MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM 1
72 #endif
73
74 struct mr_table {
75 struct list_head list;
76 #ifdef CONFIG_NET_NS
77 struct net *net;
78 #endif
79 u32 id;
80 struct sock __rcu *mroute_sk;
81 struct timer_list ipmr_expire_timer;
82 struct list_head mfc_unres_queue;
83 struct list_head mfc_cache_array[MFC_LINES];
84 struct vif_device vif_table[MAXVIFS];
85 int maxvif;
86 atomic_t cache_resolve_queue_len;
87 bool mroute_do_assert;
88 bool mroute_do_pim;
89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
90 int mroute_reg_vif_num;
91 #endif
92 };
93
94 struct ipmr_rule {
95 struct fib_rule common;
96 };
97
98 struct ipmr_result {
99 struct mr_table *mrt;
100 };
101
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103 * Note that the changes are semaphored via rtnl_lock.
104 */
105
106 static DEFINE_RWLOCK(mrt_lock);
107
108 /*
109 * Multicast router control variables
110 */
111
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116
117 /* We return to original Alan's scheme. Hash table of resolved
118 * entries is changed only in process context and protected
119 * with weak lock mrt_lock. Queue of unresolved entries is protected
120 * with strong spinlock mfc_unres_lock.
121 *
122 * In this case data path is free of exclusive locks at all.
123 */
124
125 static struct kmem_cache *mrt_cachep __read_mostly;
126
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static void ipmr_free_table(struct mr_table *mrt);
129
130 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
131 struct sk_buff *skb, struct mfc_cache *cache,
132 int local);
133 static int ipmr_cache_report(struct mr_table *mrt,
134 struct sk_buff *pkt, vifi_t vifi, int assert);
135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
136 struct mfc_cache *c, struct rtmsg *rtm);
137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
138 int cmd);
139 static void mroute_clean_tables(struct mr_table *mrt);
140 static void ipmr_expire_process(unsigned long arg);
141
142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
143 #define ipmr_for_each_table(mrt, net) \
144 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
145
146 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
147 {
148 struct mr_table *mrt;
149
150 ipmr_for_each_table(mrt, net) {
151 if (mrt->id == id)
152 return mrt;
153 }
154 return NULL;
155 }
156
157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
158 struct mr_table **mrt)
159 {
160 int err;
161 struct ipmr_result res;
162 struct fib_lookup_arg arg = {
163 .result = &res,
164 .flags = FIB_LOOKUP_NOREF,
165 };
166
167 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
168 flowi4_to_flowi(flp4), 0, &arg);
169 if (err < 0)
170 return err;
171 *mrt = res.mrt;
172 return 0;
173 }
174
175 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
176 int flags, struct fib_lookup_arg *arg)
177 {
178 struct ipmr_result *res = arg->result;
179 struct mr_table *mrt;
180
181 switch (rule->action) {
182 case FR_ACT_TO_TBL:
183 break;
184 case FR_ACT_UNREACHABLE:
185 return -ENETUNREACH;
186 case FR_ACT_PROHIBIT:
187 return -EACCES;
188 case FR_ACT_BLACKHOLE:
189 default:
190 return -EINVAL;
191 }
192
193 mrt = ipmr_get_table(rule->fr_net, rule->table);
194 if (mrt == NULL)
195 return -EAGAIN;
196 res->mrt = mrt;
197 return 0;
198 }
199
200 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
201 {
202 return 1;
203 }
204
205 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
206 FRA_GENERIC_POLICY,
207 };
208
209 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
210 struct fib_rule_hdr *frh, struct nlattr **tb)
211 {
212 return 0;
213 }
214
215 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
216 struct nlattr **tb)
217 {
218 return 1;
219 }
220
221 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
222 struct fib_rule_hdr *frh)
223 {
224 frh->dst_len = 0;
225 frh->src_len = 0;
226 frh->tos = 0;
227 return 0;
228 }
229
230 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
231 .family = RTNL_FAMILY_IPMR,
232 .rule_size = sizeof(struct ipmr_rule),
233 .addr_size = sizeof(u32),
234 .action = ipmr_rule_action,
235 .match = ipmr_rule_match,
236 .configure = ipmr_rule_configure,
237 .compare = ipmr_rule_compare,
238 .default_pref = fib_default_rule_pref,
239 .fill = ipmr_rule_fill,
240 .nlgroup = RTNLGRP_IPV4_RULE,
241 .policy = ipmr_rule_policy,
242 .owner = THIS_MODULE,
243 };
244
245 static int __net_init ipmr_rules_init(struct net *net)
246 {
247 struct fib_rules_ops *ops;
248 struct mr_table *mrt;
249 int err;
250
251 ops = fib_rules_register(&ipmr_rules_ops_template, net);
252 if (IS_ERR(ops))
253 return PTR_ERR(ops);
254
255 INIT_LIST_HEAD(&net->ipv4.mr_tables);
256
257 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
258 if (mrt == NULL) {
259 err = -ENOMEM;
260 goto err1;
261 }
262
263 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
264 if (err < 0)
265 goto err2;
266
267 net->ipv4.mr_rules_ops = ops;
268 return 0;
269
270 err2:
271 kfree(mrt);
272 err1:
273 fib_rules_unregister(ops);
274 return err;
275 }
276
277 static void __net_exit ipmr_rules_exit(struct net *net)
278 {
279 struct mr_table *mrt, *next;
280
281 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
282 list_del(&mrt->list);
283 ipmr_free_table(mrt);
284 }
285 fib_rules_unregister(net->ipv4.mr_rules_ops);
286 }
287 #else
288 #define ipmr_for_each_table(mrt, net) \
289 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
290
291 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
292 {
293 return net->ipv4.mrt;
294 }
295
296 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
297 struct mr_table **mrt)
298 {
299 *mrt = net->ipv4.mrt;
300 return 0;
301 }
302
303 static int __net_init ipmr_rules_init(struct net *net)
304 {
305 net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
306 return net->ipv4.mrt ? 0 : -ENOMEM;
307 }
308
309 static void __net_exit ipmr_rules_exit(struct net *net)
310 {
311 ipmr_free_table(net->ipv4.mrt);
312 }
313 #endif
314
315 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
316 {
317 struct mr_table *mrt;
318 unsigned int i;
319
320 mrt = ipmr_get_table(net, id);
321 if (mrt != NULL)
322 return mrt;
323
324 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
325 if (mrt == NULL)
326 return NULL;
327 write_pnet(&mrt->net, net);
328 mrt->id = id;
329
330 /* Forwarding cache */
331 for (i = 0; i < MFC_LINES; i++)
332 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
333
334 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
335
336 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
337 (unsigned long)mrt);
338
339 #ifdef CONFIG_IP_PIMSM
340 mrt->mroute_reg_vif_num = -1;
341 #endif
342 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
343 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
344 #endif
345 return mrt;
346 }
347
348 static void ipmr_free_table(struct mr_table *mrt)
349 {
350 del_timer_sync(&mrt->ipmr_expire_timer);
351 mroute_clean_tables(mrt);
352 kfree(mrt);
353 }
354
355 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
356
357 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
358 {
359 struct net *net = dev_net(dev);
360
361 dev_close(dev);
362
363 dev = __dev_get_by_name(net, "tunl0");
364 if (dev) {
365 const struct net_device_ops *ops = dev->netdev_ops;
366 struct ifreq ifr;
367 struct ip_tunnel_parm p;
368
369 memset(&p, 0, sizeof(p));
370 p.iph.daddr = v->vifc_rmt_addr.s_addr;
371 p.iph.saddr = v->vifc_lcl_addr.s_addr;
372 p.iph.version = 4;
373 p.iph.ihl = 5;
374 p.iph.protocol = IPPROTO_IPIP;
375 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
376 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
377
378 if (ops->ndo_do_ioctl) {
379 mm_segment_t oldfs = get_fs();
380
381 set_fs(KERNEL_DS);
382 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
383 set_fs(oldfs);
384 }
385 }
386 }
387
388 static
389 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
390 {
391 struct net_device *dev;
392
393 dev = __dev_get_by_name(net, "tunl0");
394
395 if (dev) {
396 const struct net_device_ops *ops = dev->netdev_ops;
397 int err;
398 struct ifreq ifr;
399 struct ip_tunnel_parm p;
400 struct in_device *in_dev;
401
402 memset(&p, 0, sizeof(p));
403 p.iph.daddr = v->vifc_rmt_addr.s_addr;
404 p.iph.saddr = v->vifc_lcl_addr.s_addr;
405 p.iph.version = 4;
406 p.iph.ihl = 5;
407 p.iph.protocol = IPPROTO_IPIP;
408 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
409 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
410
411 if (ops->ndo_do_ioctl) {
412 mm_segment_t oldfs = get_fs();
413
414 set_fs(KERNEL_DS);
415 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
416 set_fs(oldfs);
417 } else {
418 err = -EOPNOTSUPP;
419 }
420 dev = NULL;
421
422 if (err == 0 &&
423 (dev = __dev_get_by_name(net, p.name)) != NULL) {
424 dev->flags |= IFF_MULTICAST;
425
426 in_dev = __in_dev_get_rtnl(dev);
427 if (in_dev == NULL)
428 goto failure;
429
430 ipv4_devconf_setall(in_dev);
431 neigh_parms_data_state_setall(in_dev->arp_parms);
432 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
433
434 if (dev_open(dev))
435 goto failure;
436 dev_hold(dev);
437 }
438 }
439 return dev;
440
441 failure:
442 /* allow the register to be completed before unregistering. */
443 rtnl_unlock();
444 rtnl_lock();
445
446 unregister_netdevice(dev);
