EADDRINUSE;
702
703 switch (vifc->vifc_flags) {
704 #ifdef CONFIG_IP_PIMSM
705 case VIFF_REGISTER:
706 /*
707 * Special Purpose VIF in PIM
708 * All the packets will be sent to the daemon
709 */
710 if (mrt->mroute_reg_vif_num >= 0)
711 return -EADDRINUSE;
712 dev = ipmr_reg_vif(net, mrt);
713 if (!dev)
714 return -ENOBUFS;
715 err = dev_set_allmulti(dev, 1);
716 if (err) {
717 unregister_netdevice(dev);
718 dev_put(dev);
719 return err;
720 }
721 break;
722 #endif
723 case VIFF_TUNNEL:
724 dev = ipmr_new_tunnel(net, vifc);
725 if (!dev)
726 return -ENOBUFS;
727 err = dev_set_allmulti(dev, 1);
728 if (err) {
729 ipmr_del_tunnel(dev, vifc);
730 dev_put(dev);
731 return err;
732 }
733 break;
734
735 case VIFF_USE_IFINDEX:
736 case 0:
737 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
738 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
739 if (dev && __in_dev_get_rtnl(dev) == NULL) {
740 dev_put(dev);
741 return -EADDRNOTAVAIL;
742 }
743 } else {
744 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
745 }
746 if (!dev)
747 return -EADDRNOTAVAIL;
748 err = dev_set_allmulti(dev, 1);
749 if (err) {
750 dev_put(dev);
751 return err;
752 }
753 break;
754 default:
755 return -EINVAL;
756 }
757
758 in_dev = __in_dev_get_rtnl(dev);
759 if (!in_dev) {
760 dev_put(dev);
761 return -EADDRNOTAVAIL;
762 }
763 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
764 ip_rt_multicast_event(in_dev);
765
766 /* Fill in the VIF structures */
767
768 v->rate_limit = vifc->vifc_rate_limit;
769 v->local = vifc->vifc_lcl_addr.s_addr;
770 v->remote = vifc->vifc_rmt_addr.s_addr;
771 v->flags = vifc->vifc_flags;
772 if (!mrtsock)
773 v->flags |= VIFF_STATIC;
774 v->threshold = vifc->vifc_threshold;
775 v->bytes_in = 0;
776 v->bytes_out = 0;
777 v->pkt_in = 0;
778 v->pkt_out = 0;
779 v->link = dev->ifindex;
780 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
781 v->link = dev->iflink;
782
783 /* And finish update writing critical data */
784 write_lock_bh(&mrt_lock);
785 v->dev = dev;
786 #ifdef CONFIG_IP_PIMSM
787 if (v->flags & VIFF_REGISTER)
788 mrt->mroute_reg_vif_num = vifi;
789 #endif
790 if (vifi+1 > mrt->maxvif)
791 mrt->maxvif = vifi+1;
792 write_unlock_bh(&mrt_lock);
793 return 0;
794 }
795
796 /* called with rcu_read_lock() */
797 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
798 __be32 origin,
799 __be32 mcastgrp)
800 {
801 int line = MFC_HASH(mcastgrp, origin);
802 struct mfc_cache *c;
803
804 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
805 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
806 return c;
807 }
808 return NULL;
809 }
810
811 /*
812 * Allocate a multicast cache entry
813 */
814 static struct mfc_cache *ipmr_cache_alloc(void)
815 {
816 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
817
818 if (c)
819 c->mfc_un.res.minvif = MAXVIFS;
820 return c;
821 }
822
823 static struct mfc_cache *ipmr_cache_alloc_unres(void)
824 {
825 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
826
827 if (c) {
828 skb_queue_head_init(&c->mfc_un.unres.unresolved);
829 c->mfc_un.unres.expires = jiffies + 10*HZ;
830 }
831 return c;
832 }
833
834 /*
835 * A cache entry has gone into a resolved state from queued
836 */
837
838 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
839 struct mfc_cache *uc, struct mfc_cache *c)
840 {
841 struct sk_buff *skb;
842 struct nlmsgerr *e;
843
844 /* Play the pending entries through our router */
845
846 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
847 if (ip_hdr(skb)->version == 0) {
848 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
849
850 if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
851 nlh->nlmsg_len = skb_tail_pointer(skb) -
852 (u8 *)nlh;
853 } else {
854 nlh->nlmsg_type = NLMSG_ERROR;
855 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
856 skb_trim(skb, nlh->nlmsg_len);
857 e = NLMSG_DATA(nlh);
858 e->error = -EMSGSIZE;
859 memset(&e->msg, 0, sizeof(e->msg));
860 }
861
862 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
863 } else {
864 ip_mr_forward(net, mrt, skb, c, 0);
865 }
866 }
867 }
868
869 /*
870 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
871 * expects the following bizarre scheme.
872 *
873 * Called under mrt_lock.
874 */
875
876 static int ipmr_cache_report(struct mr_table *mrt,
877 struct sk_buff *pkt, vifi_t vifi, int assert)
878 {
879 struct sk_buff *skb;
880 const int ihl = ip_hdrlen(pkt);
881 struct igmphdr *igmp;
882 struct igmpmsg *msg;
883 struct sock *mroute_sk;
884 int ret;
885
886 #ifdef CONFIG_IP_PIMSM
887 if (assert == IGMPMSG_WHOLEPKT)
888 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
889 else
890 #endif
891 skb = alloc_skb(128, GFP_ATOMIC);
892
893 if (!skb)
894 return -ENOBUFS;
895
896 #ifdef CONFIG_IP_PIMSM
897 if (assert == IGMPMSG_WHOLEPKT) {
898 /* Ugly, but we have no choice with this interface.
899 * Duplicate old header, fix ihl, length etc.
900 * And all this only to mangle msg->im_msgtype and
901 * to set msg->im_mbz to "mbz" :-)
902 */
903 skb_push(skb, sizeof(struct iphdr));
904 skb_reset_network_header(skb);
905 skb_reset_transport_header(skb);
906 msg = (struct igmpmsg *)skb_network_header(skb);
907 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
908 msg->im_msgtype = IGMPMSG_WHOLEPKT;
909 msg->im_mbz = 0;
910 msg->im_vif = mrt->mroute_reg_vif_num;
911 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
912 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
913 sizeof(struct iphdr));
914 } else
915 #endif
916 {
917
918 /* Copy the IP header */
919
920 skb->network_header = skb->tail;
921 skb_put(skb, ihl);
922 skb_copy_to_linear_data(skb, pkt->data, ihl);
923 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
924 msg = (struct igmpmsg *)skb_network_header(skb);
925 msg->im_vif = vifi;
926 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
927
928 /* Add our header */
929
930 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
931 igmp->type =
932 msg->im_msgtype = assert;
933 igmp->code = 0;
934 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
935 skb->transport_header = skb->network_header;
936 }
937
938 rcu_read_lock();
939 mroute_sk = rcu_dereference(mrt->mroute_sk);
940 if (mroute_sk == NULL) {
941 rcu_read_unlock();
942 kfree_skb(skb);
943 return -EINVAL;
944 }
945
946 /* Deliver to mrouted */
947
948 ret = sock_queue_rcv_skb(mroute_sk, skb);
949 rcu_read_unlock();
950 if (ret < 0) {
951 if (net_ratelimit())
952 printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
953 kfree_skb(skb);
954 }
955
956 return ret;
957 }
958
959 /*
960 * Queue a packet for resolution. It gets locked cache entry!
961 */
962
963 static int
964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
965 {
966 bool found = false;
967 int err;
968 struct mfc_cache *c;
969 const struct iphdr *iph = ip_hdr(skb);
970
971 spin_lock_bh(&mfc_unres_lock);
972 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
973 if (c->mfc_mcastgrp == iph->daddr &&
974 c->mfc_origin == iph->saddr) {
975 found = true;
976 break;
977 }
978 }
979
980 if (!found) {
981 /* Create a new entry if allowable */
982
983 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
984 (c = ipmr_cache_alloc_unres()) == NULL) {
985 spin_unlock_bh(&mfc_unres_lock);
986
987 kfree_skb(skb);
988 return -ENOBUFS;
989 }
990
991 /* Fill in the new cache entry */
992
993 c->mfc_parent = -1;
994 c->mfc_origin = iph->saddr;
995 c->mfc_mcastgrp = iph->daddr;
996
997 /* Reflect first query at mrouted. */
998
999 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000 if (err < 0) {
1001 /* If the report failed throw the cache entry
1002 out - Brad Parker
1003 */
1004 spin_unlock_bh(&mfc_unres_lock);
1005
1006 ipmr_cache_free(c);
1007 kfree_skb(skb);
1008 return err;
1009 }
1010
1011 atomic_inc(&mrt->cache_resolve_queue_len);
1012 list_add(&c->list, &mrt->mfc_unres_queue);
1013
1014 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016 }
1017
1018 /* See if we can append the packet */
1019
1020 if (c->mfc_un.unres.unresolved.qlen > 3) {
1021 kfree_skb(skb);
1022 err = -ENOBUFS;
1023 } else {
1024 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025 err = 0;
1026 }
1027
1028 spin_unlock_bh(&mfc_unres_lock);
1029 return err;
1030 }
1031
1032 /*
1033 * MFC cache manipulation by user space mroute daemon
1034 */
1035
1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037 {
1038 int line;
1039 struct mfc_cache *c, *next;
1040
1041 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042
1043 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046 list_del_rcu(&c->list);
1047
1048 ipmr_cache_free(c);
1049 return 0;
1050 }
1051 }
1052 return -ENOENT;
1053 }
1054
1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056 struct mfcctl *mfc, int mrtsock)
1057 {
1058 bool found = false;
1059 int line;
1060 struct mfc_cache *uc, *c;
1061
1062 if (mfc->mfcc_parent >= MAXVIFS)
1063 return -ENFILE;
1064
1065 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066
1067 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070 found = true;
1071 break;
1072 }
1073 }
1074
1075 if (found) {
1076 write_lock_bh(&mrt_lock);
1077 c->mfc_parent = mfc->mfcc_parent;
1078 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079 if (!mrtsock)
1080 c->mfc_flags |= MFC_STATIC;
1081 write_unlock_bh(&mrt_lock);
1082 return 0;
1083 }
1084
1085 if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086 return -EINVAL;
1087
1088 c = ipmr_cache_alloc();
1089 if (c == NULL)
1090 return -ENOMEM;
1091
1092 c->mfc_origin = mfc->mfcc_origin.s_addr;
1093 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094 c->mfc_parent = mfc->mfcc_parent;
1095 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096 if (!mrtsock)
1097 c->mfc_flags |= MFC_STATIC;
1098
1099 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100
1101 /*
1102 * Check to see if we resolved a queued list. If so we
1103 * need to send on the frames and tidy up.
1104 */
1105 found = false;
1106 spin_lock_bh(&mfc_unres_lock);
1107 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108 if (uc->mfc_origin == c->mfc_origin &&
1109 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110 list_del(&uc->list);
1111 atomic_dec(&mrt->cache_resolve_queue_len);
1112 found = true;
1113 break;
1114 }
1115 }
1116 if (list_empty(&mrt->mfc_unres_queue))
1117 del_timer(&mrt->ipmr_expire_timer);
1118 spin_unlock_bh(&mfc_unres_lock);
1119
1120 if (found) {
1121 ipmr_cache_resolve(net, mrt, uc, c);
1122 ipmr_cache_free(uc);
1123 }
1124 return 0;
1125 }
1126
1127 /*
1128 * Close the multicast socket, and clear the vif tables etc
1129 */
1130
1131 static void mroute_clean_tables(struct mr_table *mrt)
1132 {
1133 int i;
1134 LIST_HEAD(list);
1135 struct mfc_cache *c, *next;
1136
1137 /* Shut down all active vif entries */
1138
1139 for (i = 0; i < mrt->maxvif; i++) {
1140 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141 vif_delete(mrt, i, 0, &list);
1142 }
1143 unregister_netdevice_many(&list);
1144
1145 /* Wipe the cache */
1146
1147 for (i = 0; i < MFC_LINES; i++) {
1148 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149 if (c->mfc_flags & MFC_STATIC)
1150 continue;
1151 list_del_rcu(&c->list);
1152 ipmr_cache_free(c);
1153 }
1154 }
1155
1156 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157 spin_lock_bh(&mfc_unres_lock);
1158 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159 list_del(&c->list);
1160 ipmr_destroy_unres(mrt, c);
1161 }
1162 spin_unlock_bh(&mfc_unres_lock);
1163 }
1164 }
1165
1166 /* called from ip_ra_control(), before an RCU grace period,
1167 * we dont need to call synchronize_rcu() here
1168 */
1169 static void mrtsock_destruct(struct sock *sk)
1170 {
1171 struct net *net = sock_net(sk);
1172 struct mr_table *mrt;
1173
1174 rtnl_lock();
1175 ipmr_for_each_table(mrt, net) {
1176 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178 rcu_assign_pointer(mrt->mroute_sk, NULL);
1179 mroute_clean_tables(mrt);
1180 }
1181 }
1182 rtnl_unlock();
1183 }
1184
1185 /*
1186 * Socket options and virtual interface manipulation. The whole
1187 * virtual interface system is a complete heap, but unfortunately
1188 * that's how BSD mrouted happens to think. Maybe one day with a proper
1189 * MOSPF/PIM router set up we can clean this up.