447 return NULL;
448 }
449
450 #ifdef CONFIG_IP_PIMSM
451
452 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
453 {
454 struct net *net = dev_net(dev);
455 struct mr_table *mrt;
456 struct flowi4 fl4 = {
457 .flowi4_oif = dev->ifindex,
458 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
459 .flowi4_mark = skb->mark,
460 };
461 int err;
462
463 err = ipmr_fib_lookup(net, &fl4, &mrt);
464 if (err < 0) {
465 kfree_skb(skb);
466 return err;
467 }
468
469 read_lock(&mrt_lock);
470 dev->stats.tx_bytes += skb->len;
471 dev->stats.tx_packets++;
472 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
473 read_unlock(&mrt_lock);
474 kfree_skb(skb);
475 return NETDEV_TX_OK;
476 }
477
478 static const struct net_device_ops reg_vif_netdev_ops = {
479 .ndo_start_xmit = reg_vif_xmit,
480 };
481
482 static void reg_vif_setup(struct net_device *dev)
483 {
484 dev->type = ARPHRD_PIMREG;
485 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
486 dev->flags = IFF_NOARP;
487 dev->netdev_ops = &reg_vif_netdev_ops;
488 dev->destructor = free_netdev;
489 dev->features |= NETIF_F_NETNS_LOCAL;
490 }
491
492 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
493 {
494 struct net_device *dev;
495 struct in_device *in_dev;
496 char name[IFNAMSIZ];
497
498 if (mrt->id == RT_TABLE_DEFAULT)
499 sprintf(name, "pimreg");
500 else
501 sprintf(name, "pimreg%u", mrt->id);
502
503 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
504
505 if (dev == NULL)
506 return NULL;
507
508 dev_net_set(dev, net);
509
510 if (register_netdevice(dev)) {
511 free_netdev(dev);
512 return NULL;
513 }
514 dev->iflink = 0;
515
516 rcu_read_lock();
517 in_dev = __in_dev_get_rcu(dev);
518 if (!in_dev) {
519 rcu_read_unlock();
520 goto failure;
521 }
522
523 ipv4_devconf_setall(in_dev);
524 neigh_parms_data_state_setall(in_dev->arp_parms);
525 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
526 rcu_read_unlock();
527
528 if (dev_open(dev))
529 goto failure;
530
531 dev_hold(dev);
532
533 return dev;
534
535 failure:
536 /* allow the register to be completed before unregistering. */
537 rtnl_unlock();
538 rtnl_lock();
539
540 unregister_netdevice(dev);
541 return NULL;
542 }
543 #endif
544
545 /**
546 * vif_delete - Delete a VIF entry
547 * @notify: Set to 1, if the caller is a notifier_call
548 */
549
550 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
551 struct list_head *head)
552 {
553 struct vif_device *v;
554 struct net_device *dev;
555 struct in_device *in_dev;
556
557 if (vifi < 0 || vifi >= mrt->maxvif)
558 return -EADDRNOTAVAIL;
559
560 v = &mrt->vif_table[vifi];
561
562 write_lock_bh(&mrt_lock);
563 dev = v->dev;
564 v->dev = NULL;
565
566 if (!dev) {
567 write_unlock_bh(&mrt_lock);
568 return -EADDRNOTAVAIL;
569 }
570
571 #ifdef CONFIG_IP_PIMSM
572 if (vifi == mrt->mroute_reg_vif_num)
573 mrt->mroute_reg_vif_num = -1;
574 #endif
575
576 if (vifi + 1 == mrt->maxvif) {
577 int tmp;
578
579 for (tmp = vifi - 1; tmp >= 0; tmp--) {
580 if (VIF_EXISTS(mrt, tmp))
581 break;
582 }
583 mrt->maxvif = tmp+1;
584 }
585
586 write_unlock_bh(&mrt_lock);
587
588 dev_set_allmulti(dev, -1);
589
590 in_dev = __in_dev_get_rtnl(dev);
591 if (in_dev) {
592 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
593 inet_netconf_notify_devconf(dev_net(dev),
594 NETCONFA_MC_FORWARDING,
595 dev->ifindex, &in_dev->cnf);
596 ip_rt_multicast_event(in_dev);
597 }
598
599 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
600 unregister_netdevice_queue(dev, head);
601
602 dev_put(dev);
603 return 0;
604 }
605
606 static void ipmr_cache_free_rcu(struct rcu_head *head)
607 {
608 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
609
610 kmem_cache_free(mrt_cachep, c);
611 }
612
613 static inline void ipmr_cache_free(struct mfc_cache *c)
614 {
615 call_rcu(&c->rcu, ipmr_cache_free_rcu);
616 }
617
618 /* Destroy an unresolved cache entry, killing queued skbs
619 * and reporting error to netlink readers.
620 */
621
622 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
623 {
624 struct net *net = read_pnet(&mrt->net);
625 struct sk_buff *skb;
626 struct nlmsgerr *e;
627
628 atomic_dec(&mrt->cache_resolve_queue_len);
629
630 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
631 if (ip_hdr(skb)->version == 0) {
632 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
633 nlh->nlmsg_type = NLMSG_ERROR;
634 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
635 skb_trim(skb, nlh->nlmsg_len);
636 e = nlmsg_data(nlh);
637 e->error = -ETIMEDOUT;
638 memset(&e->msg, 0, sizeof(e->msg));
639
640 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
641 } else {
642 kfree_skb(skb);
643 }
644 }
645
646 ipmr_cache_free(c);
647 }
648
649
650 /* Timer process for the unresolved queue. */
651
652 static void ipmr_expire_process(unsigned long arg)
653 {
654 struct mr_table *mrt = (struct mr_table *)arg;
655 unsigned long now;
656 unsigned long expires;
657 struct mfc_cache *c, *next;
658
659 if (!spin_trylock(&mfc_unres_lock)) {
660 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
661 return;
662 }
663
664 if (list_empty(&mrt->mfc_unres_queue))
665 goto out;
666
667 now = jiffies;
668 expires = 10*HZ;
669
670 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
671 if (time_after(c->mfc_un.unres.expires, now)) {
672 unsigned long interval = c->mfc_un.unres.expires - now;
673 if (interval < expires)
674 expires = interval;
675 continue;
676 }
677
678 list_del(&c->list);
679 mroute_netlink_event(mrt, c, RTM_DELROUTE);
680 ipmr_destroy_unres(mrt, c);
681 }
682
683 if (!list_empty(&mrt->mfc_unres_queue))
684 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
685
686 out:
687 spin_unlock(&mfc_unres_lock);
688 }
689
690 /* Fill oifs list. It is called under write locked mrt_lock. */
691
692 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
693 unsigned char *ttls)
694 {
695 int vifi;
696
697 cache->mfc_un.res.minvif = MAXVIFS;
698 cache->mfc_un.res.maxvif = 0;
699 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
700
701 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
702 if (VIF_EXISTS(mrt, vifi) &&
703 ttls[vifi] && ttls[vifi] < 255) {
704 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
705 if (cache->mfc_un.res.minvif > vifi)
706 cache->mfc_un.res.minvif = vifi;
707 if (cache->mfc_un.res.maxvif <= vifi)
708 cache->mfc_un.res.maxvif = vifi + 1;
709 }
710 }
711 }
712
713 static int vif_add(struct net *net, struct mr_table *mrt,
714 struct vifctl *vifc, int mrtsock)
715 {
716 int vifi = vifc->vifc_vifi;
717 struct vif_device *v = &mrt->vif_table[vifi];
718 struct net_device *dev;
719 struct in_device *in_dev;
720 int err;
721
722 /* Is vif busy ? */
723 if (VIF_EXISTS(mrt, vifi))
724 return -EADDRINUSE;
725
726 switch (vifc->vifc_flags) {
727 #ifdef CONFIG_IP_PIMSM
728 case VIFF_REGISTER:
729 /*
730 * Special Purpose VIF in PIM
731 * All the packets will be sent to the daemon
732 */
733 if (mrt->mroute_reg_vif_num >= 0)
734 return -EADDRINUSE;
735 dev = ipmr_reg_vif(net, mrt);
736 if (!dev)
737 return -ENOBUFS;
738 err = dev_set_allmulti(dev, 1);
739 if (err) {
740 unregister_netdevice(dev);
741 dev_put(dev);
742 return err;
743 }
744 break;
745 #endif
746 case VIFF_TUNNEL:
747 dev = ipmr_new_tunnel(net, vifc);
748 if (!dev)
749 return -ENOBUFS;
750 err = dev_set_allmulti(dev, 1);
751 if (err) {
752 ipmr_del_tunnel(dev, vifc);
753 dev_put(dev);
754 return err;
755 }
756 break;
757
758 case VIFF_USE_IFINDEX:
759 case 0:
760 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
761 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
762 if (dev && __in_dev_get_rtnl(dev) == NULL) {
763 dev_put(dev);
764 return -EADDRNOTAVAIL;
765 }
766 } else {
767 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
768 }
769 if (!dev)
770 return -EADDRNOTAVAIL;
771 err = dev_set_allmulti(dev, 1);
772 if (err) {
773 dev_put(dev);
774 return err;
775 }
776 break;
777 default:
778 return -EINVAL;
779 }
780
781 in_dev = __in_dev_get_rtnl(dev);
782 if (!in_dev) {
783 dev_put(dev);
784 return -EADDRNOTAVAIL;
785 }
786 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
787 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
788 &in_dev->cnf);
789 ip_rt_multicast_event(in_dev);
790
791 /* Fill in the VIF structures */
792
793 v->rate_limit = vifc->vifc_rate_limit;
794 v->local = vifc->vifc_lcl_addr.s_addr;
795 v->remote = vifc->vifc_rmt_addr.s_addr;
796 v->flags = vifc->vifc_flags;
797 if (!mrtsock)
798 v->flags |= VIFF_STATIC;
799 v->threshold = vifc->vifc_threshold;
800 v->bytes_in = 0;
801 v->bytes_out = 0;
802 v->pkt_in = 0;
803 v->pkt_out = 0;
804 v->link = dev->ifindex;
805 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
806 v->link = dev->iflink;
807
808 /* And finish update writing critical data */
809 write_lock_bh(&mrt_lock);
810 v->dev = dev;
811 #ifdef CONFIG_IP_PIMSM
812 if (v->flags & VIFF_REGISTER)
813 mrt->mroute_reg_vif_num = vifi;
814 #endif
815 if (vifi+1 > mrt->maxvif)
816 mrt->maxvif = vifi+1;
817 write_unlock_bh(&mrt_lock);
818 return 0;
819 }
820
821 /* called with rcu_read_lock() */
822 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
823 __be32 origin,
824 __be32 mcastgrp)
825 {
826 int line = MFC_HASH(mcastgrp, origin);
827 struct mfc_cache *c;
828
829 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
830 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
831 return c;
832 }
833 return NULL;
834 }
835
836 /* Look for a (*,*,oif) entry */
837 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
838 int vifi)
839 {
840 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
841 struct mfc_cache *c;
842
843 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
844 if (c->mfc_origin == htonl(INADDR_ANY) &&
845 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
846 c->mfc_un.res.ttls[vifi] < 255)
847 return c;
848
849 return NULL;
850 }
851
852 /* Look for a (*,G) entry */
853 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
854 __be32 mcastgrp, int vifi)
855 {
856 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
857 struct mfc_cache *c, *proxy;
858
859 if (mcastgrp == htonl(INADDR_ANY))
860 goto skip;
861
862 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
863 if (c->mfc_origin == htonl(INADDR_ANY) &&
864 c->mfc_mcastgrp == mcastgrp) {
865 if (c->mfc_un.res.ttls[vifi] < 255)
866 return c;
867
868 /* It's ok if the vifi is part of the static tree */
869 proxy = ipmr_cache_find_any_parent(mrt,
870 c->mfc_parent);
871 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
872 return c;
873 }
874
875 skip:
876 return ipmr_cache_find_any_parent(mrt, vifi);
877 }
878
879 /*
880 * Allocate a multicast cache entry
881 */
882 static struct mfc_cache *ipmr_cache_alloc(void)
883 {
884 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
885
886 if (c)
887 c->mfc_un.res.minvif = MAXVIFS;
888 return c;
889 }
890
891 static struct mfc_cache *ipmr_cache_alloc_unres(void)
892 {
893 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
894
895 if (c) {
896 skb_queue_head_init(&c->mfc_un.unres.unresolved);
897 c->mfc_un.unres.expires = jiffies + 10*HZ;
898 }
899 return c;
900 }
901
902 /*
903 * A cache entry has gone into a resolved state from queued
904 */
905
906 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
907 struct mfc_cache *uc, struct mfc_cache *c)
908 {
909 struct sk_buff *skb;
910 struct nlmsgerr *e;
911
912 /* Play the pending entries through our router */
913
914 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
915 if (ip_hdr(skb)->version == 0) {
916 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
917
918 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
919 nlh->nlmsg_len = skb_tail_pointer(skb) -
920 (u8 *)nlh;
921 } else {
922 nlh->nlmsg_type = NLMSG_ERROR;
923 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
924 skb_trim(skb, nlh->nlmsg_len);
925 e = nlmsg_data(nlh);
926 e->error = -EMSGSIZE;
927 memset(&e->msg, 0, sizeof(e->msg));
928 }
929
930 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
931 } else {
932 ip_mr_forward(net, mrt, skb, c, 0);
933 }
934 }
935 }
936
937 /*
938 * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
939 * expects the following bizarre scheme.
940 *
941 * Called under mrt_lock.
942 */
943
944 static int ipmr_cache_report(struct mr_table *mrt,
945 struct sk_buff *pkt, vifi_t vifi, int assert)
946 {
947 struct sk_buff *skb;
948 const int ihl = ip_hdrlen(pkt);
949 struct igmphdr *igmp;
950 struct igmpmsg *msg;
951 struct sock *mroute_sk;
952 int ret;
953
954 #ifdef CONFIG_IP_PIMSM
955 if (assert == IGMPMSG_WHOLEPKT)
956 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
957 else
958 #endif
959 skb = alloc_skb(128, GFP_ATOMIC);
960
961 if (!skb)
962 return -ENOBUFS;
963
964 #ifdef CONFIG_IP_PIMSM
965 if (assert == IGMPMSG_WHOLEPKT) {
966 /* Ugly, but we have no choice with this interface.
967 * Duplicate old header, fix ihl, length etc.
968 * And all this only to mangle msg->im_msgtype and
969 * to set msg->im_mbz to "mbz" :-)
970 */
971 skb_push(skb, sizeof(struct iphdr));
972 skb_reset_network_header(skb);
973 skb_reset_transport_header(skb);
974 msg = (struct igmpmsg *)skb_network_header(skb);
975 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
976 msg->im_msgtype = IGMPMSG_WHOLEPKT;
977 msg->im_mbz = 0;
978 msg->im_vif = mrt->mroute_reg_vif_num;
979 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
980 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
981 sizeof(struct iphdr));
982 } else
983 #endif
984 {
985
986 /* Copy the IP header */
987
988 skb_set_network_header(skb, skb->len);
989 skb_put(skb, ihl);
990 skb_copy_to_linear_data(skb, pkt->data, ihl);
991 ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
992 msg = (struct igmpmsg *)skb_network_header(skb);
993 msg->im_vif = vifi;
994 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
995
996 /* Add our header */
997
998 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
999 igmp->type =
1000 msg->im_msgtype = assert;
1001 igmp->code = 0;
1002 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1003 skb->transport_header = skb->network_header;
1004 }
1005
1006 rcu_read_lock();
1007 mroute_sk = rcu_dereference(mrt->mroute_sk);
1008 if (mroute_sk == NULL) {
1009 rcu_read_unlock();
1010 kfree_skb(skb);
1011 return -EINVAL;
1012 }
1013
1014 /* Deliver to mrouted */
1015
1016 ret = sock_queue_rcv_skb(mroute_sk, skb);
1017 rcu_read_unlock();
1018 if (ret < 0) {
1019 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1020 kfree_skb(skb);
1021 }
1022
1023 return ret;
1024 }
1025
1026 /*
1027 * Queue a packet for resolution. It gets locked cache entry!
1028 */
1029
1030 static int
1031 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1032 {
1033 bool found = false;
1034 int err;
1035 struct mfc_cache *c;
1036 const struct iphdr *iph = ip_hdr(skb);
1037
1038 spin_lock_bh(&mfc_unres_lock);
1039 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1040 if (c->mfc_mcastgrp == iph->daddr &&
1041 c->mfc_origin == iph->saddr) {
1042 found = true;
1043 break;
1044 }
1045 }
1046
1047 if (!found) {
1048 /* Create a new entry if allowable */
1049
1050 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1051 (c = ipmr_cache_alloc_unres()) == NULL) {
1052 spin_unlock_bh(&mfc_unres_lock);
1053
1054 kfree_skb(skb);
1055 return -ENOBUFS;
1056 }
1057
1058 /* Fill in the new cache entry */
1059
1060 c->mfc_parent = -1;
1061 c->mfc_origin = iph->saddr;
1062 c->mfc_mcastgrp = iph->daddr;
1063
1064 /* Reflect first query at mrouted. */
1065
1066 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1067 if (err < 0) {
1068 /* If the report failed throw the cache entry
1069 out - Brad Parker
1070 */
1071 spin_unlock_bh(&mfc_unres_lock);
1072
1073 ipmr_cache_free(c);
1074 kfree_skb(skb);
1075 return err;
1076 }
1077
1078 atomic_inc(&mrt->cache_resolve_queue_len);
1079 list_add(&c->list, &mrt->mfc_unres_queue);
1080 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1081
1082 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1083 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1084 }
1085
1086 /* See if we can append the packet */
1087
1088 if (c->mfc_un.unres.unresolved.qlen > 3) {
1089 kfree_skb(skb);
1090 err = -ENOBUFS;
1091 } else {
1092 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1093 err = 0;
1094 }
1095
1096 spin_unlock_bh(&mfc_unres_lock);
1097 return err;
1098 }
1099
1100 /*
1101 * MFC cache manipulation by user space mroute daemon
1102 */
1103
1104 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1105 {
1106 int line;
1107 struct mfc_cache *c, *next;
1108
1109 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1110
1111 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1112 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1113 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1114 (parent == -1 || parent == c->mfc_parent)) {
1115 list_del_rcu(&c->list);
1116 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1117 ipmr_cache_free(c);
1118 return 0;
1119 }
1120 }
1121 return -ENOENT;
1122 }
1123
1124 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1125 struct mfcctl *mfc, int mrtsock, int parent)
1126 {
1127 bool found = false;
1128 int line;
1129 struct mfc_cache *uc, *c;
1130
1131 if (mfc->mfcc_parent >= MAXVIFS)
1132 return -ENFILE;
1133
1134 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1135
1136 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1137 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1138 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1139 (parent == -1 || parent == c->mfc_parent)) {
1140 found = true;
1141 break;
1142 }
1143 }
1144
1145 if (found) {
1146 write_lock_bh(&mrt_lock);
1147 c->mfc_parent = mfc->mfcc_parent;
1148 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1149 if (!mrtsock)
1150 c->mfc_flags |= MFC_STATIC;
1151 write_unlock_bh(&mrt_lock);
1152 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1153 return 0;
1154 }
1155
1156 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1157 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1158 return -EINVAL;
1159
1160 c = ipmr_cache_alloc();
1161 if (c == NULL)
1162 return -ENOMEM;
1163
1164 c->mfc_origin = mfc->mfcc_origin.s_addr;
1165 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1166 c->mfc_parent = mfc->mfcc_parent;
1167 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1168 if (!mrtsock)
1169 c->mfc_flags |= MFC_STATIC;
1170
1171 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1172
1173 /*
1174 * Check to see if we resolved a queued list. If so we
1175 * need to send on the frames and tidy up.