1190 */
1191
1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193 {
1194 int ret;
1195 struct vifctl vif;
1196 struct mfcctl mfc;
1197 struct net *net = sock_net(sk);
1198 struct mr_table *mrt;
1199
1200 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201 if (mrt == NULL)
1202 return -ENOENT;
1203
1204 if (optname != MRT_INIT) {
1205 if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1206 !capable(CAP_NET_ADMIN))
1207 return -EACCES;
1208 }
1209
1210 switch (optname) {
1211 case MRT_INIT:
1212 if (sk->sk_type != SOCK_RAW ||
1213 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214 return -EOPNOTSUPP;
1215 if (optlen != sizeof(int))
1216 return -ENOPROTOOPT;
1217
1218 rtnl_lock();
1219 if (rtnl_dereference(mrt->mroute_sk)) {
1220 rtnl_unlock();
1221 return -EADDRINUSE;
1222 }
1223
1224 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225 if (ret == 0) {
1226 rcu_assign_pointer(mrt->mroute_sk, sk);
1227 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228 }
1229 rtnl_unlock();
1230 return ret;
1231 case MRT_DONE:
1232 if (sk != rcu_dereference_raw(mrt->mroute_sk))
1233 return -EACCES;
1234 return ip_ra_control(sk, 0, NULL);
1235 case MRT_ADD_VIF:
1236 case MRT_DEL_VIF:
1237 if (optlen != sizeof(vif))
1238 return -EINVAL;
1239 if (copy_from_user(&vif, optval, sizeof(vif)))
1240 return -EFAULT;
1241 if (vif.vifc_vifi >= MAXVIFS)
1242 return -ENFILE;
1243 rtnl_lock();
1244 if (optname == MRT_ADD_VIF) {
1245 ret = vif_add(net, mrt, &vif,
1246 sk == rtnl_dereference(mrt->mroute_sk));
1247 } else {
1248 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249 }
1250 rtnl_unlock();
1251 return ret;
1252
1253 /*
1254 * Manipulate the forwarding caches. These live
1255 * in a sort of kernel/user symbiosis.
1256 */
1257 case MRT_ADD_MFC:
1258 case MRT_DEL_MFC:
1259 if (optlen != sizeof(mfc))
1260 return -EINVAL;
1261 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262 return -EFAULT;
1263 rtnl_lock();
1264 if (optname == MRT_DEL_MFC)
1265 ret = ipmr_mfc_delete(mrt, &mfc);
1266 else
1267 ret = ipmr_mfc_add(net, mrt, &mfc,
1268 sk == rtnl_dereference(mrt->mroute_sk));
1269 rtnl_unlock();
1270 return ret;
1271 /*
1272 * Control PIM assert.
1273 */
1274 case MRT_ASSERT:
1275 {
1276 int v;
1277 if (get_user(v, (int __user *)optval))
1278 return -EFAULT;
1279 mrt->mroute_do_assert = (v) ? 1 : 0;
1280 return 0;
1281 }
1282 #ifdef CONFIG_IP_PIMSM
1283 case MRT_PIM:
1284 {
1285 int v;
1286
1287 if (get_user(v, (int __user *)optval))
1288 return -EFAULT;
1289 v = (v) ? 1 : 0;
1290
1291 rtnl_lock();
1292 ret = 0;
1293 if (v != mrt->mroute_do_pim) {
1294 mrt->mroute_do_pim = v;
1295 mrt->mroute_do_assert = v;
1296 }
1297 rtnl_unlock();
1298 return ret;
1299 }
1300 #endif
1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302 case MRT_TABLE:
1303 {
1304 u32 v;
1305
1306 if (optlen != sizeof(u32))
1307 return -EINVAL;
1308 if (get_user(v, (u32 __user *)optval))
1309 return -EFAULT;
1310
1311 rtnl_lock();
1312 ret = 0;
1313 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314 ret = -EBUSY;
1315 } else {
1316 if (!ipmr_new_table(net, v))
1317 ret = -ENOMEM;
1318 raw_sk(sk)->ipmr_table = v;
1319 }
1320 rtnl_unlock();
1321 return ret;
1322 }
1323 #endif
1324 /*
1325 * Spurious command, or MRT_VERSION which you cannot
1326 * set.
1327 */
1328 default:
1329 return -ENOPROTOOPT;
1330 }
1331 }
1332
1333 /*
1334 * Getsock opt support for the multicast routing system.
1335 */
1336
1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338 {
1339 int olr;
1340 int val;
1341 struct net *net = sock_net(sk);
1342 struct mr_table *mrt;
1343
1344 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345 if (mrt == NULL)
1346 return -ENOENT;
1347
1348 if (optname != MRT_VERSION &&
1349 #ifdef CONFIG_IP_PIMSM
1350 optname != MRT_PIM &&
1351 #endif
1352 optname != MRT_ASSERT)
1353 return -ENOPROTOOPT;
1354
1355 if (get_user(olr, optlen))
1356 return -EFAULT;
1357
1358 olr = min_t(unsigned int, olr, sizeof(int));
1359 if (olr < 0)
1360 return -EINVAL;
1361
1362 if (put_user(olr, optlen))
1363 return -EFAULT;
1364 if (optname == MRT_VERSION)
1365 val = 0x0305;
1366 #ifdef CONFIG_IP_PIMSM
1367 else if (optname == MRT_PIM)
1368 val = mrt->mroute_do_pim;
1369 #endif
1370 else
1371 val = mrt->mroute_do_assert;
1372 if (copy_to_user(optval, &val, olr))
1373 return -EFAULT;
1374 return 0;
1375 }
1376
1377 /*
1378 * The IP multicast ioctl support routines.
1379 */
1380
1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382 {
1383 struct sioc_sg_req sr;
1384 struct sioc_vif_req vr;
1385 struct vif_device *vif;
1386 struct mfc_cache *c;
1387 struct net *net = sock_net(sk);
1388 struct mr_table *mrt;
1389
1390 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391 if (mrt == NULL)
1392 return -ENOENT;
1393
1394 switch (cmd) {
1395 case SIOCGETVIFCNT:
1396 if (copy_from_user(&vr, arg, sizeof(vr)))
1397 return -EFAULT;
1398 if (vr.vifi >= mrt->maxvif)
1399 return -EINVAL;
1400 read_lock(&mrt_lock);
1401 vif = &mrt->vif_table[vr.vifi];
1402 if (VIF_EXISTS(mrt, vr.vifi)) {
1403 vr.icount = vif->pkt_in;
1404 vr.ocount = vif->pkt_out;
1405 vr.ibytes = vif->bytes_in;
1406 vr.obytes = vif->bytes_out;
1407 read_unlock(&mrt_lock);
1408
1409 if (copy_to_user(arg, &vr, sizeof(vr)))
1410 return -EFAULT;
1411 return 0;
1412 }
1413 read_unlock(&mrt_lock);
1414 return -EADDRNOTAVAIL;
1415 case SIOCGETSGCNT:
1416 if (copy_from_user(&sr, arg, sizeof(sr)))
1417 return -EFAULT;
1418
1419 rcu_read_lock();
1420 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421 if (c) {
1422 sr.pktcnt = c->mfc_un.res.pkt;
1423 sr.bytecnt = c->mfc_un.res.bytes;
1424 sr.wrong_if = c->mfc_un.res.wrong_if;
1425 rcu_read_unlock();
1426
1427 if (copy_to_user(arg, &sr, sizeof(sr)))
1428 return -EFAULT;
1429 return 0;
1430 }
1431 rcu_read_unlock();
1432 return -EADDRNOTAVAIL;
1433 default:
1434 return -ENOIOCTLCMD;
1435 }
1436 }
1437
1438 #ifdef CONFIG_COMPAT
1439 struct compat_sioc_sg_req {
1440 struct in_addr src;
1441 struct in_addr grp;
1442 compat_ulong_t pktcnt;
1443 compat_ulong_t bytecnt;
1444 compat_ulong_t wrong_if;
1445 };
1446
1447 struct compat_sioc_vif_req {
1448 vifi_t vifi; /* Which iface */
1449 compat_ulong_t icount;
1450 compat_ulong_t ocount;
1451 compat_ulong_t ibytes;
1452 compat_ulong_t obytes;
1453 };
1454
1455 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1456 {
1457 struct compat_sioc_sg_req sr;
1458 struct compat_sioc_vif_req vr;
1459 struct vif_device *vif;
1460 struct mfc_cache *c;
1461 struct net *net = sock_net(sk);
1462 struct mr_table *mrt;
1463
1464 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465 if (mrt == NULL)
1466 return -ENOENT;
1467
1468 switch (cmd) {
1469 case SIOCGETVIFCNT:
1470 if (copy_from_user(&vr, arg, sizeof(vr)))
1471 return -EFAULT;
1472 if (vr.vifi >= mrt->maxvif)
1473 return -EINVAL;
1474 read_lock(&mrt_lock);
1475 vif = &mrt->vif_table[vr.vifi];
1476 if (VIF_EXISTS(mrt, vr.vifi)) {
1477 vr.icount = vif->pkt_in;
1478 vr.ocount = vif->pkt_out;
1479 vr.ibytes = vif->bytes_in;
1480 vr.obytes = vif->bytes_out;
1481 read_unlock(&mrt_lock);
1482
1483 if (copy_to_user(arg, &vr, sizeof(vr)))
1484 return -EFAULT;
1485 return 0;
1486 }
1487 read_unlock(&mrt_lock);
1488 return -EADDRNOTAVAIL;
1489 case SIOCGETSGCNT:
1490 if (copy_from_user(&sr, arg, sizeof(sr)))
1491 return -EFAULT;
1492
1493 rcu_read_lock();
1494 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495 if (c) {
1496 sr.pktcnt = c->mfc_un.res.pkt;
1497 sr.bytecnt = c->mfc_un.res.bytes;
1498 sr.wrong_if = c->mfc_un.res.wrong_if;
1499 rcu_read_unlock();
1500
1501 if (copy_to_user(arg, &sr, sizeof(sr)))
1502 return -EFAULT;
1503 return 0;
1504 }
1505 rcu_read_unlock();
1506 return -EADDRNOTAVAIL;
1507 default:
1508 return -ENOIOCTLCMD;
1509 }
1510 }
1511 #endif
1512
1513
1514 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1515 {
1516 struct net_device *dev = ptr;
1517 struct net *net = dev_net(dev);
1518 struct mr_table *mrt;
1519 struct vif_device *v;
1520 int ct;
1521 LIST_HEAD(list);
1522
1523 if (event != NETDEV_UNREGISTER)
1524 return NOTIFY_DONE;
1525
1526 ipmr_for_each_table(mrt, net) {
1527 v = &mrt->vif_table[0];
1528 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1529 if (v->dev == dev)
1530 vif_delete(mrt, ct, 1, &list);
1531 }
1532 }
1533 unregister_netdevice_many(&list);
1534 return NOTIFY_DONE;
1535 }
1536
1537
1538 static struct notifier_block ip_mr_notifier = {
1539 .notifier_call = ipmr_device_event,
1540 };
1541
1542 /*
1543 * Encapsulate a packet by attaching a valid IPIP header to it.
1544 * This avoids tunnel drivers and other mess and gives us the speed so
1545 * important for multicast video.
1546 */
1547
1548 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1549 {
1550 struct iphdr *iph;
1551 struct iphdr *old_iph = ip_hdr(skb);
1552
1553 skb_push(skb, sizeof(struct iphdr));
1554 skb->transport_header = skb->network_header;
1555 skb_reset_network_header(skb);
1556 iph = ip_hdr(skb);
1557
1558 iph->version = 4;
1559 iph->tos = old_iph->tos;
1560 iph->ttl = old_iph->ttl;
1561 iph->frag_off = 0;
1562 iph->daddr = daddr;
1563 iph->saddr = saddr;
1564 iph->protocol = IPPROTO_IPIP;
1565 iph->ihl = 5;
1566 iph->tot_len = htons(skb->len);
1567 ip_select_ident(iph, skb_dst(skb), NULL);
1568 ip_send_check(iph);
1569
1570 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1571 nf_reset(skb);
1572 }
1573
1574 static inline int ipmr_forward_finish(struct sk_buff *skb)
1575 {
1576 struct ip_options *opt = &(IPCB(skb)->opt);
1577
1578 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1579
1580 if (unlikely(opt->optlen))
1581 ip_forward_options(skb);
1582
1583 return dst_output(skb);
1584 }
1585
1586 /*
1587 * Processing handlers for ipmr_forward
1588 */
1589
1590 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1591 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1592 {
1593 const struct iphdr *iph = ip_hdr(skb);
1594 struct vif_device *vif = &mrt->vif_table[vifi];
1595 struct net_device *dev;
1596 struct rtable *rt;
1597 int encap = 0;
1598
1599 if (vif->dev == NULL)
1600 goto out_free;
1601
1602 #ifdef CONFIG_IP_PIMSM
1603 if (vif->flags & VIFF_REGISTER) {
1604 vif->pkt_out++;
1605 vif->bytes_out += skb->len;
1606 vif->dev->stats.tx_bytes += skb->len;
1607 vif->dev->stats.tx_packets++;
1608 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609 goto out_free;
1610 }
1611 #endif
1612
1613 if (vif->flags & VIFF_TUNNEL) {
1614 struct flowi fl = {
1615 .oif = vif->link,
1616 .fl4_dst = vif->remote,
1617 .fl4_src = vif->local,
1618 .fl4_tos = RT_TOS(iph->tos),
1619 .proto = IPPROTO_IPIP
1620 };
1621
1622 if (ip_route_output_key(net, &rt, &fl))
1623 goto out_free;
1624 encap = sizeof(struct iphdr);
1625 } else {
1626 struct flowi fl = {
1627 .oif = vif->link,
1628 .fl4_dst = iph->daddr,
1629 .fl4_tos = RT_TOS(iph->tos),
1630 .proto = IPPROTO_IPIP
1631 };
1632
1633 if (ip_route_output_key(net, &rt, &fl))
1634 goto out_free;
1635 }
1636
1637 dev = rt->dst.dev;
1638
1639 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1640 /* Do not fragment multicasts. Alas, IPv4 does not
1641 * allow to send ICMP, so that packets will disappear
1642 * to blackhole.