1176 */
1177 found = false;
1178 spin_lock_bh(&mfc_unres_lock);
1179 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1180 if (uc->mfc_origin == c->mfc_origin &&
1181 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1182 list_del(&uc->list);
1183 atomic_dec(&mrt->cache_resolve_queue_len);
1184 found = true;
1185 break;
1186 }
1187 }
1188 if (list_empty(&mrt->mfc_unres_queue))
1189 del_timer(&mrt->ipmr_expire_timer);
1190 spin_unlock_bh(&mfc_unres_lock);
1191
1192 if (found) {
1193 ipmr_cache_resolve(net, mrt, uc, c);
1194 ipmr_cache_free(uc);
1195 }
1196 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1197 return 0;
1198 }
1199
1200 /*
1201 * Close the multicast socket, and clear the vif tables etc
1202 */
1203
1204 static void mroute_clean_tables(struct mr_table *mrt)
1205 {
1206 int i;
1207 LIST_HEAD(list);
1208 struct mfc_cache *c, *next;
1209
1210 /* Shut down all active vif entries */
1211
1212 for (i = 0; i < mrt->maxvif; i++) {
1213 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1214 vif_delete(mrt, i, 0, &list);
1215 }
1216 unregister_netdevice_many(&list);
1217
1218 /* Wipe the cache */
1219
1220 for (i = 0; i < MFC_LINES; i++) {
1221 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222 if (c->mfc_flags & MFC_STATIC)
1223 continue;
1224 list_del_rcu(&c->list);
1225 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226 ipmr_cache_free(c);
1227 }
1228 }
1229
1230 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231 spin_lock_bh(&mfc_unres_lock);
1232 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233 list_del(&c->list);
1234 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235 ipmr_destroy_unres(mrt, c);
1236 }
1237 spin_unlock_bh(&mfc_unres_lock);
1238 }
1239 }
1240
1241 /* called from ip_ra_control(), before an RCU grace period,
1242 * we dont need to call synchronize_rcu() here
1243 */
1244 static void mrtsock_destruct(struct sock *sk)
1245 {
1246 struct net *net = sock_net(sk);
1247 struct mr_table *mrt;
1248
1249 rtnl_lock();
1250 ipmr_for_each_table(mrt, net) {
1251 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254 NETCONFA_IFINDEX_ALL,
1255 net->ipv4.devconf_all);
1256 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257 mroute_clean_tables(mrt);
1258 }
1259 }
1260 rtnl_unlock();
1261 }
1262
1263 /*
1264 * Socket options and virtual interface manipulation. The whole
1265 * virtual interface system is a complete heap, but unfortunately
1266 * that's how BSD mrouted happens to think. Maybe one day with a proper
1267 * MOSPF/PIM router set up we can clean this up.
1268 */
1269
1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271 {
1272 int ret, parent = 0;
1273 struct vifctl vif;
1274 struct mfcctl mfc;
1275 struct net *net = sock_net(sk);
1276 struct mr_table *mrt;
1277
1278 if (sk->sk_type != SOCK_RAW ||
1279 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280 return -EOPNOTSUPP;
1281
1282 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283 if (mrt == NULL)
1284 return -ENOENT;
1285
1286 if (optname != MRT_INIT) {
1287 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288 !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289 return -EACCES;
1290 }
1291
1292 switch (optname) {
1293 case MRT_INIT:
1294 if (optlen != sizeof(int))
1295 return -EINVAL;
1296
1297 rtnl_lock();
1298 if (rtnl_dereference(mrt->mroute_sk)) {
1299 rtnl_unlock();
1300 return -EADDRINUSE;
1301 }
1302
1303 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304 if (ret == 0) {
1305 rcu_assign_pointer(mrt->mroute_sk, sk);
1306 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308 NETCONFA_IFINDEX_ALL,
1309 net->ipv4.devconf_all);
1310 }
1311 rtnl_unlock();
1312 return ret;
1313 case MRT_DONE:
1314 if (sk != rcu_access_pointer(mrt->mroute_sk))
1315 return -EACCES;
1316 return ip_ra_control(sk, 0, NULL);
1317 case MRT_ADD_VIF:
1318 case MRT_DEL_VIF:
1319 if (optlen != sizeof(vif))
1320 return -EINVAL;
1321 if (copy_from_user(&vif, optval, sizeof(vif)))
1322 return -EFAULT;
1323 if (vif.vifc_vifi >= MAXVIFS)
1324 return -ENFILE;
1325 rtnl_lock();
1326 if (optname == MRT_ADD_VIF) {
1327 ret = vif_add(net, mrt, &vif,
1328 sk == rtnl_dereference(mrt->mroute_sk));
1329 } else {
1330 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331 }
1332 rtnl_unlock();
1333 return ret;
1334
1335 /*
1336 * Manipulate the forwarding caches. These live
1337 * in a sort of kernel/user symbiosis.
1338 */
1339 case MRT_ADD_MFC:
1340 case MRT_DEL_MFC:
1341 parent = -1;
1342 case MRT_ADD_MFC_PROXY:
1343 case MRT_DEL_MFC_PROXY:
1344 if (optlen != sizeof(mfc))
1345 return -EINVAL;
1346 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347 return -EFAULT;
1348 if (parent == 0)
1349 parent = mfc.mfcc_parent;
1350 rtnl_lock();
1351 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353 else
1354 ret = ipmr_mfc_add(net, mrt, &mfc,
1355 sk == rtnl_dereference(mrt->mroute_sk),
1356 parent);
1357 rtnl_unlock();
1358 return ret;
1359 /*
1360 * Control PIM assert.
1361 */
1362 case MRT_ASSERT:
1363 {
1364 int v;
1365 if (optlen != sizeof(v))
1366 return -EINVAL;
1367 if (get_user(v, (int __user *)optval))
1368 return -EFAULT;
1369 mrt->mroute_do_assert = v;
1370 return 0;
1371 }
1372 #ifdef CONFIG_IP_PIMSM
1373 case MRT_PIM:
1374 {
1375 int v;
1376
1377 if (optlen != sizeof(v))
1378 return -EINVAL;
1379 if (get_user(v, (int __user *)optval))
1380 return -EFAULT;
1381 v = !!v;
1382
1383 rtnl_lock();
1384 ret = 0;
1385 if (v != mrt->mroute_do_pim) {
1386 mrt->mroute_do_pim = v;
1387 mrt->mroute_do_assert = v;
1388 }
1389 rtnl_unlock();
1390 return ret;
1391 }
1392 #endif
1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394 case MRT_TABLE:
1395 {
1396 u32 v;
1397
1398 if (optlen != sizeof(u32))
1399 return -EINVAL;
1400 if (get_user(v, (u32 __user *)optval))
1401 return -EFAULT;
1402
1403 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405 return -EINVAL;
1406
1407 rtnl_lock();
1408 ret = 0;
1409 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410 ret = -EBUSY;
1411 } else {
1412 if (!ipmr_new_table(net, v))
1413 ret = -ENOMEM;
1414 else
1415 raw_sk(sk)->ipmr_table = v;
1416 }
1417 rtnl_unlock();
1418 return ret;
1419 }
1420 #endif
1421 /*
1422 * Spurious command, or MRT_VERSION which you cannot
1423 * set.
1424 */
1425 default:
1426 return -ENOPROTOOPT;
1427 }
1428 }
1429
1430 /*
1431 * Getsock opt support for the multicast routing system.
1432 */
1433
1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435 {
1436 int olr;
1437 int val;
1438 struct net *net = sock_net(sk);
1439 struct mr_table *mrt;
1440
1441 if (sk->sk_type != SOCK_RAW ||
1442 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443 return -EOPNOTSUPP;
1444
1445 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446 if (mrt == NULL)
1447 return -ENOENT;
1448
1449 if (optname != MRT_VERSION &&
1450 #ifdef CONFIG_IP_PIMSM
1451 optname != MRT_PIM &&
1452 #endif
1453 optname != MRT_ASSERT)
1454 return -ENOPROTOOPT;
1455
1456 if (get_user(olr, optlen))
1457 return -EFAULT;
1458
1459 olr = min_t(unsigned int, olr, sizeof(int));
1460 if (olr < 0)
1461 return -EINVAL;
1462
1463 if (put_user(olr, optlen))
1464 return -EFAULT;
1465 if (optname == MRT_VERSION)
1466 val = 0x0305;
1467 #ifdef CONFIG_IP_PIMSM
1468 else if (optname == MRT_PIM)
1469 val = mrt->mroute_do_pim;
1470 #endif
1471 else
1472 val = mrt->mroute_do_assert;
1473 if (copy_to_user(optval, &val, olr))
1474 return -EFAULT;
1475 return 0;
1476 }
1477
1478 /*
1479 * The IP multicast ioctl support routines.