1643 */
1644
1645 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1646 ip_rt_put(rt);
1647 goto out_free;
1648 }
1649
1650 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1651
1652 if (skb_cow(skb, encap)) {
1653 ip_rt_put(rt);
1654 goto out_free;
1655 }
1656
1657 vif->pkt_out++;
1658 vif->bytes_out += skb->len;
1659
1660 skb_dst_drop(skb);
1661 skb_dst_set(skb, &rt->dst);
1662 ip_decrease_ttl(ip_hdr(skb));
1663
1664 /* FIXME: forward and output firewalls used to be called here.
1665 * What do we do with netfilter? -- RR
1666 */
1667 if (vif->flags & VIFF_TUNNEL) {
1668 ip_encap(skb, vif->local, vif->remote);
1669 /* FIXME: extra output firewall step used to be here. --RR */
1670 vif->dev->stats.tx_packets++;
1671 vif->dev->stats.tx_bytes += skb->len;
1672 }
1673
1674 IPCB(skb)->flags |= IPSKB_FORWARDED;
1675
1676 /*
1677 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1678 * not only before forwarding, but after forwarding on all output
1679 * interfaces. It is clear, if mrouter runs a multicasting
1680 * program, it should receive packets not depending to what interface
1681 * program is joined.
1682 * If we will not make it, the program will have to join on all
1683 * interfaces. On the other hand, multihoming host (or router, but
1684 * not mrouter) cannot join to more than one interface - it will
1685 * result in receiving multiple packets.
1686 */
1687 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1688 ipmr_forward_finish);
1689 return;
1690
1691 out_free:
1692 kfree_skb(skb);
1693 }
1694
1695 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1696 {
1697 int ct;
1698
1699 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1700 if (mrt->vif_table[ct].dev == dev)
1701 break;
1702 }
1703 return ct;
1704 }
1705
1706 /* "local" means that we should preserve one skb (for local delivery) */
1707
1708 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1709 struct sk_buff *skb, struct mfc_cache *cache,
1710 int local)
1711 {
1712 int psend = -1;
1713 int vif, ct;
1714
1715 vif = cache->mfc_parent;
1716 cache->mfc_un.res.pkt++;
1717 cache->mfc_un.res.bytes += skb->len;
1718
1719 /*
1720 * Wrong interface: drop packet and (maybe) send PIM assert.
1721 */
1722 if (mrt->vif_table[vif].dev != skb->dev) {
1723 int true_vifi;
1724
1725 if (rt_is_output_route(skb_rtable(skb))) {
1726 /* It is our own packet, looped back.
1727 * Very complicated situation...
1728 *
1729 * The best workaround until routing daemons will be
1730 * fixed is not to redistribute packet, if it was
1731 * send through wrong interface. It means, that
1732 * multicast applications WILL NOT work for
1733 * (S,G), which have default multicast route pointing
1734 * to wrong oif. In any case, it is not a good
1735 * idea to use multicasting applications on router.
1736 */
1737 goto dont_forward;
1738 }
1739
1740 cache->mfc_un.res.wrong_if++;
1741 true_vifi = ipmr_find_vif(mrt, skb->dev);
1742
1743 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1744 /* pimsm uses asserts, when switching from RPT to SPT,
1745 * so that we cannot check that packet arrived on an oif.
1746 * It is bad, but otherwise we would need to move pretty
1747 * large chunk of pimd to kernel. Ough... --ANK
1748 */
1749 (mrt->mroute_do_pim ||
1750 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1751 time_after(jiffies,
1752 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1753 cache->mfc_un.res.last_assert = jiffies;
1754 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1755 }
1756 goto dont_forward;
1757 }
1758
1759 mrt->vif_table[vif].pkt_in++;
1760 mrt->vif_table[vif].bytes_in += skb->len;
1761
1762 /*
1763 * Forward the frame
1764 */
1765 for (ct = cache->mfc_un.res.maxvif - 1;
1766 ct >= cache->mfc_un.res.minvif; ct--) {
1767 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1768 if (psend != -1) {
1769 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1770
1771 if (skb2)
1772 ipmr_queue_xmit(net, mrt, skb2, cache,
1773 psend);
1774 }
1775 psend = ct;
1776 }
1777 }
1778 if (psend != -1) {
1779 if (local) {
1780 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1781
1782 if (skb2)
1783 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1784 } else {
1785 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1786 return 0;
1787 }
1788 }
1789
1790 dont_forward:
1791 if (!local)
1792 kfree_skb(skb);
1793 return 0;
1794 }
1795
1796
1797 /*
1798 * Multicast packets for forwarding arrive here
1799 * Called with rcu_read_lock();
1800 */
1801
1802 int ip_mr_input(struct sk_buff *skb)
1803 {
1804 struct mfc_cache *cache;
1805 struct net *net = dev_net(skb->dev);
1806 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1807 struct mr_table *mrt;
1808 int err;
1809
1810 /* Packet is looped back after forward, it should not be
1811 * forwarded second time, but still can be delivered locally.
1812 */
1813 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1814 goto dont_forward;
1815
1816 err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
1817 if (err < 0) {
1818 kfree_skb(skb);
1819 return err;
1820 }
1821
1822 if (!local) {
1823 if (IPCB(skb)->opt.router_alert) {
1824 if (ip_call_ra_chain(skb))
1825 return 0;
1826 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1827 /* IGMPv1 (and broken IGMPv2 implementations sort of
1828 * Cisco IOS <= 11.2(8)) do not put router alert
1829 * option to IGMP packets destined to routable
1830 * groups. It is very bad, because it means
1831 * that we can forward NO IGMP messages.
1832 */
1833 struct sock *mroute_sk;
1834
1835 mroute_sk = rcu_dereference(mrt->mroute_sk);
1836 if (mroute_sk) {
1837 nf_reset(skb);
1838 raw_rcv(mroute_sk, skb);
1839 return 0;
1840 }
1841 }
1842 }
1843
1844 /* already under rcu_read_lock() */
1845 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1846
1847 /*
1848 * No usable cache entry
1849 */
1850 if (cache == NULL) {
1851 int vif;
1852
1853 if (local) {
1854 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1855 ip_local_deliver(skb);
1856 if (skb2 == NULL)
1857 return -ENOBUFS;
1858 skb = skb2;
1859 }
1860
1861 read_lock(&mrt_lock);
1862 vif = ipmr_find_vif(mrt, skb->dev);
1863 if (vif >= 0) {
1864 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1865 read_unlock(&mrt_lock);
1866
1867 return err2;
1868 }
1869 read_unlock(&mrt_lock);
1870 kfree_skb(skb);
1871 return -ENODEV;
1872 }
1873
1874 read_lock(&mrt_lock);
1875 ip_mr_forward(net, mrt, skb, cache, local);
1876 read_unlock(&mrt_lock);
1877
1878 if (local)
1879 return ip_local_deliver(skb);
1880
1881 return 0;
1882
1883 dont_forward:
1884 if (local)
1885 return ip_local_deliver(skb);
1886 kfree_skb(skb);
1887 return 0;
1888 }
1889
1890 #ifdef CONFIG_IP_PIMSM
1891 /* called with rcu_read_lock() */
1892 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1893 unsigned int pimlen)
1894 {
1895 struct net_device *reg_dev = NULL;
1896 struct iphdr *encap;
1897
1898 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1899 /*
1900 * Check that:
1901 * a. packet is really sent to a multicast group
1902 * b. packet is not a NULL-REGISTER
1903 * c. packet is not truncated
1904 */
1905 if (!ipv4_is_multicast(encap->daddr) ||
1906 encap->tot_len == 0 ||
1907 ntohs(encap->tot_len) + pimlen > skb->len)
1908 return 1;
1909
1910 read_lock(&mrt_lock);
1911 if (mrt->mroute_reg_vif_num >= 0)
1912 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1913 read_unlock(&mrt_lock);
1914
1915 if (reg_dev == NULL)
1916 return 1;
1917
1918 skb->mac_header = skb->network_header;
1919 skb_pull(skb, (u8 *)encap - skb->data);
1920 skb_reset_network_header(skb);
1921 skb->protocol = htons(ETH_P_IP);
1922 skb->ip_summed = CHECKSUM_NONE;
1923 skb->pkt_type = PACKET_HOST;
1924
1925 skb_tunnel_rx(skb, reg_dev);
1926
1927 netif_rx(skb);
1928
1929 return NET_RX_SUCCESS;
1930 }
1931 #endif
1932
1933 #ifdef CONFIG_IP_PIMSM_V1
1934 /*
1935 * Handle IGMP messages of PIMv1
1936 */
1937
1938 int pim_rcv_v1(struct sk_buff *skb)
1939 {
1940 struct igmphdr *pim;
1941 struct net *net = dev_net(skb->dev);
1942 struct mr_table *mrt;
1943
1944 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1945 goto drop;
1946
1947 pim = igmp_hdr(skb);
1948
1949 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1950 goto drop;
1951
1952 if (!mrt->mroute_do_pim ||
1953 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1954 goto drop;
1955
1956 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1957 drop:
1958 kfree_skb(skb);
1959 }
1960 return 0;
1961 }
1962 #endif
1963
1964 #ifdef CONFIG_IP_PIMSM_V2
1965 static int pim_rcv(struct sk_buff *skb)
1966 {
1967 struct pimreghdr *pim;
1968 struct net *net = dev_net(skb->dev);
1969 struct mr_table *mrt;
1970
1971 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1972 goto drop;
1973
1974 pim = (struct pimreghdr *)skb_transport_header(skb);
1975 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1976 (pim->flags & PIM_NULL_REGISTER) ||
1977 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1978 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1979 goto drop;
1980
1981 if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
1982 goto drop;
1983
1984 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1985 drop:
1986 kfree_skb(skb);
1987 }
1988 return 0;
1989 }
1990 #endif
1991
1992 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
1993 struct mfc_cache *c, struct rtmsg *rtm)
1994 {
1995 int ct;
1996 struct rtnexthop *nhp;
1997 u8 *b = skb_tail_pointer(skb);
1998 struct rtattr *mp_head;
1999
2000 /* If cache is unresolved, don't try to parse IIF and OIF */
2001 if (c->mfc_parent >= MAXVIFS)
2002 return -ENOENT;
2003
2004 if (VIF_EXISTS(mrt, c->mfc_parent))
2005 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
2006
2007 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2008
2009 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2010 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2011 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2012 goto rtattr_failure;
2013 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2014 nhp->rtnh_flags = 0;
2015 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2016 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2017 nhp->rtnh_len = sizeof(*nhp);
2018 }
2019 }
2020 mp_head->rta_type = RTA_MULTIPATH;
2021 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2022 rtm->rtm_type = RTN_MULTICAST;
2023 return 1;
2024
2025 rtattr_failure:
2026 nlmsg_trim(skb, b);
2027 return -EMSGSIZE;
2028 }
2029
2030 int ipmr_get_route(struct net *net,
2031 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2032 {
2033 int err;
2034 struct mr_table *mrt;
2035 struct mfc_cache *cache;
2036 struct rtable *rt = skb_rtable(skb);
2037
2038 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2039 if (mrt == NULL)
2040 return -ENOENT;
2041
2042 rcu_read_lock();
2043 cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
2044
2045 if (cache == NULL) {
2046 struct sk_buff *skb2;
2047 struct iphdr *iph;
2048 struct net_device *dev;
2049 int vif = -1;
2050
2051 if (nowait) {
2052 rcu_read_unlock();
2053 return -EAGAIN;
2054 }
2055
2056 dev = skb->dev;
2057 read_lock(&mrt_lock);
2058 if (dev)
2059 vif = ipmr_find_vif(mrt, dev);
2060 if (vif < 0) {
2061 read_unlock(&mrt_lock);
2062 rcu_read_unlock();
2063 return -ENODEV;
2064 }
2065 skb2 = skb_clone(skb, GFP_ATOMIC);
2066 if (!skb2) {
2067 read_unlock(&mrt_lock);
2068 rcu_read_unlock();
2069 return -ENOMEM;
2070 }
2071
2072 skb_push(skb2, sizeof(struct iphdr));
2073 skb_reset_network_header(skb2);
2074 iph = ip_hdr(skb2);
2075 iph->ihl = sizeof(struct iphdr) >> 2;