1480 */
1481
1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483 {
1484 struct sioc_sg_req sr;
1485 struct sioc_vif_req vr;
1486 struct vif_device *vif;
1487 struct mfc_cache *c;
1488 struct net *net = sock_net(sk);
1489 struct mr_table *mrt;
1490
1491 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492 if (mrt == NULL)
1493 return -ENOENT;
1494
1495 switch (cmd) {
1496 case SIOCGETVIFCNT:
1497 if (copy_from_user(&vr, arg, sizeof(vr)))
1498 return -EFAULT;
1499 if (vr.vifi >= mrt->maxvif)
1500 return -EINVAL;
1501 read_lock(&mrt_lock);
1502 vif = &mrt->vif_table[vr.vifi];
1503 if (VIF_EXISTS(mrt, vr.vifi)) {
1504 vr.icount = vif->pkt_in;
1505 vr.ocount = vif->pkt_out;
1506 vr.ibytes = vif->bytes_in;
1507 vr.obytes = vif->bytes_out;
1508 read_unlock(&mrt_lock);
1509
1510 if (copy_to_user(arg, &vr, sizeof(vr)))
1511 return -EFAULT;
1512 return 0;
1513 }
1514 read_unlock(&mrt_lock);
1515 return -EADDRNOTAVAIL;
1516 case SIOCGETSGCNT:
1517 if (copy_from_user(&sr, arg, sizeof(sr)))
1518 return -EFAULT;
1519
1520 rcu_read_lock();
1521 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522 if (c) {
1523 sr.pktcnt = c->mfc_un.res.pkt;
1524 sr.bytecnt = c->mfc_un.res.bytes;
1525 sr.wrong_if = c->mfc_un.res.wrong_if;
1526 rcu_read_unlock();
1527
1528 if (copy_to_user(arg, &sr, sizeof(sr)))
1529 return -EFAULT;
1530 return 0;
1531 }
1532 rcu_read_unlock();
1533 return -EADDRNOTAVAIL;
1534 default:
1535 return -ENOIOCTLCMD;
1536 }
1537 }
1538
1539 #ifdef CONFIG_COMPAT
1540 struct compat_sioc_sg_req {
1541 struct in_addr src;
1542 struct in_addr grp;
1543 compat_ulong_t pktcnt;
1544 compat_ulong_t bytecnt;
1545 compat_ulong_t wrong_if;
1546 };
1547
1548 struct compat_sioc_vif_req {
1549 vifi_t vifi; /* Which iface */
1550 compat_ulong_t icount;
1551 compat_ulong_t ocount;
1552 compat_ulong_t ibytes;
1553 compat_ulong_t obytes;
1554 };
1555
1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557 {
1558 struct compat_sioc_sg_req sr;
1559 struct compat_sioc_vif_req vr;
1560 struct vif_device *vif;
1561 struct mfc_cache *c;
1562 struct net *net = sock_net(sk);
1563 struct mr_table *mrt;
1564
1565 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566 if (mrt == NULL)
1567 return -ENOENT;
1568
1569 switch (cmd) {
1570 case SIOCGETVIFCNT:
1571 if (copy_from_user(&vr, arg, sizeof(vr)))
1572 return -EFAULT;
1573 if (vr.vifi >= mrt->maxvif)
1574 return -EINVAL;
1575 read_lock(&mrt_lock);
1576 vif = &mrt->vif_table[vr.vifi];
1577 if (VIF_EXISTS(mrt, vr.vifi)) {
1578 vr.icount = vif->pkt_in;
1579 vr.ocount = vif->pkt_out;
1580 vr.ibytes = vif->bytes_in;
1581 vr.obytes = vif->bytes_out;
1582 read_unlock(&mrt_lock);
1583
1584 if (copy_to_user(arg, &vr, sizeof(vr)))
1585 return -EFAULT;
1586 return 0;
1587 }
1588 read_unlock(&mrt_lock);
1589 return -EADDRNOTAVAIL;
1590 case SIOCGETSGCNT:
1591 if (copy_from_user(&sr, arg, sizeof(sr)))
1592 return -EFAULT;
1593
1594 rcu_read_lock();
1595 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596 if (c) {
1597 sr.pktcnt = c->mfc_un.res.pkt;
1598 sr.bytecnt = c->mfc_un.res.bytes;
1599 sr.wrong_if = c->mfc_un.res.wrong_if;
1600 rcu_read_unlock();
1601
1602 if (copy_to_user(arg, &sr, sizeof(sr)))
1603 return -EFAULT;
1604 return 0;
1605 }
1606 rcu_read_unlock();
1607 return -EADDRNOTAVAIL;
1608 default:
1609 return -ENOIOCTLCMD;
1610 }
1611 }
1612 #endif
1613
1614
1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616 {
1617 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618 struct net *net = dev_net(dev);
1619 struct mr_table *mrt;
1620 struct vif_device *v;
1621 int ct;
1622
1623 if (event != NETDEV_UNREGISTER)
1624 return NOTIFY_DONE;
1625
1626 ipmr_for_each_table(mrt, net) {
1627 v = &mrt->vif_table[0];
1628 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629 if (v->dev == dev)
1630 vif_delete(mrt, ct, 1, NULL);
1631 }
1632 }
1633 return NOTIFY_DONE;
1634 }
1635
1636
1637 static struct notifier_block ip_mr_notifier = {
1638 .notifier_call = ipmr_device_event,
1639 };
1640
1641 /*
1642 * Encapsulate a packet by attaching a valid IPIP header to it.
1643 * This avoids tunnel drivers and other mess and gives us the speed so
1644 * important for multicast video.
1645 */
1646
1647 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1648 {
1649 struct iphdr *iph;
1650 const struct iphdr *old_iph = ip_hdr(skb);
1651
1652 skb_push(skb, sizeof(struct iphdr));
1653 skb->transport_header = skb->network_header;
1654 skb_reset_network_header(skb);
1655 iph = ip_hdr(skb);
1656
1657 iph->version = 4;
1658 iph->tos = old_iph->tos;
1659 iph->ttl = old_iph->ttl;
1660 iph->frag_off = 0;
1661 iph->daddr = daddr;
1662 iph->saddr = saddr;
1663 iph->protocol = IPPROTO_IPIP;
1664 iph->ihl = 5;
1665 iph->tot_len = htons(skb->len);
1666 ip_select_ident(skb, NULL);
1667 ip_send_check(iph);
1668
1669 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1670 nf_reset(skb);
1671 }
1672
1673 static inline int ipmr_forward_finish(struct sk_buff *skb)
1674 {
1675 struct ip_options *opt = &(IPCB(skb)->opt);
1676
1677 IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1678 IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1679
1680 if (unlikely(opt->optlen))
1681 ip_forward_options(skb);
1682
1683 return dst_output(skb);
1684 }
1685
1686 /*
1687 * Processing handlers for ipmr_forward
1688 */
1689
1690 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1691 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1692 {
1693 const struct iphdr *iph = ip_hdr(skb);
1694 struct vif_device *vif = &mrt->vif_table[vifi];
1695 struct net_device *dev;
1696 struct rtable *rt;
1697 struct flowi4 fl4;
1698 int encap = 0;
1699
1700 if (vif->dev == NULL)
1701 goto out_free;
1702
1703 #ifdef CONFIG_IP_PIMSM
1704 if (vif->flags & VIFF_REGISTER) {
1705 vif->pkt_out++;
1706 vif->bytes_out += skb->len;
1707 vif->dev->stats.tx_bytes += skb->len;
1708 vif->dev->stats.tx_packets++;
1709 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1710 goto out_free;
1711 }
1712 #endif
1713
1714 if (vif->flags & VIFF_TUNNEL) {
1715 rt = ip_route_output_ports(net, &fl4, NULL,
1716 vif->remote, vif->local,
1717 0, 0,
1718 IPPROTO_IPIP,
1719 RT_TOS(iph->tos), vif->link);
1720 if (IS_ERR(rt))
1721 goto out_free;
1722 encap = sizeof(struct iphdr);
1723 } else {
1724 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1725 0, 0,
1726 IPPROTO_IPIP,
1727 RT_TOS(iph->tos), vif->link);
1728 if (IS_ERR(rt))
1729 goto out_free;
1730 }
1731
1732 dev = rt->dst.dev;
1733
1734 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1735 /* Do not fragment multicasts. Alas, IPv4 does not
1736 * allow to send ICMP, so that packets will disappear
1737 * to blackhole.
1738 */
1739
1740 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1741 ip_rt_put(rt);
1742 goto out_free;
1743 }
1744
1745 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1746
1747 if (skb_cow(skb, encap)) {
1748 ip_rt_put(rt);
1749 goto out_free;
1750 }
1751
1752 vif->pkt_out++;
1753 vif->bytes_out += skb->len;
1754
1755 skb_dst_drop(skb);
1756 skb_dst_set(skb, &rt->dst);
1757 ip_decrease_ttl(ip_hdr(skb));
1758
1759 /* FIXME: forward and output firewalls used to be called here.
1760 * What do we do with netfilter? -- RR
1761 */
1762 if (vif->flags & VIFF_TUNNEL) {
1763 ip_encap(skb, vif->local, vif->remote);
1764 /* FIXME: extra output firewall step used to be here. --RR */
1765 vif->dev->stats.tx_packets++;
1766 vif->dev->stats.tx_bytes += skb->len;
1767 }
1768
1769 IPCB(skb)->flags |= IPSKB_FORWARDED;
1770
1771 /*
1772 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1773 * not only before forwarding, but after forwarding on all output
1774 * interfaces. It is clear, if mrouter runs a multicasting
1775 * program, it should receive packets not depending to what interface
1776 * program is joined.
1777 * If we will not make it, the program will have to join on all
1778 * interfaces. On the other hand, multihoming host (or router, but
1779 * not mrouter) cannot join to more than one interface - it will
1780 * result in receiving multiple packets.
1781 */
1782 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1783 ipmr_forward_finish);
1784 return;
1785
1786 out_free:
1787 kfree_skb(skb);
1788 }
1789
1790 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1791 {
1792 int ct;
1793
1794 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1795 if (mrt->vif_table[ct].dev == dev)
1796 break;
1797 }
1798 return ct;
1799 }
1800
1801 /* "local" means that we should preserve one skb (for local delivery) */
1802
1803 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1804 struct sk_buff *skb, struct mfc_cache *cache,
1805 int local)
1806 {
1807 int psend = -1;
1808 int vif, ct;
1809 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1810
1811 vif = cache->mfc_parent;
1812 cache->mfc_un.res.pkt++;
1813 cache->mfc_un.res.bytes += skb->len;
1814
1815 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1816 struct mfc_cache *cache_proxy;
1817
1818 /* For an (*,G) entry, we only check that the incomming
1819 * interface is part of the static tree.