2076 iph->saddr = rt->rt_src;
2077 iph->daddr = rt->rt_dst;
2078 iph->version = 0;
2079 err = ipmr_cache_unresolved(mrt, vif, skb2);
2080 read_unlock(&mrt_lock);
2081 rcu_read_unlock();
2082 return err;
2083 }
2084
2085 read_lock(&mrt_lock);
2086 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2087 cache->mfc_flags |= MFC_NOTIFY;
2088 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2089 read_unlock(&mrt_lock);
2090 rcu_read_unlock();
2091 return err;
2092 }
2093
2094 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2095 u32 pid, u32 seq, struct mfc_cache *c)
2096 {
2097 struct nlmsghdr *nlh;
2098 struct rtmsg *rtm;
2099
2100 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2101 if (nlh == NULL)
2102 return -EMSGSIZE;
2103
2104 rtm = nlmsg_data(nlh);
2105 rtm->rtm_family = RTNL_FAMILY_IPMR;
2106 rtm->rtm_dst_len = 32;
2107 rtm->rtm_src_len = 32;
2108 rtm->rtm_tos = 0;
2109 rtm->rtm_table = mrt->id;
2110 NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2111 rtm->rtm_type = RTN_MULTICAST;
2112 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2113 rtm->rtm_protocol = RTPROT_UNSPEC;
2114 rtm->rtm_flags = 0;
2115
2116 NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2117 NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2118
2119 if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2120 goto nla_put_failure;
2121
2122 return nlmsg_end(skb, nlh);
2123
2124 nla_put_failure:
2125 nlmsg_cancel(skb, nlh);
2126 return -EMSGSIZE;
2127 }
2128
2129 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2130 {
2131 struct net *net = sock_net(skb->sk);
2132 struct mr_table *mrt;
2133 struct mfc_cache *mfc;
2134 unsigned int t = 0, s_t;
2135 unsigned int h = 0, s_h;
2136 unsigned int e = 0, s_e;
2137
2138 s_t = cb->args[0];
2139 s_h = cb->args[1];
2140 s_e = cb->args[2];
2141
2142 rcu_read_lock();
2143 ipmr_for_each_table(mrt, net) {
2144 if (t < s_t)
2145 goto next_table;
2146 if (t > s_t)
2147 s_h = 0;
2148 for (h = s_h; h < MFC_LINES; h++) {
2149 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2150 if (e < s_e)
2151 goto next_entry;
2152 if (ipmr_fill_mroute(mrt, skb,
2153 NETLINK_CB(cb->skb).pid,
2154 cb->nlh->nlmsg_seq,
2155 mfc) < 0)
2156 goto done;
2157 next_entry:
2158 e++;
2159 }
2160 e = s_e = 0;
2161 }
2162 s_h = 0;
2163 next_table:
2164 t++;
2165 }
2166 done:
2167 rcu_read_unlock();
2168
2169 cb->args[2] = e;
2170 cb->args[1] = h;
2171 cb->args[0] = t;
2172
2173 return skb->len;
2174 }
2175
2176 #ifdef CONFIG_PROC_FS
2177 /*
2178 * The /proc interfaces to multicast routing :
2179 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2180 */
2181 struct ipmr_vif_iter {
2182 struct seq_net_private p;
2183 struct mr_table *mrt;
2184 int ct;
2185 };
2186
2187 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2188 struct ipmr_vif_iter *iter,
2189 loff_t pos)
2190 {
2191 struct mr_table *mrt = iter->mrt;
2192
2193 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2194 if (!VIF_EXISTS(mrt, iter->ct))
2195 continue;
2196 if (pos-- == 0)
2197 return &mrt->vif_table[iter->ct];
2198 }
2199 return NULL;
2200 }
2201
2202 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2203 __acquires(mrt_lock)
2204 {
2205 struct ipmr_vif_iter *iter = seq->private;
2206 struct net *net = seq_file_net(seq);
2207 struct mr_table *mrt;
2208
2209 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2210 if (mrt == NULL)
2211 return ERR_PTR(-ENOENT);
2212
2213 iter->mrt = mrt;
2214
2215 read_lock(&mrt_lock);
2216 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2217 : SEQ_START_TOKEN;
2218 }
2219
2220 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2221 {
2222 struct ipmr_vif_iter *iter = seq->private;
2223 struct net *net = seq_file_net(seq);
2224 struct mr_table *mrt = iter->mrt;
2225
2226 ++*pos;
2227 if (v == SEQ_START_TOKEN)
2228 return ipmr_vif_seq_idx(net, iter, 0);
2229
2230 while (++iter->ct < mrt->maxvif) {
2231 if (!VIF_EXISTS(mrt, iter->ct))
2232 continue;
2233 return &mrt->vif_table[iter->ct];
2234 }
2235 return NULL;
2236 }
2237
2238 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2239 __releases(mrt_lock)
2240 {
2241 read_unlock(&mrt_lock);
2242 }
2243
2244 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2245 {
2246 struct ipmr_vif_iter *iter = seq->private;
2247 struct mr_table *mrt = iter->mrt;
2248
2249 if (v == SEQ_START_TOKEN) {
2250 seq_puts(seq,
2251 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2252 } else {
2253 const struct vif_device *vif = v;
2254 const char *name = vif->dev ? vif->dev->name : "none";
2255
2256 seq_printf(seq,
2257 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2258 vif - mrt->vif_table,
2259 name, vif->bytes_in, vif->pkt_in,
2260 vif->bytes_out, vif->pkt_out,
2261 vif->flags, vif->local, vif->remote);
2262 }
2263 return 0;
2264 }
2265
2266 static const struct seq_operations ipmr_vif_seq_ops = {
2267 .start = ipmr_vif_seq_start,
2268 .next = ipmr_vif_seq_next,
2269 .stop = ipmr_vif_seq_stop,
2270 .show = ipmr_vif_seq_show,
2271 };
2272
2273 static int ipmr_vif_open(struct inode *inode, struct file *file)
2274 {
2275 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2276 sizeof(struct ipmr_vif_iter));
2277 }
2278
2279 static const struct file_operations ipmr_vif_fops = {
2280 .owner = THIS_MODULE,
2281 .open = ipmr_vif_open,
2282 .read = seq_read,
2283 .llseek = seq_lseek,
2284 .release = seq_release_net,
2285 };
2286
2287 struct ipmr_mfc_iter {
2288 struct seq_net_private p;
2289 struct mr_table *mrt;
2290 struct list_head *cache;
2291 int ct;
2292 };
2293
2294
2295 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2296 struct ipmr_mfc_iter *it, loff_t pos)
2297 {
2298 struct mr_table *mrt = it->mrt;
2299 struct mfc_cache *mfc;
2300
2301 rcu_read_lock();
2302 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2303 it->cache = &mrt->mfc_cache_array[it->ct];
2304 list_for_each_entry_rcu(mfc, it->cache, list)
2305 if (pos-- == 0)
2306 return mfc;
2307 }
2308 rcu_read_unlock();
2309
2310 spin_lock_bh(&mfc_unres_lock);
2311 it->cache = &mrt->mfc_unres_queue;