1820 */
1821 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1822 if (cache_proxy &&
1823 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1824 goto forward;
1825 }
1826
1827 /*
1828 * Wrong interface: drop packet and (maybe) send PIM assert.
1829 */
1830 if (mrt->vif_table[vif].dev != skb->dev) {
1831 if (rt_is_output_route(skb_rtable(skb))) {
1832 /* It is our own packet, looped back.
1833 * Very complicated situation...
1834 *
1835 * The best workaround until routing daemons will be
1836 * fixed is not to redistribute packet, if it was
1837 * send through wrong interface. It means, that
1838 * multicast applications WILL NOT work for
1839 * (S,G), which have default multicast route pointing
1840 * to wrong oif. In any case, it is not a good
1841 * idea to use multicasting applications on router.
1842 */
1843 goto dont_forward;
1844 }
1845
1846 cache->mfc_un.res.wrong_if++;
1847
1848 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1849 /* pimsm uses asserts, when switching from RPT to SPT,
1850 * so that we cannot check that packet arrived on an oif.
1851 * It is bad, but otherwise we would need to move pretty
1852 * large chunk of pimd to kernel. Ough... --ANK
1853 */
1854 (mrt->mroute_do_pim ||
1855 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1856 time_after(jiffies,
1857 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1858 cache->mfc_un.res.last_assert = jiffies;
1859 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1860 }
1861 goto dont_forward;
1862 }
1863
1864 forward:
1865 mrt->vif_table[vif].pkt_in++;
1866 mrt->vif_table[vif].bytes_in += skb->len;
1867
1868 /*
1869 * Forward the frame
1870 */
1871 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1872 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1873 if (true_vifi >= 0 &&
1874 true_vifi != cache->mfc_parent &&
1875 ip_hdr(skb)->ttl >
1876 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1877 /* It's an (*,*) entry and the packet is not coming from
1878 * the upstream: forward the packet to the upstream
1879 * only.
1880 */
1881 psend = cache->mfc_parent;
1882 goto last_forward;
1883 }
1884 goto dont_forward;
1885 }
1886 for (ct = cache->mfc_un.res.maxvif - 1;
1887 ct >= cache->mfc_un.res.minvif; ct--) {
1888 /* For (*,G) entry, don't forward to the incoming interface */
1889 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1890 ct != true_vifi) &&
1891 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1892 if (psend != -1) {
1893 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1894
1895 if (skb2)
1896 ipmr_queue_xmit(net, mrt, skb2, cache,
1897 psend);
1898 }
1899 psend = ct;
1900 }
1901 }
1902 last_forward:
1903 if (psend != -1) {
1904 if (local) {
1905 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1906
1907 if (skb2)
1908 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1909 } else {
1910 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1911 return;
1912 }
1913 }
1914
1915 dont_forward:
1916 if (!local)
1917 kfree_skb(skb);
1918 }
1919
1920 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1921 {
1922 struct rtable *rt = skb_rtable(skb);
1923 struct iphdr *iph = ip_hdr(skb);
1924 struct flowi4 fl4 = {
1925 .daddr = iph->daddr,
1926 .saddr = iph->saddr,
1927 .flowi4_tos = RT_TOS(iph->tos),
1928 .flowi4_oif = (rt_is_output_route(rt) ?
1929 skb->dev->ifindex : 0),
1930 .flowi4_iif = (rt_is_output_route(rt) ?
1931 LOOPBACK_IFINDEX :
1932 skb->dev->ifindex),
1933 .flowi4_mark = skb->mark,
1934 };
1935 struct mr_table *mrt;
1936 int err;
1937
1938 err = ipmr_fib_lookup(net, &fl4, &mrt);
1939 if (err)
1940 return ERR_PTR(err);
1941 return mrt;
1942 }
1943
1944 /*
1945 * Multicast packets for forwarding arrive here
1946 * Called with rcu_read_lock();
1947 */
1948
1949 int ip_mr_input(struct sk_buff *skb)
1950 {
1951 struct mfc_cache *cache;
1952 struct net *net = dev_net(skb->dev);
1953 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954 struct mr_table *mrt;
1955
1956 /* Packet is looped back after forward, it should not be
1957 * forwarded second time, but still can be delivered locally.
1958 */
1959 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960 goto dont_forward;
1961
1962 mrt = ipmr_rt_fib_lookup(net, skb);
1963 if (IS_ERR(mrt)) {
1964 kfree_skb(skb);
1965 return PTR_ERR(mrt);
1966 }
1967 if (!local) {
1968 if (IPCB(skb)->opt.router_alert) {
1969 if (ip_call_ra_chain(skb))
1970 return 0;
1971 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972 /* IGMPv1 (and broken IGMPv2 implementations sort of
1973 * Cisco IOS <= 11.2(8)) do not put router alert
1974 * option to IGMP packets destined to routable
1975 * groups. It is very bad, because it means
1976 * that we can forward NO IGMP messages.
1977 */
1978 struct sock *mroute_sk;
1979
1980 mroute_sk = rcu_dereference(mrt->mroute_sk);
1981 if (mroute_sk) {
1982 nf_reset(skb);
1983 raw_rcv(mroute_sk, skb);
1984 return 0;
1985 }
1986 }
1987 }
1988
1989 /* already under rcu_read_lock() */
1990 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991 if (cache == NULL) {
1992 int vif = ipmr_find_vif(mrt, skb->dev);
1993
1994 if (vif >= 0)
1995 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996 vif);
1997 }
1998
1999 /*
2000 * No usable cache entry
2001 */
2002 if (cache == NULL) {
2003 int vif;
2004
2005 if (local) {
2006 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2007 ip_local_deliver(skb);
2008 if (skb2 == NULL)
2009 return -ENOBUFS;
2010 skb = skb2;
2011 }
2012
2013 read_lock(&mrt_lock);
2014 vif = ipmr_find_vif(mrt, skb->dev);
2015 if (vif >= 0) {
2016 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2017 read_unlock(&mrt_lock);
2018
2019 return err2;
2020 }
2021 read_unlock(&mrt_lock);
2022 kfree_skb(skb);
2023 return -ENODEV;
2024 }
2025
2026 read_lock(&mrt_lock);
2027 ip_mr_forward(net, mrt, skb, cache, local);
2028 read_unlock(&mrt_lock);
2029
2030 if (local)
2031 return ip_local_deliver(skb);
2032
2033 return 0;
2034
2035 dont_forward:
2036 if (local)
2037 return ip_local_deliver(skb);
2038 kfree_skb(skb);
2039 return 0;
2040 }
2041
2042 #ifdef CONFIG_IP_PIMSM
2043 /* called with rcu_read_lock() */
2044 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2045 unsigned int pimlen)
2046 {
2047 struct net_device *reg_dev = NULL;
2048 struct iphdr *encap;
2049
2050 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2051 /*
2052 * Check that:
2053 * a. packet is really sent to a multicast group
2054 * b. packet is not a NULL-REGISTER
2055 * c. packet is not truncated
2056 */
2057 if (!ipv4_is_multicast(encap->daddr) ||
2058 encap->tot_len == 0 ||
2059 ntohs(encap->tot_len) + pimlen > skb->len)
2060 return 1;
2061
2062 read_lock(&mrt_lock);
2063 if (mrt->mroute_reg_vif_num >= 0)
2064 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2065 read_unlock(&mrt_lock);
2066
2067 if (reg_dev == NULL)
2068 return 1;
2069
2070 skb->mac_header = skb->network_header;
2071 skb_pull(skb, (u8 *)encap - skb->data);
2072 skb_reset_network_header(skb);
2073 skb->protocol = htons(ETH_P_IP);
2074 skb->ip_summed = CHECKSUM_NONE;
2075
2076 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2077
2078 netif_rx(skb);
2079
2080 return NET_RX_SUCCESS;
2081 }
2082 #endif
2083
2084 #ifdef CONFIG_IP_PIMSM_V1
2085 /*
2086 * Handle IGMP messages of PIMv1
2087 */
2088
2089 int pim_rcv_v1(struct sk_buff *skb)
2090 {
2091 struct igmphdr *pim;
2092 struct net *net = dev_net(skb->dev);
2093 struct mr_table *mrt;
2094
2095 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2096 goto drop;
2097
2098 pim = igmp_hdr(skb);
2099
2100 mrt = ipmr_rt_fib_lookup(net, skb);
2101 if (IS_ERR(mrt))
2102 goto drop;
2103 if (!mrt->mroute_do_pim ||
2104 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2105 goto drop;
2106
2107 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2108 drop:
2109 kfree_skb(skb);
2110 }
2111 return 0;
2112 }
2113 #endif
2114
2115 #ifdef CONFIG_IP_PIMSM_V2
2116 static int pim_rcv(struct sk_buff *skb)
2117 {
2118 struct pimreghdr *pim;
2119 struct net *net = dev_net(skb->dev);
2120 struct mr_table *mrt;
2121
2122 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2123 goto drop;
2124
2125 pim = (struct pimreghdr *)skb_transport_header(skb);
2126 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2127 (pim->flags & PIM_NULL_REGISTER) ||
2128 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2129 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2130 goto drop;
2131
2132 mrt = ipmr_rt_fib_lookup(net, skb);
2133 if (IS_ERR(mrt))
2134 goto drop;
2135 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2136 drop:
2137 kfree_skb(skb);
2138 }
2139 return 0;
2140 }
2141 #endif
2142
2143 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2144 struct mfc_cache *c, struct rtmsg *rtm)
2145 {
2146 int ct;
2147 struct rtnexthop *nhp;
2148 struct nlattr *mp_attr;
2149 struct rta_mfc_stats mfcs;
2150
2151 /* If cache is unresolved, don't try to parse IIF and OIF */
2152 if (c->mfc_parent >= MAXVIFS)
2153 return -ENOENT;
2154
2155 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157 return -EMSGSIZE;
2158
2159 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160 return -EMSGSIZE;
2161
2162 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165 nla_nest_cancel(skb, mp_attr);
2166 return -EMSGSIZE;
2167 }
2168
2169 nhp->rtnh_flags = 0;
2170 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172 nhp->rtnh_len = sizeof(*nhp);
2173 }
2174 }
2175
2176 nla_nest_end(skb, mp_attr);
2177
2178 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2179 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2180 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2181 if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2182 return -EMSGSIZE;
2183
2184 rtm->rtm_type = RTN_MULTICAST;
2185 return 1;
2186 }
2187
2188 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2189 __be32 saddr, __be32 daddr,
2190 struct rtmsg *rtm, int nowait)
2191 {
2192 struct mfc_cache *cache;
2193 struct mr_table *mrt;
2194 int err;
2195
2196 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2197 if (mrt == NULL)
2198 return -ENOENT;
2199
2200 rcu_read_lock();
2201 cache = ipmr_cache_find(mrt, saddr, daddr);
2202 if (cache == NULL && skb->dev) {
2203 int vif = ipmr_find_vif(mrt, skb->dev);
2204
2205 if (vif >= 0)
2206 cache = ipmr_cache_find_any(mrt, daddr, vif);
2207 }
2208 if (cache == NULL) {
2209 struct sk_buff *skb2;
2210 struct iphdr *iph;
2211 struct net_device *dev;
2212 int vif = -1;
2213
2214 if (nowait) {
2215 rcu_read_unlock();
2216 return -EAGAIN;
2217 }
2218
2219 dev = skb->dev;
2220 read_lock(&mrt_lock);
2221 if (dev)
2222 vif = ipmr_find_vif(mrt, dev);
2223 if (vif < 0) {
2224 read_unlock(&mrt_lock);
2225 rcu_read_unlock();
2226 return -ENODEV;
2227 }
2228 skb2 = skb_clone(skb, GFP_ATOMIC);
2229 if (!skb2) {
2230 read_unlock(&mrt_lock);
2231 rcu_read_unlock();
2232 return -ENOMEM;
2233 }
2234
2235 skb_push(skb2, sizeof(struct iphdr));
2236 skb_reset_network_header(skb2);
2237 iph = ip_hdr(skb2);
2238 iph->ihl = sizeof(struct iphdr) >> 2;
2239 iph->saddr = saddr;
2240 iph->daddr = daddr;
2241 iph->version = 0;
2242 err = ipmr_cache_unresolved(mrt, vif, skb2);
2243 read_unlock(&mrt_lock);
2244 rcu_read_unlock();
2245 return err;
2246 }
2247
2248 read_lock(&mrt_lock);
2249 if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2250 cache->mfc_flags |= MFC_NOTIFY;
2251 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2252 read_unlock(&mrt_lock);
2253 rcu_read_unlock();
2254 return err;
2255 }
2256
2257 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2258 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2259 int flags)
2260 {
2261 struct nlmsghdr *nlh;
2262 struct rtmsg *rtm;
2263 int err;
2264
2265 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2266 if (nlh == NULL)
2267 return -EMSGSIZE;
2268
2269 rtm = nlmsg_data(nlh);
2270 rtm->rtm_family = RTNL_FAMILY_IPMR;
2271 rtm->rtm_dst_len = 32;
2272 rtm->rtm_src_len = 32;
2273 rtm->rtm_tos = 0;
2274 rtm->rtm_table = mrt->id;
2275 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2276 goto nla_put_failure;
2277 rtm->rtm_type = RTN_MULTICAST;
2278 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2279 if (c->mfc_flags & MFC_STATIC)
2280 rtm->rtm_protocol = RTPROT_STATIC;
2281 else
2282 rtm->rtm_protocol = RTPROT_MROUTED;
2283 rtm->rtm_flags = 0;
2284
2285 if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2286 nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2287 goto nla_put_failure;
2288 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2289 /* do not break the dump if cache is unresolved */
2290 if (err < 0 && err != -ENOENT)
2291 goto nla_put_failure;
2292
2293 nlmsg_end(skb, nlh);
2294 return 0;
2295
2296 nla_put_failure:
2297 nlmsg_cancel(skb, nlh);
2298 return -EMSGSIZE;
2299 }
2300
2301 static size_t mroute_msgsize(bool unresolved, int maxvif)
2302 {
2303 size_t len =
2304 NLMSG_ALIGN(sizeof(struct rtmsg))
2305 + nla_total_size(4) /* RTA_TABLE */
2306 + nla_total_size(4) /* RTA_SRC */
2307 + nla_total_size(4) /* RTA_DST */
2308 ;
2309
2310 if (!unresolved)
2311 len = len
2312 + nla_total_size(4) /* RTA_IIF */
2313 + nla_total_size(0) /* RTA_MULTIPATH */
2314 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2315 /* RTA_MFC_STATS */
2316 + nla_total_size(sizeof(struct rta_mfc_stats))
2317 ;
2318
2319 return len;
2320 }
2321
2322 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2323 int cmd)
2324 {
2325 struct net *net = read_pnet(&mrt->net);
2326 struct sk_buff *skb;
2327 int err = -ENOBUFS;
2328
2329 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2330 GFP_ATOMIC);
2331 if (skb == NULL)
2332 goto errout;
2333
2334 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2335 if (err < 0)
2336 goto errout;
2337
2338 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2339 return;
2340
2341 errout:
2342 kfree_skb(skb);
2343 if (err < 0)
2344 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2345 }
2346
2347 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2348 {
2349 struct net *net = sock_net(skb->sk);
2350 struct mr_table *mrt;
2351 struct mfc_cache *mfc;
2352 unsigned int t = 0, s_t;
2353 unsigned int h = 0, s_h;
2354 unsigned int e = 0, s_e;
2355
2356 s_t = cb->args[0];
2357 s_h = cb->args[1];
2358 s_e = cb->args[2];
2359
2360 rcu_read_lock();
2361 ipmr_for_each_table(mrt, net) {
2362 if (t < s_t)
2363 goto next_table;
2364 if (t > s_t)
2365 s_h = 0;
2366 for (h = s_h; h < MFC_LINES; h++) {
2367 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2368 if (e < s_e)
2369 goto next_entry;
2370 if (ipmr_fill_mroute(mrt, skb,
2371 NETLINK_CB(cb->skb).portid,
2372 cb->nlh->nlmsg_seq,
2373 mfc, RTM_NEWROUTE,
2374 NLM_F_MULTI) < 0)
2375 goto done;
2376 next_entry:
2377 e++;
2378 }
2379 e = s_e = 0;
2380 }
2381 spin_lock_bh(&mfc_unres_lock);
2382 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2383 if (e < s_e)
2384 goto next_entry2;
2385 if (ipmr_fill_mroute(mrt, skb,
2386 NETLINK_CB(cb->skb).portid,
2387 cb->nlh->nlmsg_seq,
2388 mfc, RTM_NEWROUTE,
2389 NLM_F_MULTI) < 0) {
2390 spin_unlock_bh(&mfc_unres_lock);
2391 goto done;
2392 }
2393 next_entry2:
2394 e++;
2395 }
2396 spin_unlock_bh(&mfc_unres_lock);
2397 e = s_e = 0;
2398 s_h = 0;
2399 next_table:
2400 t++;
2401 }
2402 done:
2403 rcu_read_unlock();
2404
2405 cb->args[2] = e;
2406 cb->args[1] = h;
2407 cb->args[0] = t;
2408
2409 return skb->len;
2410 }
2411
2412 #ifdef CONFIG_PROC_FS
2413 /*
2414 * The /proc interfaces to multicast routing :
2415 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2416 */
2417 struct ipmr_vif_iter {
2418 struct seq_net_private p;
2419 struct mr_table *mrt;
2420 int ct;
2421 };
2422
2423 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2424 struct ipmr_vif_iter *iter,
2425 loff_t pos)
2426 {
2427 struct mr_table *mrt = iter->mrt;
2428
2429 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2430 if (!VIF_EXISTS(mrt, iter->ct))
2431 continue;
2432 if (pos-- == 0)
2433 return &mrt->vif_table[iter->ct];
2434 }
2435 return NULL;
2436 }
2437
2438 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2439 __acquires(mrt_lock)
2440 {
2441 struct ipmr_vif_iter *iter = seq->private;
2442 struct net *net = seq_file_net(seq);
2443 struct mr_table *mrt;
2444
2445 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2446 if (mrt == NULL)
2447 return ERR_PTR(-ENOENT);
2448
2449 iter->mrt = mrt;
2450
2451 read_lock(&mrt_lock);
2452 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2453 : SEQ_START_TOKEN;
2454 }
2455
2456 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2457 {
2458 struct ipmr_vif_iter *iter = seq->private;
2459 struct net *net = seq_file_net(seq);
2460 struct mr_table *mrt = iter->mrt;
2461
2462 ++*pos;
2463 if (v == SEQ_START_TOKEN)