2312 list_for_each_entry(mfc, it->cache, list)
2313 if (pos-- == 0)
2314 return mfc;
2315 spin_unlock_bh(&mfc_unres_lock);
2316
2317 it->cache = NULL;
2318 return NULL;
2319 }
2320
2321
2322 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2323 {
2324 struct ipmr_mfc_iter *it = seq->private;
2325 struct net *net = seq_file_net(seq);
2326 struct mr_table *mrt;
2327
2328 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2329 if (mrt == NULL)
2330 return ERR_PTR(-ENOENT);
2331
2332 it->mrt = mrt;
2333 it->cache = NULL;
2334 it->ct = 0;
2335 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2336 : SEQ_START_TOKEN;
2337 }
2338
2339 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2340 {
2341 struct mfc_cache *mfc = v;
2342 struct ipmr_mfc_iter *it = seq->private;
2343 struct net *net = seq_file_net(seq);
2344 struct mr_table *mrt = it->mrt;
2345
2346 ++*pos;
2347
2348 if (v == SEQ_START_TOKEN)
2349 return ipmr_mfc_seq_idx(net, seq->private, 0);
2350
2351 if (mfc->list.next != it->cache)
2352 return list_entry(mfc->list.next, struct mfc_cache, list);
2353
2354 if (it->cache == &mrt->mfc_unres_queue)
2355 goto end_of_list;
2356
2357 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2358
2359 while (++it->ct < MFC_LINES) {
2360 it->cache = &mrt->mfc_cache_array[it->ct];
2361 if (list_empty(it->cache))
2362 continue;
2363 return list_first_entry(it->cache, struct mfc_cache, list);
2364 }
2365
2366 /* exhausted cache_array, show unresolved */
2367 rcu_read_unlock();
2368 it->cache = &mrt->mfc_unres_queue;
2369 it->ct = 0;
2370
2371 spin_lock_bh(&mfc_unres_lock);
2372 if (!list_empty(it->cache))
2373 return list_first_entry(it->cache, struct mfc_cache, list);
2374
2375 end_of_list:
2376 spin_unlock_bh(&mfc_unres_lock);
2377 it->cache = NULL;
2378
2379 return NULL;
2380 }
2381
2382 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2383 {
2384 struct ipmr_mfc_iter *it = seq->private;
2385 struct mr_table *mrt = it->mrt;
2386
2387 if (it->cache == &mrt->mfc_unres_queue)
2388 spin_unlock_bh(&mfc_unres_lock);
2389 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2390 rcu_read_unlock();
2391 }
2392
2393 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2394 {
2395 int n;
2396
2397 if (v == SEQ_START_TOKEN) {
2398 seq_puts(seq,
2399 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2400 } else {
2401 const struct mfc_cache *mfc = v;
2402 const struct ipmr_mfc_iter *it = seq->private;
2403 const struct mr_table *mrt = it->mrt;
2404
2405 seq_printf(seq, "%08X %08X %-3hd",
2406 (__force u32) mfc->mfc_mcastgrp,
2407 (__force u32) mfc->mfc_origin,
2408 mfc->mfc_parent);
2409
2410 if (it->cache != &mrt->mfc_unres_queue) {
2411 seq_printf(seq, " %8lu %8lu %8lu",
2412 mfc->mfc_un.res.pkt,
2413 mfc->mfc_un.res.bytes,
2414 mfc->mfc_un.res.wrong_if);
2415 for (n = mfc->mfc_un.res.minvif;
2416 n < mfc->mfc_un.res.maxvif; n++) {
2417 if (VIF_EXISTS(mrt, n) &&
2418 mfc->mfc_un.res.ttls[n] < 255)
2419 seq_printf(seq,
2420 " %2d:%-3d",
2421 n, mfc->mfc_un.res.ttls[n]);
2422 }
2423 } else {
2424 /* unresolved mfc_caches don't contain
2425 * pkt, bytes and wrong_if values
2426 */
2427 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2428 }
2429 seq_putc(seq, '\n');
2430 }
2431 return 0;
2432 }
2433
2434 static const struct seq_operations ipmr_mfc_seq_ops = {
2435 .start = ipmr_mfc_seq_start,
2436 .next = ipmr_mfc_seq_next,
2437 .stop = ipmr_mfc_seq_stop,
2438 .show = ipmr_mfc_seq_show,
2439 };
2440
2441 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2442 {
2443 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2444 sizeof(struct ipmr_mfc_iter));
2445 }
2446
2447 static const struct file_operations ipmr_mfc_fops = {
2448 .owner = THIS_MODULE,
2449 .open = ipmr_mfc_open,
2450 .read = seq_read,
2451 .llseek = seq_lseek,
2452 .release = seq_release_net,
2453 };
2454 #endif
2455
2456 #ifdef CONFIG_IP_PIMSM_V2
2457 static const struct net_protocol pim_protocol = {
2458 .handler = pim_rcv,
2459 .netns_ok = 1,
2460 };
2461 #endif
2462
2463
2464 /*
2465 * Setup for IP multicast routing
2466 */
2467 static int __net_init ipmr_net_init(struct net *net)
2468 {
2469 int err;
2470
2471 err = ipmr_rules_init(net);
2472 if (err < 0)
2473 goto fail;
2474
2475 #ifdef CONFIG_PROC_FS
2476 err = -ENOMEM;
2477 if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2478 goto proc_vif_fail;
2479 if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2480 goto proc_cache_fail;
2481 #endif
2482 return 0;
2483
2484 #ifdef CONFIG_PROC_FS
2485 proc_cache_fail:
2486 proc_net_remove(net, "ip_mr_vif");
2487 proc_vif_fail:
2488 ipmr_rules_exit(net);
2489 #endif
2490 fail:
2491 return err;
2492 }
2493
2494 static void __net_exit ipmr_net_exit(struct net *net)
2495 {
2496 #ifdef CONFIG_PROC_FS
2497 proc_net_remove(net, "ip_mr_cache");
2498 proc_net_remove(net, "ip_mr_vif");
2499 #endif
2500 ipmr_rules_exit(net);
2501 }
2502
2503 static struct pernet_operations ipmr_net_ops = {
2504 .init = ipmr_net_init,
2505 .exit = ipmr_net_exit,
2506 };
2507
2508 int __init ip_mr_init(void)
2509 {
2510 int err;
2511
2512 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2513 sizeof(struct mfc_cache),
2514 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2515 NULL);
2516 if (!mrt_cachep)
2517 return -ENOMEM;
2518
2519 err = register_pernet_subsys(&ipmr_net_ops);
2520 if (err)
2521 goto reg_pernet_fail;
2522
2523 err = register_netdevice_notifier(&ip_mr_notifier);
2524 if (err)
2525 goto reg_notif_fail;
2526 #ifdef CONFIG_IP_PIMSM_V2
2527 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2528 printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2529 err = -EAGAIN;
2530 goto add_proto_fail;
2531 }
2532 #endif
2533 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
2534 return 0;
2535
2536 #ifdef CONFIG_IP_PIMSM_V2
2537 add_proto_fail:
2538 unregister_netdevice_notifier(&ip_mr_notifier);
2539 #endif
2540 reg_notif_fail:
2541 unregister_pernet_subsys(&ipmr_net_ops);
2542 reg_pernet_fail:
2543 kmem_cache_destroy(mrt_cachep);
2544 return err;
2545 }
This page took 0.132469 seconds and 5 git commands to generate.