2464 return ipmr_vif_seq_idx(net, iter, 0);
2465
2466 while (++iter->ct < mrt->maxvif) {
2467 if (!VIF_EXISTS(mrt, iter->ct))
2468 continue;
2469 return &mrt->vif_table[iter->ct];
2470 }
2471 return NULL;
2472 }
2473
2474 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2475 __releases(mrt_lock)
2476 {
2477 read_unlock(&mrt_lock);
2478 }
2479
2480 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2481 {
2482 struct ipmr_vif_iter *iter = seq->private;
2483 struct mr_table *mrt = iter->mrt;
2484
2485 if (v == SEQ_START_TOKEN) {
2486 seq_puts(seq,
2487 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2488 } else {
2489 const struct vif_device *vif = v;
2490 const char *name = vif->dev ? vif->dev->name : "none";
2491
2492 seq_printf(seq,
2493 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2494 vif - mrt->vif_table,
2495 name, vif->bytes_in, vif->pkt_in,
2496 vif->bytes_out, vif->pkt_out,
2497 vif->flags, vif->local, vif->remote);
2498 }
2499 return 0;
2500 }
2501
2502 static const struct seq_operations ipmr_vif_seq_ops = {
2503 .start = ipmr_vif_seq_start,
2504 .next = ipmr_vif_seq_next,
2505 .stop = ipmr_vif_seq_stop,
2506 .show = ipmr_vif_seq_show,
2507 };
2508
2509 static int ipmr_vif_open(struct inode *inode, struct file *file)
2510 {
2511 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2512 sizeof(struct ipmr_vif_iter));
2513 }
2514
2515 static const struct file_operations ipmr_vif_fops = {
2516 .owner = THIS_MODULE,
2517 .open = ipmr_vif_open,
2518 .read = seq_read,
2519 .llseek = seq_lseek,
2520 .release = seq_release_net,
2521 };
2522
2523 struct ipmr_mfc_iter {
2524 struct seq_net_private p;
2525 struct mr_table *mrt;
2526 struct list_head *cache;
2527 int ct;
2528 };
2529
2530
2531 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2532 struct ipmr_mfc_iter *it, loff_t pos)
2533 {
2534 struct mr_table *mrt = it->mrt;
2535 struct mfc_cache *mfc;
2536
2537 rcu_read_lock();
2538 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2539 it->cache = &mrt->mfc_cache_array[it->ct];
2540 list_for_each_entry_rcu(mfc, it->cache, list)
2541 if (pos-- == 0)
2542 return mfc;
2543 }
2544 rcu_read_unlock();
2545
2546 spin_lock_bh(&mfc_unres_lock);
2547 it->cache = &mrt->mfc_unres_queue;
2548 list_for_each_entry(mfc, it->cache, list)
2549 if (pos-- == 0)
2550 return mfc;
2551 spin_unlock_bh(&mfc_unres_lock);
2552
2553 it->cache = NULL;
2554 return NULL;
2555 }
2556
2557
2558 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2559 {
2560 struct ipmr_mfc_iter *it = seq->private;
2561 struct net *net = seq_file_net(seq);
2562 struct mr_table *mrt;
2563
2564 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2565 if (mrt == NULL)
2566 return ERR_PTR(-ENOENT);
2567
2568 it->mrt = mrt;
2569 it->cache = NULL;
2570 it->ct = 0;
2571 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2572 : SEQ_START_TOKEN;
2573 }
2574
2575 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2576 {
2577 struct mfc_cache *mfc = v;
2578 struct ipmr_mfc_iter *it = seq->private;
2579 struct net *net = seq_file_net(seq);
2580 struct mr_table *mrt = it->mrt;
2581
2582 ++*pos;
2583
2584 if (v == SEQ_START_TOKEN)
2585 return ipmr_mfc_seq_idx(net, seq->private, 0);
2586
2587 if (mfc->list.next != it->cache)
2588 return list_entry(mfc->list.next, struct mfc_cache, list);
2589
2590 if (it->cache == &mrt->mfc_unres_queue)
2591 goto end_of_list;
2592
2593 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2594
2595 while (++it->ct < MFC_LINES) {
2596 it->cache = &mrt->mfc_cache_array[it->ct];
2597 if (list_empty(it->cache))
2598 continue;
2599 return list_first_entry(it->cache, struct mfc_cache, list);
2600 }
2601
2602 /* exhausted cache_array, show unresolved */
2603 rcu_read_unlock();
2604 it->cache = &mrt->mfc_unres_queue;
2605 it->ct = 0;
2606
2607 spin_lock_bh(&mfc_unres_lock);
2608 if (!list_empty(it->cache))
2609 return list_first_entry(it->cache, struct mfc_cache, list);
2610
2611 end_of_list:
2612 spin_unlock_bh(&mfc_unres_lock);
2613 it->cache = NULL;
2614
2615 return NULL;
2616 }
2617
2618 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2619 {
2620 struct ipmr_mfc_iter *it = seq->private;
2621 struct mr_table *mrt = it->mrt;
2622
2623 if (it->cache == &mrt->mfc_unres_queue)
2624 spin_unlock_bh(&mfc_unres_lock);
2625 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2626 rcu_read_unlock();
2627 }
2628
2629 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2630 {
2631 int n;
2632
2633 if (v == SEQ_START_TOKEN) {
2634 seq_puts(seq,
2635 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2636 } else {
2637 const struct mfc_cache *mfc = v;
2638 const struct ipmr_mfc_iter *it = seq->private;
2639 const struct mr_table *mrt = it->mrt;
2640
2641 seq_printf(seq, "%08X %08X %-3hd",
2642 (__force u32) mfc->mfc_mcastgrp,
2643 (__force u32) mfc->mfc_origin,
2644 mfc->mfc_parent);
2645
2646 if (it->cache != &mrt->mfc_unres_queue) {
2647 seq_printf(seq, " %8lu %8lu %8lu",
2648 mfc->mfc_un.res.pkt,
2649 mfc->mfc_un.res.bytes,
2650 mfc->mfc_un.res.wrong_if);
2651 for (n = mfc->mfc_un.res.minvif;
2652 n < mfc->mfc_un.res.maxvif; n++) {
2653 if (VIF_EXISTS(mrt, n) &&
2654 mfc->mfc_un.res.ttls[n] < 255)
2655 seq_printf(seq,
2656 " %2d:%-3d",
2657 n, mfc->mfc_un.res.ttls[n]);
2658 }
2659 } else {
2660 /* unresolved mfc_caches don't contain
2661 * pkt, bytes and wrong_if values
2662 */
2663 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2664 }
2665 seq_putc(seq, '\n');
2666 }
2667 return 0;
2668 }
2669
2670 static const struct seq_operations ipmr_mfc_seq_ops = {
2671 .start = ipmr_mfc_seq_start,
2672 .next = ipmr_mfc_seq_next,
2673 .stop = ipmr_mfc_seq_stop,
2674 .show = ipmr_mfc_seq_show,
2675 };
2676
2677 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2678 {
2679 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2680 sizeof(struct ipmr_mfc_iter));
2681 }
2682
2683 static const struct file_operations ipmr_mfc_fops = {
2684 .owner = THIS_MODULE,
2685 .open = ipmr_mfc_open,
2686 .read = seq_read,
2687 .llseek = seq_lseek,
2688 .release = seq_release_net,
2689 };
2690 #endif
2691
2692 #ifdef CONFIG_IP_PIMSM_V2
2693 static const struct net_protocol pim_protocol = {
2694 .handler = pim_rcv,
2695 .netns_ok = 1,
2696 };
2697 #endif
2698
2699
2700 /*
2701 * Setup for IP multicast routing
2702 */
2703 static int __net_init ipmr_net_init(struct net *net)
2704 {
2705 int err;
2706
2707 err = ipmr_rules_init(net);
2708 if (err < 0)
2709 goto fail;
2710
2711 #ifdef CONFIG_PROC_FS
2712 err = -ENOMEM;
2713 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2714 goto proc_vif_fail;
2715 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2716 goto proc_cache_fail;
2717 #endif
2718 return 0;
2719
2720 #ifdef CONFIG_PROC_FS
2721 proc_cache_fail:
2722 remove_proc_entry("ip_mr_vif", net->proc_net);
2723 proc_vif_fail:
2724 ipmr_rules_exit(net);
2725 #endif
2726 fail:
2727 return err;
2728 }
2729
2730 static void __net_exit ipmr_net_exit(struct net *net)
2731 {
2732 #ifdef CONFIG_PROC_FS
2733 remove_proc_entry("ip_mr_cache", net->proc_net);
2734 remove_proc_entry("ip_mr_vif", net->proc_net);
2735 #endif
2736 ipmr_rules_exit(net);
2737 }
2738
2739 static struct pernet_operations ipmr_net_ops = {
2740 .init = ipmr_net_init,
2741 .exit = ipmr_net_exit,
2742 };
2743
2744 int __init ip_mr_init(void)
2745 {
2746 int err;
2747
2748 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2749 sizeof(struct mfc_cache),
2750 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2751 NULL);
2752 if (!mrt_cachep)
2753 return -ENOMEM;
2754
2755 err = register_pernet_subsys(&ipmr_net_ops);
2756 if (err)
2757 goto reg_pernet_fail;
2758
2759 err = register_netdevice_notifier(&ip_mr_notifier);
2760 if (err)
2761 goto reg_notif_fail;
2762 #ifdef CONFIG_IP_PIMSM_V2
2763 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2764 pr_err("%s: can't add PIM protocol\n", __func__);
2765 err = -EAGAIN;
2766 goto add_proto_fail;
2767 }
2768 #endif
2769 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2770 NULL, ipmr_rtm_dumproute, NULL);
2771 return 0;
2772
2773 #ifdef CONFIG_IP_PIMSM_V2
2774 add_proto_fail:
2775 unregister_netdevice_notifier(&ip_mr_notifier);
2776 #endif
2777 reg_notif_fail:
2778 unregister_pernet_subsys(&ipmr_net_ops);
2779 reg_pernet_fail:
2780 kmem_cache_destroy(mrt_cachep);
2781 return err;
2782 }
This page took 0.08662 seconds and 5 git commands to generate.